commit-gnuradio
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Commit-gnuradio] r11579 - in gnuradio/branches/developers/trondeau/pfb/


From: trondeau
Subject: [Commit-gnuradio] r11579 - in gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python: . pfb
Date: Tue, 11 Aug 2009 17:29:57 -0600 (MDT)

Author: trondeau
Date: 2009-08-11 17:29:57 -0600 (Tue, 11 Aug 2009)
New Revision: 11579

Added:
   
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/Makefile.am
   
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/fmtest.py
Modified:
   
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/Makefile.am
   
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/channelize.py
   
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/chirp_channelize.py
   
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/decimate.py
   
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/interpolate.py
Log:
Updating PFB examples.

Modified: 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/Makefile.am
===================================================================
--- 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/Makefile.am  
    2009-08-11 23:24:29 UTC (rev 11578)
+++ 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/Makefile.am  
    2009-08-11 23:29:57 UTC (rev 11579)
@@ -32,5 +32,6 @@
        multi_usrp \
        network \
        ofdm \
+       pfb \
        usrp \
        usrp2

Added: 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/Makefile.am
===================================================================
--- 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/Makefile.am
                          (rev 0)
+++ 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/Makefile.am
  2009-08-11 23:29:57 UTC (rev 11579)
@@ -0,0 +1,31 @@
+#
+# Copyright 2009 Free Software Foundation, Inc.
+# 
+# This file is part of GNU Radio
+# 
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+# 
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+# 
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING.  If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+# 
+
+include $(top_srcdir)/Makefile.common
+
+ourdatadir = $(exampledir)/pfb
+
+dist_ourdata_SCRIPTS =         \
+       channelize.py           \
+       chirp_channelize.py     \
+       decimate.py             \
+       interpolate.py          \
+       fmtest.py

Modified: 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/channelize.py
===================================================================
--- 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/channelize.py
        2009-08-11 23:24:29 UTC (rev 11578)
+++ 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/channelize.py
        2009-08-11 23:29:57 UTC (rev 11579)
@@ -1,49 +1,72 @@
 #!/usr/bin/env python
+#
+# Copyright 2009 Free Software Foundation, Inc.
+# 
+# This file is part of GNU Radio
+# 
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+# 
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+# 
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING.  If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+# 
 
 from gnuradio import gr, blks2
-import math
-import os
+import os, time
 import scipy, pylab
 from scipy import fftpack
-import time
+from pylab import mlab
 
-#print os.getpid()
-#raw_input()
-
 class pfb_top_block(gr.top_block):
     def __init__(self):
         gr.top_block.__init__(self)
 
-        self._N = 2000000
-        self._fs = 9000
-        self._Tmax = self._N * (1.0/self._fs)
-        self._M = 9
-        self._taps = gr.firdes.low_pass_2(1, self._fs, 475,50, 100,5)
+        self._N = 2000000        # number of samples to use
+        self._fs = 9000          # initial sampling rate
+        self._M = 9              # Number of channels to channelize
 
-        fc = 200
+        # Create a set of taps for the PFB channelizer
+        self._taps = gr.firdes.low_pass_2(1, self._fs, 475.50, 50, 
+                                          attenuation_dB=10, 
window=gr.firdes.WIN_BLACKMAN_hARRIS)
 
-        tpc = math.ceil(float(len(self._taps)) /  float(self._M))
-
+        # Calculate the number of taps per channel for our own information
+        tpc = scipy.ceil(float(len(self._taps)) /  float(self._M))
         print "Number of taps:     ", len(self._taps)
         print "Number of channels: ", self._M
         print "Taps per channel:   ", tpc
         
+        # Create a set of signals at different frequencies
+        #   freqs lists the frequencies of the signals that get stored 
+        #   in the list "signals", which then get summed together
         self.signals = list()
         self.add = gr.add_cc()
-        freqs = [-4070, -3050, -2030, -1010, 10, 1020, 2040, 3060, 4300]
+        freqs = [-4070, -3050, -2030, -1010, 10, 1020, 2040, 3060, 4080]
         for i in xrange(len(freqs)):
             self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, 
freqs[i], 1))
             self.connect(self.signals[i], (self.add,i))
 
         self.head = gr.head(gr.sizeof_gr_complex, self._N)
+
+        # Construct the channelizer filter
         self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
+
+        # Construct a vector sink for the input signal to the channelizer
         self.snk_i = gr.vector_sink_c()
 
