ESPResSo User’'s Guide

March 3, 2008

Contents

(1__Introductionl
[1.1 Guiding principles|
1.2 Algorithms contained in ESPResSo]
1.3 Basic program structure|
M4 Onunifal. o o,
[L.L5 Requirements| L
[1.6 Syntax description|
2.1 Quick installation|.
2.2 Running ESPResSolo o
[2.3 Creating the first simulation script|
2.4 tutorjal.tcll.
3 Compiling and installing ESPResSo|
3.1 _Source and build directories| Lo
[3.2 myconfig.h: Activating and deactivating features|
[3.3 Running configurelo Lo
3.3.1 Options|
[3.4 make: Compiling, testing and installing ESPResSol.
3.4.1 Installation directoried
[3.5 Running ESPResSo|o
[4 Setting up particles|
g
4.1 part: Creating single particles|
[4.1.1 Defining particle properties|
4.1.2 Getting particle properties|.
[4.1.3 Deleting particles|. o
4.1.4 Exclusions|.
4.2 Creating groups of particle]
[4.2.1 polymer: Setting up polymer chaing|
4.2.2 counterions: det up counterions|.
4.2.3 salt: Setupsaltions| L.
|4.2.4 diamond: Setting up diamond polymer networks|
|4.2.5 icosaeder: Setting up an icosaeder|

12
12
13
13
18

19
19
20
21
21
23
24
24

25
25
25
26
27
27
28
28
29
30
30
31

4.2.6 crosslink: Cross-linking polymers|. 32

4.3 constraint: Setting up constraints|. 33
[4.3.1 Deleting a constraint| oL 34
[4.3.2 Getting the force on a constraint| 34
4.3.3 Getting the currently defined constraints|. 34

[> Setting up interactions| 35

b.1 Getting the currently defined interactions| 35

5.2 Non-bonded, short-ranged interactions| 35
0.2.1 Lennard-Jones interactionl 36
0.2.2 Lennard-Jones cosine interactionl 36
[9.2.3 Smooth step interaction|o 37
.24 BMHTEF potentiall 37
B.25 Morse Interactionlo 38
[5.2.6 Buckingham interaction| L. 38
[5.2.7 Soft-sphere interaction| Lo 38
0.2.8 Gay-Berne interaction|o 39
5.2.9 Tabulated interaction| L L. 40
[5.2.10 Capping the force during warmup| 40

0.3 Bonded interactions| o oo 41
E3T _FENEDond« o v v oo e e e e e 41
0.3.2 Harmonicbond 42
b.3.3 Subtracted Lennard-Jones bondl 42
b.3.4 Rigidbonds| 42
[5.3.5 Bond-angle interactions| L. 43
b.3.6 Dihedral interactions| oL 44
b.3. 7 Tabulated bond interactionsl. 44
£.3.8 Virtualbondd 45

b4 Coulomb interaction| oo 45
D41 P3Ml e e 46
[5.4.2 Debye-Huckel potentiall 47
h.4.3 MMM2DI e 48
h.4.4 MMMIDI e 48
5.4.5 Maggs’ method| 48
BAG _ELT oot 49

[5.5 Other interaction types|, 49
[5.5.1 Fixing the center ot mass| 49
[5.5.2 Pulling particlesapart| 50

[6 Setting up the system| 51

6.1 setmd: Setting global variables.|, 51

6.2 thermostat: Setting up the thermostat| 52
6.2.1 Langevin thermostat| 53
[6.2.2 Dissipative Particle Dynamics (DPD) thermostat| 53

16.2.3 Isotropic NPT thermostat|
16.2.4 Turning off all thermostats|
16.2.5 Getting the parameters|

6.3

nemd: Setting up non-equilibrium MD|o 0oL

6.4

cellsystem: Setting up the cell system|

6.4.1 Domain decomposition|. L.
6.4.2 N-squared|
6.4.3 Layered cell system|. L.

Running the simulation|

71

integrate: Running the simulation|

72

change_volume: Changing the box volume]

[7.3

otopping particles]o

71

velocities: Setting the velocities|

75

invalidate_system| Lo

7.6

Parallel temperingl oL

A

R1

Measuring observables| oo oL

[8.1.1 Minimal distances between particles|
[8.1.2 Particles in the neighbourhood|
8.1.3 Particle distributionl o oL oL

B.1.7 Centerofmass

8.1.9 " Aggregation|. L.
18.1.10 Identifying pearl-necklace structures|
[8.1.11 Finding holes| oo
[8.1.12 Energies| L

B2

Topologies|

82.1 Chaingl.«

[8.3

otoring configurations|o

[8.3.1 Storing and removing configurations|
[8.3.2 Getting the stored configurations|

R4

Statistical analysis and plotting|,

[8.4.1 Plotting]
[8.4.2 Joining plots|
[8.4.3 Computing averages and errors|

[8.5

uwerr: Computing statistical errors in time series|.

57
o7
o7
o7
o7
58
58

63
63
63
63
63
64
64
65
65
66
66
66
67
67
68
69
70
71
71
75
75
75
76
76
76
7
7

(9 Input / Output| 79
9.1 blockfile: Using the structured file format|{. 79
9.1.1 Writing ESPResSo’s global variables) 79
9.1.2 Writing Tcl variables|. 0 0. 79
9.1.3 Writing particles, bonds and interactions| 80
9.1.4 Writing the random number generator states| 80
9.1.5 Writing all stored configurations| 81
9.1.6 Writing arbitrary blocks| 000 81
9.1.7 Reading blocks| oo oo 81

9.2 Checkpointing|. 83
9.2.1 Creating a checkpoint|, 83
[9.2.2 Reading a checkpoint| 84
9.2.3 Writing a checkpoint 2[. o0 0oL 84
9.2.4 Writing a checkpoint 3. o000 84

[9.3 Writing PDB/PSF files], . 85
[9.3.1 writepsf: Writing the topology| 85
[9.3.2 writepdb: Writing the coordinates| 85

9.4 Writing VI'F files|. oo o 86
9.4.1 writevsf: Writing the topology| 86
9.4.2 writevcf: Writing the coordinates| 87
[9.4.3 vtfpid: Translating ESPResSo particles ids to VMD particle ids] . 87

9.5 Online-visualisation with VMDI oo 0. 87
9.5.1 imd: Using IMD in the script| 88
9.5.2 Using IMD in VMD| oo oo 88
19.5.3 Automatically setting up a VMD connection| 89

9.6 Errorhandling/ 89
(10 Auxilliary commands| 91
[10.1 Finding particles and bonds| 0oL 91
[10.1.1 countBondsl. 91
[10.1.2 findPropPos| 91
[M0I13 findBondPosl L 92
[10.1.4 timeStamp| 92
[[0.2 Additional Tl math-functiond 92
[10.2.1 £ random| 96
[10.2.2 The bit_random command|. o o v v v v .. 97

[10.3 Checking for features of ESPResSol 98
(11 External package: mbtools| 100
1.1 Introductionl. 100
[11.2 Installing and getting started| 101
[11.3 The main.tclscript| o 102
[11.3.1 Variables used by main.tcl|. 102

11.4 Analysis| 104

[11.4.2 Available analysis routines|.
[11.4.3 Adding a new routine|
[11.5 System generation| o
[11.5.1 Basic commands
[11.5.2 Available geometries| 0oL
[11.5.3 Adding a new geometry| L
[11.5.4 Available molecule types|. oL
[11.5.5 Adding a new molecule type|

[11.6.1 Setup commands]
[11.6.2 Warmup commands|,
[11.6.3 Topology procs|
[11.6.4 Math procs|
[11.6.5 Miscellaneous procs| oL

[13 Getting involved|

[A° ESPResSo quick reference|
[B_Features|

[C Sample scripts|

D¢ oo D files

[E Maggs algorithm|

[F Bibliography|
[Index|

123
123

125

126

133
133
134
135

137

139

142

143

144

1. Introduction

(new)

ESPResSo is a generic soft matter simulation packages

e for molecular dynamics simulations in soft matter research

e focussed on coarse-grained models

e employs modern algorithms (Lattice-Boltzmann, DPD, P3M, ...)
e written in C for maximal portability

e Tcl-controlled

e parallelized

1.1. Guiding principles

(from paper: 2.1 Goals and principles)
ESPResSo

e does not do the physics for you!

e requires you to understand what you do (can not be used as a black box)
e gives you maximal freedom (flexibility)

e is extensible

e integrates system setup, simulation and analysis, as this can’t be strictly separated
in soft matter simulations

e has no predefined units

e sets as few defaults as possible

1.2. Algorithms contained in ESPResSo

The following algorithms are implemented in ESPResSo:

e ensembles: NVE, NVT, NpT
e charged systems:

— P3M for fully periodic systems

— ELC and MMM-family of algorithms for charged systems with non-periodic
boundary conditions

— Maggs algorithm
e Hydrodynamics:

— DPD (as a thermostat)

— Lattice-Boltzmann

1.3. Basic program structure

(from paper: 2.2 Basic program structure)

e Control level: Tcl
e “Kernel” written in C

e This user’s guide will focus on the control level

1.4. On units

What is probably one of the most confusing subjects for beginners of ESPResSo is, that
ESPResSo does not predefine any units. While most MD programs specify a set of units,
like, for example, that all lengths are measured in Angstrém or nanometers, times are
measured in nano- or picoseconds and energies are measured in 1%17 ESPResSo does not
do so.

Instead, the length-, time- and energy scales can be freely chosen by the user. A length
of 1.0 can mean a nanometer, an Angstrom, or a kilometer - depending on the physical
system, that the user has in mind when he writes his ESPResSo-script. The user can
choose the unit system that suits the system best.

When creating particles that are intended to represent a specific type of atoms, one
will probably use a length scale of Angstrém. This would mean, that e.g. the parameter
o of the Lennard-Jones interaction between two atoms would be set to twice the van-
der-Waals radius of the atom in Angstrém. Alternatively, one could set o to 2.0 and
measure all lengths in multiples of the van-der-Waals radius.

The second choice to be made is the energy (and time-) scale. One can for example

choose to set the Lennard-Jones parameter € to the energy in % Then all energies will

be measured in that unit. Alternatively, one can choose to set it to 1.0 and measure
everything in multiples of the van-der-Waals binding energy.

As long as one remains within the same unit system throughout the whole ESPResSo-
script, there should be no problems.

1.5. Requirements
The following libraries and tools are required to be able to compile and use ESPResSo:

Tcl/Tk ESPResSo requires the Toolkit Command Language Tcl/Tk E] in the version 8.3
or later. Some example scripts will only work with Tcl 8.4. You do not only need
the interpreter, but also the header files and libraries. Depending on the operating
system, these may come in separate development packages. If you want to use a
graphical user interface (GUI) for your simulation scripts, you will also need Tk.

FFTW In addition, ESPResSo needs the FFTW libraryE]for Fourier transforms. ESPResSo
can work with both the 2.1.x and 3.0.x series. Again, the header files are required.

MPI Finally, if you want to use ESPResSo in parallel, you need a working MPI environ-
ment (version 1.2). Currently, the following MPI implementations are supported:
e LAM/MPI is the preferred variant

e MPICH, which seems to be considerably slower than LAM /MPI in our bench-
marks.

e On AIX systems, ESPResSo can also use the native POE parallel environment.

e On DEC/Compaq/HP OSF/Tru64, ESPResSo can also use the native dm-
pirun MPI environment.

1.6. Syntax description

Throughout the user’s guide, formal definitions of the syntax of several Tcl-commands
can be found. The following conventions are used in these decriptions:

e Different variants of a command are labelled (1), (2), ...

e Keywords and literals of the command that have to be typed exactly as given are
written in typewriter font.

e If the command has variable arguments, they are set in italicfont. The descrip-
tion following the syntax definition should contain a detailed explanation of the
argument and its type.

Thttp://www.tcl.tk/
2http://www.fftw.org/

10

http://www.tcl.tk/
http://www.fftw.org/

o (alt! | alt2)

specifies, that one of the alternatives alt! or alt2 can be used.

e [argument] specifies, that the arugment argument is optional, i.e. it can be omitted.

e When an optional argument or a whole command is marked by a superscript label
(1), this denotes that the argument can only be used, when the corresponding
feature (see appendix [B|on page|133)) specified in “Required features” is activated.

Example
(1) constraint

(2) constraint

type id
(3) constraint
(4) constraint

Required features:

wall normal n, n, n, dist d type id
sphere center ¢, ¢, ¢, radius rad direction direction

rod center c¢; ¢, lambda lambda 1

ext_magn_field f, fy f. 2,3
CONSTRAINTS 1E'.LECTRDSTATICS 2ROTATION 3DIPOLES

11

Mention minimal
configuration
without
myconfig.h

2. First steps

2.1. Quick installation

If you have the requirements (see section on page installed, in many cases, to
compile ESPResSo, it is enough to execute the following sequence of two steps in the
directory where you have unpacked the sources:

configure
make

In some cases, e.g. when ESPResSo needs to be compiled for several different platforms
or when different versions with different sets of features are required, it might be useful
to execute the commands not in the source directory itself, but to start configure from
another directory (see section on page . Furthermore, many features of ESPResSo
can be selectively turned on or off in the local configuration header of ESPResSo (see
section on page before starting the compilation with make.

The shell script configure prepares the source code for compilation. It will determine
how to use and where to find the different libraries and tools required by the compilation
process, and it will test what compiler flags are to be used. The script will find out most
of these things automatically. If something is missing, it will complain and give hints
how to solve the problem. The configuration process can be controlled with the help of
a number of options that are explained in section on page

The command make will compile the source code. Depending on the options passed
to the program, make can also be used for a number of other things:

e It can install and uninstall the program to some other directories. However, nor-
mally it is not necessary to actually install ESPResSo to run it.

e [t can test the ESPResSo program for correctness.
e [t can build the documentation.

The details of the usage of make are described in section on page
When these steps have successfully completed, ESPResSo can be started with the

command (see section on page

Espresso

12

2.2. Running ESPResSo
[

ESPResSo is implemented as an extension to the Tcl script language. This means
that you need to write a script for any task you want to perform with ESPResSo. To
learn about the Tcl script language and especially the ESPResSo extensions, this chapter
offers two tutorial scripts. The first will guide you step by step through creating your
first simulation script, while the second script is a well documented example simulation
script. Since the latter is slightly more complex and uses more advanced features of
ESPResSo, we recommend to work through both scripts in the presented order.

2.3. Creating the first simulation script

This section introduces some of the features of ESPResSo by constructing step by step
a simulation script for a simple salt crystal. We cannot give a full Tcl tutorial here;
however, most of the constructs should be self-explanatory. We also assume that the
reader is familiar with the basic concepts of a MD simulation here. The code pieces can
be copied step by step into a file, which then can be run using Espresso <file> from
the ESPResSo source directory.

Our script starts with setting up the initial configuration. Most conveniently,
one would like to specify the density and the number of particles of the system as

parameters:
set n_part 200; set density 0.7

set box_1 [expr pow($n_part/$density,1./3.)]
These variables do not change anything in the simulation engine, but are just standard
Tecl variables; they are used to increase the readability and flexibility of the script. The
box length is not a parameter of this simulation; it is calculated from the number of
particles and the system density. This allows to change the parameters later easily, e. g.
to simulate a bigger system.

The parameters of the simulation engine are modified by the setmd command.

For example
setmd box_1 $box_1 $box_1 $box_1

setmd periodic 1 1 1
defines a cubic simulation box of size box_1, and periodic boundary conditions in

all spatial dimensions. We now fill this simulation box with particles
set q 1; set type O

for {set i 0} { $i < $n_part } {incr i} {
set posx [expr $box_1*[t_random]]
set posy [expr $box_l1*[t_random]]
set posz [expr $box_1*[t_random]]
set q [expr -$ql; set type [expr 1-$typel
part $i pos $posx $posy $posz q $q type $type
}

"http://wuw.tcl.tk/man/tcl8.5/tutorial/tcltutorial .html

13

http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

This loop adds n_part particles at random positions, one by one. In this construct,
only two commands are not standard Tcl commands: the random number generator
t_random and the part command, which is used to specify particle properties, here the
position, the charge q and the type. In ESPResSo the particle type is just an integer
number which allows to group particles; it does not imply any physical parameters. Here
we use it to tag the charges: positive charges have type 0, negative charges have type 1.

Now we define the ensemble that we will be simulating. This is done using the
thermostat command. We also set some integration scheme parameters:

setmd time_step 0.01; setmd skin 0.4

set temp 1; set gamma 1

thermostat langevin $temp $gamma

This switches on the Langevin thermostat for the NVT ensemble, with temperature temp
and friction gamma. The skin depth skin is a parameter for the link—cell system which
tunes its performance, but cannot be discussed here.

Before we can really start the simulation, we have to specify the interactions
between our particles. We use a simple, purely repulsive Lennard-Jones interaction
to model the hard core repulsion [6], and the charges interact via the Coulomb
potential:

set sig 1.0; set cut [expr 1.12246x$sig]

set eps 1.0; set shift [expr 0.25x$eps]

inter 0 O lennard-jones $eps $sig $cut $shift 0

inter 1 O lennard-jones $eps $sig $cut $shift O

inter 1 1 lennard-jones $eps $sig $cut $shift 0

inter coulomb 10.0 p3m tunev2 accuracy le-3 mesh 32

The first three inter commands instruct ESPResSo to use the same purely repulsive
Lennard—Jones potential for the interaction between all combinations of the two parti-
cle types 0 and 1; by using different parameters for different combinations, one could
simulate differently sized particles. The last line sets the Bjerrum length to the value
10, and then instructs ESPResSo to use P?M for the Coulombic interaction and to try
to find suitable parameters for an rms force error below 1072, with a fixed mesh size of
32. The mesh is fixed here to speed up the tuning; for a real simulation, one will also
tune this parameter.

If we want to calculate the temperature of our system from the kinetic energy, we need
to know the number of the degrees of freedom of the particles. In ESPResSo these are
usually 3 translational plus 3 rotational degrees of freedom (if ROTATION is compiled
into the code). You can get this number in the following way E}

if { [regexp "ROTATION" [code_infol] } {
set deg_free 6
} else { set deg_free 3 }

Now we can integrate the system:

2Note: there also exists a predefined tcl function degrees_of.freedom which does the same.

14

set integ_steps 200
for {set i 0} { $i < 20 } { incr i} {
set temp [expr [analyze energy kinetic]/(($deg_free/2.0)*$n_part)]
puts "t=[setmd time] E=[analyze energy total], T=$temp"
integrate $integ_steps
}
This code block is the primary simulation loop and runs 20xinteg_steps MD steps.
Every integ_steps time steps, the potential, electrostatic and kinetic energies are
printed out (the latter one as temperature). However, the simulation will crash:
ESPResSo complains about particle coordinates being out of range. The reason for
this is simple: Due to the initial random setup, the overlap energy is around a
million kT, which we first have to remove from the system. In ESPResSo, this is
can be accelerated by capping the forces, i. e. modifying the Lennard—Jones force
such that it is constant below a certain distance. Before the integration loop, we
therefore insert this equilibration loop:
for {set cap 20} {$cap < 200} {incr cap 20} {
puts "t=[setmd time] E=[analyze energy total]"
inter ljforcecap $cap; integrate $integ_steps
}

inter 1jforcecap O

This loop integrates the system with a force cap of initially 20 and finally 200. The last
command switches the force cap off again. With this equilibration, the simulation script

runs fine.

However, it takes some time to simulate the system, and one will probably like to
write out simulation data to configuration files, for later analysis. For this purpose
ESPResSo has commands to write simulation data to a Tcl stream in an easily
parsable form. We add the following lines at end of integration loop to write the
configuration files “config_0” through “config_19”:

set f [open "config $i" "w"]

blockfile $f write tclvariable {box_1 density}

blockfile $f write variable box_1

blockfile $f write particles {id pos type}

close $f
The created files “config_...

{tclvariable

{box_1 10}
{density 0.7}

” are human-readable and look like

}

{variable {box_1 10.0 10.0 10.0} }

{particles {id pos type}
{0 3.51770181433 4.3208975936 5.30529948918 0}
{1 3.93145531704 6.58506447035 6.95045147034 1}

15

Figure 2.1.: VMD Snapshot of the salt system

As you can see, such a blockfile consists of several Tcl lists, which are called blocks,
and can store any data available from the simulation. Reading a configuration is
done by the following simple script:

set f [open $filename "r"]

while { [blockfile $f read auto] != "eof" } {}

close $f
The blockfile read auto commands will set the Tcl variables box_1 and density to
the values specified in the file when encountering the tclvariable block, and set the
box dimensions for the simulation when encountering the variable block. The particle
positions and types of all 216 particles are restored when the particles block is read.
Note that it is important to have the box dimensions set before reading the particles, to
avoid problems with the periodic boundary conditions.

With these configurations, we can now investigate the system. As an example, we
will create a second script which calculates the averaged radial distribution functions
g++(r) and g4+ (7). The radial distribution function for a the current configuration
can be obtained using the analyze command:

set rdf [analyze rdf 0 1 0.9 [expr $box_1/2] 100]

set rlist ""

set rdflist ""

foreach value [lindex $rdf 1] {

lappend rlist [lindex $value 0]
lappend rdflist [lindex $value 1]

}
The shown analyze rdf command returns the distribution function of particles of type
1 around particles of type 0 (i. e. of opposite charges) for radii between 0.9 and half the
box length, subdivided into 100 bins. Changing the first two parameters to either “0 0”
or “1 1”7 allows to determine the distribution for equal charges. The result is a list of

16

r and g(r) pairs, which the following foreach loop divides up onto two lists rlist and
rdflist.
To average over a set of configurations, we put the two last code snippets into a

loop like this:
set cnt O

for {set i 0} {$i < 100} {incr i} { lappend avg_rdf 0}
foreach filename $argv {
set f [open $filename "r"]

while { [blockfile $f read auto] != "eof" } {}
close $f

set rdf [analyze rdf 0 1 0.9 [expr $box_1/2] 100]
set rlist ""

set rdflist ""
foreach value [lindex $rdf 1] {
lappend rlist [lindex $value O]
lappend rdflist [lindex $value 1] }
set avg_rdf [vecadd $avg_rdf $rdflist]
incr cnt
}
set avg_rdf [vecscale [expr 1.0/$cnt] $avg_rdf]
Initially, the sum of all g(r), which is stored in avg_rdf, is set to 0. Then the loops
over all configurations given by argv, calculates g(r) for each configuration and adds
up all the g(r) in avg_rdf. Finally, this sum is normalized by dividing by the number
of configurations. Note the “1.0/$cnt”; this is necessary, since “1/$cnt” is interpreted
as an integer division, which results in 0 for cnt > 1. argv is a predefined variable: it
contains all the command line parameters. Therefore this script should be called like

Espresso npodes script [config...]

where n,odes is the number of CPUs ESPResSo should be running on.
The printing of the calculated radial distribution functions is simple. Add to the

end of the previous snippet the following lines:
set plot [open "rdf.data" "w"]

puts $plot "\# r rdf(r)"

foreach r $rlist rdf $avg_rdf { puts $plot "$r $rdf" }

close $plot
This instructs the Tcl interpreter to write the avg_rdf to the file rdf .data in gnuplot—
compatible format. Fig. shows the resulting radial distribution functions, averaged
over 100 configurations. In addition, the distribution for a neutral system is given,
which can be obtained from our simulation script by simply removing the command
inter coulomb ... and therefore not turning on P3M.

The code example given before is still quite simple, and the reader is encouraged to
try to extend the example a little bit, e. g. by using differently sized particle, or changing
the interactions. If something does not work, ESPResSo will give comprehensive error
messages, which should make it easy to identify mistakes. For real simulations, the

17

a(n)
N

Figure 2.2.: Radial distribution functions g (r) between equal charges (rectangles) and
g+—(r) for opposite charges (circles). The plus symbols denote g(r) for an
uncharged system.

simulation scripts can extend over thousands of lines of code and contain automated
adaption of parameters or online analysis, up to automatic generation of data plots.
Parameters can be changed arbitrarily during the simulation process, as needed for e. g.
simulated annealing. The possibility to perform non—standard simulations without the
need of modifications to the simulation core was one of the main reasons why we decided
to use a script language for controlling the simulation core.

2.4. tutorial.tcl

In the directory samples/ of the es sources, you will find a well documented simulation
script tutorial.tcl, which takes you step by step through a slightly more complicated
simulation of a polyelectrolyte system. The basic structure of the script is however
the same as in the previous example and probably the same as the structure of most
ESPResSo simulation scripts.

Initially, some parameters and global variables are set, the interactions are initialized,
and particles are added. For this, the script makes use of the polymer command, which
provides a faster way to set up chain molecules.

The actual simulation falls apart again into two loops, the warmup loop with increasing
force capping, and the final simulation loop. Note that the electrostatic interaction is
only activated after equilibrating the excluded volume interactions, which speeds up the
warmup phase. However, depending on the problem, this splitted warmup may not be
possible due to physical restrictions. ESPResSo cannot detect these mistakes and it is
your responsibility to find simulation procedure suitable to your specific problem.

18

3. Compiling and installing ESPResSo

e Compiling ESPResSo is a necessary evil

e Features can be compiled in or not

e For maximal efficiency, compile in only the features that you use

e ESPResSo can be obtained from the ESPResSo home page E

e If you are looking for the ESPResSo binary or the object files, read

e other than in most packages, ESPResSo will probably not be installed, or it will
only be installed locally. Refer to|3.4.1] on page [24] for details.

3.1. Source and build directories

Usually, when a program is compiled, the resulting binary files are put into the same
directory as the sources of the program. In ESPResSo, the source directory that con-
tains all the source files is completely separated from the build directory where the files
created by the build process are put. As the source directory is not modified during the
compilation process, it is possible to compile more than one binary versions of ESPResSo
from a single set of source files.

The location of the build directory is determined when configure is called. Depending
on whether it is called from the source directory where it resides, or from some other
directory, the build system will act different.

When configure is called from another current working directory than the source
directory, this directory will become the build directory. All files will be generated below
the build directory. This way, you can make as many builds of ESPResSo as you like, each
build having different compiler flags and built-in features, and for as many platforms as
you want. All further commands concerning compiling and running ESPResSo have to
be called from this directory, instead of from the source directory.

When configure is called from the source directory where the script resides, the
ESPResSo build system has limited built-in capabilities to handle different computer
hardware. A new subdirectory is created in the source directory and configure is re-
cursively called from this directory, making the subdirectory the build directory. The
directory is called obj-platform/, where platform is an automatically determined de-
scriptor of the CPU type where the script was started, e.g. obj-Athlon_64-pc-linux.

"http://www.espresso.mpg.de

19

http://www.espresso.mpg.de

Note that this heuristic will work in many cases, but it may not always work as intended.
When you notice any problems, you can always call configure from another directory.

In this case it is also possible to run the commands make and Espresso directly
in the source directory. Furthermore, the option —-enable-chooser will be set in the
recursive call of configure that activates the automatic binary chooser (see section[3.4.1]

on page [24)).

Example When the source directory is $srcdir (i.e. the files where unpacked to this
directory), then the build directory can be set to $builddir by calling the configure-
script from there:

cd $builddir
$srcdir/configure
make

Espresso

3.2. myconfig.h: Activating and deactivating features

ESPResSo has a large number of features that can be compiled into the binary. How-
ever, it is not recommended to actually compile in all possible features, as this will
negatively affect ESPResSo’s performance. Instead, compile in only the features that are
actually required. For the developers, it is also possible to turn on or off a number of
debugging messages. The features and debug messages can be controlled via a config-
uration header file that contains C-preprocessor declarations. Appendix [B|on page [133
lists and describes all available features. When no configuration header is provided by
the user, a default header will be used that turns on the default features. The file
myconfig-sample.h in the source directory contains a list of all possible features that
can be copied into your own configuration file.

When you distinguish between the build and the source directory (see on the
previous page), the configuration header can be put in either of these. Note, however,
that when a configuration header is found in both directories, the one in the build
directory will be used. For an example how this can be employed, see section

By default, the configuration header is called myconfig.h. The name of the configu-
ration header can be changed either when the configure-script is called with the option
--with-myconfig (see section on the facing page), or when make is called with the
setting myconfig=myconfig_header (see section on page [23)).

The configuration header can be used to compile different binary versions of ESPResSo
with a different set of features from the same source directory. Suppose that you have
a source directory $srcdir and two build directories $builddirl and $builddir2 that
contain different configuration headers:

e $builddirl/myconfig.h:

#define ELECTROSTATICS
#define LENNARD-JONES

20

e $builddir2/myconfig.h:

#define LJCOS

Then you can simply compile two different versions of ESPResSo via

cd $builddirl
$srcdir/configure
make

cd $builddir?2
$srcdir/configure
make

3.3. Running configure

The shell script configure collects all the information required by the compilation
process. It will determine how to use and where to find the different libraries and tools
required by the compilation process, and it will test what compiler flags are to be used.
The script will find out most of these things automatically. If something is missing, it
will complain and give hints how to solve the problem. The generic syntax of calling the
configure script is:

configure [options ...]1 [wvariable=value ...]

Note that in the ESPResSo build system, the files generated by the configuration and
compilation process are not placed next to the source files, but into a separate build
directory instead. Refer to section on page [19| for details.

