Experiment: 1800 games were played in unlimited mode between Gnu_bg and a human player. The human player (myself) played the first 20 games then all the remaining games were played using the "end game" option (basically the algorithm played against itself).

	Gnu_bg	Human	t-test. $1 ; 2$ tails; n
Total wins	923	877	
Total score	1187	1085	
1 pt. wins	678	669	
gammon wins	254	208	$0.34 ; 0.069 ; \mathrm{n}=18$
1 pt. wins $/ 100$ games	37.17 ± 3.94	36.5 ± 5.83	$0.016 ; 0.033 ; \mathrm{n}=18$
gammon wins/100 games	14.11 ± 3.01	11.56 ± 3.84	

Legend

Differential score $=$ Points of Gnu_bg - Points of human
1 pt. wins/100 games = mean number of 1 points wins per 100 games (mean \pm standard deviation). This is equal to the probability to win a gammon that is gammon wins/1800 gammon wins/100 games = see above
t-test = t-test results between 1 pt. wins and gammon wins with 1 -tail (appropriate in this case since we are looking for bias) and 2-tail (not necessary but indicative anyway).

Data fitted to $y=a x$ where the coefficient a and one standard deviation are $=4.48 \pm 0.09$ points per 100 games.

There were 10 backgammons each. These have not included in the calculations.
The difference between the probabilities to win a gammon is 2.55%. With this error, after 1800 games the level of confidence is 98%.