         # Connect the blocks
         self.connect(self.add, self.head, self.pfb)
         self.connect(self.add, self.snk_i)
 
-        # Create a file sink for each of M output channels of the filter and 
connect it
+        # Create a vector sink for each of M output channels of the filter and 
connect it
         self.snks = list()
         for i in xrange(self._M):
             self.snks.append(gr.vector_sink_c())
@@ -75,9 +98,9 @@
         d = tb.snk_i.data()[Ns:Ne]
         spin_f = fig_in.add_subplot(2, 1, 1)
 
-        X,freq = spin_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
-                            window = lambda d: d*winfunc(fftlen),
-                            visible=False)
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
         X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
         f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
         pin_f = spin_f.plot(f_in, X_in, "b")
@@ -88,7 +111,11 @@
         spin_f.set_xlabel("Frequency (Hz)")
         spin_f.set_ylabel("Power (dBW)")
 
-        t_in = scipy.arange(0, tb._Tmax, tb._Tmax/float(len(d)))
+
+        Ts = 1.0/fs
+        Tmax = len(d)*Ts
+        
+        t_in = scipy.arange(0, Tmax, Ts)
         x_in = scipy.array(d)
         spin_t = fig_in.add_subplot(2, 1, 2)
         pin_t = spin_t.plot(t_in, x_in.real, "b")
@@ -105,6 +132,8 @@
         # Plot each of the channels outputs. Frequencies on Figure 2 and
         # time signals on Figure 3
         fs_o = tb._fs / tb._M
+        Ts_o = 1.0/fs_o
+        Tmax_o = len(d)*Ts_o
         for i in xrange(len(tb.snks)):
             # remove issues with the transients at the beginning
             # also remove some corruption at the end of the stream
@@ -112,9 +141,9 @@
             d = tb.snks[i].data()[Ns:Ne]
 
             sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
-            X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
-                               window = lambda d: d*winfunc(fftlen),
-                               visible=False)
+            X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
+                              window = lambda d: d*winfunc(fftlen),
+                              scale_by_freq=True)
             X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
             f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
             p2_f = sp1_f.plot(f_o, X_o, "b")
@@ -125,15 +154,15 @@
             sp1_f.set_xlabel("Frequency (Hz)")
             sp1_f.set_ylabel("Power (dBW)")
 
-            
             x_o = scipy.array(d)
-            t_o = scipy.arange(0, tb._Tmax, tb._Tmax/float(x_o.size))
+            t_o = scipy.arange(0, Tmax_o, Ts_o)
             sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
             p2_o = sp2_o.plot(t_o, x_o.real, "b")
             p2_o = sp2_o.plot(t_o, x_o.imag, "r")
             sp2_o.set_xlim([min(t_o), max(t_o)+1]) 
             sp2_o.set_ylim([-2, 2]) 
 
+            sp2_o.set_title(("Channel %d" % i), weight="bold")
             sp2_o.set_xlabel("Time (s)")
             sp2_o.set_ylabel("Amplitude")
 

Modified: 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/chirp_channelize.py
===================================================================
--- 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/chirp_channelize.py
  2009-08-11 23:24:29 UTC (rev 11578)
+++ 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/chirp_channelize.py
  2009-08-11 23:29:57 UTC (rev 11579)
@@ -1,49 +1,76 @@
 #!/usr/bin/env python
+#
+# Copyright 2009 Free Software Foundation, Inc.
+# 
+# This file is part of GNU Radio
+# 
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+# 
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+# 
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING.  If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+# 
 
 from gnuradio import gr, blks2
-import math
-import os
+import os, time
 import scipy, pylab
 from scipy import fftpack
-import time
+from pylab import mlab
 
-#print os.getpid()
-#raw_input()
-
 class pfb_top_block(gr.top_block):
     def __init__(self):
         gr.top_block.__init__(self)
 
-        self._N = 200000
-        self._fs = 9000
-        self._Tmax = self._N * (1.0/self._fs)
-        self._M = 9
-        self._taps = gr.firdes.low_pass_2(1, self._fs, 800,100 ,90,5)
-        fc = 200
+        self._N = 200000         # number of samples to use
+        self._fs = 9000          # initial sampling rate
+        self._M = 9              # Number of channels to channelize
 
-        tpc = math.ceil(float(len(self._taps)) /  float(self._M))
+        # Create a set of taps for the PFB channelizer
+        self._taps = gr.firdes.low_pass_2(1, self._fs, 500, 20, 
+                                          attenuation_dB=10, 
window=gr.firdes.WIN_BLACKMAN_hARRIS)
 