The behaviour of configure can be controlled by the means of command line options.
In the following, only those command line options that are specific to ESPResSo will be
explained. For a complete list of options and explanations thereof, call

configure --help

3.3.1. Options

--enable-chooser This option will enable the automatic binary chooser mechanism
for ESPResSo (see section on page [24). This option will be automatically
enabled, when the configure script is called from the source directory, otherwise
it will be disabled. It is not recommended to set the option manually.

-—enable-debug This option will enable compiler flags required for debugging the ESPResSo
binary and is disabled by default.

-—enable-profiling This option will enable compiler flags required for profiling the
ESPResSo binary and is disabled by default.

21

--disable-processor-optimization This option will control whether configure will
check for several optimization flags to be used by the compiler. This option is
enabled by default.

--disable-xlc-qipa This option is only useful when the IBM C-compiler x1c is used
and will control whether or not the compiler flag -qipa is used. If you come
upon problems when using the ESPResSo binary on IBM machines, try using
-—disable-xlc-ipa. The option is enabled by default.

--with-myconfig=MYCONFIG_HEADER This option sets the name of the local configura-
tion header (see on page . It defaults to “myconfig.h”.

--with-mpi=MPI/ --without-mpi Sets the MPI implementation that should be used,
or disables MPI. By default, configure will test automatically what MPI imple-
mentation is available. The following implementations are known:

fake, no This will disable MPI completely. Equivalent to ——without-mpi.

lam Use the LAM/MPI environment (http://www.lam-mpi.org/).

mpich Use the MPICH environment (http://www-unix.mcs.anl.gov/mpi/mpich/).
poe Use the POE environment (IBM).

dmpi Use the DMPI environment (Tru64).

generic Use a generic MPI implementation. This will try to find an MPI compiler
and an MPI runtime environment.

--with-efence / --without-efence Whether or not to use the “electric fence” mem-
ory debugging library (http://freshmeat.net/projects/efence/)). Efence is
not used by default.

--with-tcl=TCL By default, configure will automatically determine which version of
Tel is used. If the wrong version is chosen automatically, you can specify the name
of the library with this option, e.g. tc18.4.

--with-tk=TK / --without-tk By default, the GUI toolkit Tk is not used by ESPResSo.
This option can be used to activate Tk and to specify which Tk version to use,
e.g. tk8.4. If you only specify ——with-tk and do not give a version number,
configure will try to automatically deduce the right version.

--with-fftw=VERSION / --without-fftw This can be used to specify whether the FFTW
library is to be used, and which version. By default, version 3 will be used if it is
found, otherwise version 2 is used. Note that quite a number of central features of
ESPResSo require FFTW.

22

http://www.lam-mpi.org/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://freshmeat.net/projects/efence/

3.4. make: Compiling, testing and installing ESPResSo

The command make is mainly used to compile the ESPResSo source code, but it can do
a number of other things. The generic syntax of the make command is:

make [target...] [variable=value]
When no target is given, the target all is used. The following targets are available:

all Compiles the complete ESPResSo source code. The variable myconf can be used to
specify the name of the configuration header to be used.

check Runs the testsuite. By default, all available tests will be run on 1, 2, 3, 4, 6,
or 8 processors. Which tests are run can be controlled by means of the variable
tests, which processor numbers are to be used can be controlled via the variable
processors. Note that depending on your MPI installation, MPI jobs can only
be run in the queueing system, so that ESPResSo will not run from the command
line. In that case, you may not be able to run the testsuite, or you have to directly
submit the testsuite script testsuite/test.sh to the queueing system.
Example: make check tests="madelung.tcl" processors="1 2"
will run the test madlung.tcl on one and two processors.

clean Deletes all files that were created during the compilation.

mostlyclean Deletes most files that were created during the compilation. Will keep for
example the built doxygen documentation and the ESPResSo binary.

dist Creates a .tar.gz-file of the ESPResSo sources. This will include all source files
as they currently are in the source directory, i.e. it will include local changes. This
is useful to give your version of ESPResSo to other people. The variable extra can
be used to specify additional files and directories that are to be included in the
archive file.
Example: make dist extra="myconfig.h internal"
will create the archive file and include the file myconfig.h and the directory
internal with all files and subdirectories.

install Install ESPResSo. The variables prefix and exec-prefix can be used to spec-
ify the installation directories, otherwise the defaults defined by the configure
script are used. prefix sets the prefix where all ESPResSo files are to be installed,
exec-prefix sets the prefix where the executable files are to be installed and is re-
quired only when there is an architecture-specific directory (e.g. /usr/local/bin64/).
For the actual locations where the different files are installed, refer to section
on the next page.
Example: make install prefix=/usr/local
will install all files below /usr/local.

uninstall Uninstalls ESPResSo, i.e. removes all files that were installed during make
install. The variables are identical to the variables of the install-target.

23

3.4.1. Installation directories

Other than most software, ESPResSo is not necessarily installed into the system, but can
also be used directly from the build directory. The rest of this section is only interesting
if you plan to install ESPResSo.

Normally, the ESPResSo-binary Espresso-bin is installed in the directory $prefix/libexec/
and a the wrapper script Espresso in the directory $prefix/bin/ that handles the MPI
invocation.

When the configure-script is called from the source directory or when the option
--enable-chooser is given, an automatic binary chooser is installed in the directory
$prefix/bin/ and the ESPResSo-binary and the MPI wrapper script are installed in an
architecture-specific subdirectory $exec-prefix/1ib/espresso/obj-platform/. When
called, the binary chooser will automatically call the MPI wrapper script from the right
subdirectory.

3.5. Running ESPResSo

When ESPResSo is found in your path, it can be run via
Espresso [tcl_script [N _processors [args]]]

When ESPResSo is called without any arguments, it is started in the interactive mode,
where new commands can be entered on the command line. When the name of a tcl_-
script is given, the script is executed. N_processors is the number of processors that
are to be used. Any further arguments are passed to the script. Note that depending
on your MPI installation, MPI jobs can only be run in the queueing system, so that
ESPResSo will not run from the command line.

24

4. Setting up particles

4.1. part: Creating single particles

4.1.1. Defining particle properties

Syntax

part pid [pos z y z| [type typeid] [v vz vy vz] [f fx fy fZ]
[bond bondid pid2 ...] [q charge]® [quat qI ¢2 ¢3 q4]
[omega = y 2]° [torque z y 2]
[unjfix z y 2]° [ext_force z y 2]° [exclude pid2...
[exclude delete pid2...]* [mass mass]® [dipm moment
[dip dz dy dz]®

Required features: 1ELECTROSTATICS 2ROTATION 3EXTERNAL_FORCES 4EXCLUSION
Smass OpIPOLES

1
]]6

Description

This command modifies particle data, namely position, type (monomer, ion, ...), charge,
velocity, force and bonds. Multiple properties can be changed at once. If you add a new
particle the position has to be set first because of the spatial decomposition.

Arguments
® pid

e[pos z y z| Sets the position of this particle to (x,y, 2).

e [type typeid] Restrictions: typeid > 0.
The typeid is used in the inter command (see section [5{on page to define the
parameters of the non bonded interactions between different kinds of particles.

e[v vx vy wvz] Sets the velocity of this particle to (vz, vy, vz). The velocity remains
variable and will be changed during integration.

o[f fr fy fz] Set the force acting on this particle to (fz, fy, fz). The force remains
variable and will be changed during integration.

e [bond bondid pid2...] Restrictions: bondid > 0; pid2 must be an existing parti-
cle. The bondid is used for the inter command to define bonded interactions.

ebond delete Will delete all bonds attached to this particle.
e [q charge] Sets the charge of this praticle to g.

e[quat ¢l ¢2 ¢3 ¢4]

Docs required
Jc?).

25

Docs required
Jcr).

e jomega z y Z]
e [torque z y 2]

e[fix z y z| Fixes the particle in space. By supplying a set of 3 integers as ar-
guments it is possible to fix motion in z, y, or z coordinates independently. For
example fiz001 will fix motion only in z. Note that fiz without arguments is
equivalent to fix111.

e [ext_force z y z] An additional external force is applied to the particle.
e [unfix| Release any external influence from the particle.

e [exclude pid2...+] Restrictions: pid2 must be an existing particle. Between
the current particle an the exclusion partner(s), no nonbonded interactions are
calculated. Note that unlike bonds, exclusions are stored with both partners.
Therefore this command adds the defined exclusions to both partners.

e [exclude delete pid2...| Searches for the given exclusion and deletes it. Again
deletes the exclusion with both partners.

e [mass mass| Sets the mass of this particle to mass. If not set, all particles have
a mass of 1 in reduced units.

e [dipm moment| Sets the dipol moment of this particle to moment.

e [dip dz dy dz| Sets the orientation of the dipol axis to (dz,dy, dz).

4.1.2. Getting particle properties

Syntax
(1) part pid print [(id | pos | type | folded_position | type | q | v | £
| fix | ext_force | bond | connections [range])]...
(2) part

Description
Variant (1) will return a list of the specified properties of particle pid, or all properties,
if no keyword is specified. Variant (2) will return a list of all properties of all particles.

Example
part 40 print id pos q bonds

will return a list like

40 8.849 1.8172 1.4677 1.0 {}
This routine is primarily intended for effective use in Tcl scripts.

When the keyword connection is specified, it returns the connectivity of the
particle up to range (defaults to 1). For particle 5 in a linear chain the result up to
range = 3 would look like:

26

Docs requ

JC?).

{{43r{6}r3r{{43r{67r}r{{432r{67813} 1
The function is useful when you want to create bonded interactions to all other particles
a certain particle is connected to. Note that this output can not be used as input to the
part command. Check results if you use them in ring structures.

If none of the options is specified, it returns all properties of the particle, if it

exists, in the form
0 pos 2.1 6.4 3.1 type 0 q -1.0 v 0.0 0.0 0.0 £ 0.0 0.0 0.0

bonds { {0 480} {0 368} ... }
which may be used as an input to this function later on. The first integer is the particle
number.
Variant (2) returns the properties of all stored particles in a tcl-list with the same

format as specified above:
{0 pos 2.1 6.4 3.1 type 0 q 1.0 v 0.0 0.0 0.0 £ 0.0 0.0 0.0

bonds{{0 480}{0 368}...}}

{1 pos 1.0 2.0 3.0 type 0 g 1.0 v 0.0 0.0 0.0 f 0.0 0.0 0.0
bonds{{0 340}{0 83}...}}

{2...4{...3...}}

{3...{{...3...}}

4.1.3. Deleting particles

Syntax
(1) part pid delete
(2) part deleteall

Description

In variant (1), the particle pid is deleted and all bonds referencing it. Variant (2)
will delete all particles currently present in the simulation. Variant (3) will delete all
currently defined exclusions.

4.1.4. Exclusions

Syntax

(1) part auto_exclusions [range]
(2) part delete_exclusions

Description

Variant (1) will create exclusions for all particles pairs connected by not more than
range bonds (range defaults to 2). This is typically used in atomistic simulations, where
nearest and next nearest neighbour interactions along the chain have to be omitted since
they are included in the bonding potentials. For example, if the system contains particles
0 ...100, where particle n is bonded to particle n — 1 for 1 < n < 100, then it will result
in the exclusions:

27

e particle 1 does not interact with particles 2 and 3

e particle 2 does not interact with particles 1, 3 and 4

e particle 3 does not interact with particles 1, 2, 4 and 5
o ...

Variant (2) deletes all exclusions currently present in the system.

4.2. Creating groups of particle

4.2.1. polymer: Setting up polymer chains

Syntax
polymer num_polymers monomers_per_chain bond_length
[start pid] [pos z y z] [mode (RW | SAW | PSAW) [shield [trymax]]]
[Charge Q]l [distance d(:hamged]1 [tYPeS typez’dneutral [typeidcharged“
[bond bondid] [angle ¢ [0 [z y z]]] [constraints]?
Required features: 1ELECTR(JSTATICS 2CONSTRAINTS
Description
This command will create num_polymers polymer or polyelectrolyte chains with monomers_per_chain
monomers per chain. The length of the bond between two adjacent monomers will be

set up to be bond_length.

Arguments
o num_polymers Sets the number of polymer chains.

e monomers_per_chain Sets the number of monomers per chain.

e bond_length Sets the initial distance between two adjacent monomers. The dis-

tance during the course of the simulation depends on the applied potentials. For

:‘;:?5 et/oshak .. fixed bond length please refer to the SHAKE algorithm.

e [start pid] Sets the particle number of the start monomer to be used with the
part command. This defaults to 0.

e[pos z y z| Sets the position of the first monomer in the chain to z, y, z (defaults
to a randomly chosen value)

e mode (RW | PSAW | SAW) [shield [trymax]]] Selects the setup mode:
RW (Random walk) The monomers are randomly placed by a random walk with
a steps size of bond;ength.

PSAW (Pruned self-avoiding walk) The position of a monomer is randomly cho-
sen in a distance of bond_length to the previous monomer. If the position is
closer to another particle than shield, the attempt is repeated up to rymax

28

times. Note, that this is not a real self-avoiding random walk, as the particle
distribution is not the same. If you want a real self-avoiding walk, use the
SAW mode. However, PSAW is several orders of magnitude faster than SAW,
especially for long chains.

SAW (Self-avoiding random walk) The positions of the monomers are chosen as
in the plain random walk. However, if this results in a chain that has a
monomer that is closer to another particle than shield, a new attempt of
setting up the whole chain is done, up to trym.x times.

The default for the mode is RW, the default for the shield is 1.0, and the default
for trymax is 30000, which is usually enough for PSAW. Depending on the length
of the chain, for the SAW mode, trymax has to be increased by several orders of
magnitude.

e [charge walency] Sets the valency of the charged monomers. If the valency of
the charged polymers valency is smaller than 10719, the charge is assumed to be
zero, and the types are set to typeidcharged = typeidneutral- 1f charge is not set, it
defaults to 0.0.

e [distance dcharged] Sets the stride between the indices of two charged monomers.
This defaults defaults to 1, meaning that all monomers in the chain are charged.

e [types typeidyeutral typez'dcharged] Sets the type ids of the neutral and charged
monomer types to be used with the part command. If only typeidyeutral is defined,
typeideharged defaults to 1. If the option is omitted, both monomer types default
to 0.

e [bond bondid| Sets the type number of the bonded interaction to be set between
the monomers. This defaults to 0. Any bonded interaction, no matter how many

Link to bonded

bonding-partners needed, is stored with the second particle in this bond. . .
interactions

efangle ¢ [0 [z y 2]1]] Allows for setting up helices or planar polymers: ¢ and
theta are the angles between adjacent bonds. z, y and z set the position of the
second monomer of the first chain.

e [constraints] If this option is specified, the particle setup-up tries to obey pre-
viously defined constraints (see section on page .

4.2.2. counterions: Set up counterions

Syntax
counterions N [start pid] [mode (SAW | RW) [shield [trymax]]]
[charge val]! [type typeid]
Required features: L gL ECTROSTATICS

Description
This command will create N counterions in the simulation box.

29

Arguments
e [start pid] Sets the particle id of the first counterion. It defaults to the cur-
rent number of particles, i.e. counterions are placed after all previously defined
particles.

e mode (SAW | RW) [shield [trymax]]] Specifies the setup method to place the
counterions. It defaults to SAW. See the polymer command for a detailed descrip-
tion.

e [charge wal] Specifies the charge of the counterions. If not set, it defaults to —1.0.

e [type typeid] Specifies the particle type of the counterions. It defaults to 2.

4.2.3. salt: Set up salt ions

Syntax
salt Ny N_ [start pid] [mode (SAW | RW) [shield [trymax]]]
[charges valy [val_]]' [types typeid, [typeid_]] [rad 7]

Required features: L gLECTROSTATICS

Description
Create N4 positively and N_ negatively charged salt ions of charge val; and val_ within
the simulation box.

Arguments
e [start pid] Sets the particle id of the first (positively charged) salt ion. It defaults
to the current number of particles.

o mode (SAW | RW) [shield [trymax |]] Specifies the setup method to place the
counterions. It defaults to SAW. See the polymer command for a detailed descrip-
tion.

e [charge waly [val_]] Sets the charge of the positive salt ions to valy and the one
of the negatively charged salt ions to wval_. If not set, the values default to 1.0
and —1.0, respectively.

e [type tlypeid; [typeid_]] Specifies the particle type of the salt ions. It defaults to
3 respectively 4.

e [rad r] The salt ions are only placed in a sphere with radius r around the origin.

4.2.4. diamond: Setting up diamond polymer networks

Syntax
diamond a bond_length monomers_per_chain [counterions Nci]
[charges valyode V@lmonomer valCI]l [distance dcharged]l [nonet]

Required features: L gL ECTROSTATICS

30

Description

Creates a diamond-shaped polymer network with 8 tetra-functional nodes connected by
2 % 8 polymer chains of length MPC' in a unit cell of length a. For inter-particle bonds
interaction 0 is taken which must be a two-particle bond.

Arguments
e ¢ Determines the size of the of the unit cell.

e bond_length Specifies the bond length of the polymer chains connecting the 8
tetra-functional nodes.

e monomers_per_chain Sets the number of chain monomers between the functional
nodes.

e [counterions Nci] Adds Nep counterions to the system.

e [charges walode Valmonomer valcr] Sets the charge of the nodes to valyoqe, the
charge of the connecting monomers to valyonomer, and the charge of the counte-
rions to valcy.

e [distance dcharged] Specifies the distance between charged monomers along the
interconnecting chains. If dehargea > 1 the remaining chain monomers are un-
charged.

e [nonet|

4.2.5. icosaeder: Setting up an icosaeder

Syntax
icosaeder a monomers_per_chain [counterions Nci]
[charges valmonomers valci] 1 [distance dcharged]
Required features: L gLECTROSTATICS
Description
Creates a modified icosaeder to model a fullerene (or soccer ball). The edges are modeled

by polymer chains connected at the corners of the icosaeder. For inter-particle bonds
interaction 0 is taken which must be a two-particle bond.

Arguments
e ¢ Defines the size of the icosaeder.

e monomers_per_chain Specifies the number of chain monomers along one edge.

e [counterions Ncjy| Specifies the number of counterions to be placed into the sys-
tem.

e [charges wvalnonomers valci] Set the charges of the monomers to valyenomers and
the charges of the counterions to valc;.

A picture would
be helpful.

Which typeids are
used for the
different particles?

Define what nonet
does.

A picture would
be helpful

31

e [distance dcharged} Specifies the distance between two charged monomer along
the edge. If deharged > 1 the remaining monomers are uncharged.

4.2.6. crosslink: Cross-linking polymers

Syntax

crosslink num_polymer monomers_per_chain [start pid] [catch reaten]
[distLink [link_dist] [distChain chain_dist] [FENE bondid]
[trials trymax]

Description

Attempts to end-crosslink the current configuration of num_polymer equally long poly-
mers with monomers_per_chain monomers each, returning how many ends are success-
fully connected.

Arguments

e [start pid] pid specifies the first monomer of the chains to be linked. It has to
be specified if the polymers do not start at id 0.

e [catch r.atch] Set the radius around each monomer which is searched for possible
new monomers to connect to. reaiqn defaults to 1.9.

e [distLink link_dist] The minimal distance of two interconnecting links. It de-
faults to 2.

e [distChain chain_dist] The minimal distance for an interconnection along the
same chain. It defaults to 0. If set to monomers_per_chain, no interchain con-
nections are created.

¢ [FENE bondid] Sets the bond type for the connections to bondid.

o [trials {rymax] If not specified, trymax defaults to 30000.

32

4.3. constraint: Setting up constraints

Syntax

(1) constraint wall normal n, n, n, dist d type id

(2) constraint sphere center ¢, ¢, ¢, radius rad direction direction
type id

(3) constraint cylinder center c¢; ¢; ¢, axis n, ny n, radius rad
length length direction direction type id

(4) constraint maze nsphere n dim d sphrad rs; cylrad r. type id

(5) constraint pore center c¢; ¢y ¢, axis n; ny n, radius rad length
length type id

(6) constraint rod center ¢, c, lambda lambda !

(7) constraint plate height h sigma sigma

(8) constraint ext_magn_field f, f, f. 2,3

Required features: CONSTRAINTS !ELECTROSTATICS Z2ROTATION 5 DIPOLES

Description
The constraint command offers a variety of surfaces that can be defined to interact with
desired particles. Variants (1) to (5) create interactions via a Lennard-Jones potential.

4e ((0)12 — (g>6 + 5hift>
r r
with r being the distance of the center of the particle to the surface. The constraints are
identified like a particle via its type for the lennard-jones force calculation. After a type
is defined for each constraint one has to define the interaction of all different particle
types with the constraint using the inter command.

Variants (6) and (7) create interactions based on electrostatic interactions. The cor-
responding force acts in direction of the normal vector of the surface and applies to all
charged particles.

Variant (8) does not define a surface but is based on magnetic dipolar interaction with
an external magnetic field. It applies to all particles with a dipol moment.

Note that constraints are not saved to checkpoints and that they have to
be reset upon restarting a simulation.

The resulting surface in variant (1) is a plane defined by the normal vector n, n, n,
and the distance d from the origin. The force acts in direction of the normal.

The resulting surface in variant (2) is a sphere with center ¢, ¢, ¢, and radius rad.
The direction determines the force direction, -1 or [inside] for inward and +1 or [outside]
for outward.

The resulting surface in variant (3) is a cylinder with center ¢, ¢, ¢, and radius rad.
The length parameter is half of the cylinder length. The azis is a vector along the
cylinder axis, which is normalized in the program. The direction is defined the same
way as for the spherical constraint.

The resulting surface in variant (4) is n spheres of radius r,; along each dimension,
connected by cylinders of radius r.. The spheres have simple cubic symmetry. The

Does this
command really
work only with the
LJ potential, or
with any
short-ranged
potential?

33

Is this command
obsolete?
Cylinder?

spheres are distributed evenly by dividing the boz; by n. Dimension of the maze can be
controlled by d: 0 for one dimensional, 1 for two dimensional and 2 for three dimensional
maze.

Variant (5) sets up a cylindrical pore similar to variant (3) with a center ¢, ¢, ¢, and
radius rad. The length parameter is half of the cylinder length. The axis is a vector
along the cylinder axis, which is normalized in the program.

Variant (6) specifies an electrostatic interaction between the charged particles in the
system to an infinitely long rod with a line charge of lambda which is alinge along the
z-axis and centered at c¢; and cy.

Variant (7) specifies the electrostatic interactinos between the charged particles in the
system and an inifinitely large plate in the x-y-plane at height h. The plate carries a
charge density of sigma.

Variant (8) specifies the dipolar coupling of particles with a dipolar moment to an

external field f, f, f..
4.3.1. Deleting a constraint

Syntax

| constraint delete [num)|

Description
This command will delete constraints. If num is specified only this constraint will
deleted, otherwise all constraints will be removed from the system.

4.3.2. Getting the force on a constraint

Syntax

| constraint force n

Description
Returns the force acting on the nth constraint.

4.3.3. Getting the currently defined constraints

Syntax
| constraint [num)]
Description

Prints out all constraint information. If num is specified only this constraint is displayed,
otherwise all constraints will be printed.

34

5. Setting up interactions

In ESPResSo, interactions are setup and investigated by the inter command. There
are mainly two types of interactions: non-bonded and bonded interactions. Non-bonded
interactions only depend on the type of the two involved particles. This also applies to
the electrostatic interaction; however, due to its long-ranged nature, it requires special
care and ESPResSo handles it separately with a number of state of the art algorithms.
The particle type and the charge are both defined using the part command.

A bonded interaction defines an interaction between a number of particles; it however
only applies to sets of particles for which it has been explicitely set. A bonded interaction
between a set of particles has to be specified explicitely by the part bond command,
while the inter command is used to define the interaction parameters.

5.1. Getting the currently defined interactions

Syntax

| inter

Description
Without any arguments, inter returns a list of all defined interactions as a Tcl-list.
The format of each entry corresponds to the syntax for defining the interaction as
described below. Typically, this list looks like

{0 0 lennard-jones 1.0 2.0 1.1225 0.0 0.0} {0 FENE 7.0 2.0}

5.2. Non-bonded, short-ranged interactions

Syntax

| inter typel type2 [interaction] [parameters]

Description
defines an interaction of type interaction between all particles of type typel and
type2. The possible interaction types and their parameters are listed below. If
the interaction is omitted, the command returns the currently defined interaction
between the two types using the syntax to define the interaction, e.g.
0 0 lennard-jones 1.0 2.0 1.1225 0.0 0.0

For many non-bonded interactions, it is possible to artificially cap the forces, which

often allows to equilibrate the system much faster. See the subsection for details.

35

5.2.1. Lennard-Jones interaction

Syntax
(1) inter typel type2 lennard-jones € O Teut Cshift Toff
(2) inter typel type2 lj-gen € 0 Teut Cshift Toff €1 €2

Required features: (1) LENNARD_JONES (2) LENNARD_JONES_GENERIC

Description
These two commands define a Lennard-Jones interaction between particles of the types
typel and type2. The potential is defined by

4e((=2=) — (=2=) + cenite) if 7 < Teus + Toff
= —Toff T—Toff . 1
Vi (r) { 0 , otherwise (5.1)

The first form of the command specifies the traditional Lennard—Jones potential with
exponents e; = 12 and ep = 6, the second form allows to choose arbitrary exponents.
Both forms allow capping the force using inter 1ljforcecap, see section

The traditional Lennard—Jones potential is the “work—horse” potential for particle—
particle interactions in coarse—grained simulations. It is a simple model of the van—der—
Waals interaction, and is attractive at large distance, but strongly repulsive at short
distances. 7.4 + o corresponds to the sum of the radii of the interaction particles;
at this radius, the potential equals to €(1 + cghit). The attractive part starts beyond
T = roff + /0. Teut determines the radius where the potential is cut off. Typically, one
will choose the shift such that the potential is continuous at the cutoff radius.

A special case of the Lennard—Jones potential is the Weeks—Chandler—Andersen (WCA)
potential, which one obtains by putting the cutoff into the minimum, i.e. choosing
Tewt = /o and cgpiee = 1/4. The WCA potential is purely repulsive, and is often used to
mimick hard sphere repulsion.

5.2.2. Lennard-Jones cosine interaction

Syntax
(1) inter typel type2 lj-cos € O Teut Toff
(2) inter typel type2 1lj-cos2 € 0 Tog w

Required features: M r3cos @ ricos2

Description

specifies a Lennard-Jones interaction with cosine tail [I2] between particles of the types
typel and type2. The first vauriamt1 behaves as follows: Until the minimum of the Lennard-
Jones potential at rin = roff + 260, it behaves identical to the unshifted Lennard-Jones
potential (cghire = 0). Between 71y, and 7eyg, a cosine is used to smoothly connect the

potential to 0, i.e.
1 2
Vr)= € (cos [a(r —rog)* + 8] = 1), (5.2)

-1
where o = 7 [(eut — 7o) — (Tmin — 7o)?] ~ and B =7 — (rmin — Tof)? .

36

In the second variant, the cutoff radius is 7cuyt = Tmin + w, and the potential between
Tmin and 7yt 1S given by

V(r) = ecos? [%(r — Trmin) | - (5.3)

Only the second variant allows capping the force using inter ljforcecap, see sec-
tion [5.2.10)

5.2.3. Smooth step interaction

Syntax
inter typel type2 smooth-step o; n € ky 02 Teus

Required features: SMOOTH_STEP

Description
This defines a smooth step interaction between particles of the types typel and type2,
for which the potential is

V(r)=(o;/d)" +¢/(1 + exp [2ko(r — 02)]) (5.4)

for r < rey, and V(r) = 0 elsewhere. With n around 10, the first term creates a short
range repulsion similar to the Lennard-Jones potential, while the second term provides
a much softer repulsion. This potential therefore introduces two length scales, the range
of the first term, o1, and the range of the second one, oo, where in general o; < 9.

5.2.4. BMHTF potential

Syntax
inter typel type2 bmhtf-nacl A B C D o rew

Required features: BMHTF_NACL

Description

This defines an interaction with the short-ranged part of the Born-Meyer-Huggins-Tosi-
Fumi potential between particles of the types typel and type2, which is often used to
simulate NaCl crystals. The potential is defined by:

V(r)= Aexp[B(oc —1)] — Cr=8 — Dr=® + eqnire, (5.5)

where egpiy is chosen such that V(rey) = 0. For r > rey, the V(r) = 0.
For NaCl, the parameters should be chosen as follows:
types ‘ A (kJ/mol) ‘ B (A_l) ‘ o (AGkJ/mol) ‘ D ASkJ/mol ‘ o (A)
Na-Na | 25.4435 3.1546 101.1719 48.1771 2.34
Na-CI | 20.3548 3.1546 674.4793 837.0770 2.755
CI-Cl | 15.2661 3.1546 6985.6786 14031.5785 | 3.170
The cutoff can be chosen relatively freely because the potential decays fast; a value
around 10 seems reasonable.

37

In addition to this short ranged interaction, one needs to add a Coulombic, long—
ranged part. If one uses elementary charges, i.e. a charge of ¢ = +1 for the Na—particles,
and g = —1 for the Cl-particles, the corresponding prefactor of the Coulomb interaction
is ~ 1389.3549A k.J /mol.

5.2.5. Morse interaction

Syntax

inter typel type2 morse € & Tmin Teut

Required features: MORSE
Description
This defines an interaction using the Morse potential between particles of the types
typel and type2. It serves similar purposes as the Lennard-Jones potential, but has a
deeper minimum, around which it is harmonic. This models the potential energy in a
diatomic molecule. This potential allows capping the force using inter morseforcecap,
see section

For r < reyt, this potential is given by

V(r) = e(exp[—2a (r — rmin)] — 2€xp [~ (r — rmin)]) — €shitt, (5.6)

where egpify is again chosen such that V(reyt) = 0. For r > ey, the V(r) = 0.

