gnats-diffs
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Changes to gnats/gnats/regex.c


From: Milan Zamazal
Subject: Changes to gnats/gnats/regex.c
Date: Mon, 10 Dec 2001 17:00:21 -0500

Index: gnats/gnats/regex.c
diff -c gnats/gnats/regex.c:1.3 gnats/gnats/regex.c:1.4
*** gnats/gnats/regex.c:1.3     Fri May 19 23:50:20 2000
--- gnats/gnats/regex.c Mon Dec 10 17:00:21 2001
***************
*** 1,9 ****
! /* Extended regular expression matching and search library,
!    version 0.12.
!    (Implements POSIX draft P10003.2/D11.2, except for
     internationalization features.)
  
!    Copyright (C) 1993 Free Software Foundation, Inc.
  
     This program is free software; you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published by
--- 1,8 ----
! /* Extended regular expression matching and search library, version
!    0.12.  (Implements POSIX draft P1003.2/D11.2, except for some of the
     internationalization features.)
  
!    Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
  
     This program is free software; you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published by
***************
*** 12,92 ****
  
     This program is distributed in the hope that it will be useful,
     but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     GNU General Public License for more details.
  
     You should have received a copy of the GNU General Public License
     along with this program; if not, write to the Free Software
!    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 
 */
  
  /* AIX requires this to be the first thing in the file. */
! #if defined (_AIX) && !defined (REGEX_MALLOC)
    #pragma alloca
  #endif
  
  #define _GNU_SOURCE
  
  /* We need this for `regex.h', and perhaps for the Emacs include files.  */
! #include <sys/types.h>
  
! #ifdef HAVE_CONFIG_H
! #include "config.h"
  #endif
  
  /* The `emacs' switch turns on certain matching commands
     that make sense only in Emacs. */
  #ifdef emacs
  
! #include "lisp.h"
! #include "buffer.h"
! #include "syntax.h"
  
! /* Emacs uses `NULL' as a predicate.  */
! #undef NULL
  
! #else  /* not emacs */
  
- /* We used to test for `BSTRING' here, but only GCC and Emacs define
-    `BSTRING', as far as I know, and neither of them use this code.  */
- #if HAVE_STRING_H || STDC_HEADERS
- #include <string.h>
- #ifndef bcmp
- #define bcmp(s1, s2, n)       memcmp ((s1), (s2), (n))
- #endif
- #ifndef bcopy
- #define bcopy(s, d, n)        memcpy ((d), (s), (n))
- #endif
- #ifndef bzero
- #define bzero(s, n)   memset ((s), 0, (n))
- #endif
- #else
- #include <strings.h>
- #endif
  
! #ifdef STDC_HEADERS
! #include <stdlib.h>
! #else
  char *malloc ();
  char *realloc ();
! #endif
  
  
  /* Define the syntax stuff for \<, \>, etc.  */
  
! /* This must be nonzero for the wordchar and notwordchar pattern
!    commands in re_match_2.  */
! #ifndef Sword 
! #define Sword 1
  #endif
  
! #ifdef SYNTAX_TABLE
  
! extern char *re_syntax_table;
  
! #else /* not SYNTAX_TABLE */
  
  /* How many characters in the character set.  */
! #define CHAR_SET_SIZE 256
  
  static char re_syntax_table[CHAR_SET_SIZE];
  
--- 11,386 ----
  
     This program is distributed in the hope that it will be useful,
     but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.        See the
     GNU General Public License for more details.
  
     You should have received a copy of the GNU General Public License
     along with this program; if not, write to the Free Software
!    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
!    USA.        */
! 
! /* TODO:
!    - structure the opcode space into opcode+flag.
!    - merge with glibc's regex.[ch].
!    - replace (succeed_n + jump_n + set_number_at) with something that doesn't
!      need to modify the compiled regexp so that re_match can be reentrant.
!    - get rid of on_failure_jump_smart by doing the optimization in re_comp
!      rather than at run-time, so that re_match can be reentrant.
! */
  
  /* AIX requires this to be the first thing in the file. */
! #if defined _AIX && !defined REGEX_MALLOC
    #pragma alloca
  #endif
  
+ #undef        _GNU_SOURCE
  #define _GNU_SOURCE
  
+ #ifdef HAVE_CONFIG_H
+ # include <config.h>
+ #endif
+ 
+ #if defined STDC_HEADERS && !defined emacs
+ # include <stddef.h>
+ #else
  /* We need this for `regex.h', and perhaps for the Emacs include files.  */
! # include <sys/types.h>
! #endif
  
! /* Whether to use ISO C Amendment 1 wide char functions.
!    Those should not be used for Emacs since it uses its own.  */
! #if defined _LIBC
! #define WIDE_CHAR_SUPPORT 1
! #else
! #define WIDE_CHAR_SUPPORT \
!       (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
! #endif
! 
! /* For platform which support the ISO C amendement 1 functionality we
!    support user defined character classes.  */
! #if WIDE_CHAR_SUPPORT
! /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
! # include <wchar.h>
! # include <wctype.h>
! #endif
! 
! #ifdef _LIBC
! /* We have to keep the namespace clean.  */
! # define regfree(preg) __regfree (preg)
! # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
! # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
! # define regerror(errcode, preg, errbuf, errbuf_size) \
!       __regerror(errcode, preg, errbuf, errbuf_size)
! # define re_set_registers(bu, re, nu, st, en) \
!       __re_set_registers (bu, re, nu, st, en)
! # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
!       __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
! # define re_match(bufp, string, size, pos, regs) \
!       __re_match (bufp, string, size, pos, regs)
! # define re_search(bufp, string, size, startpos, range, regs) \
!       __re_search (bufp, string, size, startpos, range, regs)
! # define re_compile_pattern(pattern, length, bufp) \
!       __re_compile_pattern (pattern, length, bufp)
! # define re_set_syntax(syntax) __re_set_syntax (syntax)
! # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
!       __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
! # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
! 
! /* Make sure we call libc's function even if the user overrides them.  */
! # define btowc __btowc
! # define iswctype __iswctype
! # define wctype __wctype
! 
! # define WEAK_ALIAS(a,b) weak_alias (a, b)
! 
! /* We are also using some library internals.  */
! # include <locale/localeinfo.h>
! # include <locale/elem-hash.h>
! # include <langinfo.h>
! #else
! # define WEAK_ALIAS(a,b)
! #endif
! 
! /* This is for other GNU distributions with internationalized messages.  */
! #if HAVE_LIBINTL_H || defined _LIBC
! # include <libintl.h>
! #else
! # define gettext(msgid) (msgid)
! #endif
! 
! #ifndef gettext_noop
! /* This define is so xgettext can find the internationalizable
!    strings.  */
! # define gettext_noop(String) String
  #endif
  
  /* The `emacs' switch turns on certain matching commands
     that make sense only in Emacs. */
  #ifdef emacs
  
! # include "lisp.h"
! # include "buffer.h"
  
! /* Make syntax table lookup grant data in gl_state.  */
! # define SYNTAX_ENTRY_VIA_PROPERTY
  