+        # Calculate the number of taps per channel for our own information
+        tpc = scipy.ceil(float(len(self._taps)) /  float(self._M))
         print "Number of taps:     ", len(self._taps)
         print "Number of channels: ", self._M
         print "Taps per channel:   ", tpc
 
-        data = scipy.arange(0, 1000, 100.0/float(self._N))
-        
-        #self.vco_input = gr.sig_source_f(self._fs, gr.GR_SIN_WAVE, 0.25, 100)
-        self.vco_input = gr.vector_source_f(data, False)
+        repeated = True
+        if(repeated):
+            self.vco_input = gr.sig_source_f(self._fs, gr.GR_SIN_WAVE, 0.25, 
110)
+        else:
+            amp = 100
+            data = scipy.arange(0, amp, amp/float(self._N))
+            self.vco_input = gr.vector_source_f(data, False)
+            
+        # Build a VCO controlled by either the sinusoid or single chirp tone
+        # Then convert this to a complex signal
         self.vco = gr.vco_f(self._fs, 225, 1)
         self.f2c = gr.float_to_complex()
 
         self.head = gr.head(gr.sizeof_gr_complex, self._N)
+
+        # Construct the channelizer filter
         self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
+
+        # Construct a vector sink for the input signal to the channelizer
         self.snk_i = gr.vector_sink_c()
 
-        # Connect the rest
+        # Connect the blocks
         self.connect(self.vco_input, self.vco, self.f2c)
         self.connect(self.f2c, self.head, self.pfb)
         self.connect(self.f2c, self.snk_i)
 
-        # Create a file sink for each of M output channels of the filter and 
connect it
+        # Create a vector sink for each of M output channels of the filter and 
connect it
         self.snks = list()
         for i in xrange(self._M):
             self.snks.append(gr.vector_sink_c())
@@ -60,42 +87,100 @@
     print "Run time: %f" % (tend - tstart)
 
     if 1:
-        fig1 = pylab.figure(1, figsize=(16,9))
-        fig2 = pylab.figure(2, figsize=(16,9))
+        fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
+        fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
+        fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
+        fig3 = pylab.figure(4, figsize=(16,9), facecolor="w")
         
-        Ns = 100
-        Ne = tb._N
+        Ns = 650
+        Ne = 20000
+
+        fftlen = 8192
+        winfunc = scipy.blackman
+        fs = tb._fs
+
+        # Plot the input signal on its own figure
         d = tb.snk_i.data()[Ns:Ne]
-        f_in = scipy.arange(-tb._fs/2.0, tb._fs/2.0, tb._fs/float(len(d)))
-        X_in = 10.0*scipy.log10(fftpack.fftshift(fftpack.fft(d, f_in.size)))
-        sp1_in = fig1.add_subplot(4, 3, 1)
-        p1_in = sp1_in.plot(f_in, X_in)
+        spin_f = fig_in.add_subplot(2, 1, 1)
+
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
+        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
+        pin_f = spin_f.plot(f_in, X_in, "b")
+        spin_f.set_xlim([min(f_in), max(f_in)+1]) 
+        spin_f.set_ylim([-200.0, 50.0]) 
+
+        spin_f.set_title("Input Signal", weight="bold")
+        spin_f.set_xlabel("Frequency (Hz)")
+        spin_f.set_ylabel("Power (dBW)")
+
+
+        Ts = 1.0/fs
+        Tmax = len(d)*Ts
         