5.2.6. Buckingham interaction

Syntax
inter typel type2 buckingham A B C D 7cut Tdiscont Eshift

Required features: BUCKINGHAM

Description
This defines a Buckingham interaction between particles of the types typel and type2,
for which the potential is given by

V(r) = Aexp(—Br) — Cr=% — Dr~* + eqire (5.7)

for Tqiscont < T < Teut- Below Tgiscont, the potential is linearly continued towards r = 0,
similarly to force capping, see below. Above r = 7., the potential is 0. This potential
allows capping the force using inter buckforcecap, see section [5.2.10]

5.2.7. Soft-sphere interaction

Syntax
inter typel type2 soft-sphere a 1 Tcut Toffset

Required features: SOFT_SPHERE

38

Description
This defines a soft sphere interaction between particles of the types typel and type2,
which is defined by a single power law:

V(T) =a (T - Toﬁset)_n (58)

for r < reys, and V(r) = 0 above. There is no shift implemented currently, which means
that the potential is discontinuous at r = r¢yt. Therefore energy calculations should be
used with great caution.

5.2.8. Gay-Berne interaction

Syntax
inter typel type2 gay-berne €y oy Teutof kI k2 p v

Required features: ROTATION

Description

This defines a Gay-Berne potential for prolate and oblate particles between particles of
the types typel and type2. The Gay-Berne potential is an anisotropic version of the
classic Lennard-Jones potential, with orientational dependence of the range oy and the
well-depth €y.

Assume two particles with orientations given by the unit vectors @i; and @; and inter-
molecular vector r = rt. If » < r.y, then the interaction between these two particles is
given by

V(I‘ij, ﬁi, ﬁ]) = 46(f‘ij, ﬁi, ﬁ]) (fi;m — f;JG) s (59)
otherwise V(r) = 0. The reduced radius is

r—= U(f‘a ﬁia ﬁj) + 0o
)

. (5.10)
a0
2 21) ?
L | @E-d+f-8)" (@0 —f-05)° | °
, i) = 1_7 -~ 3 U U 511
o(#, 4y, 4y) 00{ 2¥ 1+ xa;-a; i L= Xt -4y .

P)
I X (E- 040y (0 - F-G)

TSNP P . (5.12

eo (1 —x*(; - 4;)) { 2(L+ X' 0 - 4, * 1—x'14;-4; 12

The parameters y = (k:% - 1) / (k‘% + 1) and y' = (k:;/“ - 1) / (k:;/“ + 1) are responsi-
ble for the degree of anisotropy of the molecular properties. k; is the molecular elonga-
tion, and kg is the ratio of the potential well depths for the side-by-side and end-to-end
configurations. The exponents i and v are adjustable parameters of the potential. Sev-
eral Gay-Berne parametrizations exist, the original one being k; = 3, ks =5, p = 2 and
v=1.

39

5.2.9. Tabulated interaction

Syntax
inter typel type2 tabulated filename

Required features: TABULATED

Description

This defines an interaction between particles of the types typel and type2 according
to an arbitrary tabulated pair potential. filename specifies a file which contains the
tabulated forces and energies as a function of the separation distance. The tabulated
potential allows capping the force using inter tabforcecap, see section [5.2.10]

At present the required file format is simply an ordered list separated by whitespace.
The data reader first looks for a # character and begins reading from that point in the
file. Anything before the # will be ignored.

The first three parameters after the # specify the number of data points Npeints and
the minimal and maximal tabulated separation distances 7, and rmax. The number
of data points obviously should be an integer, the two other can be arbitrary positive
doubles. Take care when choosing the number of points, since a copy of each lookup table
is kept on each node and must be referenced very frequently. The maximal tabulated
separation distance also acts as the effective cutoff value for the potential.

The remaining data in the file should consist of n data triples , F'(r) and V(r). r gives
the particle separation, V(r) specifies the interaction potential, and F(r) = —V'(r)/r
the force (note the factor 1/r!). The values of r are assumed to be equally distributed
between iy and ryax with a fixed distance of (rmax — min)/(Npoints — 1); the distance
values r in the file are ignored and only included for human readability.

5.2.10. Capping the force during warmup

Syntax

(1) inter ljforcecap Fpax
(2) inter morseforcecap Fiax
(3) inter buckforcecap Fiax
(4) inter tabforcecap Fiax

Required features: (1) LENNARD_JONES (2) Morse (3) BuckinehaM () TABULATED

Description
Non-bonded interactions are often used to model the hard core repulsion between par-
ticles. Most of the potentials in the section are therefore singular at zero distance, and
forces usually become very large for distances below the particle size. This is not a prob-
lem during the simulation, as particles will simply avoid overlapping. However, creating
an initial dense random configuration without overlap is often difficult.

By artificially capping the forces, it is possible to simulate a system with overlaps.
By gradually raising the cap value Fi,ax, possible overlaps become unfavorable, and the
system equilibrates to a overlap free configuration.

40

This command will cap the force to Fy,,.;, i.e. for particle distances which would
lead to larger forces than Fi.x, the force remains at Fiy.x. Accordingly, the potential
is replaced by replaced by rFnax. Particles placed exactly on top of each other will be
subject to a force of magnitude Fi,.x along the first coordinate axis.

The force capping is switched off by setting Fi,ax = 0. Note that force capping always
applies to all interactions of the corresponding type (e.g. all Lennard-Jones interactions)
regardless of the particle types.

5.3. Bonded interactions

Syntax

| inter bondid [interaction| [parameters]

Description

Bonded interactions are identified by their bonded interaction type identificator
bondid, which is a non-negative integer. The inter bondid command is used to
specify the type and parameters of a bonded interaction, which applies to all par-
ticles connected explicitely by this bond using the part command (see section
on page [25)). Therefore, defining a bond between two particles always involves two
steps: defining the interaction and applying it. Assuming that two particles with

ids 42 and 43 already exist, one can create e.g. a FENE-bond between them using
inter 1 fene 10.0 2.0

part 42 bond 1 43
If a FENE-bond with the same interaction parameters is required between several

particles (e.g. in a simple chain molecule), one can use the sampe type id:
inter 1 fene 10.0 2.0

part 42 bond 1 43; part 43 bond 1 44
Bonds can have more than just two bond partners. For the inter command that does
not play a role as it only specifies the parameters, only when applying the bond using
the bond particle, the number of involved particles plays a role. The number of involved
particles and their order, if important, is nevertheless specified here for completeness.

5.3.1. FENE bond

Syntax

| inter bondid fene K Armax [10]

Description

This creates a bond type with identificator bondid with a FENE (finite extension nonlin-
ear expander) interaction. This is a rubber-band-like, symmetric interaction betweeen
two particles with prefactor K, maximal stretching Aryax and equilibrium bond length
rg. The bond potential diverges at a particle distance r = rg— Armax and r = rp+ Arpax.

41

It is given by

V(r) = —%KArmaxz In [1 - <T - ”’)2] . (5.13)

Armax

5.3.2. Harmonic bond

Syntax
| inter bondid harmonic K R

Description

This creates a bond type with identificator bondid with a classical harmonic potential.
It is a symmetric interaction between two particles. The potential is minimal at particle
distance r = R, and the prefactor is K. It is given by

V(r) = %K (r — R)? (5.14)

5.3.3. Subtracted Lennard-Jones bond

Syntax

| inter bondid subt_lj reserved R

Description

This creates a “bond” type with identificator bondid, which acts between two particles
and actually subtracts the Lennard-Jones interaction between the involved particles. The
first parameter, reserved is a dummy just kept for compatibility reasons. The second
parameter, R, is used as a check: if any bond length in the system exceeds this value, the
program terminates. When using this interaction, it is worthwhile to consider capping
the Lennard-Jones potential appropriately so that round-off errors can be avoided.

This interaction is useful when using other bond potentials which already include
the short-ranged repulsion. This often the case for force fields or in general tabulated
potentials.

5.3.4. Rigid bonds

Syntax

inter bondid rigid_bond constrainedy,ondgistance positional;olerance
velocity; olerance

42

Description

5.3.5. Bond-angle interactions

Syntax
inter bondid angle K [¢g]

Required features: BOND_ANGLE_HARMONIC, BOND_ANGLE_COSINE or BOND_ANGLE_-
COSSQUARE

Description

This creates a bond type with identificator bondid with an angle dependent potential.
This potential is defined between three particles. The particle for which the bond is
created, is the central particle, and the angle ¢ between the vectors from this particle
to the two others determines the interaction. K is the bending constant, and the op-
tional parameter phiy is the equilibirum bond angle in radian ranging from 0 to w. If
this parameter is not given, it defaults to ¢y = =, which corresponds to a stretched
configuration. For example, for a bond defined by

part $p_2 bond 4 $p_1 $p_3

the minimal energy configurations are the following:

inter 4 angle 1.0 [PI] inter 4 angle 1.0 [expr [PI]/2]

b3

o0 0

p1 D2 p3 b1 D2

For the potential acting between the three particles, different choices are possible,
which have to be activated in myconfig.h

e Harmonic bond angle potential (requires feature BOND_ANGLE_HARMONIC):

A classical harmonic potential,

V() = g (6 — 0)°. (5.15)

Unlike the two following variants, this potential has a kink at ¢ = ¢g + 7 and
accordingly a discontinuity in the force, and should therefore be used with caution.

e Cosine bond angle potential (requires feature BOND_ANGLE_COSINE):

Via) = K[1 — cos(¢ — ¢0)] (5.16)

Around ¢y, this potenial is close to a harmonic one (both are 1/2(¢ — ¢p)? in
leading order), but it is periodic and smooth for all angles ¢.

43

e Cosine square bond angle potential (requires feature BOND_ANGLE_COSSQUARE):

Vi(a) = & feos(s) — cos(oo)]? (517)

This form is used for example in the GROMOS96 force field. The potential is
1/8(¢ — ¢o)* around ¢g, and therefore much flatter than the two potentials before.

5.3.6. Dihedral interactions

Syntax
| inter bondid dihedral n K p

Description

This creates a bond type with identificator bondid with a dihedral potential, i.e. a four-
body-potential. In the following, let the particle for which the bond is created be particle

p2, and the other bond partners py, p3, p4, in this order, i.e. part ps bond bondid p; p3 p4.
Then, the dihedral potential is given by

V(g) = K [1 — cos(ng — p)], (5.18)

where n is the multiplicity of the potential (number of minimas) and can take any integer
value (typically from 1 to 6), p is a phase parameter and K is the bending constant of the
potential. ¢ is the dihedral angle between the particles defined by the particle quadrupel
p1, P2, p3 and py, i.e. the angle between the planes defined by the particle triples p1, po
and p3 and po, p3 and p4:

_0

U,
0

Together with appropriate Lennard-Jones interactions, this potential can mimic a large
number of atomic torsion potentials.

If you enable the feature OLD_DIHEDRAL, then the old, less general form of the
potential is used:

V(¢) = K [1+ p cos(ne)], (5.19)

where p is rather a phase factor and can only take values p = +1.
5.3.7. Tabulated bond interactions

Syntax
(1) inter bondid tabulated bond filename
(2) inter bondid tabulated angle filename
(3) inter bondid tabulated dihedral filename

44

Description

This creates a bond type with identificator bondid with a two-body bond length ((1)),
three-body angle ((2)) or four-body dihedral ((3)) tabulated potential. The tabulated
forces and energies have to be provided in a file filename, which is formatted identically
as the files for non-bonded tabulated potentials (see section.2.9).

The potential is calculated as follows:

e Variant (1) is a two body interaction depending on the distance of two particles.
The force acts in the direction of the connecting vector between the particles.
The bond breaks above the tabulated range, but for distances smaller than the
tabulated range, a linear extrapolation based on the first two tabulated force values
is used.

e Variant (2) is a three-body angle interaction similar to the angle potential (see
section . It is assumed that the potential is tabulated for all angles between
0 and m, where 0 corresponds to a stretched polymer, and just as for the tabu-
lated pair potential, the forces are scaled with the inverse length of the connecting
vectors. The force on particles p; and ps (in the notation of section acts
perpendicular to the connecting vector between the particle and the center particle
p2 in the plane defined by the three particles. The force on the center particle po
balances the other two forces.

e Variant (3) tabulates a torsional dihedral angle potential (see section [5.3.6). It
is assumed that the potential is tabulated for all angles between 0 and 27w. This
potential is not tested yet! Use on own risk, and please report your findings and
eventually necessary fizes.

5.3.8. Virtual bonds

Syntax

| inter bondid virtual_bond

Description

This creates a virtual bond type with identificator bondid, i.e. a pair bond without
associated potential or force. It can used to specify topologies and for some analysis
that rely on bonds, or e.g. for bonds that should be displayed in VMD.

5.4. Coulomb interaction

Electrostatic interactions are very computation time-intensive. ESPResSo features some
state-of-the-art algorithms to deal with these interactions as efficiently as possible, but
almost all of them require some knowledge to use them properly. Uneducated use can
result in completely unphysical simulations.

45

Syntax
(1) inter coulomb 0.0
(2) inter coulomb [lp method] [parameters]
(3) inter coulomb

Description
This command defines how ESPResSo deals with electrostatic interactions.

Variant (1) completely disables Coulomb interactions hence deactivating the electro-
static subsystem, while variant (2) sets up one of the methods described below to treat
electrostatic interactions. I denotes the Bjerrum length, which measures the strength
of the electrostatic interaction. For a pair of particles at distance r with charge ¢ each,

the interaction is given by
2

UC(r) = lBkBTq? (5.20)

Using the electrostatic interaction also requires to assign charges to the particles. This

is done using the part command to set the charge q, e.g.
inter coulomb 1.0 p3m tune accuracy le-4

part 0 q 1.0; part 1 q -1.0
Variant (3) returns the current parameters of the coulomb interaction as a tcl-list

using the same syntax as used to setup the method, e.g.
{coulomb 1.0 p3m 7.75 8 5 0.1138 0.0}

{coulomb epsilon 0.1 n_interpol 32768 mesh_off 0.5 0.5 0.5}

5.4.1. P3M

Syntax

| inter coulomb p3m 7.y mesh cao alpha

Description
Activates the P3M method to handle the Coulomb interaction
UC—P3M — g2 (5.21)
r
Here {5 = €2/(4mekpT) is the Bjerrum length. Make sure that you know the rele-

vance of the P3M parameters before using P3M! If you are not sure, read the following
references [5, [7, 8 2, 3] [4, [1].

Tuning P3M

Syntax
inter coulomb p3m (tune | tunev2) accuracy accuracy
[r_cut 7cu] [mesh mesh] [cao cao] [alpha]

Description
Make sure you know how to tune p3m parameters before using the automatic tuning
feature.

46

The function utilizes the analytic expression of the error estimate for the P3M method
in the book of Hockney and Eastwood [7, eqn 8.23] in order to obtain the rms error in
the force for a system of N randomly distributed particles in a cubic box. For the real
space error the estimate of Kolafa and Perram|[§] is used.

The two tuning methods follow different methods for determining the optimal param-
eter. While the tune version simply tests different values on a grid in the parameter
space, the tunev2 version uses a bisection to determine the optimal parameters. In
general, for small systems the tune version is faster, while for large systems tunev2 is
faster. The results of tunev2 are always at least as good as the parameters achievable
from the tune version, and normally the obtained accuracy is much closer to the desired
value.

During execution the tuning routines report the parameter sets tested, the correspond-
ing k-space and real-space errors and timings needed for force calculations (the setmd
variable timings controls the number of test force calculations). Since the error depends
on 7Teu/box I and abox_l the output is given in these units.

Note that any previous settings of 7.y, cao and mesh will be remembered. So if you
want to retune your electrostatics, e.g. after a major system change, you should use

inter coulomb [p p3m tune accuracy acc r_cut O mesh O cao O

Some additional p3m parameters have preset value

epsilon = metallic
The dielectric constant of the surrounding medium, metallic (i.e.infinity) or some
finite positive number.

n_interpol = 32768
Number of interpolation points for the charge assignment function. When this is
set to 0, interpolation is turned off.

mesh_off = 0.5 0.5 0.5
Offset of the first mesh point from the lower left corner of the simulation box in units
of the mesh constant. As soon as p3m is turned on the additional parameters can be
changed with:

inter coulomb parameter,ame value+
5.4.2. Debye-Hiickel potential
Syntax

| inter coulomb dh K 7eyt

Description
Defines the electrostatic potential by

q1q2exp(—Kr)
r

UC—PH — ppkpT (5.22)

For k = 0, this corresponds to the plain coulomb potential.

How is the cutoff
handled? Why is
this not a normal
short-raged
potential?

47

5.4.3. MMM2D

Syntax

| inter coulomb mmm2d mazimal_pairwise_error [fized_far_cutoff]

Description

MMM2D coulomb method for systems with periodicity 1 1 0. Needs the layered cell
system. The performance of the method depends on the number of slices of the cell
system, which has to be tuned manually. It is automatically ensured that the maximal
pairwise error is smaller than the given bound. The far cutoff setting should only be
used for testing reasons, otherwise you are more safe with the automatical tuning. If
you even don’t know what it is, do not even think of touching the far cutoff. For details
on the MMM family of algorithms, refer to appendix ?? on page [77]

5.4.4. MMM1D

Syntax

(1) inter coulomb mmmld switch_radius [bessel_cutoff] mazimal_pairwise_error
(2) inter coulomb mmmld tune mazimal_pairwise_error

Description

MMMI1D coulomb method for systems with periodicity 0 0 1. Needs the nsquared cell
system (see section on page . The first form sets parameters manually. The
switch radius determines at which xy-distance the force calculation switches from the
near to the far formula. If the Bessel cutoff is not explicitly given, it is determined from
the maximal pairwise error, otherwise this error only counts for the near formula. The
second, tuning form just takes the maximal pairwise error and tries out a lot of switching
radii to find out the fastest one. If this takes too long, you can change the value of the
setmd variable timings, which controls the number of test force calculations. For details
on the MMM family of algorithms, refer to appendix [77] on page [77}

5.4.5. Maggs’ method

Syntax

| inter coulomb maggs f_mass mesh field_friction [yukawa kappa Teus)

Description
This is an implementation of the instantaneous 1/r Coulomb interaction

U = tgkpT L2 (5.23)
r
as the potential of mean force between charges which are dynamically coupled to a local

electromagnetic field.

48

Arguments
e f_mass is the mass of the field degree of freedom and equals to the square root of
the inverted speed of light.

e mesh is the number of mesh points for the interpolation of the electromagnetic
field.

e field_friction is the value of the friction coefficient for the transversal field degrees
of freedom (reserved for future development).

Unphysical self-energies that arise as a result of the lattice interpolation of charges, are
corrected by a subtraction scheme based either on the exact lattice Green’s function or
the combination of the direct subtraction scheme plus the Yukawa subtraction scheme
(second method).

For the case of Yukawa screened simulation (second method) one has to enter screening
parameter kappa and the cut-off of the Yukawa potential 7cys.

5.4.6. ELC

Syntax

| inter coulomb elc mazimal_pairwise_error gap_size [far_cutoff]

Description

This is a special procedure that converts a 3d method, i.e. P3M at the moment, to a
2d method, in computational order N. This is definitely faster than MMM2D for larger
numbers of particles (;400 at reasonable accuracy requirements). The maximal pairwise
error is the LUB error of the force between any two charges without prefactors (see
the papers). The gap size gives the height of the empty region between the system
box and the neighboring artificial images (again, see the paper). ESPResSo does not
make sure that the gap is actually empty, this is the users responsibility. The method
will compute fine of the condition is not fulfilled, however, the error bound will not be
reached. Therefore you should really make sure that the gap region is empty (e. g. by
constraints). The far cutoff finally is only intended for testing and allows to directly set
the cutoff. In this case, the maximal pairwise error is ignored. The periodicity has to
be set to 1 1 1 still, and the 3d method has to be set to epsilon metallic, i.e. metallic
boundary conditions. For details, see appendix [77] on page [77]

Make sure that you read the papers on ELC before using it !!!

5.5. Other interaction types

5.5.1. Fixing the center of mass

Syntax
| inter typeid! typeidl comfixed flag

49

| references

Description

This interaction type applies a constraint on particles of type typeidl such that during
the integration the center of mass of these particles is fixed. This is accomplished as
follows: The sum of all the forces acting on particles of type typeid! are calculated. These
include all the forces due to other interaction types and also the thermostat. Next a force
equal in magnitude, but in the oppositte direction is applied on the particles. This force
is divided equally on all the particles of type typeid1, since currently there is no mass
concept in ESPResSo. Note that the syntax of the declaration of comfixed interaction
requires the same particle type to be input twice. If different particle types are given in
the input, the program exits with an error message. flag can be set to 1 (which turns
on the interaction) or 0 (to turn off the interaction).

5.5.2. Pulling particles apart

Syntax
| inter typeidl typeid2 comforce flag dir force fratio

Description

The comforce interaction type enables one to pull away particle groups of two different
types. It is mainly designed for pulling experiments on bundles. Within a bundle of
molecules of type number typeid! lets mark one molecule as of type typeid2. Using
comforce one can apply a force such that t2 can be pulled away from the bundle. The
comforcerlag is set to 1 to turn on the interaction, and to 0 otherwise. The pulling
can be done in two different directions. Either parallel to the major axis of the bundle
(dir = 0) or perpendicular to the major axis of the bundle (dir = 1). force is used
to set the magnitude of the force. fratio is used to set the ratio of the force applied
on particles of typeidl vs. typeid2. This is useful if one has to keep the total applied
force on the bundle and on the target molecule the same. A force of magnitude force
is applied on typeid2 particles, and a force of magnitude (force * fratio) is applied on
typeidl particles.

50

6. Setting up the system

6.1. setmd: Setting global variables.

Syntax
(1) setmd wvariable
(2) setmd wvariable [value]+

Description
Variant (1) returns the value of the ESPResSo global variable variable, variant (2) can
be used to set the variable variable to value. The following global variables can be set:

box_1 (double[3]) Simulation box length.

cell_grid (int[3], read-only) Dimension of the inner cell grid.

cell_size (double[3], read-only) Box-length of a cell.

dpd_gamma (double, read-only) Friction constant for the DPD thermostat.
dpd_r_cut (double, read-only) Cutoff for DPD thermostat.

gamma (double, read-only) Friction constant for the Langevin thermostat.
integ_switch (int, read-only) Internal switch which integrator to use.
local_box_1 (int[3], read-only) Local simulation box length of the nodes.
max_cut (double, read-only) Maximal cutoff of real space interactions.

max_num_cells (int) Maximal number of cells for the link cell algorithm. Reason-
able values are between 125 and 1000, or for some problems (n;otal,articles /
npodes).

max_part (int, read-only) Maximal identity of a particle. This is in general not
related to the number of particles!

max_range (double, read-only) Maximal range of real space interactions: maz,ut
+ skin.

max_skin (double, read-only) Maximal skin to be used for the link cell/verlet algo-
rithm. This is the minimum of cellsize - max,-ange.

min_num_cells (int) Minimal number of cells for the link cell algorithm. Reason-
able values range in le — 6N? to le — 7N?2. In general just make sure that the
Verlet lists are not incredibly large. By default the minimum is 0, but for the
automatic P3M tuning it may be wise to larger values for high particle numbers.

Explain ’+4’ in
intro.

Better throw some
out (e.g.
switches)?

Missing:
lattice_switch,
dpd_tgamma,
n_rigidbonds

‘Which commands
can be used to set
the read-only
variables?

document what
happens to the
particles when
box_1 is changed!

o1

[777

[777

| Docs missing.

| Docs missing.

Correct?

e

n_layers (int, read-only) Number of layers in cell structure LAYERED (see sec-
tion on page .
n_nodes (int, read-only) Number of nodes.

n_part (int, read-only) Total number of particles.

n_part_types (int, read-only) Number of particle types that were used so far in
the inter command (see chaptertcl:inter).

node_grid (int[3]) 3D node grid for real space domain decomposition (optional, if
unset an optimal set is chosen automatically).

nptiso_gammaO (double, read-only)

nptiso_gammav (double, read-only)

npt_p_ext (double, read-only) Pressure for NPT simulations.

npt_p_inst (double) Pressure calculated during an NPT isotropic integration.
piston (double, read-only) Mass off the box when using NPT isotropic integrator.

periodicity (bool[3]) Specifies periodicity for the three directions. If the feature
PARTIAL_PERIODIC is set, this variable can be set to (1,1,1) or (0,0,0) at the
moment. If not it is readonly and gives the default setting (1,1,1).

skin (double) Skin for the Verlet list.

temperature (double, read-only) Temperature of the simulation.
thermo_switch (double, read-only) Internal variable which thermostat to use.
time (double) The simulation time.

time_step (double) Time step for MD integration.

timings (int) Number of timing samples to take into account if set.

transfer_rate (int, read-only) Transfer rate for VMD connection. You can use
this to transfer any integer value to the simulation from VMD.

verlet_flag (bool) Indicates whether the Verlet list will be rebuild. The program
decides this normally automatically based on your actions on the data.

verlet_reuse (double) Average number of integration steps the verlet list has been
re-used.

6.2. thermostat: Setting up the thermostat

The thermostat command is used to change settings of the thermostat.
The different available thermostats will be described in the following subsections. Note
that for a simulation of the NPT ensemble, you need to use a standard thermostat for

52

the particle velocities (e.g. Langevin or DPD), and a thermostat for the box geometry
(e.g. the isotropic NPT thermostat).

You may combine different thermostats at your own risk by turning them on one by
one. Note that there is only one temperature for all thermostats.

6.2.1. Langevin thermostat

Syntax

| thermostat langevin temperature gamma

Description
The Langevin thermostat consists of a friction and noise term coupled via the fluctuation-
dissipation theorem. The friction term is a function of the particle velocities.

If the feature ROTATION is compiled in, the rotational degrees of freedom are also
coupled to the thermostat.

6.2.2. Dissipative Particle Dynamics (DPD) thermostat

Syntax

| thermostat dpd temperature gamma r_cut

Description

Consists of a friction and noise term coupled via the fluctuation- dissipation theorem.
The friction term is a function of the relative velocity of particle pairs. The DPD thermo-
stat is better for dynamics than the Langevin thermostat, since it mimics hydrodynamics
in the system.

When using a Lennard-Jones interaction, r_cut = 260 is a good value to choose, so
that the thermostat acts on the relative velocities between nearest neighbor particles.
Larger cutoffs including next nearest neighbors or even more are unphysical.

gamma is basically an inverse timescale on which the system thermally equilibrates.
Values between 0.1 and 1 are 0.k, but you propably want to try yourself to get a feeling
for how fast temperature jumps during a simulation are. The dpd thermostat does
not act on the system center of mass motion. Therefore, before using dpd, you have
to stop the center of mass motion of your system, which you can achieve by using
the command galileiTransformParticles (see section ?? on page . This may
be repeated once in a while for long runs due to round off errors (check this with the
command system_com_vel from section 7?7 on page .

6.2.3. Isotropic NPT thermostat

Syntax

| thermostat npt_isotropic temperature gammal gammaV

53

| Reference

Docs, reference

Document return
format.

Put nemd
profile|viscosity
into analyze?

Why should
NEMD only be
used with DPD or
in NVE?

References for the
methods

Description
This theormstat is based on the Anderson thermostat and will thermalize the box ge-
ometry. It will only do isotropic changes of the box.

6.2.4. Turning off all thermostats

Syntax
| thermostat off

Description
Turns off all thermostats and sets all thermostat variables to zero.

6.2.5. Getting the parameters

Syntax

| thermostat

Description
Returns the thermostat parameters.

6.3. nemd: Setting up non-equilibrium MD

Syntax

) nemd exchange n_slabs n_exchange
) nemd shearrate n_slabs shearrate
3) nemd off
) nemd

) nemd profile
(6) nemd viscosity

Description
Use NEMD (Non Equilibrium Molecular Dynamics) to simulate a system under shear
with help of an unphysical momentum change in two slabs in the system.

Variants (1) and (2) will initialise NEMD. Two distinct methods exist. Both methods
divide the simulation box into n_slab slabs that lie parallel to the x-y-plane and apply a
shear in x direction. The shear is applied in the top and the middle slabs. Note, that the
methods should be used with a DPD thermostat or in an NVE ensemble. Furthermore,
you should not use other special features like part fix or constraints inside the top
and middle slabs.

Variant (1) chooses the momentum exchange method. In this method, in each step the
n_exchange largest positive x-components of the velocity in the middle slab are selected
and exchanged with the n_exchange largest negative x-components of the velocity in the
top slab.

o4

Variant (2) chooses the shear-rate method. In this method, the targetted x-component
of the mean velocity in the top and middle slabs are given by

L
target _velocity = tshearrate ZZ (6.1)

where L, is the simulation box size in z-direction. During the integration, the x-
component of the mean velocities of the top and middle slabs are measured. Then,
the difference between the mean x-velocities and the target x-velocities are added to the
x-component of the velocities of the particles in the respective slabs.

Variant (3) will turn off NEMD, variant (4) will return the parameters of NEMD.
Variant (5) will return the velocity profile of the system in x-direction.