! # include "syntax.h"
! # include "charset.h"
! # include "category.h"
! 
! # ifdef malloc
! #  undef malloc
! # endif
! # define malloc xmalloc
! # ifdef realloc
! #  undef realloc
! # endif
! # define realloc xrealloc
! # ifdef free
! #  undef free
! # endif
! # define free xfree
! 
! /* Converts the pointer to the char to BEG-based offset from the start.       
 */
! # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
! # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP 
(re_match_object)))
! 
! # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
! # define RE_STRING_CHAR(p, s) \
!   (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
! # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
!   (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
! 
! /* Set C a (possibly multibyte) character before P.  P points into a
!    string which is the virtual concatenation of STR1 (which ends at
!    END1) or STR2 (which ends at END2).  */
! # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2)              \
!   do {                                                                        
\
!     if (multibyte)                                                    \
!        {                                                              \
!        re_char *dtemp = (p) == (str2) ? (end1) : (p);                 \
!        re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
!        while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp));             \
!        c = STRING_CHAR (dtemp, (p) - dtemp);                          \
!        }                                                              \
!      else                                                             \
!        (c = ((p) == (str2) ? (end1) : (p))[-1]);                      \
!   } while (0)
  
  
! #else  /* not emacs */
! 
! /* If we are not linking with Emacs proper,
!    we can't use the relocating allocator
!    even if config.h says that we can.  */
! # undef REL_ALLOC
! 
! # if defined STDC_HEADERS || defined _LIBC
! #  include <stdlib.h>
! # else
  char *malloc ();
  char *realloc ();
! # endif
  
+ /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
+    If nothing else has been done, use the method below.  */
+ # ifdef INHIBIT_STRING_HEADER
+ #  if !(defined HAVE_BZERO && defined HAVE_BCOPY)
+ #   if !defined bzero && !defined bcopy
+ #    undef INHIBIT_STRING_HEADER
+ #   endif
+ #  endif
+ # endif
+ 
+ /* This is the normal way of making sure we have memcpy, memcmp and bzero.
+    This is used in most programs--a few other programs avoid this
+    by defining INHIBIT_STRING_HEADER.  */
+ # ifndef INHIBIT_STRING_HEADER
+ #  if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
+ #   include <string.h>
+ #   ifndef bzero
+ #    ifndef _LIBC
+ #     define bzero(s, n)      (memset (s, '\0', n), (s))
+ #    else
+ #     define bzero(s, n)      __bzero (s, n)
+ #    endif
+ #   endif
+ #  else
+ #   include <strings.h>
+ #   ifndef memcmp
+ #    define memcmp(s1, s2, n) bcmp (s1, s2, n)
+ #   endif
+ #   ifndef memcpy
+ #    define memcpy(d, s, n)   (bcopy (s, d, n), (d))
+ #   endif
+ #  endif
+ # endif
  
  /* Define the syntax stuff for \<, \>, etc.  */
  
! /* Sword must be nonzero for the wordchar pattern commands in re_match_2.  */
! enum syntaxcode { Swhitespace = 0, Sword = 1 };
! 
! # ifdef SWITCH_ENUM_BUG
! #  define SWITCH_ENUM_CAST(x) ((int)(x))
! # else
! #  define SWITCH_ENUM_CAST(x) (x)
! # endif
! 
! /* Dummy macros for non-Emacs environments.  */
! # define BASE_LEADING_CODE_P(c) (0)
! # define CHAR_CHARSET(c) 0
! # define CHARSET_LEADING_CODE_BASE(c) 0
! # define MAX_MULTIBYTE_LENGTH 1
! # define RE_MULTIBYTE_P(x) 0
! # define WORD_BOUNDARY_P(c1, c2) (0)
! # define CHAR_HEAD_P(p) (1)
! # define SINGLE_BYTE_CHAR_P(c) (1)
! # define SAME_CHARSET_P(c1, c2) (1)
! # define MULTIBYTE_FORM_LENGTH(p, s) (1)
! # define STRING_CHAR(p, s) (*(p))
! # define RE_STRING_CHAR STRING_CHAR
! # define CHAR_STRING(c, s) (*(s) = (c), 1)
! # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
! # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
! # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
!   (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
! # define MAKE_CHAR(charset, c1, c2) (c1)
! #endif /* not emacs */
! 
! #ifndef RE_TRANSLATE
! # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
! # define RE_TRANSLATE_P(TBL) (TBL)
  #endif
+ 
+ /* Get the interface, including the syntax bits.  */
+ #include "regex.h"
  
! /* isalpha etc. are used for the character classes.  */
! #include <ctype.h>
  
! #ifdef emacs
! 
! /* 1 if C is an ASCII character.  */
! # define IS_REAL_ASCII(c) ((c) < 0200)
! 
! /* 1 if C is a unibyte character.  */
! # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
! 
! /* The Emacs definitions should not be directly affected by locales.  */
! 
! /* In Emacs, these are only used for single-byte characters.  */
! # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
! # define ISCNTRL(c) ((c) < ' ')
! # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9')              \
!                    || ((c) >= 'a' && (c) <= 'f')      \
!                    || ((c) >= 'A' && (c) <= 'F'))
! 
! /* This is only used for single-byte characters.  */
! # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
! 
! /* The rest must handle multibyte characters.  */
! 
! # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c)                           \
!                   ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237)        \
!                   : 1)
  
! # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c)                           \
!                   ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237)       \
!                   : 1)
! 
! # define ISALNUM(c) (IS_REAL_ASCII (c)                        \
!                   ? (((c) >= 'a' && (c) <= 'z')       \
!                      || ((c) >= 'A' && (c) <= 'Z')    \
!                      || ((c) >= '0' && (c) <= '9'))   \
!                   : SYNTAX (c) == Sword)
! 
! # define ISALPHA(c) (IS_REAL_ASCII (c)                        \
!                   ? (((c) >= 'a' && (c) <= 'z')       \
!                      || ((c) >= 'A' && (c) <= 'Z'))   \
!                   : SYNTAX (c) == Sword)
! 
! # define ISLOWER(c) (LOWERCASEP (c))
! 
! # define ISPUNCT(c) (IS_REAL_ASCII (c)                                \
!                   ? ((c) > ' ' && (c) < 0177                  \
!                      && !(((c) >= 'a' && (c) <= 'z')          \
!                           || ((c) >= 'A' && (c) <= 'Z')       \
!                           || ((c) >= '0' && (c) <= '9')))     \
!                   : SYNTAX (c) != Sword)
! 
! # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
! 
! # define ISUPPER(c) (UPPERCASEP (c))
! 
! # define ISWORD(c) (SYNTAX (c) == Sword)
! 
! #else /* not emacs */
! 
! /* Jim Meyering writes:
! 
!    "... Some ctype macros are valid only for character codes that
!    isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
!    using /bin/cc or gcc but without giving an ansi option).  So, all
!    ctype uses should be through macros like ISPRINT...  If
!    STDC_HEADERS is defined, then autoconf has verified that the ctype
!    macros don't need to be guarded with references to isascii. ...
!    Defining isascii to 1 should let any compiler worth its salt
!    eliminate the && through constant folding."
!    Solaris defines some of these symbols so we must undefine them first.  */
! 
! # undef ISASCII
! # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
! #  define ISASCII(c) 1
! # else
! #  define ISASCII(c) isascii(c)
! # endif
! 
! /* 1 if C is an ASCII character.  */
! # define IS_REAL_ASCII(c) ((c) < 0200)
! 
! /* This distinction is not meaningful, except in Emacs.  */
! # define ISUNIBYTE(c) 1
! 
! # ifdef isblank
! #  define ISBLANK(c) (ISASCII (c) && isblank (c))
! # else
! #  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
! # endif
! # ifdef isgraph
! #  define ISGRAPH(c) (ISASCII (c) && isgraph (c))
! # else
! #  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
! # endif
! 
! # undef ISPRINT
! # define ISPRINT(c) (ISASCII (c) && isprint (c))
! # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
! # define ISALNUM(c) (ISASCII (c) && isalnum (c))
! # define ISALPHA(c) (ISASCII (c) && isalpha (c))
! # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
! # define ISLOWER(c) (ISASCII (c) && islower (c))
! # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
! # define ISSPACE(c) (ISASCII (c) && isspace (c))
! # define ISUPPER(c) (ISASCII (c) && isupper (c))
! # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
! 
! # define ISWORD(c) ISALPHA(c)
! 
! # ifdef _tolower
! #  define TOLOWER(c) _tolower(c)
! # else
! #  define TOLOWER(c) tolower(c)
! # endif
  