-        t_in = scipy.arange(0, tb._Tmax, tb._Tmax/float(len(d)))
+        t_in = scipy.arange(0, Tmax, Ts)
         x_in = scipy.array(d)
-        sp2_in = fig2.add_subplot(4, 3, 1)
-        p2_in = sp2_in.plot(t_in, x_in.real, "b")
-        p2_in = sp2_in.plot(t_in, x_in.imag, "r")
-        
+        spin_t = fig_in.add_subplot(2, 1, 2)
+        pin_t = spin_t.plot(t_in, x_in.real, "b")
+        pin_t = spin_t.plot(t_in, x_in.imag, "r")
+
+        spin_t.set_xlabel("Time (s)")
+        spin_t.set_ylabel("Amplitude")
+
+        Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
+        Nrows = int(scipy.floor(tb._M / Ncols))
+        if(tb._M % Ncols != 0):
+            Nrows += 1
+
+        # Plot each of the channels outputs. Frequencies on Figure 2 and
+        # time signals on Figure 3
         fs_o = tb._fs / tb._M
+        Ts_o = 1.0/fs_o
+        Tmax_o = len(d)*Ts_o
         for i in xrange(len(tb.snks)):
             # remove issues with the transients at the beginning
             # also remove some corruption at the end of the stream
             #    this is a bug, probably due to the corner cases
             d = tb.snks[i].data()[Ns:Ne]
-            f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(len(d)))
-            x_o = 10.0*scipy.log10(fftpack.fftshift(fftpack.fft(d)))
-            sp1_o = fig1.add_subplot(4, 3, 2+i)
-            p1_o = sp1_o.plot(f_o, x_o)
-            sp1_o.set_ylim([-50.0, 30.0])
-            
+
+            sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
+            X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
+                              window = lambda d: d*winfunc(fftlen),
+                              scale_by_freq=True)
+            X_o = 10.0*scipy.log10(abs(X))
+            f_o = freq
+            p2_f = sp1_f.plot(f_o, X_o, "b")
+            sp1_f.set_xlim([min(f_o), max(f_o)+1]) 
+            sp1_f.set_ylim([-200.0, 50.0]) 
+
+            sp1_f.set_title(("Channel %d" % i), weight="bold")
+            sp1_f.set_xlabel("Frequency (Hz)")
+            sp1_f.set_ylabel("Power (dBW)")
+
             x_o = scipy.array(d)
-            t_o = scipy.arange(0, tb._Tmax, tb._Tmax/float(x_o.size))
-            sp2_o = fig2.add_subplot(4, 3, 2+i)
+            t_o = scipy.arange(0, Tmax_o, Ts_o)
+            sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
             p2_o = sp2_o.plot(t_o, x_o.real, "b")
             p2_o = sp2_o.plot(t_o, x_o.imag, "r")
-            sp2_o.set_ylim([-1.0, 1.0])
-            
+            sp2_o.set_xlim([min(t_o), max(t_o)+1]) 
+            sp2_o.set_ylim([-2, 2]) 
+
+            sp2_o.set_title(("Channel %d" % i), weight="bold")
+            sp2_o.set_xlabel("Time (s)")
+            sp2_o.set_ylabel("Amplitude")
+
+
+            sp3 = fig3.add_subplot(1,1,1)
+            p3 = sp3.plot(t_o, x_o.real)
+            sp3.set_xlim([min(t_o), max(t_o)+1]) 
+            sp3.set_ylim([-2, 2]) 
+
+        sp3.set_title("All Channels")
+        sp3.set_xlabel("Time (s)")
+        sp3.set_ylabel("Amplitude") 
+
         pylab.show()
 
 

Modified: 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/decimate.py
===================================================================
--- 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/decimate.py
  2009-08-11 23:24:29 UTC (rev 11578)
+++ 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/decimate.py
  2009-08-11 23:29:57 UTC (rev 11579)
@@ -1,10 +1,30 @@
 #!/usr/bin/env python
+#
+# Copyright 2009 Free Software Foundation, Inc.
+# 
+# This file is part of GNU Radio
+# 
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+# 
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+# 
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING.  If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+# 
 
 from gnuradio import gr, blks2
-import math
 import os
 import scipy, pylab
 from scipy import fftpack
+from pylab import mlab
 import time
 
 #print os.getpid()
@@ -14,28 +34,38 @@
     def __init__(self):
         gr.top_block.__init__(self)
 
-        self._N = 10000000
-        self._fs = 10000
-        self._Tmax = self._N * (1.0/self._fs)
-        self._decim = 20
-        self._taps = gr.firdes.low_pass_2(1, self._fs, 200, 50,120,5)
+        self._N = 10000000      # number of samples to use
+        self._fs = 10000        # initial sampling rate
+        self._decim = 20        # Decimation rate
+        
+        # Generate the prototype filter taps for the decimators with a 200 Hz 
bandwidth
+        self._taps = gr.firdes.low_pass_2(1, self._fs, 200, 150,
+                                          attenuation_dB=120, 
window=gr.firdes.WIN_BLACKMAN_hARRIS)
 
-        tpc = math.ceil(float(len(self._taps)) /  float(self._decim))
-
+        # Calculate the number of taps per channel for our own information
+        tpc = scipy.ceil(float(len(self._taps)) /  float(self._decim))
         print "Number of taps:     ", len(self._taps)
         print "Number of filters:  ", self._decim
         print "Taps per channel:   ", tpc
         