Variant (6) will return the viscosity of the system, that is computed via

F
YLz Ly

n= (6.2)

where F' is the mean force (momentum transfer per unit time) acting on the slab and
L,L, is the area of the slab.

6.4. cellsystem: Setting up the cell system

This section deals with the flexible particle data organization of ESPResSo. Due to
different needs of different algorithms, ESPResSo is able to change the organization of
the particles in the computer memory, according to the needs of the used algorithms.
For details on the internal organization, refer to section [12.I] on page [123

6.4.1. Domain decomposition

Syntax

| cellsystem domain_decomposition [-no_verlet_list]

Description

This selects the domain decomposition cell scheme, using Verlet lists for the calculation
of the interactions. If you specify -no_verlet_list, only the domain decomposition is
used, but not the Verlet lists.

The domain decomposition cellsystem is the default system and suits most applica-
tions with short ranged interactions. The particles are divided up spatially into small
compartments, the cells, such that the cell size is larger than the maximal interaction
range. In this case interactions only occur between particles in adjacent cells. Since
the interaction range should be much smaller than the total system size, leaving out
all interactions between non-adjacent cells can mean a tremendous speed-up. Moreover,
since for constant interaction range, the number of particles in a cell depends only on
the density. The number of interactions is therefore of the order N instead of order N2
if one has to calculate all pair interactions.

95

Describe return
format of variants
4 and 5.

|What is 47

6.4.2. N-squared

Syntax

| cellsystem nsquare

Description

This selects the very primitive nsquared cellsystem, which calculates the interactions for
all particle pairs. Therefore it loops over all particles, giving an unfavorable computation
time scaling of N2. However, algorithms like MMM1D or the plain Coulomb interaction
in the cell model require the calculation of all pair interactions.

In a multiple processor environment, the nsquared cellsystem uses a simple particle
balancing scheme to have a nearly equal number of particles per CPU, i.e. n nodes have
m particles, and p—n nodes have m+1 particles, such that nxm+(p—n)*(m+1) = N,
the total number of particles. Therefore the computational load should be balanced
fairly equal among the nodes, with one exception: This code always uses one CPU for
the interaction between two different nodes. For an odd number of nodes, this is fine,
because the total number of interactions to calculate is a multiple of the number of
nodes, but for an even number of nodes, for each of the p — 1 communication rounds,
one processor is idle.

E.g. for 2 processors, there are 3 interactions: 0-0, 1-1, 0-1. Naturally, 0-0 and 1-1 are
treated by processor 0 and 1, respectively. But the 0-1 interaction is treated by node 1
alone, so the workload for this node is twice as high. For 3 processors, the interactions
are 0-0, 1-1, 2-2, 0-1, 1-2, 0-2. Of these interactions, node 0 treats 0-0 and 0-2, node 1
treats 1-1 and 0-1, and node 2 treats 2-2 and 1-2.

Therefore it is highly recommended that you use nsquared only with an odd number
of nodes, if with multiple processors at all.

6.4.3. Layered cell system

Syntax

| cellsystem layered n_layers

Description

This selects the layered cell system, which is specifically designed for the needs of the
MMM2D algorithm. Basically it consists of a nsquared algorithm in x and y, but a
domain decomposition along z, i. e. the system is cut into equally sized layers along the
z axis. The current implementation allows for the cpus to align only along the z axis,
therefore the processor grid has to have the form 1x1xN. However, each processor may
be responsible for several layers, which is determined by n_layers, i. e. the system is
split into N*n_layers layers along the z axis. Since in x and y direction there are no
processor boundaries, the implementation is basically just a stripped down version of
the domain decomposition cellsystem.

56

7. Running the simulation

7.1. integrate: Running the simulation

Syntax
(1) integrate steps
(2) integrate set method [parameter]. . .

Description

7.2. change_volume: Changing the box volume

Syntax
(1) change_volume View
(2) change_volume Lpew (x| vy | 2 | xy2)

Description

Changes the volume of either a cubic simulation box to the new volume Vye, or its
given x-/y-/z-/xyz-extension to the new box-length Lyey, and isotropically adjusts the
particles coordinates as well. The function returns the new volume of the deformed
simulation box.

7.3. Stopping particles

Syntax

(1) stopParticles
(2) stop_particles

Description
Halts all particles in the current simulation, setting their velocities and forces to zero.
Variant (2) does not provide feedback on the execution status.

7.4. velocities: Setting the velocities

Syntax

| velocities wumax [start pid] [count N]

Docs missing!

Which integrators
do exist?

o7

Documentation
not up to date!

vYY

Description

Sets the velocities of the particles with particle IDs between pid and pid+ N to a random
vector with a length less than vyax, and returns the absolute value of the total velocity
assigned. By default, all particles are affected.

7.5. invalidate_system

Syntax

| invalidate_system

Description

Forces a system re-init which, among others, causes the integrator to also update the
forces at its beginning (instead of re-using the values from the previous integration step).
This is particularly necessary to ensure continuity after setting a checkpoint: integrate
- set_checkpoint - integrate has only one call to 777, while read_checkpoint -
integrate has two at the beginning of the 2nd integrate (because loading a new system
from disk typically requires re-initializing the system), and since 777 also uses the
thermostat which in turn draws random numbers, the two situations do not end up
at the same segment of the random number sequence, all random events will therefore
slightly differ. To prevent this, simply include a call to invalidate_system upon setting
the checkpoint (this is being done automatically if using tcl_checkpoint_set and tcl -
checkpoint_read beginning with v1.1 of ESPResSo), because in that case both scenarios
will call 777 twice at the beginning of the second integration phase thus having their
random number sequences in total sync.

7.6. Parallel tempering

Syntax
parallel_tempering::main -rounds N -swap swap -perform perform
[-init init] [-values {T;}] [-connect master] [-port port]
[-load jnode] [~Tresrate Nieset| [~info info]

Description

This command can be used to run a parallel tempering simulation. Since the simulation
routines and the calculation of the swap probabilities are provided by the user, the
method is not limited to sampling in the temperature space. However, we assume in
the following that the sampled values are temperatures, and call them accordingly. It is
possible to use multiple processors via TCP /IP networking, but the number of processors
can be smaller than the number of temperatures.

Arguments
e swap specifies the name of the routine calculating the swap probability for a sys-
tem. The routine has to accept three parameters: the id of the system to evaluate,

o8

and two temperatures 7; and T». The routine should return a list containing
the energy of the system at temperatures T; and T2, respectively.

e perform specifies the name of the routine performing the simulation between two
swap tries. The routine has to accept two parameters: the id of the system to
propagate and the temperature 1" at which to run it. Return values are ignored.

e init specifies the name of a routine initializing a system. This routine can for
example create the particles, perform some intial equilibration or open output
files. The routine has to accept two parameters: the id of the system to initialize
and its initial temperature T. Return values are ignored.

e R specifies the number of swap trial rounds; in each round, neighboring temper-
atures are tried for swapping alternatingly, i.e. with four temperatures, The first
swap trial round tries to swap 1 < 2 and 3 < 4, the second round 2 « 3, and so
on.

e master the name of the host on which the parallel tempering master node is run-
ning.

e port the TCP/IP port on which the parallel_tempering master should listen. This
defaults to 12000.

® jnode Specifies how many systems to run per ESPResSo-instance. If this is more
than 1, it is the user’s responsibility to manage the storage of configurations, see
below for examples. This defaults to 1.

® R eset specifies after how many swap trial rounds to reset the counters for the
acceptance rate statistics. This defaults to 10.

e info specifies which output the parallel tempering code should produce:
none parallel tempering will be totally quiet, except for fatal errors

comm information on client activities, such as connecting, is printed to stderr

all print lots of information on swap energies and probabilities to stdout. This
is useful for debugging and quickly checking the acceptance rates.

This defaults to all.

Introduction

The basic idea of parallel tempering is to run N simulations with configurations Cj; in
parallel at different temperatures 77 < 15 < ... < Ty, and exchange configurations
between neighboring temperatures. This is done according to the Boltzmann rule, i.e.
the swap probability for two configurations A and B at two different parameters 77 and
T is given by

min (1, exp — [B(T2)Ua(T2) + B(T1)Us(T1) — B(T1)UA(Th) — B(T2)Us(T2)]), (7.1)

99

where Uq(T) denotes the potential energy of configuration C' at parameter T' and (7))
the corresponding inverse temperature. If T is the temperature, Uc is indepedent of T,
and 3(T) = 1/(kgT). In this case, the swap probability reduces to the textbook result

min(1, exp — [(1/Ts — 1/T1) (Us — Ug) /kg]. (7.2)

However, T' can also be chosen to be any other parameter, for example the Bjerrum
length, i.e. the the strength of the electrostatic interaction. In this case, (7)) = [is a
constant, but the energy Us(T) of a configuration C' depends on T', and one needs the
full expression (7.1]). ESPResSo always uses this expression.

In practice, one does not swap configurations, but temperatures, simply because ex-
changing temperatures requires much less communication than exchanging the properties
of all particles.

Th ESPResSo implementation of parallel tempering repeatedly propagates all config-
urations C; and tries to swap neighboring temperatures. After the first propagation,
the routine attempts to swap temperatures 77 and 15, T3 and T4, and so on. After the
second propagation, swaps are attempted between temperatures T» and 73, T, and T,
and so on. For the propagation, parallel tempering relies on a user routine; typically,
one will simply propagate the configuration by a few 100 MD time steps.

Details on usage and an example

The parallel tempering code has to be loaded explicitely by source "scripts/parallel_-
tempering.tcl" from the Espresso directory. To make use of the parallel tempering
tool, one needs to implement three methods: the propagation, the energy calculation
and an initialization routine for a configuration. A typical initialization routine will look
roughly like this:

proc init {id temp} {
create output files for temperature temp
set f [open "out-$temp.dat" wl; close $f
init_particle_positions
thermostat langevin $temp 1.0
equilibration_integration
global config
set config($id) "{[partl} [setmd time]"

3

The last two lines are only necessary if each instance of ESPResSo handles more than
one configuration, e.g. if you have 300 temperatures, but only 10 ESPResSo processes
(i.e.~load 30). In this case, all user provided routines need to save and restore the
configurations. Saving the time is not necessary because the simulation tine across swaps
is not meaningful anyways; it is however convenient for investigating the (temperature-
)history of individual configurations.

A typical propagation routine accordingly looks like this

60

proc perform {id temp} {
global config
foreach p [lindex $config($id) 0] { eval part $p }
setmd time [lindex $config($id) 1]
thermostat langevin $temp 1.0
set f [open "out-$temp.dat" al;
integrate 1000
puts $f "[setmd time] [analyze energy]"
close $f
set config($id) "{[part]l} [setmd time]"
}

Again, the saving and storing of the current particle properties in the config array are
only necessary if there is more than one configuration per process. In practice, one will
rescale the velocities at the beginning of perform to match the current temperature,
otherwise the thermostat needs a short time to equilibrate. The energies necessary to
determine the swap probablility are calculated like this:

proc swap {id templ temp2} {
global config
foreach p $config($id) { eval part $p }
set epot [expr [analyze energy total] - [analyze energy kinetic]]
return "[expr $epot/$templ] [expr $epot/$temp2]"
}

Note that only the potential energy is taken into account. The temperature enters only
indirectly through the inverse temperature prefactor, see Eqn. ((7.1).
The simulation is then started as follows. One of the processes runs the command

for {set T 0} {$T < 3} {set T [expr $T + 0.01]} {
lappend temperatures $T }

parallel_tempering::main -load 30 -values $temperatures -rounds 1000 \
-init init -swap swap -perform perform

This command turns the ESPResSo instance executing it into the master part of the
parallel tempering simulation. It waits until a sufficient number of clients has connected.
This are additional ESPResSo instances, which are identical to the master script, except
that they execute

parallel_tempering::main -connect $host -load 30 \
-init init -swap swap -perform perform

Here, host is a variable containing the TCP/IP hostname of the computer running
the master process. Note that the master process waits until enough processes have
connected to start the simulation. In the example, there are 300 temperatures, and each
process, including the master process, will deal with 30 of them. Therefore, 1 master
and 9 slave processes are required. For a typical queueing system, a starting routine
could look like this:

61

master=
for h in $HOSTS; do

if ["$master" == ""]; then
ssh $h "cd run; ./pt_test.tcl"
master=$h;
else
ssh $h "cd run; ./pt_test.tcl -connect $host"
fi
done

where pt_test.tcl passes the —connect option on to parallel_tempering: :main.
Sharing data

Syntax

| parallel_tempering::set_shareddata data

Description

can be used at any time by the master process to specify additional data that is available
on all processes of the parallel_tempering simulation. The data is accessible from all
processes as parallel_tempering: :shareddata

62

8. Analysis

8.1. Measuring observables

The analyze-command provides online-calculation of local and global observables.

8.1.1. Minimal distances between particles

Syntax
(1) analyze mindist [type_list_a type_list_b]
(2) analyze distto pid
(3) analyze distto z y =z

Description
Variant (1) returns the minimal distance between two particles in the system. If the
type-lists are given, then the minimal distance between particles of only those types is
determined.

distto returns the minimal distance of all particles to particle pid (variant (2)), or
to the coordinates (z, y, z) (Variant (3)).

8.1.2. Particles in the neighbourhood

Syntax
(1) analyze nbhood pid r_catch
(2) analyze nbhood x y z r.atch

Description

Returns a Tcl-list of the particle ids of all particles within a given radius r_catch around
the position of the particle with number pid in variant (1) or around the spatial coordi-
nate (z, y, z) in variant (2).

8.1.3. Particle distribution

Syntax
analyze distribution part_type_list_a part_type_list_b
[rmin [rmaz [rbins [log_flag [int_flag]]]]]

Description
Returns its parameters and the distance distribution of particles with types specified in
part_type_list_a around particles with types specified in part_type_list_b with distances

Intro: analyze can
measure
observables, but
also define
topologies and
store
configurations

Missing:
radial_density_map,
modes2d,
get_lipid_orients,
get_folded_positions]
bilayer_set,
bilayer_density_prof
lipid_orient_order,
cell_gpb, Vkappa

4

ile,

63

between rmin and rmaz, binned into rbins bins. The bins are either equidistant (if
log_flag = 0) or logarithmically equidistant (if logrlag > 1). If an integrated distribution
is required, use int;lag = 1. The distance is defined as the minimal distance between a
particle of one group to any of the other group.

Output format
The output corresponds to the blockfile format (see section on page [79)):

{ parameters }

{
{ r dist(r) }

8.1.4. Radial distribution function

Syntax
| analyze (rdf | <rdf>) part_type_list_a part_type_list_b [rmin rmax rbins]

Description

Returns its parameters and the radial distribution function (rdf) of particles with types
specified in part_type_list_a around particles with types specified in part_type_list_b. The
range is given by rmin and rmaz and is divided into rbins equidistant bins.

Output format
The output corresponds to the blockfile format (see section on page [79)):

{ parameters }

{
{ rordf(r) }

8.1.5. Structure factor

Syntax

| analyze structurefactor type order

Description

Returns the spherically averaged structure factor S(q) for particles of a given type type.
The S(q) is calculated for all possible wave vectors, 2% <=q<= 2%rorcler. Do not chose
parameter order too large, becase the number of calculations grows as order>.

Output format
The output corresponds to the blockfile format (see section on page :

64

{ q-value S(q)-value }

8.1.6. Van-Hove autocorrelation function G(r,1)

Syntax

| analyze vanhove type rmin rmaz rbins

Description

Returns the van Hove auto correlation function G(r,t) and the mean square displacement
msd(t) for particles of type ptype for the configurations stored in the array configs. This
tool assumes that the configurations stored with analyze append (see section on
page are stored at equidistant time intervals. G(r,t) is calculated for each multiple of
this time intervals. For each time t the distribution of particle displacements is calculated
acoording to the specification given by rmin, rmax and rbins. If the particles perform
a random walk (i.e. a normal diffusion process) G(r,t)/r? is a gaussian distribution
for all times. Deviations of this behavior hint on another diffusion process or on the
fact that your system has not reached the diffusive regime. In this case it is also very
questionable to calculate a diffusion constant from the mean square displacement via
the Stokes-Einstein relation.

Output format
The output corresponds to the blockfile format (see section on page [79)):

{ msd { msd(0) msd(1) ... } }
{ vanhove { { G(0,0) G(1,0) ... }
{ G(0,1) G(1,1) ... }

The G(r,t) are normalized such that the integral over space always yields 1.

8.1.7. Center of mass

Syntax

| analyze centermass part;ype

Description
Returns the center of mass of particles of the given type.

65

8.1.8. Moment of intertia matrix

Syntax

1) analyze momentofinertiamatrix typeid
y
(2) analyze find_principal_axis typeid

Description

Variant (1) returns the moment of inertia matrix for particles of given type typeid. The
output is a list of all the elements of the 3x3 matrix. Variant (2) returns the eigenvalues
and eigenvectors of the matrix.

8.1.9. Aggregation

Syntax

analyze aggregation dist_criteria s-mol_id f_mol_id
[min_contact [charge_criterial]

Description

Returns the aggregate size distribution for the molecules in the molecule id range
s_mol_id to f_mol_id. If any monomers in two different molecules are closer than
dist_criteria they are considered to be in the same aggregate. One can use the op-
tional min_contact parameter to specify a minimum number of contacts such that only
molecules having at least min_contact contacts will be considered to be in the same
aggregate. The second optional parameter charge_criteria enables one to consider ag-
gregation state of only oppositely charged particles.

8.1.10. Identifying pearl-necklace structures

Syntax
| analyze necklace pearl_treshold back_dist space_dist first length

Description

Algorithm for identifying pearl necklace structures for polyelectrolytes in poor solvent
[10]. The first three parameters are tuning parameters for the algorithm: pearl_treshold
is the minimal number of monomers in a pearl. back_dist is the number of monomers
along the chain backbone which are excluded from the space distance criterion to form
clusters. space_dist is the distance between two monomers up to which they are consid-
ered to belong to the same clusters. The three parameters may be connected by scaling
arguments. Make sure that your results are only weakly dependent on the exact choice
of your parameters. For the algorithm the coordinates stored in partCfg are used. The
chain itself is defined by the identity first of its first monomer and the chain length
length. Attention: This function is very specific to the problem and might not give
useful results for other cases with similar structures.

66

8.1.11. Finding holes

Syntax

| analyze holes typeidyone mesh_size

Description

Function for the calculation of the unoccupied volume (often also called free volume)
in a system. Details can be found in Schmitz and Muller-Plathe [I1]. It identifies free
space in the simulation box via a mesh based cluster algorithm. Free space is defined
via a probe particle and its interactions with other particles which have to be defined
through LJ interactions with the other existing particle types via the inter command
before calling this routine. A point of the mesh is counted as free space if the distance of
the point is larger than LJ_cut+LJ_offset to any particle as defined by the LJ interaction
parameters between the probe particle type and other particle types. How to use this
function: Define interactions between all (or the ones you are interested in) particle types
in your system and a fictious particle type. Practically one uses the van der Waals radius
of the particles plus the size of the probe you want to use as the Lennard Jones cutoff.
The mesh spacing is the box length divided by the meshgize.

Output format

{ n_holes mean_hole_size max_hole_size free_volume_fraction
{ sizes }
{ surfaces }
{ element_lists }

A hole is defined as a continous cluster of mesh elements that belong to the unoccupied
volume. Since the function is quite rudimentary it gives back the whole information
suitable for further processing on the script level. sizes and surfaces are given in number
of mesh points, which means you have to calculate the actual size via the corresponding
volume or surface elements yourself. The complete information is given in the element_-
lists for each hole. The element numbers give the position of a mesh point in the linear
representation of the 3D grid (coordinates are in the order x, y, z). Attention: the
algorithm assumes a cubic box. Surface results have not been tested. Requires the
feature LENNARD_JONES.

8.1.12. Energies

Syntax
0

(2) analyze energy (total | kinetic | coulomb)

(3) analyze energy bonded bondid

(4) analyze energy nonbonded typeidl typeid2

analyze energy

67

I think there is
still a bug in there
(Hanjo)

Document
arguments
nb_inter, nb_intra,
tot_nb_inter and
tot_nb_intra

Description of how
electrostatic
contribution to
Pressure is
calculated

Description

Returns the energies of the system. Variant (1) returns all the contributions to the total
energy. Variant (2) returns the numerical value of the total energy or its kinetic or
Coulomb contributions only. Variants (3) and (4) return the energy contributions of the
bonded resp. non-bonded interactions.

Output format (variant (1))
{ energy wvalue } { kinetic walue } { interaction walue } ...

8.1.13. Pressure

Syntax

(1) analyze pressure

(2) analyze pressure total

(3) analyze pressure (totals | ideal | coulomb |
tot_nonbonded_inter | tot_nonbonded_intra)

(4) analyze pressure bonded bondid

(5) analyze pressure nonbonded typeidl typeid2

(6) analyze pressure nonbonded_intra [typeid]

(7) analyze pressure nonbonded_inter [typeid|

Description

Computes the pressure and its contributions in the system. Variant (1) returns all

the contributions to the total pressure. Variant (2) will return the total pressure only.

Variants (3), (4) and (5) return the corresponding contributions to the total pressure.
The pressure is calculated (if there are no electrostatic interactions) by

_ 2EBkinetic > =i Figrij
VS 3V

(8.1)

where f is the number of degrees of freedom of each particle, V' is the volume of the
system, Elinetic is the kinetic energy, F;; the force between particles i and j, and r;; is
the distance between them. The kinetic energy divided by the degrees of freedom is

2FLineti 1
k}netlc _ g Z miUZ'Q (82)
i
when the ROTATION option is turned off and
2Ekinetic 1 (83)

2 2
7 =3 Z (mvy + Lwy))
(2
when the ROTATION option is compiled in. I; is the moment of inertia of the particle
and w; is the angular velocity.
Care should be taken when using constraints of any kind, since these are not accounted
for in the pressure calculations.

68

Describe t

different e
componen
returned 1|
different

commands

The command is implemented in parallel.

Output format (variant (1))

{ { pressure total_pressure }
{ ideal ideal_gas_pressure }
{ { bond_type pressure }

}

{ { nonbonded_type pressure }

}

{ coulomb pressure }

}

specifying the pressure, the ideal gas pressure, the contributions from bonded interac-
tions, the contributions from non-bonded interactions and the electrostatic contributions.

8.1.14. Stress Tensor

Syntax

(1) analyze stress_tensor

(2) analyze stress_tensor total

(3) analyze stress_tensor (totals | ideal | coulomb |
tot_nonbonded_inter | tot_nonbonded_intra)

(4) analyze stress_tensor bonded bond;ype

(5) analyze stress_tensor nonbonded typeidl typeid2

(6) analyze stress_tensor nonbonded_intra [typeid]

(7) analyze stress_tensor nonbonded_inter [typeid]

Description
Computes the stress tensor of the system. The various options are equivalent to those
described by analyze pressure in on the facing page. It is called a stress tensor
but the sign convention follows that of a pressure tensor.

The stress tensor is calculated by

k) ((k),.()
p(kl) _ D mi”z()/Uz() 4 Zj>i Fij T

0 % (8.4)

where the notation is the same as for analyze pressure in on the preceding page
and the superscripts k£ and [correspond to the components in the tensors and vectors.
Note that the angular velocities of the particles are not included in the calculation of
the stress tensor. This means that when the ROTATION option is compiled in the
instantaneous pressure calculated with analyze pressure will be different from the
pressure implied by the stress tensor. However, the time averages should be in agreement.

69

If the P3M and MMMI1D electostatic methods are used, these interactions are not
included in the stress tensor. The DH and RF methods, in contrast, are included.

Care should be taken when using constraints of any kind, since these are not accounted
for in the stress tensor calculations.

The command is implemented in parallel.

Output format (variant (1))

{ { pressure total_pressure_tensor }
{ ideal ideal_gas_pressure_tensor }
{ { bond_type pressure_tensor }

}

{ { nonbonded_type pressure_tensor }

}

{ coulomb pressure_tensor }

specifying the pressure tensor, the ideal gas pressure tensor, the contributions from
bonded interactions, the contributions from non-bonded interactions and the electro-
static contributions.

8.1.15. Local Stress Tensor

Syntax

analyze local_stress_tensor periodic_x periodic_y periodic_z range_start_x
range_start_y range_start_z range_x range_y range_z bins_r bins_y
bins_z

Description
Computes local stress tensors in the system. A cuboid is defined starting at the coordi-
nate (range_start_z,range_start_y,range_start_z) and going to the coordinate (range_start_z+range_x.
range_start_y+range_y, range_start_z+range_z). This cuboid in divided into bins_z bins
in the x direction, bins_y bins in the y direction and bins_z bins in the z direction such
that the total number of bins is bins_z*bins_y*bins_z. For each of these bins a stress
tensor is calculated using the Irving Kirkwood method. That is, a given interaction
contributes towards the stress tensor in a bin proportional to the fraction of the line
connecting the two particles that is within the bin.

If the P3M and MMMI1D electostatic methods are used, these interactions are not
included in the local stress tensor. The DH and RF methods, in contrast, are included.

Care should be taken when using constraints of any kind, since these are not accounted
for in the local stress tensor calculations.

The command is implemented in parallel.

70

Output format (variant (1))
{ { LocalStressTensor }
{ { z_bin y_bin z_bin } { pressure_tensor } }

}

specifying the local pressure tensor in each bin.

8.2. Topologies

The analyze set command defines the structure of the current system to be used with
some of the analysis functions.

Syntax
(1) analyze set chains [chain_start n_chains chain_length]
(2) analyze set chains

Description

Variant (1) defines a set of n_chains chains of equal length chain_length which start with
the particle with particle number chain_start and are consecutively numbered (i.e. the
last particle in that topology has number chain_start+ n_chains * chain_length). Variant
(2) will return the chains currently stored.

8.2.1. Chains

All analysis functions in this section require the topology of the chains to be set correctly.
The topology can be provided upon calling. This (re-)sets the structure info permanently,
i.e. it is only required once.

End-to-end distance

Syntax

| analyze (re | <re>) [chain_start n_chains chain_length]

Description
Returns the quadratic end-to-end-distance and its root averaged over all chains. If <re>
is used, the distance is averaged over all stored configurations (see section on page|75)).

Output format
{ re error_of _re re2 error_of _re2 }

Radius of gyration

Syntax

| analyze (rg | <rg>) [chain_start n_chains chain_length]

71

| Topologies intro

Update
documentation for
set_topology

Reference? I Description

Returns the radius of gyration averaged over all chains. If <rg> is used, the radius of
gyration is averaged over all stored configurations (see section on page .

Output format
{ rg error_of -rg 92 error_of -rg2 }

Hydrodynamic radius

Syntax

| analyze (rh | <rh>) [chain_start n_chains chain_length]

Reference? | Description

Returns the hydrodynamic radius averaged over all chains. If <rh> is used, the hydody-
namic radius is averaged over all stored configurations (see section on page .

Output format
{ rh error_of -rh }

Internal distances

Syntax

| analyze (internal_dist | <internal_dist>) [chain_start n_chains chain_length]

Description
Returns the averaged internal distances within the chains. If <internal_dist> is used,
the values are averaged over all stored configurations (see section on page .

Output format
{ df(0) idf(1) ... idf(chain_length — 1) }

The index corresponds to the number of beads between the two monomers considered
(0 = next neighbours, 1 = one monomer in between, ...).

Bond distances

Syntax
analyze (bond_dist | <bond_dist>) [index indez]
[chain_start n_chains chain_length]

Description

In contrast to analyze internal_dist, it does not average over the whole chain, but
rather takes the chain monomer at position inder (default: 0, i.e. the first monomer
on the chain) to be the reference point to which all internal distances are calculated.
If <bond_dist> is used, the values will be averaged over all stored configurations (see

section on page .

72

Output format
{ bdf(0) bdf(1) ... bdf(chain_length — 1 — index) }

Bond lengths

Syntax

| analyze (bond_1 | <bond_1>) [chain_start n_chains chain_length]

Description

Analyses the bond lengths of the chains in the system. Returns its average, the standard
deviation, the maximum and the minimum. If you want to look only at specific chains,
use the optional arguments, i.e. chain_start = 2 x MPC and n_chains = 1 to only
include the third chain’s monomers. If <bond_1> is used, the value will be averaged over
all stored configurations (see section on page [75]).

Output format
{ mean stddev max min }

Form factor

Syntax

analyze (formfactor | <formfactor>) gmin gmaz qbins
[chain_start n_chains chain_length]

Description | Check this!

Computes the spherically averaged form factor of a single chain, which is defined by

chain_length

Z sin(qri;) (8.5)

qrij

1

Sla) = chain_length

),

of a single chain, averaged over all chains for gbin 4+ 1 logarithmically spaced g-vectors
gmin, . .., gmax where gmin > 0 and gmaz > gmin. If <formfactor> is used, the form
factor will be averaged over all stored configurations (see section on page .

Output format

{
{q¢8(g }

with ¢ € {gmin, ..., gmaz}.

73

Title?

What’s the
difference between
g2 and g3777

Chain radial distribution function

Syntax

| analyze rdfchain rmin rmax rbins [chainstart nc.hains chainength]

Description

Returns three radial distribution functions (rdf) for the chains. The first rdf is calculated
for monomers belonging to different chains, the second rdf is for the centers of mass of
the chains and the third one is the distribution of the closest distances between the
chains (i.e. the shortest monomer-monomer distances). The distance range is given by
rmin and rmax and it is divided into rbins equidistant bins.