  /* How many characters in the character set.  */
! # define CHAR_SET_SIZE 256
! 
! # ifdef SYNTAX_TABLE
! 
! extern char *re_syntax_table;
! 
! # else /* not SYNTAX_TABLE */
  
  static char re_syntax_table[CHAR_SET_SIZE];
  
***************
*** 101,160 ****
  
     bzero (re_syntax_table, sizeof re_syntax_table);
  
!    for (c = 'a'; c <= 'z'; c++)
!      re_syntax_table[c] = Sword;
! 
!    for (c = 'A'; c <= 'Z'; c++)
!      re_syntax_table[c] = Sword;
! 
!    for (c = '0'; c <= '9'; c++)
!      re_syntax_table[c] = Sword;
  
     re_syntax_table['_'] = Sword;
  
     done = 1;
  }
  
! #endif /* not SYNTAX_TABLE */
  
! #define SYNTAX(c) re_syntax_table[c]
  
  #endif /* not emacs */
  
- /* Get the interface, including the syntax bits.  */
- #include "regex.h"
- 
- /* isalpha etc. are used for the character classes.  */
- #include <ctype.h>
- 
- #ifndef isascii
- #define isascii(c) 1
- #endif
- 
- #ifdef isblank
- #define ISBLANK(c) (isascii (c) && isblank (c))
- #else
- #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
- #endif
- #ifdef isgraph
- #define ISGRAPH(c) (isascii (c) && isgraph (c))
- #else
- #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
- #endif
- 
- #define ISPRINT(c) (isascii (c) && isprint (c))
- #define ISDIGIT(c) (isascii (c) && isdigit (c))
- #define ISALNUM(c) (isascii (c) && isalnum (c))
- #define ISALPHA(c) (isascii (c) && isalpha (c))
- #define ISCNTRL(c) (isascii (c) && iscntrl (c))
- #define ISLOWER(c) (isascii (c) && islower (c))
- #define ISPUNCT(c) (isascii (c) && ispunct (c))
- #define ISSPACE(c) (isascii (c) && isspace (c))
- #define ISUPPER(c) (isascii (c) && isupper (c))
- #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
- 
  #ifndef NULL
! #define NULL 0
  #endif
  
  /* We remove any previous definition of `SIGN_EXTEND_CHAR',
--- 395,417 ----
  
     bzero (re_syntax_table, sizeof re_syntax_table);
  
!    for (c = 0; c < CHAR_SET_SIZE; ++c)
!      if (ISALNUM (c))
!       re_syntax_table[c] = Sword;
  
     re_syntax_table['_'] = Sword;
  
     done = 1;
  }
  
! # endif /* not SYNTAX_TABLE */
  
! # define SYNTAX(c) re_syntax_table[(c)]
  
  #endif /* not emacs */
  
  #ifndef NULL
! # define NULL (void *)0
  #endif
  
  /* We remove any previous definition of `SIGN_EXTEND_CHAR',
***************
*** 163,379 ****
     (Per Bothner suggested the basic approach.)  */
  #undef SIGN_EXTEND_CHAR
  #if __STDC__
! #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
  #else  /* not __STDC__ */
  /* As in Harbison and Steele.  */
! #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
  #endif
  
  /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
     use `alloca' instead of `malloc'.  This is because using malloc in
     re_search* or re_match* could cause memory leaks when C-g is used in
     Emacs; also, malloc is slower and causes storage fragmentation.  On
!    the other hand, malloc is more portable, and easier to debug.  
!    
     Because we sometimes use alloca, some routines have to be macros,
     not functions -- `alloca'-allocated space disappears at the end of the
     function it is called in.  */
  
  #ifdef REGEX_MALLOC
  
! #define REGEX_ALLOCATE malloc
! #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
  
  #else /* not REGEX_MALLOC  */
  
  /* Emacs already defines alloca, sometimes.  */
! #ifndef alloca
  
  /* Make alloca work the best possible way.  */
! #ifdef __GNUC__
! #define alloca __builtin_alloca
! #else /* not __GNUC__ */
! #if HAVE_ALLOCA_H
! #include <alloca.h>
! #else /* not __GNUC__ or HAVE_ALLOCA_H */
! #ifndef _AIX /* Already did AIX, up at the top.  */
! char *alloca ();
! #endif /* not _AIX */
! #endif /* not HAVE_ALLOCA_H */ 
! #endif /* not __GNUC__ */
  
! #endif /* not alloca */
  
! #define REGEX_ALLOCATE alloca
  
  /* Assumes a `char *destination' variable.  */
! #define REGEX_REALLOCATE(source, osize, nsize)                                
\
    (destination = (char *) alloca (nsize),                             \
!    bcopy (source, destination, osize),                                        
\
!    destination)
  
  #endif /* not REGEX_MALLOC */
  
  
  /* True if `size1' is non-NULL and PTR is pointing anywhere inside
     `string1' or just past its end.  This works if PTR is NULL, which is
     a good thing.  */
! #define FIRST_STRING_P(ptr)                                   \
    (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
  
  /* (Re)Allocate N items of type T using malloc, or fail.  */
  #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
  #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
  #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
  