+        # Build the input signal source
+        # We create a list of freqs, and a sine wave is generated and added to 
the source
+        # for each one of these frequencies.
         self.signals = list()
         self.add = gr.add_cc()
-        freqs = [10, 2040]
+        freqs = [10, 20, 2040]
         for i in xrange(len(freqs)):
             self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, 
freqs[i], 1))
             self.connect(self.signals[i], (self.add,i))
 
         self.head = gr.head(gr.sizeof_gr_complex, self._N)
+        
+        # Construct a PFB decimator filter
         self.pfb = blks2.pfb_decimator_ccf(self._decim, self._taps, 0)
-        #self.pfb = gr.fir_filter_ccf(self._decim, self._taps)
+
+        # Construct a standard FIR decimating filter
+        self.dec = gr.fir_filter_ccf(self._decim, self._taps)
+
         self.snk_i = gr.vector_sink_c()
 
         # Connect the blocks
@@ -71,9 +101,9 @@
         d = tb.snk_i.data()[Ns:Ns+Ne]
         sp1_f = fig1.add_subplot(2, 1, 1)
 
-        X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
-                           window = lambda d: d*winfunc(fftlen),
-                           visible=False)
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
         X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
         f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
         p1_f = sp1_f.plot(f_in, X_in, "b")
@@ -84,7 +114,10 @@
         sp1_f.set_xlabel("Frequency (Hz)")
         sp1_f.set_ylabel("Power (dBW)")
         
-        t_in = scipy.arange(0, tb._Tmax, tb._Tmax/float(len(d)))
+        Ts = 1.0/fs
+        Tmax = len(d)*Ts
+
+        t_in = scipy.arange(0, Tmax, Ts)
         x_in = scipy.array(d)
         sp1_t = fig1.add_subplot(2, 1, 2)
         p1_t = sp1_t.plot(t_in, x_in.real, "b")
@@ -100,9 +133,9 @@
 
         sp2_f = fig2.add_subplot(2, 1, 1)
         d = tb.snk.data()[Ns:Ns+Ne]
-        X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
-                           window = lambda d: d*winfunc(fftlen),
-                           visible=False)
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
         X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
         f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
         p2_f = sp2_f.plot(f_o, X_o, "b")
@@ -114,12 +147,15 @@
         sp2_f.set_ylabel("Power (dBW)")
         
 
+        Ts_o = 1.0/fs_o
+        Tmax_o = len(d)*Ts_o
+
         x_o = scipy.array(d)
-        t_o = scipy.arange(0, tb._Tmax, tb._Tmax/float(x_o.size))
+        t_o = scipy.arange(0, Tmax_o, Ts_o)
         sp2_t = fig2.add_subplot(2, 1, 2)
-        p2_t = sp2_t.plot(t_o, x_o.real, "b")
-        p2_t = sp2_t.plot(t_o, x_o.imag, "r")
-        sp2_t.set_ylim([-1.5, 1.5])
+        p2_t = sp2_t.plot(t_o, x_o.real, "b-o")
+        p2_t = sp2_t.plot(t_o, x_o.imag, "r-o")
+        sp2_t.set_ylim([-2.5, 2.5])
 
         sp2_t.set_xlabel("Time (s)")
         sp2_t.set_ylabel("Amplitude")