Output format

{
{r rdf1(r) rdf2(r) rdf3(r) }

g123

Syntax
(1) analyze (<gl>| <g2>| <g3>) [chainstart n.hains chaingength]
(2) analyze g123 [-init] [chainstart nchains chainjength]

Description
Variant (1) returns
e the mean-square displacement of the beads in the chain (<g1>)
e the mean-square displacement of the beads in the center of mass of the chain (<g2>)

e or the motion of the center of mass (<g3>)

averaged over all stored configurations (see section on the next page).

Variant (2) returns all of these observables for the current configuration, as compared
to the reference configuration. The reference configuration is set, when the option -init
is used.

Output format (variant (1))
{ gi(0*dt) gi(1dt) ... }

Output format (variant (2))
{ g1(t) g2(t) g3(t) }

74

8.3. Storing configurations

Some observables (i.e. mnon-static ones) require knowledge of the particles’ positions
at more than one or two times. Therefore, it is possible to store configurations for
later analysis. Using this mechanism, the program is also able to work quasi-offline by
successively reading in previously saved configurations and storing them to perform any
analysis desired afterwards.

Note that the time at which configurations were taken is not stored. The most observ-
ables that work with the set of stored configurations do expect that the configurations
are taken at equidistant timesteps.

Note also, that the stored configurations can be written to a file and read from it via
the blockfile command (see section |9.1{on page [79).

8.3.1. Storing and removing configurations

) analyze append

) analyze remove [index]
(3) analyze replace index
) analyze push [size]

(5) analyze configs config

Description

Variant (1) appends the current configuration to the set of stored configurations. Variant
(2) removes the indexth stored configuration, or all, if inder is not specified. Variant
(3) will replace the indexth configuration with the current configuration.

Variant (4) will append the current configuration to the set of stored configuration
and remove configurations from the beginning of the set until the number of stored
configurations is equal to size. If size is not specified, only the first configuration in the
set is removed.

Variants (1) to (4) return the number of currently stored configurations.

Variant (5) will append the configuration config to the set of stored configurations.
config has to define coordinates for all configurations in the format:

{z1 y1 21 22 y2 22 ...}

8.3.2. Getting the stored configurations

Syntax
(1) analyze configs
(2) analyze stored

Description
Variant (1) returns all stored configurations, while variant (2) returns only the number
of stored configurations.

75

Make this an
appendix?

Output format (variant (1))

{
{z1 y1 21 22 y2 22 ...}

8.4. Statistical analysis and plotting

8.4.1. Plotting

Syntax
plotObs file { xl:yl z2:y2 ...} [titles { titlel title2 ...}]
[labels { zlabel [ylabel] }] [scale gnuplot — scale]
[cmd gnuplot — command] [out filebase]

Description

Uses GNUPLOT to create plots of the data in file and writes it to the file filebase . ps (de-
fault: file.ps). The data in file should be stored column-wise. z1,z2... and yI,y2...
denote the columns used for the data of the x- and y-axis, respectively.

Arguments
o [titles { titlel title2 ...}] can be used to specify the titles of the different
plots

e [labels { zlabel [ylabel] }] will define the labels of the axis. If ylabel is omitted,
the filename file is used as label for the y-axis.

e [scale gnuplot — scale] will define the scaling of the axis (e.g. scale logscale xy)
(default: nologscale xy)

e [cmd gnuplot — command] allows to pass any other commands to gnuplot. For
example, use plotObs ...cmd "set key left" to adjust the titles on the left
side.

e out filebase] can be used to change the output file. By default, the plot will be
written to file.ps.

8.4.2. Joining plots

Syntax
| plotJoin { sourcel source2 ...} final
Description

Joins the plot files sourcel, source2, ... into a single file final, while placing any two files
on one page. Note that the resulting files may be huge and therefore hard to print!

76

8.4.3. Computing averages and errors

) calcObAv file index [start]
) calcObErr file index [start]
(3) calcObsAv file { il 2 ...} [start]
) nameObsAv file { namel name2 ...} [start]
(5) £indObsAv wal what

Description

These commands will compute mean values or errors of the data in file file. The data
in file should be stored column-wise. If start is specified, the first start lines will be
ignored.

Variant (1) returns the mean value of the column with index indez in file, variant (2)
returns the error of its mean value. Variant (3) computes mean values and errors of the
observables with index i1,42,... in file. It expects the first line of file to contain the
names of the columns, which it will also return.

In variant (4), the names used in the first line of file can be used to specify which
column is to be used. The mean value and its error are computed for each of the columns.

Variant (5) extracts the values whose names are given in the tcl-list val at their
respective positions in what, where what has the list-format as returned by variant (3),
returning just these values as tiny tcl-list.

Output format (variant (3))

{

#samples

{ namel name2 ... }
{ meanl mean2 ... }
{ errorl error2 ...}

}

Output format (variant (4))

{

#samples
meanl mean?2 ...
errorl error2 ...

8.5. uwerr: Computing statistical errors in time series

Syntax

(1) uwerr data nrep col [s_tau] [plot]
(2) uwerr data nrep [[s_tau [f_args]] [plot]

7

| 7277

How exactly does
the Tcl-list look
like?

Description
Calculates the mean value, the error and the error of the error for an arbitrary numerical

time series accordings to Wolff [13].
Arguments '
e data is a matrix filled with the primary estimates ag from R replica with N1, N, ..., Ng
measurements each.

1,1 1,1 1,1
a ay as
2.1 21 5.1
a; ay as
data = oMt gt gt
1 2 3
1,2 1,2 1,2
ay ay as
Np.R Np.R Np.R

e nrep is a vector whose elements specify the length of the individual replica.
nrep = (N1, Na,..., NR)

o f is a user defined Tcl function returning a double with first argument a vector
which has as many entries as data has columns. If f is given instead of the column,
the corresponding derived quantity is analyzed.

o f_args are further arguments to f.

e s_tau is the estimate S = 7/7iy as explained in section (3.3) of [I3]. The default
is 1.5 and it is never taken larger than min® | N,./2.

o [plot] If plot is specified, you will get the plots of I'/T'(0) and it vs. W. The
data and gnuplot script is written to the current directory.

Output format
mean error error_of _error act
error_of _act [Q)]

where act denotes the integrated autocorrelation time, and) denotes a quality mea-
sure, i.e. the probability to find a x? fit of the replica estimates.
The function returns an error message if the windowing failed or if the error in one of

the replica is to large.

78

9. Input / Output

9.1. blockfile: Using the structured file format

ESPResSo uses a standardized ASCII block format to write structured files for anal-
ysis or storage. Basically the file consists of blocks in curled braces, which have a
single word title and some data. The data itself may consist again of such blocks.

An example is:
{file {Demonstration of the block format}

{variable epsilon {_dval_ 1} }

{variable p3m_mesh_offset {_dval_ 5.0000000000e-01

5.0000000000e-01 5.0000000000e-01 } }

{variable node_grid {_ival_2 2 2 } }

{end}

Whitespace will be ignored within the format (space, tab and return).

The keyword variable should be used to indicate that a variable definition follows in
the form name data. data itself is a block with title _ival_ or _dval_ denoting integer
rsp. double values, which then follow in a whitespace separated list. Such blocks can be
read in conveniently using block_read_data and written using block_write_data.

9.1.1. Writing ESPResSo’s global variables

Syntax
(1) blockfile channel write variable {wvarnamel wvarname2 ...}
(2) blockfile channel write variable all

Description
Variant (1) writes the global variables varnamel varname?2 ... (which are known to the
setmd command (see section |6.1|on page to channel. Variant (2) will write all known
global variables.

Note, that when the block is read, all variables with names listed in the Tcl variable
blockfile_variable_blacklist are ignored.

9.1.2. Writing Tcl variables

Syntax
(1) blockfile channel write tclvariable { varnamel varname2 ...}
(2) blockfile channel write tclvariable all
(2) blockfile channel write tclvariable reallyall

Sampe C-code
doesn’t work, as
ESPResSo-library
has been removed!

79

How is a Tcl-range
specified?

Description

These commands will write Tcl global variables to channel. Global variables are those
declared in the top scope of the Tcl script, or those that were explicitly declared
global. When reading the block, all variables with names listed in the Tcl variable
blockfile_tclvariable_blacklist are ignored.

Variant (1) writes the Tcl global variables varnamel, varname2, ...to channel.
Variant (2) will write all Tcl variables to the file, with the exception of the inter-
nally predefined globals from Tcl (tcl_version, argv, argv0, argc, tcl_interactive,
auto_oldpath, errorCode, auto_path, errorInfo, auto_index, env, tcl_pkgPath,
tcl_patchLevel, tcl_libPath, tcl_library and tcl_platform). Variant (3) will even
write those.

9.1.3. Writing particles, bonds and interactions

Syntax

(1) blockfile channel write particles what (range | all)
(2) blockfile channel write bonds range
(3) blockfile channel write interactions

Description
Variant (1) writes particle information in a standardized format to channel. what can
be any list of parameters that can be specified in part part;d print, except for bonds.
Note that id and pos will automatically be added if missing. range is a Tcl list of ranges
which particles to write. The keyword all denotes all known particles.

Variant (2) writes the bond information in a standardized format to channel. The
involved particles and bond types must exist and be valid.

Variant (3) writes the interactions in a standardized format to channel.

9.1.4. Writing the random number generator states

Syntax
0
(2) blockfile channel write bit_random
(3) blockfile channel write seed

(4) blockfile channel write bitseed

blockfile channel write random

Description
Variants (1) and (2) write the full information on the current states of the respecitve
random number generators (see section 7?7 on page on any node to channel. Using
this information, it is possible to recover the exact states of the generators.

Variants (3) and (4) write only the seed(s) which were used to initialize the random
number generators. Note that this information is not sufficient to restore the full state of
a random number generator, because the internal state might contain more information.

80

9.1.5. Writing all stored configurations

Syntax

| blockfile channel write configs

Description
This command writes all configurations currently stored for off-line analysis (see sec-

tion on page to channel.
9.1.6. Writing arbitrary blocks

Syntax
(1) blockfile channel write start tag
(2) blockfile channel write end
(3) blockfile channel write tag [arg]. ..

Description

channel has to be a Tcl channel. Variant (1) starts a block and gives it the title tag,
variant (2) ends the block. Between two calls to the command, arbitrary data can be
written to the channel. When variant (3) is used, the function blockfile_write_tag is
called with all of the commands arguments. This function should then write the data.

Example
set file [open "data.dat" w]

blockfile $file write start "mydata"
puts $file "{This is my data!l}"
blockfile $file write end

will write
{mydata {This is my data!}}

to the file data.dat.

9.1.7. Reading blocks

Syntax
(1) blockfile channel read start
(2) blockfile channel read toend
(3) blockfile channel read (particles | interactions | bonds |
variable | seed | random | bitrandom | configs)
(4) blockfile channel read auto

Description

Variants (1) and (2) are the low-level block-reading commands. Variant (1) reads the
start part of a block and returns the block title, while variant (2) reads the block data
and returns it.

81

Needs to be
rewritten!

Variants (3) and (4) read whole blocks. Variant (3) reads the beginning of one block,
checks wether it contains data of the given type and reads it. Variant (4) reads in one
block and does the following:

1. if a procedure blockfile_read_auto_tag exists, this procedure takes over (tag
is the first expression in the block). For most block types, at least all mentioned
above, i.e. particles, interactions, bonds, seed, random, bitrandom, configs,
and variable, the corresponding procedure will overwrite the current information
with the information from the block.

2. if the procedure does not exist, it returns
{ usertag rest_of _block }
3. if the file is at the end, it returns eof

Variant (3) checks for a block with tag block and then again executes the corresponding
blockfile_read_auto_tag, if it exists.
In the contrary that means that for a new blocktype you will normally implement two
procedures:
| blockfile_write_tag channel write tag arg. ..
which writes the block including the header and enclosing braces and
| blockfile_read_auto_tag channel read auto
which reads the block data and the closing brace. The parameters write, read, tag and
auto are regular parameters which will always have the specified value. They occur just
for technical reasons.
In a nutshell: The blockfile command is provided for saving and restoring the current
state of ESPResSo, e.g. for creating and using checkpoints. Hence you can transfer all

accessible information from files to ESPResSo and vice versa.
set out [open "|gzip -c¢ - > checkpoint.block.gz" "w"]

blockfile $out write variable all

blockfile $out write interactions

blockfile $out write random

blockfile $out write bitrandom

blockfile $out write particles "id pos type q v f" all

blockfile $out write bonds all

blockfile $out write configs

close $out

This example writes all global variables, all interactions, the full current state of
the random number generator, all information (i.e. id, position, type-number, charge,
velocity, forces, bonds) of all particles, and all stored particle configurations to the file
checkpoint.block.gz which is compressed on-the-fly. If you want to be able to read in
the information using ESPResSo, note that interactions must be stored before particles
before bonding information, as for the bonds to be set all particles and all interactions
must already be known to ESPResSo.

82

set in [open "|gzip -cd checkpoint.block.gz" "r"]

while { [blockfile $in read auto] != "eof" } {}

close $in
This is basically all you need to restore the information in the blockfile, overwriting the
current settings in ESPResSo.

9.2. Checkpointing

The following procedures may be used to save and restore checkpoints to minimize the
hassel involved when your simulations crashes after long runs.

9.2.1. Creating a checkpoint

Syntax
| checkpoint_set destination [numconfigs [tclvar [iaflag [varflag [ranflag]]]]]

Description

Creates a checkpoint with path/filename destination (compressed if destination ends
with ’.gz’), saving the last #ofconfigs which have been appended using analyze_append
(defaults to ’all’), adds all tcl-embedded variables specified in the tcl-list tclvar (defaults
to ’-7), all interactions (The inter command) / ESPResSo-variables (The setmd com-
mand) / random-number-generator informations (The t_random command etc.) unless
their respective flags iaflag / varflag / ranflag are set to ’-’; you may however choose to
only include certain ESPResSo-variables (The setmd command) by providing their names
as a tcl-list in place of varflag. When you’re reading this, tcl_checkpoint_set will be using
the invalidate_system command automatically; therefore continuing an integration after
setting a checkpoint or restarting it there by reading one should make absolutely no
difference anymore, since the current state of the random number generator(s) is/are
completely (re)stored to (from) the checkpoint and the integrator is forced to re-init the
forces (incl. thermostat) no matter what. It may be a good choice to use filenames such
as "kremer_checkpoint.[eval format 05 $integration_step]” or ’kremer_checkpoint.029.gz’
for destination because the command stores all the names of checkpoints set to a file
derived from destination by replacing the very last suffix plus maybe ’.gz” with ’.chk’ (in
the above examples: ’'kremer_checkpoint.chk’) which is used by tcl_checkpoint_read to
restore all checkpoints. Although ’checkpoint_set destination’ without the optional pa-
rameters will store a complete checkpoint sufficient for re-starting the simulation later on,
you may run out of memory while trying to save a huge number of timesteps appended
(analyze_append). Hence one should rather only save those configurations newly added
since the last checkpoint, i.e. if a checkpoint is created every 100,000 steps while a con-
figuration is appended every 500 steps you may want to use ’checkpoint_set destination
200’ which saves the current configuration, all interactions, all bonds, the precise state of
the random number generator(s), and the last 200 entries appended to configs since the
last checkpoint was created. Since tcl_checkpoint_read reads in successively the check-
points given in the ’.chk’-file, the configs-array will nevertheless be completely restored

83

to its original state although each checkpoint-file contains only a fraction of the whole
array.

9.2.2. Reading a checkpoint

Syntax
| checkpoint_read source
Description
Restores all the checkpoints whose filenames are listed in source in the order given
therein, consequently putting the simulation into the state it was in when checkpoint_set

was called. If parts of the configs array are given in the files listed in source, it is assumed
that they represent a fraction of the whole array.

9.2.3. Writing a checkpoint 2

Syntax
| (1) polyBlockWrite path (param_list | all) part_list

Title! | Description
Cloan up Variant (1) writes out the current ESPResSo-configuration as a blockfile, including pa-
Describe rameters, interactions, particles, and bonds. path should contain the filename including
arguments in the full path to it. paramyist gives a tcl-list of the ESPResSo-parameters to be saved; if
argument env.

an empty list {} is supplied, no parameters are written. If all, all global variables are

written. This defaults to all. partjist gives a list of the particle-properties (out of pos,
type, q, v, £) to be saved to disk; if an empty list {} is provided, no particles, no bonds,
and no interactions are written. Defaults to all particle properties. If the suffix of path
is .gz, the output will be compressed.

9.2.4. Writing a checkpoint 3

Syntax

(2) polyBlockWriteAll destination [(tclvar | all) [(whatever |-)
[(state | seed |-)]]]

Title! | Description
Cloan up Variant (2) saves all current interactions, particles, bonds, and global variables to destination,
Describe but in addition it also saves the tcl-variables specified by tclvar (if all, then all the vari-
arguments in ables in the active script are stored), it saves all the stored configurations if whatever is
argument env. .

whatever, but -. Furthermore, it saves the state (state) or the seed (seed) of the ran-

dom number generator. With this one can set real checkpoints which should reproduce
the script-state as precisely as possible.

84

9.3. Writing PDB/PSF files

The PDB (Brookhaven Protein DataBase) format is a widely used format for describing
atomistic configurations. PSF is a format that is used by VMD to describe the topology
of a PDB file. You need the PDB and PSF files for example for IMD.

9.3.1. writepsf: Writing the topology

Syntax
| writepsf file [-molecule] Np MPC NgI N,S N,S

Description

Writes the current topology to the file file (here, file is not a channel, since additional
information cannot be written anyway). Np, MPC and so on are parameters describing
a system consisting of equally long charged polymers, counterions and salt. This infor-
mation is used to set the residue name and can be used to color the atoms in VMD.
If you specify -molecule, the residue name is taken from the molecule identity of the
particle. Of course different kinds of topologies can also be handled by modified versions
of writepst.

9.3.2. writepdb: Writing the coordinates

Syntax

1) writepdb file
p
(2) writepdbfoldchains file chain_start n_chains chain_length box_l
3) writepdbfoldtopo file shi
p p

Description
Variant (1) writes the corresponding particle data.

Variant (2) writes folded particle data where the folding is performed on chain centers
of mass rather than single particles. In order to fold in this way the chain topology
and box length must be specified. Note that this method is outdated. Use variant (3)
instead.

Variant (3) writes folded particle data where the folding is performed on chain centers
of mass rather than single particles. This method uses the internal box length and
topology information from espresso. If you wish to shift particles prior to folding then
supply the optional shift information. shift should be a three member tcl list consisting
of x, y, and z shifts respectively and each number should be a floating point (ie with
decimal point).

85

9.4. Writing VTF files

There are two commands in ESPResSo that support writing files in the VMD formats
VTF, VSF and VCFEI The commands can be used to write the structure (writevsf)
and coordinates (writevcf) of the system to a single trajectory file (usually with the
extension .vtf), or to separate files (extensions .vsf and .vtf).

9.4.1. writevsf: Writing the topology

Syntax

writevsf channelld [(short | verbose)| [radius (radii | auto)]
[typedesc typedesc]

Description

Writes a structure block describing the system’s structure to the channel given by
channelld. channelld must be an identifier for an open channel such as the return
value of an invocation of open. The atom ids used in the file are not necessarily identical
to ESPResSo’s particle ids. To get the atom id used in the vtf file from an ESPResSo
particle id, use the command vtfpid described below. This makes it easy to write addi-
tional structure lines to the file, e.g. to specify the resname of particle compounds, like
chains. The output of this command can be used for a standalone VSF file, or at the
beginning of a trajectory VTF file that contains a trajectory of a whole simulation.

Arguments
o [(short | verbose)] Specify, whether the output is in a human-readable, but
somewhat longer format (verbose), or in a more compact form (short). The
default is verbose.

e [radius (radii | auto)] Specify the VDW radii of the atoms. radii is either
auto, or a Tcl-list describing the radii of the different particle types. When the
keyword auto is used and a Lennard-Jones interaction between two particles of
the given type is defined, the radius is set to be “52 plus the LJ shift. Otherwise,
the radius 0.5 is substituted. The default is auto.

Example: writevsf $file radius {0 2.0 1 auto 2 1.0}

e [typedesc typedesc| typedesc is a Tcl-list giving additional VTF atom-keywords
to specify additional VMD characteristics of the atoms of the given type. If no
description is given for a certain particle type, it defaults to name name type
type, where name is an atom name and {¢ype is the type id.

Example: writevsf $file typedesc {0 "name colloid" 1 '"name pe"}

'A description of the format and a plugin to read the format in VMD is found in the subdirectory
vmdplugin/ of the ESPResSo source directory.

86

9.4.2. writevcf: Writing the coordinates

Syntax

writevcf channelld [(short | verbose)] [(folded | absolute)]
[pids (pids | all)]

Description

Writes a coordinate (or timestep) block that contains all coordinates of the system’s
particles to the channel given by channelld. channelld must be an identifier for an open
channel such as the return value of an invocation of open.

Arguments
o [(short | verbose)] Specify, whether the output is in a human-readable, but
somewhat longer format (verbose), or in a more compact form (short). The
default is verbose.

o [(folded | absolute)] Specify whether the particle positions are written in
absolute coordinates (absolute) or folded into the central image of a periodic
system (folded). The default is absolute.

e [pids (pids | all)] Specify the coordinates of which particles should be writ-
ten. If all is used, all coordinates will be written (in the ordered timestep
format). Otherwise, pids has to be a Tcl-list specifying the pids of the particles.
The default is all.

Example: pids {0 23 42}

9.4.3. vtfpid: Translating ESPResSo particles ids to VMD particle ids

Syntax
| vtfpid pid

Description
If pid is the id of a particle as used in ESPResSo, this command returns the atom id
used in the VTF, VSF or VCF formats.

0.5. Online-visualisation with VMD

IMD (Interactive Molecular Dynamics) is the protocol that VMD uses to communicate
with a simulation. Tcl.md implements this protocol to allow online visual analysis of
running simulations.

In IMD, the simulation acts as a data server. That means that a simulation can
provide the possibility of connecting VMD, but VMD need not be connected all the
time. You can watch the simulation just from time to time.

In the following the setup and usage of IMD is described.

87

9.5.1. imd: Using IMD in the script

Syntax

(1) imd connect [port]

(2) imd positions [(-unfolded |-fold_chains)]
(3) imd listen seconds

(4) imd disconnect

Description

In your simulation, the IMD connection is setup up using variant (1), where port is an
arbitrary port number (which usually has to be between 1024 and 65000). By default,
ESPResSo will try to open port 10000, but the port may be in use already by another
ESPResSo simulation. In that case it is a good idea to just try another port.

While the simulation is running, variant (2) can be used to transfer the current co-
ordinates to VMD, if it is connected. If not, nothing happens and the command just
consumes a small amount of CPU time. Note, that before you can transfer coordinates
to VMD, VMD needs to be aware of the structure of the system. For that, you first
need to load a corresponding structure file (PSF or VSF) into VMD. Also note, that
the command prepare_vmd_connection (see section ?? on page can be used to
automatically set up the VMD connection and transfer the structure file.

By specifying -unfolded, the unfolded coordinates of the particles will transferred,
while -fold_chains will fold chains according to their centers of mass and retains bond-
ing connectivity. Note that this requires the chain structure to be specified first using
the analyze command.

Variant (3) can be used to let the simulation wait for seconds seconds or until IMD has
connected, before the script is continued. This is normally only useful in demo scripts,
if you want to see all frames of the simulation.

Variant (4) will terminate the IMD session. This is normally not only nice but also
the operating system will not free the port for some time, so that without disconnecting
for some 10 seconds you will not be able to reuse the port.

9.5.2. Using IMD in VMD

The PDB/PSF files created by ESPResSo via the command writepsf and writepdb can
be loaded into VMD. This should bring up an initial configuration.
Then you can use the VMD console to execute the command

imd connect host port

where host is the host running the simulation and port is the port it listens to. Note that
VMD crashes, if you do that without loading a structure file before. For more information
on how to use VMD to extract more information or hide parts of configuration, see the
VMD Quick Help.

88

9.5.3. Automatically setting up a VMD connection

Syntax

| prepare_vmd_connection [filename [wait [start]]]

Description
To reduce the effort involved in setting up the IMD connection, starting VMD and
loading the structure file, ESPResSo provides the command prepare_vmd_connection.
It writes out the required PSF/PDB-files to filename.psf and filename.pdb (default for
filename is vmd), doing some nice stuff such as coloring the molecules, bonds and coun-
terions appropriately, rotating your viewpoint, and connecting your system to the visu-
alization server. When wasit is provided, ESPResSo will wait for wait seconds before it
continues, giving VMD some time to start up and connect.

If start is 1 (the default), it will automatically try to start VMD and connect to the

ESPResSo simulation, otherwise it writes a corresponding script to the file vmd_start.script,

that can be executed via VMD, either from the command line
vmd -e vmd_start.script
or from the Tcl console of VMD with the command

play "vmd_start.script"

9.6. Errorhandling

Errors in the parameters are detected as early as possible, and hopefully self-
explanatory error messages returned without any changes to the data in the internal
data of ESPResSo. This include errors such as setting nonexistent properties of par-
ticles or simply misspelled commands. These errors are returned as standard Tcl
errors and can be caught on the Tcl level via

catch {script} err
When run noninteractively, Tcl will return a nice stack backtrace which allows to quickly
find the line causing the error.

However, some errors can only be detected after changing the internal structures, so
that ESPResSo is left in a state such that integration is not possible without massive
fixes by the users. Especially errors occuring on nodes other than the primary node fall
under this condition, for example a broken bond or illegal parameter combinations.

For error conditions such as the examples given above, a Tcl error message of the form

tcl_error background 0 error_a error_b 1 error_c

is returned. Following possibly a normal Tcl error message, after the background key-
word all severe errors are listed node by node, preceeded by the node number. A special
error is <consent>, which means that one of the slave nodes found exactly the same er-
rors as the master node. This happens mainly during the initialization of the integrate,
e.g. if the time step is not set. In this case the error message will be

I do not
understand this.
How does the
error look?

89

background_errors O {time_step not set} 1 <consent>

In each case, the current action was not fulfilled, and possibly other parts of the internal
data also had to be changed to allow ESPResSo to continue, so you should really know
what you do if you try and catch these errors.

90

10. Auxilliary commands

10.1. Finding particles and bonds

10.1.1. countBonds

Syntax

| countBonds particle;ist

Description
Returns a Tcl-list of the complete topology described by particle_list, which must have
the same format as the output of the command part (see section on page [25)).

The output list contains only the particle id and the corresponding bonding in-

formation, thus it looks like e.g.
{106 {0 107}} {107 {0 106} {0 108}} {108 {0 107} {0 109}} ...

{210 {0 209} {0 211}} {211 {0 210}} 212 213 ...
for a single chain of 106 monomers between particle 106 and 211, with additional loose
particles 212, 213, ... (e.g. counter-ions). Note, that the part command stores any
bonds only with the particle of lower particle number, which is why [part 109] would
only return ... bonds 0 110, therefore not revealing the bond between particle 109
and (the preceding) particle 108, while countBonds would return all bonds particle 109
participates in.

10.1.2. findPropPos

Syntax
| findPropPos particle,roperty;ist property

Description
Returns the index of property within particle,roperty;ist, which is expected to have the
same format as [part particle;d]. If property is not found, -1 is returned.

This function is useful to access certain properties of particles without hard-wiring
their index-position, which might change in future releases of part.

Example

[1index [part $i] [findPropPos [part $i] typell
This returns the particle type id of particle ¢ without fixing where exactly that informa-
tion has to be in the output of [part $i].

Missing

commands:
Probably all from
scripts/auxiliary.tc
galileiTransformPart

n?
icle

system_com_vel

91

10.1.3. findBondPos

Syntax
| findBondPos particle, roperty;ist
Description
Returns the index of the bonds within particle, roperty;ist, which is expected to have the

same format as [part particle_number]; hence its output is the same as [findPropPos
particle,roperty;ist bonds]. If the particle does not have any bonds, -1 is returned.

10.1.4. timeStamp

Syntax

| timeStamp path prefix postfiz suffix
Description
Modifies the filename contained within path to be preceded by a prefizr and having
postfix before the suffiz; e.g.

timeStamp ./scripts/config.gz DH863 001 gz

returns ./scripts/DH863_config001.gz. If postfiz is —1, the current date is used in the
format %y%m%d. This would results in ./scripts/DH863_config021022.gz on October
22nd, 2002.

10.2. Additional Tcl math-functions

The following procedures are found in scripts/ABHmath.tcl.
e CONSTANTS
— PI

returns 7w with 16 digits precision.

KBOLTZ

Returns Boltzmann constant in Joule/Kelvin

ECHARGE

Returns elementary charge in Coulomb
NAVOGADRO

Returns Avogadro number
SPEEDOFLIGHT

Returns speed of light in meter/second
— EPSILONO

Returns dielectric constant of vaccum in Coulomb2/(Joule meter)

92

— ATOMICMASS

Returns the atomic mass unit u in kilogramms
e MATHEMATICAL FUNCTIONS

— sqr <arg>
returns the square of arg.
— min <argl> <arg2>
returns the minimum of arg? and arg?2.
— max <argl> <arg2>
returns the maximum of arg! and arg?2.
— sign <arg>
returns the signum-function of arg, namely +1 for arg > 0, -1 for < 0, and
=0 otherwise.

e RANDOM FUNCTIONS

— gauss_random
returns random numbers which have a Gaussian distribution
— dist_random <dist> [max]

returns random numbers in the interval [0, 1] which have a distribution ac-
cording to the distribution function p(x) dist which has to be given as a tcl
list containing equally spaced values of p(x). If p(x) contains values larger
than 1 (default value of max) the maximum or any number larger than that
has to be given maz. This routine basically takes the function p(x) and places
it into a rectangular area ([0,1],[0,max]). Then it uses to random numbers
to specify a point in this area and checks wether it resides in the area under
p(x). Attention: Since this is written in tcl it is probably not the fastest way
to do this!