  #define BYTEWIDTH 8 /* In bits.  */
  
  #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
  
  #define MAX(a, b) ((a) > (b) ? (a) : (b))
  #define MIN(a, b) ((a) < (b) ? (a) : (b))
  
  typedef char boolean;
  #define false 0
  #define true 1
  
  /* These are the command codes that appear in compiled regular
     expressions.  Some opcodes are followed by argument bytes.  A
     command code can specify any interpretation whatsoever for its
!    arguments.  Zero bytes may appear in the compiled regular expression.
! 
!    The value of `exactn' is needed in search.c (search_buffer) in Emacs.
!    So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
!    `exactn' we use here must also be 1.  */
  
  typedef enum
  {
    no_op = 0,
  
!         /* Followed by one byte giving n, then by n literal bytes.  */
!   exactn = 1,
  
!         /* Matches any (more or less) character.  */
    anychar,
  
!         /* Matches any one char belonging to specified set.  First
!            following byte is number of bitmap bytes.  Then come bytes
!            for a bitmap saying which chars are in.  Bits in each byte
!            are ordered low-bit-first.  A character is in the set if its
!            bit is 1.  A character too large to have a bit in the map is
!            automatically not in the set.  */
    charset,
  
!         /* Same parameters as charset, but match any character that is
!            not one of those specified.  */
    charset_not,
  
!         /* Start remembering the text that is matched, for storing in a
!            register.  Followed by one byte with the register number, in
!            the range 0 to one less than the pattern buffer's re_nsub
!            field.  Then followed by one byte with the number of groups
!            inner to this one.  (This last has to be part of the
!            start_memory only because we need it in the on_failure_jump
!            of re_match_2.)  */
    start_memory,
  
!         /* Stop remembering the text that is matched and store it in a
!            memory register.  Followed by one byte with the register
!            number, in the range 0 to one less than `re_nsub' in the
!            pattern buffer, and one byte with the number of inner groups,
!            just like `start_memory'.  (We need the number of inner
!            groups here because we don't have any easy way of finding the
!            corresponding start_memory when we're at a stop_memory.)  */
    stop_memory,
  
!         /* Match a duplicate of something remembered. Followed by one
!            byte containing the register number.  */
    duplicate,
  
!         /* Fail unless at beginning of line.  */
    begline,
  
!         /* Fail unless at end of line.  */
    endline,
  
!         /* Succeeds if at beginning of buffer (if emacs) or at beginning
!            of string to be matched (if not).  */
    begbuf,
  
!         /* Analogously, for end of buffer/string.  */
    endbuf,
-  
-         /* Followed by two byte relative address to which to jump.  */
-   jump, 
  
!       /* Same as jump, but marks the end of an alternative.  */
!   jump_past_alt,
  
!         /* Followed by two-byte relative address of place to resume at
!            in case of failure.  */
    on_failure_jump,
!       
!         /* Like on_failure_jump, but pushes a placeholder instead of the
!            current string position when executed.  */
    on_failure_keep_string_jump,
-   
-         /* Throw away latest failure point and then jump to following
-            two-byte relative address.  */
-   pop_failure_jump,
- 
-         /* Change to pop_failure_jump if know won't have to backtrack to
-            match; otherwise change to jump.  This is used to jump
-            back to the beginning of a repeat.  If what follows this jump
-            clearly won't match what the repeat does, such that we can be
-            sure that there is no use backtracking out of repetitions
-            already matched, then we change it to a pop_failure_jump.
-            Followed by two-byte address.  */
-   maybe_pop_jump,
- 
-         /* Jump to following two-byte address, and push a dummy failure
-            point. This failure point will be thrown away if an attempt
-            is made to use it for a failure.  A `+' construct makes this
-            before the first repeat.  Also used as an intermediary kind
-            of jump when compiling an alternative.  */
-   dummy_failure_jump,
- 
-       /* Push a dummy failure point and continue.  Used at the end of
-          alternatives.  */
-   push_dummy_failure,
  
!         /* Followed by two-byte relative address and two-byte number n.
!            After matching N times, jump to the address upon failure.  */
    succeed_n,
  
!         /* Followed by two-byte relative address, and two-byte number n.
!            Jump to the address N times, then fail.  */
    jump_n,
  
!         /* Set the following two-byte relative address to the
!            subsequent two-byte number.  The address *includes* the two
!            bytes of number.  */
    set_number_at,
  
-   wordchar,   /* Matches any word-constituent character.  */
-   notwordchar,        /* Matches any char that is not a word-constituent.  */
- 
    wordbeg,    /* Succeeds if at word beginning.  */
    wordend,    /* Succeeds if at word end.  */
  
    wordbound,  /* Succeeds if at a word boundary.  */
!   notwordbound        /* Succeeds if not at a word boundary.  */
! 
! #ifdef emacs
!   ,before_dot,        /* Succeeds if before point.  */
!   at_dot,     /* Succeeds if at point.  */
!   after_dot,  /* Succeeds if after point.  */
  
        /* Matches any character whose syntax is specified.  Followed by
!            a byte which contains a syntax code, e.g., Sword.  */
    syntaxspec,
  
        /* Matches any character whose syntax is not that specified.  */
    notsyntaxspec
  #endif /* emacs */
  } re_opcode_t;
  
--- 420,682 ----
     (Per Bothner suggested the basic approach.)  */
  #undef SIGN_EXTEND_CHAR
  #if __STDC__
! # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
  #else  /* not __STDC__ */
  /* As in Harbison and Steele.  */
! # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
  #endif
  
  /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
     use `alloca' instead of `malloc'.  This is because using malloc in
     re_search* or re_match* could cause memory leaks when C-g is used in
     Emacs; also, malloc is slower and causes storage fragmentation.  On
!    the other hand, malloc is more portable, and easier to debug.
! 
     Because we sometimes use alloca, some routines have to be macros,
     not functions -- `alloca'-allocated space disappears at the end of the
     function it is called in.  */
  
  #ifdef REGEX_MALLOC
  
! # define REGEX_ALLOCATE malloc
! # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
! # define REGEX_FREE free
  
  #else /* not REGEX_MALLOC  */
  
  /* Emacs already defines alloca, sometimes.  */
! # ifndef alloca
  
  /* Make alloca work the best possible way.  */
! #  ifdef __GNUC__
! #   define alloca __builtin_alloca
! #  else /* not __GNUC__ */
! #   if HAVE_ALLOCA_H
! #    include <alloca.h>
! #   endif /* HAVE_ALLOCA_H */
! #  endif /* not __GNUC__ */
  
! # endif /* not alloca */
  
! # define REGEX_ALLOCATE alloca
  
  /* Assumes a `char *destination' variable.  */
! # define REGEX_REALLOCATE(source, osize, nsize)                               
\
    (destination = (char *) alloca (nsize),                             \
!    memcpy (destination, source, osize))
! 
! /* No need to do anything to free, after alloca.  */
! # define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  
*/
  