Added: 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/fmtest.py
===================================================================
--- 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/fmtest.py
                            (rev 0)
+++ 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/fmtest.py
    2009-08-11 23:29:57 UTC (rev 11579)
@@ -0,0 +1,197 @@
+#!/usr/bin/env python
+#
+
+
+from gnuradio import gr, eng_notation
+from gnuradio import blks2
+from gnuradio.eng_option import eng_option
+from optparse import OptionParser
+import math, time, sys, scipy, pylab
+from scipy import fftpack
+
+class fmtx(gr.hier_block2):
+    def __init__(self, lo_freq, audio_rate, if_rate):
+
+        gr.hier_block2.__init__(self, "build_fm",
+                                gr.io_signature(1, 1, gr.sizeof_float),      # 
Input signature
+                                gr.io_signature(1, 1, gr.sizeof_gr_complex)) # 
Output signature
+
+        fmtx = blks2.nbfm_tx (audio_rate, if_rate, max_dev=5e3, tau=75e-6)
+        
+        # Local oscillator
+        lo = gr.sig_source_c (if_rate,        # sample rate
+                              gr.GR_SIN_WAVE, # waveform type
+                              lo_freq,        #frequency
+                              1.0,            # amplitude
+                              0)              # DC Offset
+        mixer = gr.multiply_cc ()
+    
+        self.connect (self, fmtx, (mixer, 0))
+        self.connect (lo, (mixer, 1))
+        self.connect (mixer, self)
+
+class fmtest(gr.top_block):
+    def __init__(self):
+        gr.top_block.__init__(self)
+
+        self._nsamples = 1000000
+        self._audio_rate = 8000
+
+        # Set up N channels with their own baseband and IF frequencies
+        self._N = 5
+        chspacing = 16000
+        freq = [10, 20, 30, 40, 50]
+        f_lo = [0, 1*chspacing, -1*chspacing, 2*chspacing, -2*chspacing]
+
+        self._if_rate = 4*self._N*self._audio_rate
+
+        # Create a signal source and frequency modulate it
+        self.sum = gr.add_cc ()
+        for n in xrange(self._N):
+            sig = gr.sig_source_f(self._audio_rate, gr.GR_SIN_WAVE, freq[n], 
0.5)
+            fm = fmtx(f_lo[n], self._audio_rate, self._if_rate)
+            self.connect(sig, fm)
+            self.connect(fm, (self.sum, n))
+
+        self.head = gr.head(gr.sizeof_gr_complex, self._nsamples)
+        self.snk_tx = gr.vector_sink_c()
+        self.channel = blks2.channel_model(0.1)
+
+        self.connect(self.sum, self.head, self.channel, self.snk_tx)
+
+
+        # Design the channlizer
+        self._M = 10
+        bw = chspacing/2.0
+        t_bw = chspacing/10.0
+        self._chan_rate = self._if_rate / self._M
+        self._taps = gr.firdes.low_pass_2(1, self._if_rate, bw, t_bw, 
+                                          attenuation_dB=100,
+                                          window=gr.firdes.WIN_BLACKMAN_hARRIS)
+        tpc = math.ceil(float(len(self._taps)) /  float(self._M))
+
+        print "Number of taps:     ", len(self._taps)
+        print "Number of channels: ", self._M
+        print "Taps per channel:   ", tpc
+        
+        self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
+        
+        self.connect(self.channel, self.pfb)
+        
+        # Create a file sink for each of M output channels of the filter and 
connect it
+        self.fmdet = list()
+        self.squelch = list()
+        self.snks = list()
+        for i in xrange(self._M):
+            self.fmdet.append(blks2.nbfm_rx(self._audio_rate, self._chan_rate))
+            self.squelch.append(blks2.standard_squelch(self._audio_rate*10))
+            self.snks.append(gr.vector_sink_f())
+            self.connect((self.pfb, i), self.fmdet[i], self.squelch[i], 
self.snks[i])
+
+    def num_tx_channels(self):
+        return self._N
+
+    def num_rx_channels(self):
+        return self._M
+
+def main():
+
+    fm = fmtest()
+
+    tstart = time.time()
+    fm.run()
+    tend = time.time()
+
+    if 1:
+        fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
+        fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
+        fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")
+
+        Ns = 10000
+        Ne = 100000
+
+        fftlen = 8192
+        winfunc = scipy.blackman
+
+        # Plot transmitted signal
+        fs = fm._if_rate
+
+        d = fm.snk_tx.data()[Ns:Ns+Ne]
+        sp1_f = fig1.add_subplot(2, 1, 1)
+
+        X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                           window = lambda d: d*winfunc(fftlen),
+                           visible=False)
+        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
+        p1_f = sp1_f.plot(f_in, X_in, "b")
+        sp1_f.set_xlim([min(f_in), max(f_in)+1]) 
+        sp1_f.set_ylim([-120.0, 20.0]) 
+
+        sp1_f.set_title("Input Signal", weight="bold")
+        sp1_f.set_xlabel("Frequency (Hz)")
+        sp1_f.set_ylabel("Power (dBW)")
+
+        Ts = 1.0/fs
+        Tmax = len(d)*Ts
+        
+        t_in = scipy.arange(0, Tmax, Ts)
+        x_in = scipy.array(d)
+        sp1_t = fig1.add_subplot(2, 1, 2)
+        p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
+        #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
+        sp1_t.set_ylim([-5, 5])
+
+        # Set up the number of rows and columns for plotting the subfigures
+        Ncols = int(scipy.floor(scipy.sqrt(fm.num_rx_channels())))
+        Nrows = int(scipy.floor(fm.num_rx_channels() / Ncols))
+        if(fm.num_rx_channels() % Ncols != 0):
+            Nrows += 1
+
+        # Plot each of the channels outputs. Frequencies on Figure 2 and
+        # time signals on Figure 3
+        fs_o = fm._audio_rate
+        for i in xrange(len(fm.snks)):
+            # remove issues with the transients at the beginning
+            # also remove some corruption at the end of the stream
+            #    this is a bug, probably due to the corner cases
+            d = fm.snks[i].data()[Ns:Ne]
+
+            sp2_f = fig2.add_subplot(Nrows, Ncols, 1+i)
+            X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
+                               window = lambda d: d*winfunc(fftlen),
+                               visible=False)
+            #X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+            X_o = 10.0*scipy.log10(abs(X))
+            #f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
+            f_o = scipy.arange(0, fs_o/2.0, fs_o/2.0/float(X_o.size))
+            p2_f = sp2_f.plot(f_o, X_o, "b")
+            sp2_f.set_xlim([min(f_o), max(f_o)+0.1]) 
+            sp2_f.set_ylim([-120.0, 20.0]) 
+            sp2_f.grid(True)
+
+            sp2_f.set_title(("Channel %d" % i), weight="bold")
+            sp2_f.set_xlabel("Frequency (kHz)")
+            sp2_f.set_ylabel("Power (dBW)")
+
+
+            Ts = 1.0/fs_o
+            Tmax = len(d)*Ts
+            t_o = scipy.arange(0, Tmax, Ts)
+
+            x_t = scipy.array(d)
+            sp2_t = fig3.add_subplot(Nrows, Ncols, 1+i)
+            p2_t = sp2_t.plot(t_o, x_t.real, "b")
+            p2_t = sp2_t.plot(t_o, x_t.imag, "r")
+            sp2_t.set_xlim([min(t_o), max(t_o)+1]) 
+            sp2_t.set_ylim([-1, 1]) 
+
+            sp2_t.set_xlabel("Time (s)")
+            sp2_t.set_ylabel("Amplitude")
+
+
+        pylab.show()
+
+
+if __name__ == "__main__":
+    main()