— vec_random [len]

returns a random vector of length len (uniform distribution on a sphere) This
is done by chosing 3 uniformly distributed random numbers [—1,1] If the
length of the resulting vector is <= 1.0 the vector is taken and normalized to
the desired length, otherwise the procedure is repeated until succes. On aver-
age the procedure needs 5.739 random numbers per vector. (This is probably
not the most efficient way, but it works!) Ask your favorit mathematician for
a proof!

— phivec_random <v> <phi> [len]

return a random vector at angle phi with v and length len

93

e PARTICLE OPERATIONS

Operations involving particle positions. The parameters pi can either denote the
particle identity (then the particle position is extracted with the The part command
command) or the particle position directly When the optional box parameter for
minimum image conventions is omited the functions use the the setmd box_1
command.

— bond_vec <pl> <p2>
Calculate bond vector pointing from particles p2 to pI return = (p1.pos -
p2.pos)

— bond_vec_min <pl> <p2> [box]
Calculate bond vector pointing from particles p2 to p1 return = MinimumImage(p1.pos
- p2.pos)

— bond_length <pl> <p2>
Calculate bond length between particles p! and p2

— bond_length_min <p1> <p2> [box]
Calculate minimum image bond length between particles p! and p2

— bond_angle <pl> <p2> <p3> [type]

Calculate bond angle between particles p1, p2 and p3. If type is "r” the
return value is in radiant. If it is ”d” the return value is in degree. The
default for type is ”r”.

— bond_dihedral <pl> <p2> <p3> <p4> [type]

Calculate bond dihedral between particles p1, p2, p8 and p4 If type is "1r”
the return value is in radiant. If it is ”d” the return value is in degree The
default for type is ”r”.

— part_at_dist <p> <dist>

return position of a new particle at distance dist from p with random orien-
tation

— part_at_angle <pl> <p2> <phi> [len]

return position of a new particle at distance len (default=1.0) from p2 which
builds a bond angle phi for (p1, p2, p-new)

— part_at_dihedral <pl> <p2> <p3> <theta> [phi] [len]

return position of a new particle at distance len (default=1.0) from p3 which
builds a bond angle phi (default=random) for (p2, p3, p-new) and a dihedral
angle theta for (p1, p2, p3, p-new)

e INTERACTION RELATED

Help functions related to interactions implemented in ESPResSo.

94

— calc_1lj_shift <1j_sigma> <1j_cutoff>
returns the value needed to shift the Lennard Jones potential to zero at the
cutoff.

e VECTOR OPERATIONS
A vector v is a tcl list of numbers with an arbitrary length Some functions are
provided only for three dimensional vectors. corresponding functions contain 3d
at the end of the name.
— veclen <v>
return the length of a vector
— veclensqr <v>
return the length of a vector squared
— vecadd <a>
add vector a to vector b: return = (a+b)
— vecsub <a>
subtract vector b from vector a: return = (a-b)
— vecscale <s> <v>
scale vector v with factor s: return = (s*v)
— vecdot_product <a>
calculate dot product of vectors a and b: return = (a.b)
— veccross_product3d <a>
calculate the cross product of vectors a and b: return = (a x b)
— vecnorm <v> [len]
normalize a vector to length len (default 1.0)
— unitvec <pl1> <p2>
return unit vector pointing from position p1 to position p2
— orthovec3d <v> [len]

return orthogonal vector to v with length len (default 1.0) This vector does
not have a random orientation in the plane perpendicular to v

— create_dihedral_vec <v1> <v2> <theta> [phi] [len]

create last vector of a dihedral (vI, v2, res) with dihedral angle theta and
bond angle (v2, res) phi and length len (default 1.0). If phi is ommited or
set to rnd then phi is assigned a random value between 0 and 2 Pi.

e TCL LIST OPERATIONS

— average <list>

95

Returns the avarage of the provided list
— list_add_value <list> <val>

Add wval to each element of list
— flatten <list>

flattens a nested [list
— list_contains <1list> <val>

Checks wether list contains val. returns the number of occurences of val in
list.

e REGRESSION

— LinRegression <1>

[is a list x1 y1 x2 y2 ... of points. LinRegression returns the least-square
linear fit a*x+b and the standard errors da and db.

— LinRegressionWithSigma <1>

lis alist x1 y1 sl x2 y2 s2 ... of points with standard deviations. LinRegres-
sion returns the least-square linear fit a*x+b plus the standard errors da and
db, cov(a,b) and chi.

10.2.1. t_random

e Without further arguments,
t_random

returns a random double between 0 and 1 using the 'ranl’ random number gener-
ator from Numerical Recipes.

e t_random int <n>

returns a random integer between 0 and n-1.

e t_random seed

returns a tcl-list with the seeds of the random number generators on each of the
'n_nodes’ nodes, while

t_random seed <seed(0)> ... <seed(n_nodes-1)>

sets those seeds to the new values respectively, re-initialising the random num-
ber generators on each node. Note that this is automatically done on invoking
Espresso, however due to that your simulation will always start with the same ran-
dom sequence on any node unless you use this tcl-command to reset the sequences’
seeds.

96

e Since internally the random number generators’ random sequences are not based
on mere seeds but rather on whole random number tables, to recover the exact
state of the random number generators at a given time during the simulation run
(e. g. for saving a checkpoint) requires knowledge of all these values. They can be
accessed by

t_random stat

which returns a tcl-list with all status informations for any node (e. g. 8 nodes =>
approx. 350 parameters). To overwrite those internally in Espresso (e. g. upon
restoring a checkpoint) submit the whole list back using

t_random stat <status-list>

with status — list being the tcl-list mentioned above without any braces. Be careful!
A complete recovery of the current state of the simulation is only possible if you
make sure to include a call to The invalidate_system command after you saved
the checkpoint (tcl_checkpoint_set will do this automatically for you), because the
integration algorithm re-uses the old forces calculated in the previous time-step;
if something has changed in the system (or if it has just been read from a file)
the forces are re-derived (including application of the thermostat and its random
numbers) leading to slightly different results compared to the uninterrupted run
(see The invalidate_system command for details)!

The C implementation is t_random

10.2.2. The bit_random command
e Without further arguments,
bit_random

returns a random double between 0 and 1 using the R250 generator XOR-ing a
table of 250 linear independent integers.

e bit_random seed

returns a tcl-list with the seeds of the random number generators on each of the
'n_nodes’ nodes, while

bit_random seed <seed(0)> ... <seed(n_nodes-1)>

sets those seeds to the new values respectively, re-initialising the random num-
ber generators on each node. Note that this is automatically done on invoking
Espresso, however due to that your simulation will always start with the same ran-
dom sequence on any node unless you use this tcl-command to reset the sequences’
seeds.

97

e Since internally the random number generators’ random sequences are not based

on mere seeds but an array of 250 linear independent integers whose bits are used
as matrix elements which are XOR-ed, to recover the exact state of the random
number generators at a given time during the simulation run (e. g. for saving a
checkpoint) requires knowledge of all these values. They can be accessed by

bit_random stat

which returns a tcl-list with all status informations for any node (e. g. 8 nodes
=> approx. 2016 parameters). To overwrite those internally in Espresso (e. g.
upon restoring a checkpoint) submit the whole list back using

bit_random stat <status-list>

with jstatus-list; being the tcl-list mentioned above without any braces. Be careful!
A complete recovery of the current state of the simulation is only possible if you
make sure to include a call to The invalidate_system command after you saved
the checkpoint (tcl_checkpoint_set will do this automatically for you), because the
integration algorithm re-uses the old forces calculated in the previous time-step;
if something has changed in the system (or if it has just been read from a file)
the forces are re-derived (including application of the thermostat and its random
numbers) leading to slightly different results compared to the uninterrupted run
(see The invalidate_system command for details)!

Note further that the bit-wise display of integers, as it is used by this random
number generator, is platform dependent. As long as you stay on the same archi-
tecture this doesn’t matter at all; however, it wouldn’t be wise to use a checkpoint
including the state of the R250 to restart the simulation on a different platform
- most likely, the integers will have a different bit-muster leading to a completely
different random matrix. So, if you’re using this random number generator, always
remain on the same platform!

10.3. Checking for features of ESPResSo

In an ESPResSo-Tcl-script, you can get information whether or not one or some of the
features are compiled into the current program with help of the following Tcl-commands:

e code_info

provides information on the version, compilation status and the debug status of the
used code. It is highly recommended to store this information with your simulation
data in order to maintain the reproducibility of your results. Exemplaric output:
ESPRESSO: v1.5.Beta (Neelix), Last Change: 23.01.2004
{ Compilation status { PARTIAL_PERIODIC } { ELECTROSTATICS }
{ EXTERNAL_FORCES } { CONSTRAINTS } { TABULATED }
{ LENNARD_JONES } { BOND_ANGLE_COSINE } }
{ Debug status { MPI_CORE FORCE_CORE } }

98

e has_feature <feature> ...

tests, if feature is compiled into the ESPResSo kernel. A list of possible features
and their names can be found here.

e require_feature <feature> ...

tests, if feature is feature is compiled into the ESPResSo kernel, will exit the script
if it isn’t and return the error code 42. A list of possible features and their names
can be found here.

99

11. External package: mbtools

mbtoolsE] is a set of tcl packages for setting up, analyzing and running simulations of
lipid membrane systems.

mbtools comes with a basic set of tabulated forces and potentials for lipid interactions
and some example scripts to help explain the syntax of the commands. If you make use
of mbtools or of these potentials please acknowledge us with a citation to:

* Cooke, I. R., Kremer, K. and Deserno, M. (2005): Tunable, generic model for fluid
bilayer membranes, Phys. Rev. E. 72 - 011506

11.1. Introduction

mbtools is located in the folder Espresso/packages/mbtools.

One of the main features of mbtools is the ability to easily create initial lipid config-
urations with interesting geometries. These include flat membranes, cylinders, spheres,
toroids, and randomly distributed gases. Each of these shapes is referred to as a geom-
etry and any number of geometries can be combined in a single simulation. Once the
geometry has been chosen the user specifies the molecules which should be placed in
this geometry. For example one could choose sphere as a geometry and then define two
different lipids and/or a protein to be placed on the sphere. Within reason (e.g. size
restrictions) it should be possible to use any mixture of known molecule types on any
geometry. The molecule types available at present include proteins, lipids of any length,
and spherical colloids.

mbtools includes several miscellaneous utility procedures for performing tasks such
as warmup, setting tabulated interactions, designating molecules to be trapped and a
variety of topology related sorting or data analysis functions.

The analysis part of the mbtools package is designed to wrap together all the analysis
for a simulation into a single simple interface. At the beginning of the simulation the
user specifies which analyses should be performed by appending its name and arguments
to a variable, analysis_flags. After the analysis is setup one can then simply call do_-
analysis to perform all the specified proceedures. Analysis will store a data value each
time do_analysis is called. Then when a call to print_averages is made the average
of all stored values is printed to a file and the store of values is reset to nil.

!This documentation was written by Ira R. Cooke and published on his website. It has been transcripted
by Tristan Bereau.

100

11.2. Installing and getting started

Since mbtools is provided as part of the espresso molecular dynamics simulation package
you will need to download and install Espresso before you can use it. Espresso can be
downloaded free from http://www.espresso.mpg.de.

Once you have installed espresso you can find mbtools by looking inside the packages
subdirectory. Inside the packages/mbtools directory you will see a directory for each
of the mbtools subpackages as well as an examples directory. All of the examples scripts
should work out of the box except those involving colloids which require you to install
icover.sh (see documentation for hollowsphere molecule type). To run the simplebilayer
example cd to the examples directory and then type:

$ESPRESSO_SOURCE/$PLATFORM/Espresso scripts/main.tcl simplebilayer.tcl

The first part of this command is simply the full path to the appropriate espresso exe-
cutable on your machine (You might have to use Espresso_bin when running on multiple
processors). Obviously you will need to have the $ESPRESSO_SOURCE and $PLATFORM en-
vironment variables set for it to work. After this executable the relative paths to two
tcl scripts are given. The first of these main.tcl is given as an argument to espresso
and is therefore interpreted first by the espresso tcl interpreter. The second tcl script
simplebilayer.tcl is in turn passed as an argument to main.tcl.

Why separate the tcl commands into two files ?

This is really a matter of preference but if we keep all of the key commands and
complex coding in a single file main.tcl and delegate simple parameter setting to a
separate file it tends to be much easier to manage large numbers of jobs with regularly
changing requirements. Regardless of your personal preferences, the important point to
note is that all of the important commands are contained in main.tcl and you should
probably start there to get an understanding for how mbtools works.

Running the simplebilayer example should produce a directory called simplebilayer
which contains the output from your simulation. To view the results cd to the simplebi-
layer directory and look at the contents. The directory contains many files including:

e The configurations generated during warmup : warm.*.gz

pdb files corresponding to warmup configurations : warm.vmd*.gz

The configurations generated during the main run : simplebilayer.*.gz

pdb files corresponding to main run configs : simplebilayer.vmd*.gz

The most recently generated checkpoint file : checkpoint.latest.gz

A directory containing the second most recent checkpoint file : checkpoint_bak

A file containing the topology of the system : simplebilayer.top

The original parameter file with which you ran the simulation : simplebilayer.tcl

101

A original parameter file with which you ran the simulation : simplebilayer.tcl

Files containing analysis output for example : time_vs_boxl_tmp

Force and energy tables : *.tab
e VMD script for visualising the warmup : warm_animation.script

e VMD script for visualising the main trajectory : vmd_animation.script

To visualise your results using the vind scripts you need to make sure that you have
vmd installed properly and that you have the special vind procedures used by the espresso
team (i.e. support for the loadseries command). Then you can visualise by typing:

vmd -e vmd_animation.script

11.3. The main.tcl script

The main.tcl file provided in the examples/scripts directory is a relatively complete
script written using mbtools. It is designed to run all of the examples provided but no
more. No doubt you will need to extend it for your own purposes.

11.3.1. Variables used by main.tcl

main.tcl expects the user to set various parameters in a parameters.tcl file (e.g.
simplebilayer.tcl). Some of these parameters have defaults and generally don’t need
to be worried about except for specific cases. In the following list variables that have no
default and therefore must be set in the parameter file are noted with an asterisk.

e thermo [Langevin] The type of thermostat to be used. Set to DPD for a dpd
thermostat. Any other value gives a langevin

e dpd_gamma Required if you set the thermo to DPD
e dpd_r_cut Required if you set the thermo to DPD

o warmup_temp [$systemtemp] The temperature at which the warmup is performed.
The default behaviour is to use the system temperature

e warmsteps [100] Number of integrate steps per warmup cycle
e warmtimes [20] Number of calls to integrate over which the warmup occurs

o free_warmsteps [0] Warmup steps to be used for the warmup that occurs after
particles are freed of any temporary constraints.

e free_warmtimes [0] Warmup times to be used for the warmup that occurs after
particles are freed of any temporary constraints.

102

npt [off] Whether to use the constant pressure barostat

p_ext The pressure you want to simulate at. Required if npt is set to on
piston_mass box mass. Required if npt is set to "on”

gamma_0 Required if npt is on. Usually set to 1 as for langevin gamma
gamma_v Required if npt is on. Box friction

use_vmd [offline] vind mode

mgrid [8] The number of meshpoints per side for dividing the bilayer plane into a
grid

stray_cut_off [1000.0] Distance of the end tail bead from the bilayer midplane
beyond which a lipid is deemed to have strayed from the membrane bulk.

*systemtemp The temperature of the simulation during the main run

*outputdir Directory for output

*tabledir Directory where forcetables are kept

*ident a name for the simulation

*topofile the name of the file where the topology is written. Usually $ident.top
*tablenames A list of forcetable names to be used

*setbox_l Box dimensions

*bonded_parms A complete list of the bonded interactions required
*nb_interactions A complete list of the non-bonded interactions required

*system _specs A list of system specifications (see documentation for the setup_-
system command in [11.5])

*moltypes A list of molecule types (see documentation in
*warm_time_step timestep to be used during warmup integration
*main_time_step timestep for the main integration run
*wverlet_skin skin used for verlet nesting list criterion
*langevin_gamma langevin friction term

*int_n_times number of times to do main integration

*int_steps number of steps in each main integration

103

e *analysis_write_frequency How often to calculate the analysis
o *write_frequency How often to print out configurations

o vmdcommands a list of additional lines of commands to be written to the vmd_-
animation.script file

11.4. Analysis

The analysis package is designed to help organise the many possible analysis routines
that can be performed during a simulation. This documentation describes the basic user
interface commands and then all of the possible analysis routines. Instructions on how
to add a new analysis routine are given at the end of this section.

11.4.1. Basic commands

The following commands comprise the user interface to the analysis package.

At the start of a simulation all of the analysis that is to be performed is specified
using the setup_analysis command. Each time you want the analysis performed a call
to do_analysis should be made. One can then call print_averages to write results to
file.

::mbtools::analysis::setup_analysis : -outputdir.arg -suffix.arg
-iotype.arg -g.arg -str.arg

e commands [./] A tcl list where each element of the list is a string specifying the
name and complete argument list for a particular analysis to be carried out.

e outputdir [./] The directory where analysis output files will be created
e suffix [tmp] Suffix that will be appended to standard file names for analysis output

e iotype [a] The iotype that will be used when opening files for analysis. For an
explanation of the different iotypes see the documentation for the standard tcl
command open

e ¢ [8] Number of grid points per side with which to divide the bilayer for height
profile analyses

e str [4.0] Distance of a tail bead from bilayer midplane beyond which a lipid is
deemed to be a stray lipid.

Sets up the analysis package for a simulation run or analysis run that is about to be
performed. This routine needs to be called before any analysis can be performed.

::mbtools::analysis::do_analysis :

104

Calls all of the analyze routines corresponding to commands setup in setup_analysis.
do_analysis should be called only after setup_analysis has already been called.

::mbtools::analysis: :reset_averages

Calls all of the resetav routines corresponding to commands setup in setup_analysis.
These routines vary from command to command but they typically reset the storage
and counter variables used for analysis results. reset_averages is typically only called
internally by print_averages

::mbtools::analysis::print_averages :

Calls all of the printav routines corresponding to commands setup in setup_analysis.
These routines typically print results to a file buffer. After printing the reset_averages
routine is called internally. print_averages should be called only after setup_analysis
has already been called.

11.4.2. Available analysis routines

boxl : -verbose : output || time_vs_boxl
Simply obtains the box dimensions from ESPResSo.

clusters : -alipid.arg -verbose : output || time_vs_clust,
sizehisto. [format %05d $time]

e alipid [1.29] Value for the area per lipid to be used in a making a rough calculation
of the area of clusters

Calls the espresso command analyze aggregation which groups molecules in the sys-
tem into aggregates. Output to time_vs_clust is: maximum cluster size, minimum
cluster size, average size of clusters including those of size 2 or greater, standard de-
viation of clusters including those of size 2 or greater, number of clusters of size 2 or
greater, total average cluster size, total cluster size standard deviation, total number
of clusters, length of the interface between clusters, standard deviation of the interface
length, number of clusters for which length was calculate.

Additionally, at each call of print_averages the complete size histogram is printed
to a file with the formatted name sizehisto. [format %05d $time].

density_profile : -nbins.arg -hrange.arg -beadtypes.arg
-colloidmoltypes.arg -r.arg -nogrid
-verbose : output || av_zprof

e nbins [100] Number of slices into which the height range is divided for the purpose
of calculating densities

105

e hrange [6] The maximum vertical distance from the bilayer midplane for which to
calculate densities. Note that the complete vertical range is therefore 2*varhrange

e beadtypes [0] A tcl list of the bead types for which to calculate a density profile

e colloidmoltypes [| A tcl list of molecule types identifying the molecules which are
colloids in the system. The default value is a null list

e 1 [0] A tcl list of sphere radii corresponding to the radii for each colloid type in the
system. If this is non-zero the density profile will be calculated in spherical shells
about the colloids in the system identified via colloidmoltypes or if colloidmoltypes
is not set then the system center of mass is assumed for the colloid/vesicle center

e nogrid If this is set a grid mesh will not be used to refine the density profile
calculation by taking into account vertical differences between mesh points

Calculates the number density of each of the beadtypes given in beadtypes as a function
of the vertical distance from the bilayer midplane. Lipids are also sorted according to
their orientation and assigned to upper or lower leaflets accordingly. Thus for a system
with 3 beadtypes we would obtain 6 columns of output corresponding to 0 (lower) 1
(lower) 2 (lower) 2 (upper) 1 (upper) O (upper) where the number refers to the bead
type and upper or lower refers to the bilayer leaflet.

energy : -verbose : output || time_vs_energy

Obtains the internal energies of the system from the analyze energy command of
ESPResSo.

flipflop : -verbose : output || time_vs_flip

Makes a call to the analyze get_lipid_orients command of ESPResSo and compares
this with a reference set of lipid orients obtained at the start of the simulation with
setup_analysis. Based on this comparison the number of lipids which have flipped
from their original positions is calculated

fluctuations : -verbose : output || powav.dat

Routine for calculating the power spectrum of height and thickness fluctuations for a flat
bilayer sheet. Uses the modes_2d routine in ESPResSo to calculate the height and thick-
ness functions and perform the fft. See the documentation in the file fluctuations.tcl
for detail on what is calculated and how to obtain a stiffness value from the resulting
output. Note that this routine causes a crash if it detects a large hole in the bilayer.

localheights : -range.arg -nbins.arg -rcatch.arg -verbose :
output || av_localh

e range [1.0] Range of local height deviations over which to bin

106

e nbins [100] Number of slices to divide up the height range into for the purposes of
creating a profile

e rcatch [1.9] The distance about a single lipid to use a starting value for finding the
6 closest neighbours

For each lipid we calculate its 6 nearest neighbours and then calculate the height differ-
ence between the central lipid and these neighbours. Taking these 6 values for each lipid
we then create a histogram of number densities as a function of the height difference.

localorients : -range.arg -nbins.arg -verbose : output || av_localo

e range [1.0] Range of orientation deviations to consider

e nbins [100] Number of bins to use for histogram

Calculates the projection of the lipid orientation vector onto the zy plane for each lipid
and then bins the absolute values of these vectors.

orient_order : -verbose : output || time_vs_oop

Calculates the orientational order parameter S for each lipid through a call to the
espresso command analyze lipid_orient_order.

stress_tensor : -verbose : output || time_vs_stress_tensor

Calculates all 9 elements of the pressure tensor for the system through a call to the
espresso command analyze stress_tensor

pressure : -verbose : output || time_vs_pressure

Calculates the isotropic pressure through a call to analyze pressure. Results are
printed as a list of the various contributions in the following order: p_inst, total, ideal,
FENE, harmonic, nonbonded. Where p_inst is the instantaneous pressure obtained
directly from the barostat.

stray : -verbose : output || time_vs_stray

Calculates the number of stray lipids based on a call to analyze get_lipid_orients.

11.4.3. Adding a new routine

To add a new analysis routine you should create a new file called myanalysis.tcl which
will contain all of your code. At the top of this file you should declare a namespace for
your analysis code and include all of the internal variables inside that namespace as
follows;

107

namespace eval ::mbtools::analysis::myanalysis {
variable av_myresult
variable av_myresult_i
variable f_tvsresult
variable verbose

namespace export setup_myanalysis

namespace export analyze_myanalysis
namespace export printav_myanalysis
namespace export resetav_myanalisis

}

Import your new file into the analysis package by adding a line like the following to
the analysis.tcl file.

source [file join [file dirname [info script]] myanalysis.tcl]

You then need to implement the following essential functions within your new names-
pace.
e ::mbtools::analysis::myanalysis::setup_myanalysis { args }
Typically you would use this function to initialise variables and open files.

Called by ::mbtools::analysis::setup_analysis. Arguments are allowed.

e ::mbtools::analysis::myanalysis::printav_myanalysis { void }
This function should print results to a file.

Called by ::mbtools::analysis::print_averages. Arguments are not allowed.

e ::mbtools::analysis::myanalysis::analyze_myanalysis { void }

This function performs the actual analysis and should update the storage and
averaging variables. Called by : :mbtools: :analysis::do_analysis. Arguments
are not allowed.

e ::mbtools::analysis::myanalysis::resetav_myanalysis { void }

This function should update averages and reset variables accordingly depending
on your requirements.

Called by ::mbtools::analysis::reset_averages. Arguments are not allowed.

If any of these functions is not implemented the program will probably crash.

11.5. System generation

Package for setting up lipid membrane systems in a variety of geometrical shapes.

108

11.5.1. Basic commands

::mbtools::system_generation::setup_system : [system_specs]
[ibox1l] [moltypes]

e system_specs This is a list of structures called system specifications. Each such
system specification in turn should be a list consisting of a geometry and a list
detailing the number of each molecule type i.e.

set system_spec { geometry n_molslist }

The geometry should be specified as a list with two elements. The first element
should be a string “geometry” identifying this list as a geometry. The second
element is a string containing the name of a geometry type mygeometry followed
by arguments to be passed to the routine create_mygeometry.

The n_molslist should be specified as a list with two elements. The first element
should be a string “n_molslist” identifying this list as an n_molslist. The second
element is a list each element of which specifies a molecule type and the number
of such molecules.

e borl A list containing the lengths of each of the box side lengths.

e moltypes A list, each element of which specifies a molecule type and type informa-
tion. The exact format and requirements of this list are detailed for each molecule
separately (see below for a list of molecule types and their requirements) however
regardless of mol type the first two elements of the list must be a moltypeid and a
string specifying the moltype respectively.

Sets up the system including generating topologies and placing molecules into specified
geometries. Each geometry and list of molecules to be placed into that geometry are
grouped into a system spec.

Example:

The following code sets out the molecule types to be used in the simulation by setting
a list called moltypes. In this case two different lipid types are setup and assigned to
moltypeids 0 and 1 respectively. Moltype 0 will consist of three beads per lipid, the
first of which is of atomtype 0 and the second and third of which are of atomtype 1.
Bonds in the lipid will be of type 0 and 1 respectively.(see the ::mbtools::system_-
generation: :place_lipid_linear function for further details).

set moltypes [list { O lipid { 0 1 1 } { o}

{11lipid { 0222 } 2} 1]

We then construct system specs for a flat bilayer and a spherical bilayer and group
these into a system_specs list.

First the spherical system_specs

01
{o0

109

set geometry { geometry ‘"sphere -shuffle -c { 0.0 0.0 15.0 } " }
set n_molslist { n_molslist { { 0 1000 } } }

lappend spherespec $geometry

lappend spherespec $n_molslist

The flat system_spec

set geometry { geometry "flat -fixz" }

set n_molslist { n_molslist { { 1 3000 } } }
lappend bilayerspec $geometry

lappend bilayerspec $n_molslist

Now group together the systemgspecs into a master list

lappend system_specs $spherespec
lappend system_specs $bilayerspec

Make the call to setup_system

::mbtools: :system_generation: :setup_system $system_specs
[setmd box_1] $moltypes

::mbtools::system_generation: :get_trappedmols :

returns the internal list variable trappedmols which keeps track of all molecules that have
been trapped by their center of mass. This function should be called after setup and
would then typically be passed to the function ::mbtools: :utils:trap_mols

::mbtools::system_generation::get_userfixedparts :

returns the internal list variable userfizedparts which keeps track of all particles that
have been fixed in position during the setup. This is useful for later releasing particles
after warmup routines have been completed.

::mbtools: :system_generation::get_middlebead :

returns the internal variable middlebead.

11.5.2. Available geometries

flat : -fixz -bondl.arg -crystal -half

e fizz Fix the vertical positions of all particles. The ids of these particles are
added to the list of userfizedparts which can later be obtained through a call
to : :mbtools::system_generation::get_userfixedparts.

e crystal Sets lipids on a grid, instead of randomly.

110

e half Creates a halfbilayer (i.e. periodic only along one direction). Useful to mea-
sure a line tension.

Creates a flat bilayer in the XY plane by random placement of lipids.

sphere : -c.arg -initarea.arg -bondl.arg -shuffle

e ¢ [{0.0 0.0 0.0}] The location of the center of the sphere relative to the center
of the box

e initarea [1.29] An initial guess for the area per lipid. This guess is used to compute
initial sphere dimensions based on the number of lipids. This initial guess is then
iteratively refined until all lipids can be fit uniformly on the sphere.

o shuffle shuffle the topology prior to placing the lipids. This is required for a random
lipid distribution because the lipids will be placed on the sphere in the order they
appear in the topology

Creates a spherical vesicle by placing molecules in an ordered manner at uniform density
on the surface of the sphere. Molecules are assumed to have a uniform cross sectional
area and closely matched (though not identical) lengths. The radius of the vesicle will
depend on the number of lipids and the area per lipid.

torus : -c.arg -initarea.arg -ratio.arg -bondl.arg —-shuffle

e ¢ [{0.0 0.0 0.0}] The location of the center of the torus relative to the center of
the box.

e initarea [1.29] An initial guess for the area per lipid. This guess is used to compute
initial radii based on the number of lipids. This initial guess is then iteratively
refined until all lipids can be fit uniformly on the torus.

e ratio [1.4142] Ratio of major toroidal radius to minor toroidal radius. Default
value is for the Clifford torus.

o shuffle shuffle the topology prior to placing the lipids. This is required for a random
lipid distribution because the lipids will be placed on the torus in the order they
appear in the topology.