  #endif /* not REGEX_MALLOC */
  
+ /* Define how to allocate the failure stack.  */
+ 
+ #if defined REL_ALLOC && defined REGEX_MALLOC
+ 
+ # define REGEX_ALLOCATE_STACK(size)                           \
+   r_alloc (&failure_stack_ptr, (size))
+ # define REGEX_REALLOCATE_STACK(source, osize, nsize)         \
+   r_re_alloc (&failure_stack_ptr, (nsize))
+ # define REGEX_FREE_STACK(ptr)                                        \
+   r_alloc_free (&failure_stack_ptr)
+ 
+ #else /* not using relocating allocator */
+ 
+ # ifdef REGEX_MALLOC
+ 
+ #  define REGEX_ALLOCATE_STACK malloc
+ #  define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
+ #  define REGEX_FREE_STACK free
+ 
+ # else /* not REGEX_MALLOC */
+ 
+ #  define REGEX_ALLOCATE_STACK alloca
+ 
+ #  define REGEX_REALLOCATE_STACK(source, osize, nsize)                        
\
+    REGEX_REALLOCATE (source, osize, nsize)
+ /* No need to explicitly free anything.        */
+ #  define REGEX_FREE_STACK(arg) ((void)0)
+ 
+ # endif /* not REGEX_MALLOC */
+ #endif /* not using relocating allocator */
+ 
  
  /* True if `size1' is non-NULL and PTR is pointing anywhere inside
     `string1' or just past its end.  This works if PTR is NULL, which is
     a good thing.  */
! #define FIRST_STRING_P(ptr)                                   \
    (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
  
  /* (Re)Allocate N items of type T using malloc, or fail.  */
  #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
  #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
+ #define RETALLOC_IF(addr, n, t) \
+   if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
  #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
  
  #define BYTEWIDTH 8 /* In bits.  */
  
  #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
  
+ #undef MAX
+ #undef MIN
  #define MAX(a, b) ((a) > (b) ? (a) : (b))
  #define MIN(a, b) ((a) < (b) ? (a) : (b))
  
+ /* Type of source-pattern and string chars.  */
+ typedef const unsigned char re_char;
+ 
  typedef char boolean;
  #define false 0
  #define true 1
+ 
+ static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
+                                       re_char *string1, int size1,
+                                       re_char *string2, int size2,
+                                       int pos,
+                                       struct re_registers *regs,
+                                       int stop));
  
  /* These are the command codes that appear in compiled regular
     expressions.  Some opcodes are followed by argument bytes.  A
     command code can specify any interpretation whatsoever for its
!    arguments.  Zero bytes may appear in the compiled regular expression.  */
  
  typedef enum
  {
    no_op = 0,
  
!   /* Succeed right away--no more backtracking.  */
!   succeed,
! 
!       /* Followed by one byte giving n, then by n literal bytes.  */
!   exactn,
  
!       /* Matches any (more or less) character.  */
    anychar,
  
!       /* Matches any one char belonging to specified set.  First
!          following byte is number of bitmap bytes.  Then come bytes
!          for a bitmap saying which chars are in.  Bits in each byte
!          are ordered low-bit-first.  A character is in the set if its
!          bit is 1.  A character too large to have a bit in the map is
!          automatically not in the set.
! 
!          If the length byte has the 0x80 bit set, then that stuff
!          is followed by a range table:
!              2 bytes of flags for character sets (low 8 bits, high 8 bits)
!                  See RANGE_TABLE_WORK_BITS below.
!              2 bytes, the number of pairs that follow (upto 32767)
!              pairs, each 2 multibyte characters,
!                  each multibyte character represented as 3 bytes.  */
    charset,
  
!       /* Same parameters as charset, but match any character that is
!          not one of those specified.  */
    charset_not,
  
!       /* Start remembering the text that is matched, for storing in a
!          register.  Followed by one byte with the register number, in
!          the range 0 to one less than the pattern buffer's re_nsub
!          field.  */
    start_memory,
  
!       /* Stop remembering the text that is matched and store it in a
!          memory register.  Followed by one byte with the register
!          number, in the range 0 to one less than `re_nsub' in the
!          pattern buffer.  */
    stop_memory,
  
!       /* Match a duplicate of something remembered. Followed by one
!          byte containing the register number.  */
    duplicate,
  
!       /* Fail unless at beginning of line.  */
    begline,
  
!       /* Fail unless at end of line.  */
    endline,
  
!       /* Succeeds if at beginning of buffer (if emacs) or at beginning
!          of string to be matched (if not).  */
    begbuf,
  
!       /* Analogously, for end of buffer/string.  */
    endbuf,
  
!       /* Followed by two byte relative address to which to jump.  */
!   jump,
  
!       /* Followed by two-byte relative address of place to resume at
!          in case of failure.  */
    on_failure_jump,
! 
!       /* Like on_failure_jump, but pushes a placeholder instead of the
!          current string position when executed.  */
    on_failure_keep_string_jump,
  
!       /* Just like `on_failure_jump', except that it checks that we
!          don't get stuck in an infinite loop (matching an empty string
!          indefinitely).  */
!   on_failure_jump_loop,
! 
!       /* Just like `on_failure_jump_loop', except that it checks for
!          a different kind of loop (the kind that shows up with non-greedy
!          operators).  This operation has to be immediately preceded
!          by a `no_op'.  */
!   on_failure_jump_nastyloop,
! 
!       /* A smart `on_failure_jump' used for greedy * and + operators.
!          It analyses the loop before which it is put and if the
!          loop does not require backtracking, it changes itself to
!          `on_failure_keep_string_jump' and short-circuits the loop,
!          else it just defaults to changing itself into `on_failure_jump'.
!          It assumes that it is pointing to just past a `jump'.  */
!   on_failure_jump_smart,
! 
!       /* Followed by two-byte relative address and two-byte number n.
!          After matching N times, jump to the address upon failure.
!          Does not work if N starts at 0: use on_failure_jump_loop
!          instead.  */
    succeed_n,
  
!       /* Followed by two-byte relative address, and two-byte number n.
!          Jump to the address N times, then fail.  */
    jump_n,
  
!       /* Set the following two-byte relative address to the
!          subsequent two-byte number.  The address *includes* the two
!          bytes of number.  */
    set_number_at,
  
    wordbeg,    /* Succeeds if at word beginning.  */
    wordend,    /* Succeeds if at word end.  */
  
    wordbound,  /* Succeeds if at a word boundary.  */
!   notwordbound,       /* Succeeds if not at a word boundary.  */
  
        /* Matches any character whose syntax is specified.  Followed by
!          a byte which contains a syntax code, e.g., Sword.  */
    syntaxspec,
  
        /* Matches any character whose syntax is not that specified.  */
    notsyntaxspec
+ 
+ #ifdef emacs
+   ,before_dot,        /* Succeeds if before point.  */
+   at_dot,     /* Succeeds if at point.  */
+   after_dot,  /* Succeeds if after point.  */
+ 
+   /* Matches any character whose category-set contains the specified
+      category.        The operator is followed by a byte which contains a
+      category code (mnemonic ASCII character).        */
+   categoryspec,
+ 
+   /* Matches any character whose category-set does not contain the
+      specified category.  The operator is followed by a byte which
+      contains the category code (mnemonic ASCII character).  */
+   notcategoryspec
  #endif /* emacs */
  } re_opcode_t;
  