Property changes on: 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/fmtest.py
___________________________________________________________________
Added: svn:executable
   + *

Modified: 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/interpolate.py
===================================================================
--- 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/interpolate.py
       2009-08-11 23:24:29 UTC (rev 11578)
+++ 
gnuradio/branches/developers/trondeau/pfb/gnuradio-examples/python/pfb/interpolate.py
       2009-08-11 23:29:57 UTC (rev 11579)
@@ -1,10 +1,30 @@
 #!/usr/bin/env python
+#
+# Copyright 2009 Free Software Foundation, Inc.
+# 
+# This file is part of GNU Radio
+# 
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+# 
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+# 
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING.  If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+# 
 
 from gnuradio import gr, blks2
-import math
 import os
 import scipy, pylab
 from scipy import fftpack
+from pylab import mlab
 import time
 
 #print os.getpid()
@@ -14,36 +34,52 @@
     def __init__(self):
         gr.top_block.__init__(self)
 
+        self._N = 100000        # number of samples to use
+        self._fs = 2000         # initial sampling rate
+        self._interp = 5        # Interpolation rate for PFB interpolator
+        self._ainterp = 5.5       # Resampling rate for the PFB arbitrary 
resampler
+
+        # Frequencies of the signals we construct 
         freq1 = 100
-        freq2 = 500
+        freq2 = 200
 
-        self._N = 100000
-        self._fs = 2000
-        self._Tmax = self._N * (1.0/self._fs)
-        self._interp = 8
-        self._ainterp = 8
+        # Create a set of taps for the PFB interpolator
+        # This is based on the post-interpolation sample rate
+        self._taps = gr.firdes.low_pass_2(self._interp, self._interp*self._fs, 
freq2+50, 50, 
+                                          attenuation_dB=120, 
window=gr.firdes.WIN_BLACKMAN_hARRIS)
 
-        self._taps = gr.firdes.low_pass_2(self._interp, self._interp*self._fs, 
freq2+50, 150,120,5)
-        self._taps2 = gr.firdes.low_pass_2(32.0, 1,
-                                         0.4 / (32.0), 0.1/(32.0),100,5)
+        # Create a set of taps for the PFB arbitrary resampler
+        # The filter size is the number of filters in the filterbank; 32 will 
give very low side-lobes,
+        # and larger numbers will reduce these even farther
+        # The taps in this filter are based on a sampling rate of the filter 
size since it acts
+        # internally as an interpolator.
+        flt_size = 32
+        self._taps2 = gr.firdes.low_pass_2(flt_size, flt_size*self._fs, 
freq2+50, 150, 
+                                           attenuation_dB=120, 
window=gr.firdes.WIN_BLACKMAN_hARRIS)
 