Creates a toroidal vesicle by placing molecules in an ordered manner at uniform density
on the surface of the torus. Molecules are assumed to have a uniform cross sectional
area and closely matched (though not identical) lengths. The two radii of the torus will
depend on the number of lipids, the area per lipid and the ratio between radii.

cylinder : -c.arg -initarea.arg -bondl.arg -shuffle

e ¢[0.00.0 0.0]

111

e initarea [1.29]

e shuffle shuffle the topology prior to placing the lipids.

Creates a cylinder which spans the box along one dimension by placing molecules uni-
formly on its surface. Works in a similar way to the sphere routine.

random : -exclude.arg -shuffle -bondl.arg
e czclude.arg [] an exclusion zone definition suitable for passing to
::mbtools::utils::isoutside.

e shuffle shuffle the topology prior to placing the lipids.

Places molecules randomly in space with a (sortof) random orientation vector. If an
exclusion zone is defined no molecules will be placed such that their centers of mass are
within the zone.

readfile : -ignore.arg -f.arg -t.arg

e ignore.arg [] particle properties to be ignored during the file read.

e f.arg [] The file containing the configuration to be used for setup. Must be an
espresso blockfile with box length, particle and bonding information.

e t.arg [] The topology file corresponding to the file to be read.

e tol.arg [0.000001] Tolerance for comparison of box dimensions.

Use particle positions contained in a file to initialise the locations of particles for a
particular geometry. The box dimensions in the file and those set by the user are
compared and an error is returned if they are not the same to within a tolerance value
of tol. Even though we read from a file we also generate a topology from the n,,olslist
and this topology is compared with the topology that is read in to check if the number
of particles are the same.

singlemol : -c.arg -o.arg -trapflag.arg -ctrap.arg
—-trapspring.arg -bondl.arg

e c.arg [0.0 0.0 0.0] The molecule center. Exactly what this means depends on
the molecule type.

e o.arg [0.0 0.0 1.0] The orientation vector for the molecule. This is also molecule
type dependent

o trapflag.arg [000] Set this optional argument to cause a molecule to be trapped
by its center of mass. You should give three integers corresponding to each of the
three coordinate axes. If a value of 1 is given then motion in that axis is trapped.

112

e ctrap.arg [7"] Set this optional argument to the central point of the trap. This
works much like an optical trap in that molecules will be attracted to this point
via a simple harmonic spring force

e trapspring.arg | 20 | The spring constant for the trap potential (harmonic spring).

Simply place a single molecule at the desired position with the desired orientation.

11.5.3. Adding a new geometry

To create a routine for setting up a system with a new type of geometry mygeom. Start
by creating a new file mygeom. tcl inside the system_generation directory. The new file
should declare a new namespace mygeom as a sub namespace of : :mbtools: :system_-
generation and export the proceedure create_mygeom. Thus your mygeom.tcl file
should begin with the lines

namespace eval ::mbtools::system_generation::mygeom {
namespace export create_mygeom

}

Import your new file into the system_generation package by adding a line like the
following to the system_generation.tcl file

source [file join [file dirname [info script]] mygeom.tcl]

You then need to implement the create_mygeom proceedure within your new names-
pace as follows

::mbtools::system_generation: :mygeom: :create_mygeom args

11.5.4. Available molecule types

lipid : typeinfo : { moltypeid "lipid" particletypelist
bondtypelist }

o particletypelist A list of the particle types for each atom in the lipid. The particles
are placed in the order in which they appear in this list.

e bondtypelist A list of two bondtypeids. The first id is used for bonds between
consecutive beads in the lipid. The second bondtypeid defines the pseudo bending
potential which is a two body bond acting across beads separated by exactly one
bead.

Places atoms in a line to create a lipid molecule.

hollowsphere : typeinfo : { moltypeid "hollowsphere"
sphereparticlelist bondtype natomsfill }

113

o sphereparticlelist A list of the particle types for each atom in the hollowsphere.
The atoms that make up the outer shell must be listed first followed by the atoms
that make up the inner filling.

e bondtype The typeid for bonds linking atoms in the outer shell.

e natomsfill Number of filler atoms. The atom types for these will be obtained from
the last natomsfill in the sphereparticlelist.

Creates a sphere of beads arranged such that they have an approximate spacing of bondl
and such that they optimally cover the sphere. The optimal covering is obtained using
the icover routines which are copyright R. H. Hardin, N. J. A. Sloane and W. D. Smith,
1994, 2000. Thus the routine will only work if you have installed icover and if you can
successfully run it from the command line in the directory that you started your espresso
job. These routines are serious overkill so if anybody can think of a nice simple algorithm
for generating a covering of the sphere let us know.

protein : typeinfo : { moltypeid "protein" particletypelist
bondtypelist }

e particletypelist A list of the particle types for each atom in the protein.

e bondtypelist A list of bondtypeids.

Create a protein molecule.

spanlipid : typeinfo : { moltypeid "protein" particletypelist
bondtypelist }

e particletypelist A list of the particle types for each atom in the lipid. Since this
is a spanning lipid the first and last elements of this list would typically be head
beads.

o bondtypelist A list of two bondtypeids with the same meaning as explained above
for standard lipids.

Create a lipid which spans across the bilayer.

11.5.5. Adding a new molecule type

To add a new molecule type you need to define a proceedure which determines how the
atoms that make up the molecule should be placed. This proc will live directly in the
: :mbtools: :system_generation namespace. Examples can be found in place.tcl.

In order to register your new molecule type to allow placement in any geometry you
need to add a call to it in the function ::mbtools::system_generation: :placemol.
Make sure that all arguments to your place_mymolecule routine are included in this
function call.

114

11.6. Utils

Useful utilities routines for various types. Includes file management, basic geometry and
math procedures.

11.6.1. Setup commands
::mbtools::utils: :setup_outputdir : [outputdir] -paramsfile.arg

-tabdir.arg -tabnames.arg -startf.arg -ntabs.arg

outputdir Complete path of the directory to be setup. At least the parent of the
directory must exist

paramfile || Name of a file to be copied to the output directory

tabdir || Full path name of the directory where forcetables are kept

tabnames [] Complete list of forcetables to be used in the simulation. These will
be copied to the output directory

This routine is designed to setup a directory for simulation output. It copies forcetables
and the parameter file to the directory after creating it if necessary.

::mbtools::utils::read_startfile : [file]
e file Complete path of the file to be read. Should be an espresso blockfile.

Read in particle configuration from an existing file or simulation snapshot
::mbtools::utils: :read_checkpoint : [dir]
e dir Directory containing the checkpoint file which must be called checkpoint.latest.gz.
Read in a checkpoint and check for success. Warn if the checkpoint does not exist.
::mbtools::utils::read_topology : [filel
e file Complete path of the file that contains the topology information.

Read in the topology from a file and then execute the analyze set "topo_part_sync"
command of ESPResSo.

::mbtools::utils::set_topology : [topo]
e topo A valid topology.

Set the given topology and then execute the analyze set "topo_part_sync" command
of ESPResSo.

115

::mbtools::utils::set_bonded_interactions : [bonded_parms]

e bondedyarms A list of bonded interactions. Each element of this list should contain
all the appropriate arguments in their correct order for a particular call to the
espresso inter command. See the espresso inter command for a list of possible
bonded interactions and correct syntax.

Set all the bonded interactions.

::mbtools::utils::set_nb_interactions : [nb_parms]

e nb_parms A list of interactions. Each element of this list should contain all the
appropriate arguments in their correct order for a particular call to the espresso
inter command. See the espresso inter command for a list of possible non-bonded
interactions and correct syntax.

Set all the bonded interactions.

::mbtools::utils::init_random : [n_procs]
e n_procs The number of processors used in this job.

Initialize the random number generators on each processor based on the current time
with a fixed increment to the time seed used for each proc.

::mbtools::utils::initialize_vmd : [flag] [outputdir]
[ident] -extracommands.arg

e flag Depending on the value of this parameter initialize vind to one of its possible
states:

— interactive : VMD is started and a connection to espresso established for
immediate viewing of the current espresso process. With some luck this might
even work sometimes! If VMD doesn’t get a proper connection to espresso
then it will crash.

— offline : Just constructs the appropriate psf and vmd_animation.script
files and writes them to the output directory so that pdb files generated with
writepdb can be viewed with vmd -e vmd_animation.script.

— default : Any value other than those above for flag will just result in vimd not
being initialized.

e outputdir The directory where vind output will be written.
e ident A basename to be be given to vimd files.

e extracommands [] A list of strings each of which will be written to the end of the
vmd_animationscript. Use this to give additional commands to vmd.

Prepare for vind output.

116

11.6.2. Warmup commands

::mbtools::utils::warmup : [steps] [times] -mindist.arg

-cfgs.arg -outputdir.arg -vmdflag.arg -startcap.arg
—-capgoal.arg

steps number of integration steps used in each call to integrate.
times number of times to call the integrate function during warmup.

mindist [0] Terminate the warmup when the minimum particle distance is greater
than this criterion. A value of 0 (default) results in this condition being ignored.
If a condition is imposed this routine can become very very slow for large systems.

cfgs [-1] Write out a configuration file every cfgs calls to integrate.
outputdir [./] The directory for writing output.

vmdflag [offline] If this flag is set to "offline” (default) pdb files will be generated

for each configuration file generated.

e startcap [5] Starting value for the forcecap.

e capgoal [1000] For the purposes of calculating a cap increment this value is used

as a goal. The final forcecap will have this value.

Perform a series of integration steps while increasing forcecaps from an initially small

value.

11.6.3. Topology procs
::mbtools::utils: :maxpartid : [topo]
e topo A valid topology.

Find the maximum particle id in a given topology.

::mbtools: :utils: :maxmoltypeid : [topo]
e topo A valid topology.

Find the maximum molecule type id.

::mbtools::utils::1listnmols : [topo]

e topo A valid topology.

Construct a list with the number of molecules of each molecule type.

::mbtools::utils: :minpartid : [topo]

117

e topo A valid topology.

Minimum particle id for the given topology.
::mbtools::utils: :minmoltype : [topo]
e topo A valid topology/

Minimum molecule type id for this topology.

::mbtools::utils::listmoltypes : [topo]
e topo A valid topology.

Make a list of all the molecule types in a topology. Makes a check for duplication which
would occur for an unsorted topology.

::mbtools::utils::listmollengths : [topo]
e topo A valid topology.

Works out the length (number of atoms) of each molecule type and returns a list of these
lengths.

11.6.4. Math procs
::mbtools::utils::dot_product : A B

Returns A dot B
::mbtools::utils::matrix_vec_multiply : A B

Return the product of a matrix A with a vector B
::mbtools::utils::calc_proportions : ilist

Calculate the number of times each integer occurs in the list ilist.

::mbtools::utils::average : data from to

e data A list of numbers to be averaged
e from Optional starting index in data

e to Optional ending index in data

Calculate the mean of a list of numbers starting from from going up to to.

::mbtools::utils::stdev : data from to

118

e data A list of numbers to find the std deviation of
e from Optional starting index in data

e to Optional ending index in data

Calculate the standard deviation of a list of numbers starting from from going up to to.

::mbtools::utils::acorr : data

e data Data for which an autocorrelation is to be calculated

Calculate an autocorrelation function on a set of data.

::mbtools::utils::distance : posl pos2

e posl A position vector

e pos2 A position vector

Calculate the distance between two points whose position vectors are given.

::mbtools::utils::normalize : vec

e vec The vector to be normalised

Normalize a vector

::mbtools::utils::scalevec : vec scale

e vec The vector to be scaled

e scale Scaling factor

Multiply all elements of a vector by a scaling factor

::mbtools::utils::uniquelist : original

e original A list possibly containing duplicate elements

Construct a list of all the unique elements in the original list removing all duplication.

119

11.6.5. Miscellaneous procs

::mbtools::utils::trap_mols : molstotrap

e molstotrap A list of trap values for molecules. This list would typically be obtained
by calling ::mbtools::get_trappedmols immediately after the system has been
setup.

Set the trap value for a list of molecules.

::mbtools::utils::isoutside : [pos] [zone]

e pos The point whose status is to be determined
e zone An exclusion zone. This will be a tcl list. The first element of the list must
be a string with the name of the exclusion zone type and subsequent elements will

be further information about the exclusion zone. Available zones are:

— sphere : center zone

Determines whether the point at pos is outside the exclusion zone. Returns 1 if it is and
0 if it is not.

::mbtools::utils::calc_com : mol
e mol The molecule

Calculate the center of mass of a molecule.

::mbtools::utils::centersofmass_bymoltype : [moltypes]
e moltypes A list of molecule type ids

Determine the center of mass of every molecule whose type matches an item in the list
moltypes. Returns a nested list where each element in the list is itself a list of centers
of mass for a given moltype.

11.7. mmsg
mmsg is designed to provide a more controlled way of printing messages than the simple

puts commands of Tcl. It has an ability to turn on or off messages from particular
namespaces.

120

11.7.1. Basic commands

The following commands represent the standard interface for the mmsg package. For
consistency one should use these instead of a bare puts to standard out. mbtools makes
extensive use of these commands.

::mmsg::send : [namespace] [string] { [newline] }

e namespace A namespace. Typically this should be the current namespace which
one can get via namespace current

e string The message you want printed

e newline [yes] Set this to anything other than ”yes” and no carriage return will be
used after the message

The mmsg equivalent of puts. Designed for printing of simple status or progress mes-
sages.

::mmsg::err : [namespace] [string] { [newline] }

e namespace A namespace. Typically this should be the current namespace which
one can get via namespace current

e string The message you want printed

e newline [yes] Set this to anything other than ”yes” and no carriage return will be
used after the message

Prints error messages and causes program to exit.

::mmsg::warn : [namespace] [string] { [newline] }

e namespace A namespace. Typically this should be the current namespace which
one can get via namespace current

e string The message you want printed

e newline [yes] Set this to anything other than ”yes” and no carriage return will be
used after the message

Prints warning messages.
::mmsg: :debug : [namespace] [string] { [newline] }

e namespace A namespace. Typically this should be the current namespace which
one can get via namespace current

e string The message you want printed

e newline [yes] Set this to anything other than ”yes” and no carriage return will be
used after the message

Prints debug messages.

121

11.7.2. Control commands

mmsg does several checks before it decides to print a message. For any given message
type it checks if that message type is allowed. It also checks to see if the namespace
given as an argument is in the allowable namespaces list. The default behaviour is to
print from the main mbtools namespaces and the global namespace

{ :: ::mbtools::system_generation ::mbtools::utils ::mbtools::analysis }

Note that children of these namespaces must be explicitly enabled. All message types
except debug are also enabled by default. The following commands allow this default
behaviour to be changed.

::mmsg: :setnamespaces : namespacelist

e namespacelist A list of all namespaces from which messages are to be printed
Allows control over which namespaces messages can be printed from.

::mmsg: :enable : type

e type A string indicating a single message type to enable. Allowable values are
“err”, ”debug”, "send” and ”warn”

Allows particular message types to be enabled: For example one could enable debug
output with

mmsg: :enable "debug"
::mmsg::disable : type

e type A string indicating a single message type to disable. Allowable values are

“err”, ”debug”, "send” and ”warn”

Allows particular message types to be disabled: For example one could disable warning
output with

mmsg: :enable "warn"

122

12. Under the hood

e Implementation issues that are interesting for the user

e Main loop in pseudo code (for comparison)

12.1. Internal particle organization

Since basically all major parts of the main MD integration have to access the particle
data, efficient access to the particle data is crucial for a fast MD code. Therefore the
particle data needs some more elaborate organisation, which will be presented here. A
particle itself is represented by a structure (Particle) consisting of several substructures
(e. g. ParticlePosition, ParticleForce or ParticleProperties), which in turn represent
basic physical properties such as position, force or charge. The particles are organised
in one or more particle lists on each node, called Cell cells. The cells are arranged by
several possible systems, the cellsystems as described above. A cell system defines a way
the particles are stored in ESPResSo, i. e. how they are distributed onto the processor
nodes and how they are organised on each of them. Moreover a cell system also defines
procedures to efficiently calculate the force, energy and pressure for the short ranged
interactions, since these can be heavily optimised depending on the cell system. For
example, the domain decomposition cellsystem allows an order N interactions evaluation.

Technically, a cell is organised as a dynamically growing array, not as a list. This
ensures that the data of all particles in a cell is stored contiguously in the memory.
The particle data is accessed transparently through a set of methods common to all cell
systems, which allocate the cells, add new particles, retrieve particle information and
are responsible for communicating the particle data between the nodes. Therefore most
portions of the code can access the particle data safely without direct knowledge of the
currently used cell system. Only the force, energy and pressure loops are implemented
separately for each cell model as explained above.

The domain decomposition or link cell algorithm is implemented in ESPResSo such
that the cells equal the ESPResSo cells, i. e. each cell is a separate particle list. For an
example let us assume that the simulation box has size 20 x 20 x 20 and that we assign 2
processors to the simulation. Then each processor is responsible for the particles inside
a 10 x 20 x 20 box. If the maximal interaction range is 1.2, the minimal possible cell
size is 1.25 for 8 cells along the first coordinate, allowing for a small skin of 0.05. If one
chooses only 6 boxes in the first coordinate, the skin depth increases to 0.467. In this
example we assume that the number of cells in the first coordinate was chosen to be 6
and that the cells are cubic. ESPResSo would then organise the cells on each node in
a6 x 12 x 12 cell grid embedded at the centre of a 8 x 14 x 14 grid. The additional

123

cells around the cells containing the particles represent the ghost shell in which the
information of the ghost particles from the neighbouring nodes is stored. Therefore the
particle information stored on each node resides in 1568 particle lists of which 864 cells
contain particles assigned to the node, the rest contain information of particles from
other nodes.a

Classically, the link cell algorithm is implemented differently. Instead of having sep-
arate particle lists for each cell, there is only one particle list per node, and a the cells
actually only contain pointers into this particle list. This has the advantage that when
particles are moved from one cell to another on the same processor, only the pointers have
to be updated, which is much less data (4 rsp. 8 bytes) than the full particle structure
(around 192 bytes, depending on the features compiled in). The data storage scheme
of ESPResSo however requires to always move the full particle data. Nevertheless, from
our experience, the second approach is 2-3 times faster than the classical one.

To understand this, one has to know a little bit about the architecture of modern
computers. Most modern processors have a clock frequency above 1GHz and are able
to execute nearly one instruction per clock tick. In contrast to this, the memory runs
at a clock speed around 200MHz. Modern double data rate (DDR) RAM transfers up
to 3.2GB/s at this clock speed (at each edge of the clock signal 8 bytes are transferred).
But in addition to the data transfer speed, DDR RAM has some latency for fetching the
data, which can be up to 50ns in the worst case. Memory is organised internally in pages
or rows of typically 8KB size. The full 2 x 200 MHz data rate can only be achieved if
the access is within the same memory page (page hit), otherwise some latency has to be
added (page miss). The actual latency depends on some other aspects of the memory
organisation which will not be discussed here, but the penalty is at least 10ns, resulting in
an effective memory transfer rate of only 800MB/s. To remedy this, modern processors
have a small amount of low latency memory directly attached to the processor, the cache.

The processor cache is organised in different levels. The level 1 (L1) cache is built
directly into the processor core, has no latency and delivers the data immediately on
demand, but has only a small size of around 128KB. This is important since modern
processors can issue several simple operations such as additions simultaneously. The
L2 cache is larger, typically around 1MB, but is located outside the processor core and
delivers data at the processor clock rate or some fraction of it.

In a typical implementation of the link cell scheme the order of the particles is fairly
random, determined e. g. by the order in which the particles are set up or have been
communicated across the processor boundaries. The force loop therefore accesses the
particle array in arbitrary order, resulting in a lot of unfavourable page misses. In the
memory organisation of ESPResSo, the particles are accessed in a virtually linear order.
Because the force calculation goes through the cells in a linear fashion, all accesses to a
single cell occur close in time, for the force calculation of the cell itself as well as for its
neighbours. Using the domain decomposition cell scheme, two cell layers have to be kept
in the processor cache. For 10000 particles and a typical cell grid size of 20, these two
cell layers consume roughly 200 KBytes, which nearly fits into the L2 cache. Therefore
every cell has to be read from the main memory only once per force calculation.

124

13. Getting involved

e What to do when you want to become involved
e How to submit a bug report

e Reference to developer’s guide

125

A. ESPResSo quick reference

part pid [pos z y z| [type typeid] [v vz vy vz] [f fx fy fZ] 25
[bond bondid pid2 ...] [q chm’ge]1 [quat qI ¢2 ¢3 q4]2
[omega z y 2]° [torque z y 2]
[unjfix z y 2]° [ext_force z y z]° [exclude pid2...]%
[exclude delete pid2...]* [mass mass]® [dipm moment] 5
[dip dz dy dz]®

Required features: 1ELECTROSTATICS 2ROTATION 3EXTERNAL_FORCES 4EXCLUSION
Suass SprpoLEs

part pid print [(id | pos | type | folded_position | type | q | v | £ | [26
fix | ext_force | bond | connections [range])]...

part

part pid delete 27

part deleteall

part auto_exclusions [range] 27

part delete_exclusions

polymer num_polymers monomers_per_chain bond_length 28
[start pid] [pos = y z] [mode (RW | SAW | PSAW) [shield [trymax]]]
[Charge (J} [diStance dcharged}1 [tYPeS typeidpeutral [typddcharged“
[bond bondid] [angle ¢ [0 [z y z]]] [constraints]?

Required features: L ELECTROSTATICS 2 CONSTRAINTS

counterions N [start pid] [mode (SAW | RW) [shield [trymax |]] 29
[charge val]! [type typeid]

Required features: L gL ECTROSTATICS

salt Ny N_ [start pid| [mode (SAW | RW) [shield [trymax]]] 30
[charges valy [val_]]' [types typeid, [typeid_]] [rad 7]

Required features: 1 g1 ECTROSTATICS

diamond a bond_length monomers_per_chain [counterions Nci] 30
[charges wvalyode V@lmonomer Ualcﬂl [distance dcharged]l [nonet]

Required features: - ELECTROSTATICS

icosaeder a monomers_per_chain [counterions Ncil 31
[charges valmonomers valCI]l [distance dcharged]l

Required features: - ELECTROSTATICS

crosslink num_polymer monomers_per_chain [start pid]| [catch reaten] 32

[distLink [link_dist] [distChain chain_dist] [FENE bondid]
[trials trYmax]

126

constraint wall normal n, n, n, dist d type id

constraint sphere center ¢, c, c, radius rad direction direction type

id

constraint cylinder center c¢; ¢, ¢, axis n; ny n, radius rad length

length direction direction type id

constraint maze nsphere n dim d sphrad 7, cylrad r. type id

constraint pore center ¢, ¢, c, axis n, ny n, radius rad length length

type id
constraint rod center c¢; ¢, lambda lambda
constraint plate height h sigma sigma
constraint ext_magn_field f; f, f. 2,3

Required features: CONSTRAINTS L ELECTROSTATICS

1

2ROTATION °DIPOLES

33

constraint delete [num]

constraint force n

constraint [num]

ZIE|E|E] =]

inter

inter typel type2 lennard-jones € O Tcut Cshift Toff

inter typel type2 lj-gen € 0 Teut Cshift Toff €1 €2

Required features: LENNARD_JONES LENNARD_JONES_GENERIC ||
inter typel type2 1lj-cos € 0 Tcut Toff 36,
inter typel type2 lj-cos2 € 0 Tog W

Required features: LJCOS LJCOS2 |
inter typel type2 smooth-step o; n € ky 02 Teut 36
Required features: SMOOTH_STEP |
inter typel type2 bmhtf-nacl A B C D o0 7Teut 37
Required features: BMHTF_NACL ||
inter typel type2 morse € & Tmin Teut 371
Required features: MORSE |
inter typel type2 buckingham A B C D 7eut Tdiscont Eshift 38
Required features: BUCKINGHAM |
inter typel type2 soft-sphere a n Tyt Toffset 38
Required features: SOFT_SPHERE ||
inter typel type2 gay-berne €y op Teutor kI k2 p v 38
Required features: ROTATION |
inter typel type2 tabulated filename 39
Required features: TABULATED |

127

inter ljforcecap Fiax
inter morseforcecap Fax
inter buckforcecap Finax
inter tabforcecap Fiax

Required features: LENNARD_JONES MORSE BUCKINGHAM TABULATED

inter bondid fene K Arpax [ro]

inter bondid harmonic K R

EEJENE]

inter bondid subt_lj reserved R
inter bondid rigid_bond constrained,ondgistance positionaliolerance
velocity; olerance | |
inter bondid angle K [¢] 42
Required features: BOND_ANGLE_HARMONIC, BOND_ANGLE_COSINE or BOND_ANGLE_-
COSSQUARE |
inter bondid dihedral n K p 42|
inter bondid tabulated bond filename 43
inter bondid tabulated angle filename
inter bondid tabulated dihedral filename L]
inter bondid virtual_bond 44
inter coulomb 0.0 44
inter coulomb [lp method] [parameters]
inter coulomb ||
inter coulomb p3m 7oy mesh cao alpha 45|
inter coulomb p3m (tune | tunev2) accuracy accuracy L[
[r_cut 7cut| [mesh mesh] [cao cao] [alpha «f | |
inter coulomb dh K 7eut E
inter coulomb mmm2d mazimal_pairwise_error |fized _far_cutoff] 46|
inter coulomb mmmld switch_radius [bessel_cutoff] mazimal_pairwise_error F
inter coulomb mmmld tune mazimal_pairwise_error

inter coulomb maggs f_mass mesh field_friction [yukawa kappa Teut]

inter coulomb elc mazimal_pairwise_error gap_size |[far_cutoff]

inter typeidl typeidl comfixed flag

inter typeidl typeid2 comforce flag dir force fratio

setmd wvariable
setmd wvariable [value]+

thermostat langevin t{emperature gamma

thermostat dpd temperature gamma 7_cut

thermostat npt_isotropic temperature gammal gammaV

thermostat off

thermostat

R EEEEE]

128

nemd exchange n_slabs n_exchange
nemd shearrate n_slabs shearrate
nemd off

nemd

nemd profile

nemd viscosity

cellsystem domain_decomposition [-no_verlet_list]

cellsystem nsquare

cellsystem layered n_layers

integrate steps
integrate set method [parameter]. . .

g E]E]

change_volume View
change_volume Lyew (x| v | 2 | xy2)

[l
D

stopParticles
stop_particles

|
~J

velocities vmax [start pid] [count N]

invalidate_system

parallel_tempering::main -rounds N -swap swap -perform perform
[-init init] [-values {T;}| [-connect master| [-port port]

[-load jnode] [~Tresrate Nieset| [~info info]

A=

parallel_tempering::set_shareddata data

analyze mindist [type_list_a type_list_b]
analyze distto pid
analyze distto z y 2

cnlcnl
oo |l oo

analyze nbhood pid r_catch
analyze nbhood z y 2z r.atch

[=2)
[\)

analyze distribution part_type_list_a part_type_list_b
[rmin [rmazx [rbins [log_flag [int_flag]]]]]

|
w

analyze (rdf | <rdf>) part_type_list_a part_type_list_b [rmin rmax rbins]

analyze structurefactor type order

analyze vanhove type rmin rmaz rbins

analyze centermass part;ype

analyze momentofinertiamatrix typeid
analyze find_principal_axis typeid

analyze aggregation dist_criteria s-mol_id f_mol_id
[min_contact [charge_criterial]

analyze necklace pearl_treshold back_dist space_dist first length

analyze holes typeidyrone mesh_size

E3 E3 = I

—_

29

analyze energy

analyze energy (total | kinetic | coulomb)
analyze energy bonded bondid

analyze energy nonbonded typeidl typeid?2

66

analyze pressure

analyze pressure total

analyze pressure (totals | ideal | coulomb |
tot_nonbonded_inter | tot_nonbonded_intra)

analyze pressure bonded bondid

analyze pressure nonbonded typeidl typeid?2

analyze pressure nonbonded_intra [typeid]

analyze pressure nonbonded_inter [typeid|

67

analyze stress_tensor

analyze stress_tensor total

analyze stress_tensor (totals | ideal | coulomb |
tot_nonbonded_inter | tot_nonbonded_intra)

analyze stress_tensor bonded bond;ype

analyze stress_tensor nonbonded typeidl typeid?2

analyze stress_tensor nonbonded_intra [typeid]

analyze stress_tensor nonbonded_inter [typeid|

67

analyze local_stress_tensor periodic_x periodic_y periodic_z range_start_x
range_start_y range_start_z range_x range_y range_z bins_z bins_y

bins_z

68

analyze set chains [chain_start n_chains chain_length)]
analyze set chains

69

analyze (re | <re>) [chain_start n_chains chain_length]

70

analyze (rg | <rg>) [chain_start n_chains chain_length]

71

analyze (rh | <rh>) [chain_start n_chains chain_length]

71

analyze

internal_dist | <internal_dist>) [chain_start n_chains chain_ler

il

analyze (bond_dist | <bond_dist>) [index index]
[chain_start n_chains chain_length)

72

analyze (bond_l | <bond_1>) [chain_start n_chains chain_length]

72

analyze (formfactor | <formfactor>) gmin gmax qbins
[chain_start n_chains chain_length]

72

analyze rdfchain rmin rmaz rbins [chainstart nchains chainjength]

analyze (<gl>| <g2>| <g3>) [chainstart n.hains chainjength]
analyze g123 [-init] [chainstart nc.hains chainength]

analyze append
analyze remove [inder]
analyze replace index
analyze push [size]
analyze configs config

130

analyze configs
analyze stored

74

plotObs file { x1:yl z2:y2

..} [titles { titlel title2 ...}]

[labels { zlabel [ylabel] }] [scale gnuplot — scale]
[cmd gnuplot — command] [out filebase]

75

plotJoin { sourcel source2 ...} final hﬂ
calcObAv file index [start] 76
calcObErr file index [start]

calcObsAv file { il i2 ...} [start]

nameObsAv file { namel name2 ...} [start]

findObsAv wval what

uwerr data nrep col [s_tau] [plot]
uwerr data nrep f [s_tau [f_args]] [plot]

76

blockfile
blockfile

channel
channel

variable {warnamel wvarname2 ...}
variable all

write
write

77

blockfile
blockfile
blockfile

channel
channel
channel

tclvariable { warnamel varname2 ...}
tclvariable all
tclvariable reallyall

write
write
write

77

blockfile
blockfile
blockfile

channel
channel
channel

particles what (range | all)
bonds range
interactions

write
write
write

79

blockfile
blockfile
blockfile
blockfile

channel
channel
channel
channel

random
bit_random
seed
bitseed

write
write
write
write

79

blockfile

channel

write configs

blockfile
blockfile
blockfile

channel
channel
channel

write
write

start fag
end

write tag [arg]. ..

z|iz)|
el | K==}

blockfile
blockfile
blockfile

channel
channel
channel

read start
read toend
read (particles | interactions | bonds | variable |

seed | random | bitrandom | configs)
blockfile channel read auto

checkpoint_set destination [numconfigs [tclvar [iaflag [varflag [ranflag]]]]]

checkpoint_read source

polyBlockWrite path (param_list | all) part_list

polyBlockWriteAll destination [(tclvar | all) [(whatever |-)
[(state | seed |-)]]]

writepsf file [-molecule] Np MPC N¢I N,S N,S

I ZE]

131

writepdb file 34

writepdbfoldchains file chain_start n_chains chain_length box_l

writepdbfoldtopo file shift

writevsf channelld [(short | verbose)| [radius (radii | auto)] 85
[typedesc typedesc]

writevcf channelld [(short | verbose)| [(folded | absolute)] 85
[pids (pids | all)]

vtfpid pid 36

imd connect [port] 7]

imd positions [(-unfolded |-fold_chains)]

imd listen seconds

imd disconnect

prepare_vmd_connection [filename [wait [start]]] 87

countBonds particlejist 38

findPropPos particle,roperty ist property 89

findBondPos particle,roperty;ist 91

timeStamp path prefix postfix suffix

132

B. Features

This chapter describes the features that can be activated in ESPResSo. Even if possible, it
is not recommended to activate all features, because this will negatively effect ESPResSo’s
performance.