***************
*** 407,426 ****
    } while (0)
  
  #ifdef DEBUG
  static void
  extract_number (dest, source)
      int *dest;
!     unsigned char *source;
  {
!   int temp = SIGN_EXTEND_CHAR (*(source + 1)); 
    *dest = *source & 0377;
    *dest += temp << 8;
  }
  
! #ifndef EXTRACT_MACROS /* To debug the macros.  */
! #undef EXTRACT_NUMBER
! #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
! #endif /* not EXTRACT_MACROS */
  
  #endif /* DEBUG */
  
--- 710,730 ----
    } while (0)
  
  #ifdef DEBUG
+ static void extract_number _RE_ARGS ((int *dest, re_char *source));
  static void
  extract_number (dest, source)
      int *dest;
!     re_char *source;
  {
!   int temp = SIGN_EXTEND_CHAR (*(source + 1));
    *dest = *source & 0377;
    *dest += temp << 8;
  }
  
! # ifndef EXTRACT_MACROS /* To debug the macros.  */
! #  undef EXTRACT_NUMBER
! #  define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
! # endif /* not EXTRACT_MACROS */
  
  #endif /* DEBUG */
  
***************
*** 430,456 ****
  #define EXTRACT_NUMBER_AND_INCR(destination, source)                  \
    do {                                                                        
\
      EXTRACT_NUMBER (destination, source);                             \
!     (source) += 2;                                                    \
    } while (0)
  
  #ifdef DEBUG
  static void
  extract_number_and_incr (destination, source)
      int *destination;
!     unsigned char **source;
! { 
    extract_number (destination, *source);
    *source += 2;
  }
  
! #ifndef EXTRACT_MACROS
! #undef EXTRACT_NUMBER_AND_INCR
! #define EXTRACT_NUMBER_AND_INCR(dest, src) \
    extract_number_and_incr (&dest, &src)
! #endif /* not EXTRACT_MACROS */
  
  #endif /* DEBUG */
  
  /* If DEBUG is defined, Regex prints many voluminous messages about what
     it is doing (if the variable `debug' is nonzero).  If linked with the
     main program in `iregex.c', you can enter patterns and strings
--- 734,855 ----
  #define EXTRACT_NUMBER_AND_INCR(destination, source)                  \
    do {                                                                        
\
      EXTRACT_NUMBER (destination, source);                             \
!     (source) += 2;                                                    \
    } while (0)
  
  #ifdef DEBUG
+ static void extract_number_and_incr _RE_ARGS ((int *destination,
+                                              re_char **source));
  static void
  extract_number_and_incr (destination, source)
      int *destination;
!     re_char **source;
! {
    extract_number (destination, *source);
    *source += 2;
  }
  
! # ifndef EXTRACT_MACROS
! #  undef EXTRACT_NUMBER_AND_INCR
! #  define EXTRACT_NUMBER_AND_INCR(dest, src) \
    extract_number_and_incr (&dest, &src)
! # endif /* not EXTRACT_MACROS */
  
  #endif /* DEBUG */
  
+ /* Store a multibyte character in three contiguous bytes starting
+    DESTINATION, and increment DESTINATION to the byte after where the
+    character is stored.        Therefore, DESTINATION must be an lvalue.  */
+ 
+ #define STORE_CHARACTER_AND_INCR(destination, character)      \
+   do {                                                                \
+     (destination)[0] = (character) & 0377;                    \
+     (destination)[1] = ((character) >> 8) & 0377;             \
+     (destination)[2] = (character) >> 16;                     \
+     (destination) += 3;                                               \
+   } while (0)
+ 
+ /* Put into DESTINATION a character stored in three contiguous bytes
+    starting at SOURCE.        */
+ 
+ #define EXTRACT_CHARACTER(destination, source)        \
+   do {                                                \
+     (destination) = ((source)[0]              \
+                    | ((source)[1] << 8)       \
+                    | ((source)[2] << 16));    \
+   } while (0)
+ 
+ 
+ /* Macros for charset. */
+ 
+ /* Size of bitmap of charset P in bytes.  P is a start of charset,
+    i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not.  */
+ #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
+ 
+ /* Nonzero if charset P has range table.  */
+ #define CHARSET_RANGE_TABLE_EXISTS_P(p)        ((p)[1] & 0x80)
+ 
+ /* Return the address of range table of charset P.  But not the start
+    of table itself, but the before where the number of ranges is
+    stored.  `2 +' means to skip re_opcode_t and size of bitmap,
+    and the 2 bytes of flags at the start of the range table.  */
+ #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
+ 
+ /* Extract the bit flags that start a range table.  */
+ #define CHARSET_RANGE_TABLE_BITS(p)           \
+   ((p)[2 + CHARSET_BITMAP_SIZE (p)]           \
+    + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
+ 
+ /* Test if C is listed in the bitmap of charset P.  */
+ #define CHARSET_LOOKUP_BITMAP(p, c)                           \
+   ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH                  \
+    && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
+ 
+ /* Return the address of end of RANGE_TABLE.  COUNT is number of
+    ranges (which is a pair of (start, end)) in the RANGE_TABLE.        `* 2'
+    is start of range and end of range.        `* 3' is size of each start
+    and end.  */
+ #define CHARSET_RANGE_TABLE_END(range_table, count)   \
+   ((range_table) + (count) * 2 * 3)
+ 
+ /* Test if C is in RANGE_TABLE.        A flag NOT is negated if C is in.
+    COUNT is number of ranges in RANGE_TABLE.  */
+ #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count)    \
+   do                                                                  \
+     {                                                                 \
+       re_wchar_t range_start, range_end;                              \
+       re_char *p;                                                     \
+       re_char *range_table_end                                                
\
+       = CHARSET_RANGE_TABLE_END ((range_table), (count));             \
+                                                                       \
+       for (p = (range_table); p < range_table_end; p += 2 * 3)                
\
+       {                                                               \
+         EXTRACT_CHARACTER (range_start, p);                           \
+         EXTRACT_CHARACTER (range_end, p + 3);                         \
+                                                                       \
+         if (range_start <= (c) && (c) <= range_end)                   \
+           {                                                           \
+             (not) = !(not);                                           \
+             break;                                                    \
+           }                                                           \
+       }                                                               \
+     }                                                                 \
+   while (0)
+ 
+ /* Test if C is in range table of CHARSET.  The flag NOT is negated if
+    C is listed in it.  */
+ #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset)                   \
+   do                                                                  \
+     {                                                                 \
+       /* Number of ranges in range table. */                          \
+       int count;                                                      \
+       re_char *range_table = CHARSET_RANGE_TABLE (charset);           \
+                                                                               
\
+       EXTRACT_NUMBER_AND_INCR (count, range_table);                   \
+       CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count);        
\
+     }                                                                 \
+   while (0)
+ 
  /* If DEBUG is defined, Regex prints many voluminous messages about what
     it is doing (if the variable `debug' is nonzero).  If linked with the
     main program in `iregex.c', you can enter patterns and strings
***************
*** 460,485 ****
  #ifdef DEBUG
  