-        tpc = math.ceil(float(len(self._taps)) /  float(self._interp))
-
+        # Calculate the number of taps per channel for our own information
+        tpc = scipy.ceil(float(len(self._taps)) /  float(self._interp))
         print "Number of taps:     ", len(self._taps)
         print "Number of filters:  ", self._interp
         print "Taps per channel:   ", tpc
-        
+
+        # Create a couple of signals at different frequencies
         self.signal1 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq1, 0.5)
         self.signal2 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq2, 0.5)
         self.signal = gr.add_cc()
         
         self.head = gr.head(gr.sizeof_gr_complex, self._N)
+
+        # Construct the PFB interpolator filter
         self.pfb = blks2.pfb_interpolator_ccf(self._interp, self._taps)
-        self.pfb_ar = blks2.pfb_arb_resampler_ccf(self._ainterp, self._taps2)
+
+        # Construct the PFB arbitrary resampler filter
+        self.pfb_ar = blks2.pfb_arb_resampler_ccf(self._ainterp, self._taps2, 
flt_size)
         self.snk_i = gr.vector_sink_c()
 
         #self.pfb_ar.pfb.print_taps()
-
+        #self.pfb.pfb.print_taps()
+        
         # Connect the blocks
         self.connect(self.signal1, self.head, (self.signal,0))
         self.connect(self.signal2, (self.signal,1))
@@ -51,7 +87,7 @@
         self.connect(self.signal, self.pfb_ar)
         self.connect(self.signal, self.snk_i)
 
-        # Create the sink for the interpolated siganl
+        # Create the sink for the interpolated signals
         self.snk1 = gr.vector_sink_c()
         self.snk2 = gr.vector_sink_c()
         self.connect(self.pfb, self.snk1)
@@ -84,9 +120,9 @@
         d = tb.snk_i.data()[Ns:Ns+Ne]
         sp1_f = fig1.add_subplot(2, 1, 1)
 
-        X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
-                           window = lambda d: d*winfunc(fftlen),
-                           visible=False)
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
         X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
         f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
         p1_f = sp1_f.plot(f_in, X_in, "b")
@@ -118,9 +154,9 @@
 
         sp2_f = fig2.add_subplot(2, 1, 1)
         d = tb.snk1.data()[Ns:Ns+(tb._interp*Ne)]
-        X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
-                           window = lambda d: d*winfunc(fftlen),
-                           visible=False)
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
         X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
         f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(X_o.size))
         p2_f = sp2_f.plot(f_o, X_o, "b")
@@ -151,20 +187,15 @@
 
         sp3_f = fig3.add_subplot(2, 1, 1)
         d = tb.snk2.data()[Ns:Ns+(tb._interp*Ne)]
-        X,freq = sp3_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
-                           window = lambda d: d*winfunc(fftlen),
-                           visible=False)
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
         X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
         f_o = scipy.arange(-fs_aint/2.0, fs_aint/2.0, fs_aint/float(X_o.size))
         p3_f = sp3_f.plot(f_o, X_o, "b")
         sp3_f.set_xlim([min(f_o), max(f_o)+1]) 
         sp3_f.set_ylim([-200.0, 50.0]) 
 
-        #f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(len(d)))
-        #X_o = 10.0*scipy.log10(fftpack.fftshift(fftpack.fft(d)))
-        #p3_f = sp3_f.plot(f_o, X_o)
-        #sp3_f.set_ylim([-50.0, 50.0])
-
         sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", 
weight="bold")
         sp3_f.set_xlabel("Frequency (Hz)")
         sp3_f.set_ylabel("Power (dBW)")
@@ -173,10 +204,11 @@
         Tmax = len(d)*Ts_aint
 
         t_o = scipy.arange(0, Tmax, Ts_aint)
-        x_o1 = scipy.array(d)
+        x_o2 = scipy.array(d)
         sp3_f = fig3.add_subplot(2, 1, 2)
-        p3_f = sp3_f.plot(t_o, x_o1.real, "b-o")
-        #p3_f = sp3_f.plot(t_o, x_o.imag, "r-o")
+        p3_f = sp3_f.plot(t_o, x_o2.real, "b-o")
+        p3_f = sp3_f.plot(t_o, x_o1.real, "m-o")
+        #p3_f = sp3_f.plot(t_o, x_o2.imag, "r-o")
         sp3_f.set_ylim([-2.5, 2.5])
         
         sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", 
weight="bold")





reply via email to

[Prev in Thread] Current Thread [Next in Thread]