Features can be activated in the configuration header myconfig.h (see section on
page [20). Too activate FEATURE, add the following line to the header file:

#define FEATURE

B.1. General features

e PARTIAL_PERIODIC By default, all coordinates in ESPResSo are periodic. With
PARTIAL_PERIODIC turned on, the ESPResSo global variable periodic (see sec-
tion on page controls the periodicity of the individual coordinates. Note
that this slows the integrator down by around 10 — 30%.

e ELECTROSTATICS This switches on the various electrostatics algorithms, such as
P3M. See section [5.4] on page [45] for details on these algorithms.

e ROTATION Switch on rotational degrees of freedom for the particles, as well as the
corresponding quaternion integrator. See section ?? on page [77] for details. Note,
that when the feature is activated, every particle has three additional degrees of
freedom, which might severely influence the temperature measurements.

e DIPOLES This activates the dipole support in P3M. Currently, a mixing of dipoles
and charges is not possible, i.e. all particles have to have charge ¢ = 0. Requires
ELECTROSTATICS and ROTATION.

e EXTERNAL_FORCES Allows to define an arbitrary constant force for each particle
individually. Also allows to fix individual coordinates of particles, e.g. keep them
at a fixed position or within a plane.

e CONSTRAINTS Turns on various spatial constraints such as spherical compartments
or walls. This constraints interact with the particles through regular short ranged
potentials such as the Lennard—Jones potential. See section on page for
possible constraint forms.

e MASS Allows particles to have individual masses. Note that some analysis proce-
dures have not yet been adapted to take the masses into account correctly.

e EXCLUSIONS Allows to exclude specific short ranged interactions within molecules.

133

Docs for rotation
missing

| Docs missing

| Docs missing

| Docs missing

I How to use it?

| Docs missing

| Docs missing

| Docs missing

| Docs missing

COMFORCE

COMFIXED

MOLFORCES

BOND_CONSTRAINT Turns on the RATTLE integrator which allows for fixed lengths
bonds between particles.

In addition, there are switches that enable additional features in the integrator:

e NEMD Enables the non-equilbrium (shear) MD support (see section ?? on page .

e NPT Enables an on-the—fly NPT integration scheme (see section ?? on page .

e DPD Enables the dissipative particle dynamics thermostat (see section 77 on page.
e LB Enables the lattice-Boltzmann fluid code (see section ?? on page [77)).

B.2. Interactions

The following switches turn on various short ranged interactions (see section on
page [35)):

e TABULATED Enable support for user—defined interactions.
e LENNARD_JONES Enable the Lennard—Jones potential.

e LJ_WARN_WHEN_CLOSE This adds an additional check to the Lennard—Jones poten-
tial that prints a warning of particles come too close so that the simulation becomes
unphysical.

e MORSE Enable the Morse potential.

e LJCOS Enable the Lennard—Jones potential with a cosine—tail.
e LJCOS2

e BUCKINGHAM Enable the Buckingham potential.

e SOFT_SPHERE Enable the soft sphere potential.

If you want to use bondangle potentials, you currently need to choose the type by
the feature (see section on page [43). This will change in the near future to three
independent angle potentials:

e BOND_ANGLE_HARMONIC
e BOND_ANGLE_COSINE

e BOND_ANGLE_COSSQUARE

134

B.3. Debug messages

Finally, there are a number of flags for debugging. The most important one are

ADDITIONAL_CHECKS Enables numerous additional checks which can detect incon-
sistencies especially in the cell systems. This checks are however too slow to be
enabled in production runs.

MEM_DEBUG Enables an internal memory allocation checking system. This produces
output for each allocation and freeing of a memory chunk, and therefore allows to
track down memory leaks. This works by internally replacing malloc, realloc
and free.

The following flags control the debug output of various sections of Espresso. You will
however understand the output very often only by looking directly at the code.

COMM_DEBUG Output from the asynchronous communication code.

EVENT_DEBUG Notifications for event calls, i. e. the on_? functionsin initialize.c.
Useful if some module does not correctly respond to changes of e. g. global vari-
ables.

INTEG_DEBUG Integrator output.
CELL_DEBUG Cellsystem output.

GHOST_DEBUG Cellsystem output specific to the handling of ghost cells and the
ghost cell communication.

GHOST_FORCE_DEBUG

VERLET_DEBUG Debugging of the Verlet list code of the domain decomposition cell
system.

LATTICE_DEBUG Universal lattice structure debugging.
HALO_DEBUG

GRID_DEBUG

PARTICLE_DEBUG Output from the particle handling code.
P3M_DEBUG

ESR_DEBUG debugging of P3Ms real space part.
ESK_DEBUG debugging of P3Ms k-space part.
EWALD_DEBUG

FFT_DEBUG Output from the unified FFT code.

135

MAGGS_DEBUG

RANDOM_DEBUG

FORCE_DEBUG Output from the force calculation loops.
THERMO_DEBUG Output from the thermostats.
LJ_DEBUG Output from the Lennard—Jones code.
MORSE_DEBUG Output from the Morse code.
FENE_DEBUG

ONEPART_DEBUG Define to a number of a particle to obtain output on the forces
calculated for this particle.

STAT_DEBUG

POLY_DEBUG

MOLFORCES_DEBUG

LB_DEBUG Output from the lattice-Boltzmann code.

ASYNC_BARRIER Introduce a barrier after each asynchronous command completion.
Helps in detection of mismatching communication.

FORCE_CORE Causes ESPResSo to try to provoke a core dump when exiting unex-
pectedly.

MPI_CORE Causes ESPResSo to try this even with MPI errors.

136

C. Sample scripts

In the directory ESPResSo/samples you find several scripts that can serve as samples
how to use ESPResSo.

lj_liquid.tcl Simple Lennard-Jones particle liquid. Shows the basic features of ESPResSo:
How to set up system parameters, particles and interactions. How to warm up and
integrate. How to write parameters, configurations and observables to files. How
to handle the connection to VMD.

kremerGrest.tcl This reproduces the data of Kremer and Grest [9]: Multiple systems
with different number of neutral polymer chains of various lengths are simulated for
very long times at melt density 0.85 while their static and some dynamic properties
are measured. Shows the advanced features of ESPResSo: How to run several sim-
ulations from a single script. How to use online-analysis (The analyze command)
with comparision to expectation values. How to get averages of the observables.
How to set /restore checkpoints (Using Checkpoints, saving configurations) includ-
ing auto-detection of previously derived parts of the simulation(s). How to create
gnuplots from within the script and combine multiple plots onto duplex pages (Sta-
tistical Analysis and Creating Gnuplots). In the end the script will provide plots
of all important quantities as .ps- and .pdf-files while compressing the data-files.
Note however, that the simulation uses the original time scale, hence it may take
quite some time to finish.

pe_solution.tcl Polyelectrolyte solution under poor solvent condition. Test case for com-
parison with data produced by polysim9 from M.Deserno. Note that the equili-
bration of this system takes roughly 150007.

pe_analyze.tcl Example for doing the analysis after the actual simulation run (offline
analysis). Calculates the integrated ion distribution P(r) for several different time
slaps, compares them and presents the final result using gnuplot to generate some
ps-files.

harmonic_oscillator.tcl A chain of harmonic oscillators. This is a 7' = 0 simulation to
test the energy conservation.

espresso_logo.tcl The ESPResSo-logo, the exploding espresso cup, has been created with
this script. It is a regular simulation of a polyelectrolyte solution. It makes use of
some nice features of the part command (see section on page namely the
capability to fix a particle in space and to apply an external force.

137

watch.tcl Script to visualize any of your productions. Use the -h option when calling
it to see how it works.

138

D. Conversion of Deserno files

The following procedures are found in scripts/convertDeserno.tcl.
e convertDeserno2MD <source_file> <destination_file>

converts the particle configuration stored in source_file from Deserno-format into
blockfile-format, importing everything to ESPResSo and writing it to destination_file.
The full particle information, bonds, interactions, and parameters will be converted
and saved. If destination_file is ”-1”, the data is only loaded into ESPResSo and
nothing is written to disk. If destination_file has the suffix . gz, the output-file will
be compressed. The script uses some assumptions, e. g. on the particle_type_numbers
of The part command for polymers, counter-ions, or on sigma, shift, offset for
Lennard-Jones-potentials (The inter command; current defaults are 2.0, 0, 0, re-
spectively); these are all set by

initConversion

(which is automatically called by convertDeserno2MD) so have a look at the source-
code of convertDeserno.tcl in the scripts-directory for a complete list of as-
sumptions. However, if for some reasons different values need to be set, it is possible
to bypass the initialization routine and/or override the default values, e. g. by
explicitly executing initConversion, afterwards overwriting all variables which need
to be re-set, and manually invoking the main conversion script

convertDeserno2MDmain <source_file> <destination_file>
to complete the process.

e convertMD2Deserno <source_file> <destination_file>

converts the particle configuration stored in the ESPResSo-blockfile source_file into
a Deserno-compatible destination_file. If source_file is ”-1”, the data is entirely
taken from ESPResSo without loading anything from disk. If source_file has the
suffix .gz, it is assumed to be compressed; otherwise it will be treated as con-
taining plain text. Since Deserno stores much more than ESPResSo does due to a
centralized vs. a local storage policy, it depends on correct values for the following
properties, which therefore should be contained in source_file:

1. the particle_type_number used for polymers, counter-ions, and salt-molecules
(defaults are: set type_P 0, set type_CI 1, and set type_S 2

139

2. the bond_type_number used for FENE-interactions (default is: set type_-
FENE 0)

As for convertDeserno2MD, the defaults are set upon initialization by
initConversion

(which is automatically called by convertMD2Deserno as well), but may be over-
written the same way as explained for tcl_convertDeserno2MD. However, parame-
ters stored in source_file cannot (and will not) be overwritten, because they were
part of the system originally saved and should not be altered initially. Note, that
some entries in a Deserno-file cannot be determined at all, these are by default set
to

set prefix AA000O
set postfix O

set seed -1

set startTime -1
set endTime -1

set integrationSteps -1
set saveResults -1
set saveConfig -1
set subbox_1D -1
set ip -1

set step -1

but of course may be overwritten as well after calling initConversion and before
continuing with

convertMD2DesernoMain <source_file> <destination_file>

the actual conversion process. The Deserno-format assumes knowledge of the topol-
ogy, hence a respective analysis is conducted to identify the type and structure of
the polymer network. The script allows for randomly stored polymer solutions and
melts, no matter how they’re messed up; however, crosslinked networks need to
be aligned to be recognized correctly, i.e. they must be set up consecutively, such
that the first chain with $MPC monomers corresponds to the first $MPC particles
in [part], the 2nd one to the $MPC following particles, etc. etc.

e [t is now possible to save the whole state of ESPResSo, including all parameters
and interactions. These scripts make use of that advantage by storing everything
they find in the Deserno-file - but vice versa they also expect you to provide a
blockfile containing all possible informations.

These conversion scripts have been tested with both polymer melts and end-to-end-
crosslinked networks in systems with or without counterions. It should work with addi-
tional salt-molecules or neutral networks as well, although that hasn’t been tested yet

140

- if you’ve some of these systems in a Deserno-formated file, please submit them for
extensive analysis.

141

E. Maggs algorithm

142

F.

1]

[12]

[13]

Bibliography

M. Deserno. Counterion condensation for rigid linear polyelectrolytes. PhD thesis,
Universitat Mainz, 2000.

M. Deserno and C. Holm. How to mesh up Ewald sums. i. J. Chem. Phys., 109:
7678, 1998.

M. Deserno and C. Holm. How to mesh up Ewald sums. ii. J. Chem. Phys., 109:
7694, 1998.

M. Deserno, C. Holm, and H. J. Limbach. Molecular Dynamics on Parallel Com-
puters, chapter How to mesh up Ewald sums. World Scientific, Singapore, 2000.

P.P. Ewald. Die berechnung optischer und elektrostatischer gitterpotentiale. Ann.
Phys., 64:253-287, 1921.

Gary S. Grest and Kurt Kremer. Molecular dynamics simulation for polymers in
the presence of a heat bath. Phys. Rev. A, 33(5):3628-31, 1986.

R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. 10P,
1988.

Jiri Kolafa and John W. Perram. Cutoff errors in the ewald summation formulae
for point charge systems. Molecular Simulation, 9(5):351-368, 1992.

K. Kremer and G. S. Grest. Dynamics of entangled linear polymer melts: A
molecular-dynamics simulation. J. Chem. Phys., 92:5057, 1990.

H. J. Limbach and C. Holm. Single-chain properties of polyelectrolytes in poor
solvent. J. Phys. Chem. B, 107(32):8041-8055, 2003.

Heiko Schmitz and Florian Muller-Plathe. Calculation of the lifetime of positronium
in polymers via molecular dynamics simulations. J. Chem. Phys., 112(2):1040-1045,
2000. URL http://1link.aip.org/link/?JCP/112/1040/1

T. Soddemann, B. Diinweg, and K. Kremer. A generic computer model for am-
phiphilic systems. Fur. Phys. J. E, 6:409, 2001.

Ulli Wolff. Monte carlo errors with less errors. Comput. Phys. Commun., 156:
143-153, 2004.

143

http://link.aip.org/link/?JCP/112/1040/1

Index

aggregation, [62]
analysis,

aggregation, [62]
bond distances,

bond lengths,
center of mass,

chains, [67]

end-to-end distance of a chain, [67]
energies, [63]

finding holes,

form factor of a chain,
hydrodynamic radius of a chain,
internal distances within a chain,
local stress tensor,

minimal particle distance,
moment of inertia matrix,
particle distance,

particle distribution,

particles in the neighbourhood,
pearl-necklace structures,

pressure, [64]
principal axis of the moment of in-

ertia, [62]
radial distribution function,
radial distribution function g(r),
radius of gyration of a chain,
stress tensor, [65]
structure factor S(q),

topologies, [67]

van Hove autocorrelation function G(r, t),

01

analyze (Tcl-command),

blockfile (Tcl-command),
blocks, [77]

BMHTTF interaction,

bond distances,

bond lengths,

bond-angle interactions,
bonded interaction type id,
bonded interactions,
box_1 (global variable),
Buckingham interaction,
build directory,

cell_grid (global variable),
cell_size (global variable),
cellsystem (Tcl-command),
center of mass,

chains,

change_volume (Tcl-command),
checkpoint_read (Tcl-command),
checkpoint_set (Tcl-command),
configuration header,

configure,

configure options,

constraint (Tcl-command),
Coulomb interactions,
counterions (Tcl-command),
crosslink (Tcl-command),

Debye-Hiickel potential,
diamond (Tcl-command),
dihedral interactions,
domain decomposition, [51]
dpd_gamma (global variable),
dpd_r_cut (global variable),

ELC method,
end-to-end distance of a chain, [67]

144

energies, [63]
energy unit, 5]

features,

ADDITIONAL_CHECKS,
ASYNC_BARRIER,
BOND_ANGLE_COSINE,
BOND_ANGLE_COSSQUARE, [T30]
BOND_ANGLE_HARMONIC, [T30]
BOND_CONSTRAINT,
BUCKINGHAM,
CELL_DEBUG, [[3]]

COMFIXED, [130]

COMFORCE,
COMM_DEBUG,
CONSTRAINTS, [129]

DIPOLES,

DPD,
ELECTROSTATICS, [[29]

ESK_DEBUG,
ESR_DEBUG,
EVENT_DEBUG,
EWALD_DEBUG,
EXCLUSIONS,
EXTERNAL FORCES,
FENE_DEBUG, [132]
FFT_DEBUG,
FORCE_CORE,
FORCE_DEBUG,
GHOST_DEBUG,
GHOST_FORCE DEBUG,
GRID_DEBUG,
HALO_DEBUG, [131]
INTEG_DEBUG,
LATTICE_DEBUG,
LB,

LB_DEBUG,
LENNARD_JONES,

LJ DEBUG,
LJ_WARN_WHEN_CLOSE, [T30]
LJCOS,

LJCOS2,
MAGGS_DEBUG, [I32]

MASS,

MEM _DEBUG,
MOLFORCES, [T30]
MOLFORCES_DEBUG,
MORSE,
MORSE_DEBUG, [132]
MPI_CORE,

NEMD,
NPT,
ONEPART_DEBUG, [[32]
P3M_DEBUG,
PARTIAL_PERIODIC,
PARTICLE_DEBUG, [I3]]
POLY DEBUG,
RANDOM_DEBUG,
ROTATION,
SOFT_SPHERE,
STAT_DEBUG,
TABULATED,
THERMO_DEBUG, [I32]
VERLET_DEBUG,

FENE bond,

FFTW, [

finding holes,

form factor of a chain,

gamma (global variable),
Gay-Berne interaction,

global variables, [75]
box_1, [47]
cell_grid, @7]
cell_size, [@7]
dpd_gamma, [47|
dpd_r_cut, [47]
gamma, [47]
integ_switch, 47
local_box_1, 47
max_cut, [47]
max_num_cells, [47)
max_part, [47]

max_range, [47]
max_skin, [47]

min_num_cells, [47)
n_layers, [48]

n_nodes, (48|

145

n_part_types, 48|
n_part, [48]
node_grid, [4§|
npt_p_ext, [4§|
npt_p_inst, 48]
nptiso_gamma0, 48]
nptiso_gammav, 48]
periodicity, 48]
piston, [48]

skin, [48§]

temperature, 48]
thermo_switch, 4§
time_step, [4§
time, 48|

timings, 4§
transfer_rate, 48]
verlet_flag, [48]
verlet_reuse, 4§

harmonic bond,
hydrodynamic radius of a chain,

icosaeder (Tcl-command),
imd (Tcl-command),
Installation, 15
installation directory,
integ_switch (global variable),
integrate (Tcl-command),
inter (Tcl-command),
interactions, [37]

BMHTF,

bond-angle,

bonded,

Buckingham,

Coulomb,

Debye-Hiickel,

dihedral,

ELC method,

FENE,

Gay-Berne,

harmonic,

Lennard-Jones,

Lennard-Jones cosine,

Maggs’ method,

MMM1D,
MMM2D,
Morse,
non-bonded,
P3M, @2
rigid bond,
smooth-step,
soft-sphere,
subtracted Lennard-Jones,
tabulated,
tabulated bond,
interactive mode,
internal distances within a chain,
invalidate_system (Tcl-command),

length unit,

Lennard-Jones cosine interaction,
Lennard-Jones interaction,

local stress tensor,

local_box_1 (global variable),

Maggs’ method,

make,

max_cut (global variable),
max_num_cells (global variable),
max_part (global variable),
max_range (global variable),
max_skin (global variable),
min_num_cells (global variable), [47]
minimal particle distance,
MMM1D method,

MMM2D method,

moment of inertia matrix,
momentum exchange method,
Morse interaction, [34]

MPL [f]

myconfig.h,

n_layers (global variable),
n_nodes (global variable),
n_part (global variable),
n_part_types (global variable),
NEMD,

nemd (Tcl-command),
node_grid (global variable),

146

Non-bonded interactions,
npt_p_ext (global variable),
npt_p_inst (global variable),
nptiso_gammaO (global variable),
nptiso_gammav (global variable),

P3M method,

parallel_tempering (Tcl-command),

part (Tcl-command),

particle distance,

particle distribution,

particles in the neighbourhood,

pearl-necklace structures,

periodicity (global variable),

physical units,

piston (global variable),

polymer (Tcl-command),

prepare_vmd_connection (Tcl-command),
89|

pressure, [64]

principal axis of the moment of inertia,
62|

quick reference of Tcl-commands, [122]

radial distribution function, [70]
radial distribution function g¢(r),
radius of gyration of a chain, [67]
random number generators, [70]
random seed, [76]

RATTLE, B3

requirements, [0]

rigid bond,

salt (Tcl-command),

setmd (Tcl-command),
shear-rate method,

skin (global variable),
smooth-step interaction,
soft-sphere interaction,

source directory,
stop_particles (Tcl-command),
stopParticles (Tcl-command),
stored configurations,

stress tensor, [65]

structure factor S(q),
subtracted Lennard-Jones bond,

tabulated bond interactions,
tabulated interaction,
Tecl global variables,
Tcl-commands
analyze, [59]
blockfile, [75]
cellsystem, [51]
change_volume, [53]
checkpoint_read, [79|
checkpoint_set, [79]
constraint, 29|
counterions, [25]
crosslink, [28]
diamond, [26]
icosaeder, [27)
imd, [84]
integrate, [53]
inter, [37]

invalidate_system, [54]

nemd, 50|
parallel_tempering, [54]
part, [21]

polymer, [24]
prepare_vmd_connection, |8;5|
salt, [26]

setmd, [47)

stop_particles, [53]
stopParticles, [53]
thermostat, 48]
uwerr, [73]
velocities, [53]
writepdb, [8]]
writepdbfoldchains, [87]
writepdbfoldtopo, 8]
writepsf, [8]]
writevct, [83]
writevst, 82
Tcl/ Tk, [6]
temperature (global variable),
thermo_switch (global variable),
thermostat (Tcl-command),

147

time (global variable),

time unit, [5]

time_step (global variable),
timings (global variable),
topologies, [67]

transfer_rate (global variable),

units, [
uwerr (Tcl-command),

van Hove autocorrelation function G(r, t),
velocities (Tcl-command),
verlet_flag (global variable),
verlet_reuse (global variable),

whitespace,

writepdb (Tcl-command),
writepdbfoldchains (Tcl-command),
writepdbfoldtopo (Tcl-command),
writepsf (Tcl-command),

writevcf (Tcl-command),

writevsf (Tcl-command),

148

	Contents
	Introduction
	Guiding principles
	Algorithms contained in ESPResSo
	Basic program structure
	On units
	Requirements
	Syntax description

	First steps
	Quick installation
	Running ESPResSo
	Creating the first simulation script
	tutorial.tcl

	Compiling and installing ESPResSo
	Source and build directories
	myconfig.h: Activating and deactivating features
	Running configure
	Options

	make: Compiling, testing and installing ESPResSo
	Installation directories

	Running ESPResSo

	Setting up particles
	part: Creating single particles
	Defining particle properties
	Getting particle properties
	Deleting particles
	Exclusions

	Creating groups of particle
	polymer: Setting up polymer chains
	counterions: Set up counterions
	salt: Set up salt ions
	diamond: Setting up diamond polymer networks
	icosaeder: Setting up an icosaeder
	crosslink: Cross-linking polymers

	constraint: Setting up constraints
	Deleting a constraint
	Getting the force on a constraint
	Getting the currently defined constraints

	Setting up interactions
	Getting the currently defined interactions
	Non-bonded, short-ranged interactions
	Lennard-Jones interaction
	Lennard-Jones cosine interaction
	Smooth step interaction
	BMHTF potential
	Morse interaction
	Buckingham interaction
	Soft-sphere interaction
	Gay-Berne interaction
	Tabulated interaction
	Capping the force during warmup

	Bonded interactions
	FENE bond
	Harmonic bond
	Subtracted Lennard-Jones bond
	Rigid bonds
	Bond-angle interactions
	Dihedral interactions
	Tabulated bond interactions
	Virtual bonds

	Coulomb interaction
	P3M
	Debye-Hückel potential
	MMM2D
	MMM1D
	Maggs' method
	ELC

	Other interaction types
	Fixing the center of mass
	Pulling particles apart

	Setting up the system
	setmd: Setting global variables.
	thermostat: Setting up the thermostat
	Langevin thermostat
	Dissipative Particle Dynamics (DPD) thermostat
	Isotropic NPT thermostat
	Turning off all thermostats
	Getting the parameters

	nemd: Setting up non-equilibrium MD
	cellsystem: Setting up the cell system
	Domain decomposition
	N-squared
	Layered cell system

	Running the simulation
	integrate: Running the simulation
	change_volume: Changing the box volume
	Stopping particles
	velocities: Setting the velocities
	invalidate_system
	Parallel tempering

	Analysis
	Measuring observables
	Minimal distances between particles
	Particles in the neighbourhood
	Particle distribution
	Radial distribution function
	Structure factor
	Van-Hove autocorrelation function G(r,t)
	Center of mass
	Moment of intertia matrix
	Aggregation
	Identifying pearl-necklace structures
	Finding holes
	Energies
	Pressure
	Stress Tensor
	Local Stress Tensor

	Topologies
	Chains

	Storing configurations
	Storing and removing configurations
	Getting the stored configurations

	Statistical analysis and plotting
	Plotting
	Joining plots
	Computing averages and errors

	uwerr: Computing statistical errors in time series

	Input / Output
	blockfile: Using the structured file format
	Writing ESPResSo's global variables
	Writing Tcl variables
	Writing particles, bonds and interactions
	Writing the random number generator states
	Writing all stored configurations
	Writing arbitrary blocks
	Reading blocks

	Checkpointing
	Creating a checkpoint
	Reading a checkpoint
	Writing a checkpoint 2
	Writing a checkpoint 3

	Writing PDB/PSF files
	writepsf: Writing the topology
	writepdb: Writing the coordinates

	Writing VTF files
	writevsf: Writing the topology
	writevcf: Writing the coordinates
	vtfpid: Translating ESPResSo particles ids to VMD particle ids

	Online-visualisation with VMD
	imd: Using IMD in the script
	Using IMD in VMD
	Automatically setting up a VMD connection

	Errorhandling

	Auxilliary commands
	Finding particles and bonds
	countBonds
	findPropPos
	findBondPos
	timeStamp

	Additional Tcl math-functions
	t_random
	The bit_random command

	Checking for features of ESPResSo

	External package: mbtools
	Introduction
	Installing and getting started
	The main.tcl script
	Variables used by main.tcl

	Analysis
	Basic commands
	Available analysis routines
	Adding a new routine

	System generation
	Basic commands
	Available geometries
	Adding a new geometry
	Available molecule types
	Adding a new molecule type

	Utils
	Setup commands
	Warmup commands
	Topology procs
	Math procs
	Miscellaneous procs

	mmsg
	Basic commands
	Control commands

	Under the hood
	Internal particle organization

	Getting involved
	ESPResSo quick reference
	Features
	General features
	Interactions
	Debug messages

	Sample scripts
	Conversion of Deserno files
	Maggs algorithm
	Bibliography
	Index