  /* We use standard I/O for debugging.  */
! #include <stdio.h>
  
  /* It is useful to test things that ``must'' be true when debugging.  */
! #include <assert.h>
  
! static int debug = 0;
  
! #define DEBUG_STATEMENT(e) e
! #define DEBUG_PRINT1(x) if (debug) printf (x)
! #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
! #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
! #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
! #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)                                 
\
!   if (debug) print_partial_compiled_pattern (s, e)
! #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)                        
\
!   if (debug) print_double_string (w, s1, sz1, s2, sz2)
  
  
- extern void printchar ();
- 
  /* Print the fastmap in human-readable form.  */
  
  void
--- 859,882 ----
  #ifdef DEBUG
  
  /* We use standard I/O for debugging.  */
! # include <stdio.h>
  
  /* It is useful to test things that ``must'' be true when debugging.  */
! # include <assert.h>
  
! static int debug = -100000;
  
! # define DEBUG_STATEMENT(e) e
! # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
! # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
! # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
! # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
! # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)                                
\
!   if (debug > 0) print_partial_compiled_pattern (s, e)
! # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)                       
\
!   if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
  
  
  /* Print the fastmap in human-readable form.  */
  
  void
***************
*** 487,513 ****
      char *fastmap;
  {
    unsigned was_a_range = 0;
!   unsigned i = 0;  
!   
    while (i < (1 << BYTEWIDTH))
      {
        if (fastmap[i++])
        {
          was_a_range = 0;
!           printchar (i - 1);
!           while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
!             {
!               was_a_range = 1;
!               i++;
!             }
          if (was_a_range)
!             {
!               printf ("-");
!               printchar (i - 1);
!             }
!         }
      }
!   putchar ('\n'); 
  }
  
  
--- 884,910 ----
      char *fastmap;
  {
    unsigned was_a_range = 0;
!   unsigned i = 0;
! 
    while (i < (1 << BYTEWIDTH))
      {
        if (fastmap[i++])
        {
          was_a_range = 0;
!         putchar (i - 1);
!         while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
!           {
!             was_a_range = 1;
!             i++;
!           }
          if (was_a_range)
!           {
!             printf ("-");
!             putchar (i - 1);
!           }
!       }
      }
!   putchar ('\n');
  }
  
  
***************
*** 516,563 ****
  
  void
  print_partial_compiled_pattern (start, end)
!     unsigned char *start;
!     unsigned char *end;
  {
    int mcnt, mcnt2;
!   unsigned char *p = start;
!   unsigned char *pend = end;
  
    if (start == NULL)
      {
        printf ("(null)\n");
        return;
      }
!     
    /* Loop over pattern commands.  */
    while (p < pend)
      {
        switch ((re_opcode_t) *p++)
        {
!         case no_op:
!           printf ("/no_op");
!           break;
  
        case exactn:
          mcnt = *p++;
!           printf ("/exactn/%d", mcnt);
!           do
            {
!               putchar ('/');
!             printchar (*p++);
!             }
!           while (--mcnt);
!           break;
  
        case start_memory:
!           mcnt = *p++;
!           printf ("/start_memory/%d/%d", mcnt, *p++);
!           break;
  
        case stop_memory:
!           mcnt = *p++;
!         printf ("/stop_memory/%d/%d", mcnt, *p++);
!           break;
  
        case duplicate:
          printf ("/duplicate/%d", *p++);
--- 913,964 ----
  
  void
  print_partial_compiled_pattern (start, end)
!     re_char *start;
!     re_char *end;
  {
    int mcnt, mcnt2;
!   re_char *p = start;
!   re_char *pend = end;
  
    if (start == NULL)
      {
        printf ("(null)\n");
        return;
      }
! 
    /* Loop over pattern commands.  */
    while (p < pend)
      {
+       printf ("%d:\t", p - start);
+ 
        switch ((re_opcode_t) *p++)
        {
!       case no_op:
!         printf ("/no_op");
!         break;
! 
!       case succeed:
!         printf ("/succeed");
!         break;
  
        case exactn:
          mcnt = *p++;
!         printf ("/exactn/%d", mcnt);
!         do
            {
!             putchar ('/');
!             putchar (*p++);
!           }
!         while (--mcnt);
!         break;
  
        case start_memory:
!         printf ("/start_memory/%d", *p++);
!         break;
  
        case stop_memory:
!         printf ("/stop_memory/%d", *p++);
!         break;
  
        case duplicate:
          printf ("/duplicate/%d", *p++);
***************
*** 568,724 ****
          break;
  
        case charset:
!         case charset_not:
!           {
!             register int c;
! 
!             printf ("/charset%s",
!                   (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
!             
!             assert (p + *p < pend);
! 
!             for (c = 0; c < *p; c++)
!               {
!                 unsigned bit;
!                 unsigned char map_byte = p[1 + c];
!                 
!                 putchar ('/');
! 
!               for (bit = 0; bit < BYTEWIDTH; bit++)
!                   if (map_byte & (1 << bit))
!                     printchar (c * BYTEWIDTH + bit);
!               }
!           p += 1 + *p;
!           break;
          }
  
        case begline:
          printf ("/begline");
!           break;
  
        case endline:
!           printf ("/endline");
!           break;
  
        case on_failure_jump:
!           extract_number_and_incr (&mcnt, &p);
!         printf ("/on_failure_jump/0/%d", mcnt);
!           break;
  
        case on_failure_keep_string_jump:
!           extract_number_and_incr (&mcnt, &p);
!         printf ("/on_failure_keep_string_jump/0/%d", mcnt);
!           break;
! 
!       case dummy_failure_jump:
!           extract_number_and_incr (&mcnt, &p);
!         printf ("/dummy_failure_jump/0/%d", mcnt);
!           break;
! 
!       case push_dummy_failure:
!           printf ("/push_dummy_failure");
!           break;
!           
!         case maybe_pop_jump:
!           extract_number_and_incr (&mcnt, &p);
!         printf ("/maybe_pop_jump/0/%d", mcnt);
          break;
  
!         case pop_failure_jump:
          extract_number_and_incr (&mcnt, &p);
!         printf ("/pop_failure_jump/0/%d", mcnt);
!         break;          
!           
!         case jump_past_alt:
          extract_number_and_incr (&mcnt, &p);
!         printf ("/jump_past_alt/0/%d", mcnt);
!         break;          
!           
!         case jump:
          extract_number_and_incr (&mcnt, &p);
!         printf ("/jump/0/%d", mcnt);
          break;
  
!         case succeed_n: 
!           extract_number_and_incr (&mcnt, &p);
!           extract_number_and_incr (&mcnt2, &p);
!         printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
!           break;
!         
!         case jump_n: 
!           extract_number_and_incr (&mcnt, &p);
!           extract_number_and_incr (&mcnt2, &p);
!         printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
!           break;
!         
!         case set_number_at: 
!           extract_number_and_incr (&mcnt, &p);
!           extract_number_and_incr (&mcnt2, &p);
!         printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
!           break;
!         
!         case wordbound:
          printf ("/wordbound");
          break;
  
        case notwordbound:
          printf ("/notwordbound");
!           break;
  
        case wordbeg:
          printf ("/wordbeg");
          break;
!           
        case wordend:
          printf ("/wordend");
!           
! #ifdef emacs
        case before_dot:
          printf ("/before_dot");
!           break;
  
        case at_dot:
          printf ("/at_dot");
!           break;
  
        case after_dot:
          printf ("/after_dot");
!           break;
  
!       case syntaxspec:
!           printf ("/syntaxspec");
          mcnt = *p++;
          printf ("/%d", mcnt);
!           break;
!         
!       case notsyntaxspec:
!           printf ("/notsyntaxspec");
          mcnt = *p++;
          printf ("/%d", mcnt);
          break;
! #endif /* emacs */
! 
!       case wordchar:
!         printf ("/wordchar");
!           break;
!         
!       case notwordchar:
!         printf ("/notwordchar");
!           break;
  
        case begbuf:
          printf ("/begbuf");
!           break;
  
        case endbuf:
          printf ("/endbuf");
!           break;
  
!         default:
!           printf ("?%d", *(p-1));
        }
      }
!   printf ("/\n");
  }
  
  
--- 969,1154 ----
          break;
  
        case charset:
!       case charset_not:
!         {
!           register int c, last = -100;
!           register int in_range = 0;
!           int length = CHARSET_BITMAP_SIZE (p - 1);
!           int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
! 
!           printf ("/charset [%s",
!                   (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
! 
!           assert (p + *p < pend);
! 
!           for (c = 0; c < 256; c++)
!             if (c / 8 < length
!                 && (p[1 + (c/8)] & (1 << (c % 8))))
!               {
!                 /* Are we starting a range?  */
!                 if (last + 1 == c && ! in_range)
!                   {
!                     putchar ('-');
!                     in_range = 1;
!                   }
!                 /* Have we broken a range?  */
!                 else if (last + 1 != c && in_range)
!                   {
!                     putchar (last);
!                     in_range = 0;
!                   }
! 
!                 if (! in_range)
!                   putchar (c);
! 
!                 last = c;
!             }
! 
!           if (in_range)
!             putchar (last);
! 
!           putchar (']');
! 
!           p += 1 + length;
! 
!           if (has_range_table)
!             {
!               int count;
!               printf ("has-range-table");
! 
!               /* ??? Should print the range table; for now, just skip it.  */
!               p += 2;         /* skip range table bits */
!               EXTRACT_NUMBER_AND_INCR (count, p);
!               p = CHARSET_RANGE_TABLE_END (p, count);
!             }
          }
+         break;
  
        case begline:
          printf ("/begline");
!         break;
  
        case endline:
!         printf ("/endline");
!         break;
  
        case on_failure_jump:
!         extract_number_and_incr (&mcnt, &p);
!         printf ("/on_failure_jump to %d", p + mcnt - start);
!         break;
  
        case on_failure_keep_string_jump:
!         extract_number_and_incr (&mcnt, &p);
!         printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
!         break;
! 
!       case on_failure_jump_nastyloop:
!         extract_number_and_incr (&mcnt, &p);
!         printf ("/on_failure_jump_nastyloop to %d", p + mcnt - start);
!         break;
! 
!       case on_failure_jump_loop:
!         extract_number_and_incr (&mcnt, &p);
!         printf ("/on_failure_jump_loop to %d", p + mcnt - start);
!         break;
! 
!       case on_failure_jump_smart:
!         extract_number_and_incr (&mcnt, &p);
!         printf ("/on_failure_jump_smart to %d", p + mcnt - start);
!         break;
! 
!       case jump:
!         extract_number_and_incr (&mcnt, &p);
!         printf ("/jump to %d", p + mcnt - start);
          break;
  
!       case succeed_n:
          extract_number_and_incr (&mcnt, &p);
!         extract_number_and_incr (&mcnt2, &p);
!         printf ("/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
!         break;
! 
!       case jump_n:
          extract_number_and_incr (&mcnt, &p);
!         extract_number_and_incr (&mcnt2, &p);
!         printf ("/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
!         break;
! 
!       case set_number_at:
          extract_number_and_incr (&mcnt, &p);
!         extract_number_and_incr (&mcnt2, &p);
!         printf ("/set_number_at location %d to %d", p - 2 + mcnt - start, 
mcnt2);
          break;
  
!       case wordbound:
          printf ("/wordbound");
          break;
  
        case notwordbound:
          printf ("/notwordbound");
!         break;
  
        case wordbeg:
          printf ("/wordbeg");
          break;
! 
        case wordend:
          printf ("/wordend");
! 
!       case syntaxspec:
!         printf ("/syntaxspec");
!         mcnt = *p++;
!         printf ("/%d", mcnt);
!         break;
! 
!       case notsyntaxspec:
!         printf ("/notsyntaxspec");
!         mcnt = *p++;
!         printf ("/%d", mcnt);
!         break;
! 
! # ifdef emacs
        case before_dot:
          printf ("/before_dot");
!         break;
  
        case at_dot:
          printf ("/at_dot");
!         break;
  
        case after_dot:
          printf ("/after_dot");
!         break;
  
!       case categoryspec:
!         printf ("/categoryspec");
          mcnt = *p++;
          printf ("/%d", mcnt);
!         break;
! 
!       case notcategoryspec:
!         printf ("/notcategoryspec");
          mcnt = *p++;
          printf ("/%d", mcnt);
          break;
! # endif /* emacs */
  
        case begbuf:
          printf ("/begbuf");
!         break;
  
        case endbuf:
          printf ("/endbuf");
!         break;
  
!       default:
!         printf ("?%d", *(p-1));
        }
+ 
+       putchar ('\n');
      }
! 
!   printf ("%d:\tend of pattern.\n", p - start);
  }
  
  
***************
*** 726,735 ****
  print_compiled_pattern (bufp)
      struct re_pattern_buffer *bufp;
  {
!   unsigned char *buffer = bufp->buffer;
  
    print_partial_compiled_pattern (buffer, buffer + bufp->used);
!   printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
  
    if (bufp->fastmap_accurate && bufp->fastmap)
      {
--- 1156,1166 ----
  print_compiled_pattern (bufp)
      struct re_pattern_buffer *bufp;
  {
!   re_char *buffer = bufp->buffer;
  
    print_partial_compiled_pattern (buffer, buffer + bufp->used);
!   printf ("%ld bytes used/%ld bytes allocated.\n",
!         bufp->used, bufp->allocated);
  
    if (bufp->fastmap_accurate && bufp->fastmap)
      {
***************
*** 740,800 ****
    printf ("re_nsub: %d\t", bufp->re_nsub);
    printf ("regs_alloc: %d\t", bufp->regs_allocated);
    printf ("can_be_null: %d\t", bufp->can_be_null);
-   printf ("newline_anchor: %d\n", bufp->newline_anchor);
    printf ("no_sub: %d\t", bufp->no_sub);
    printf ("not_bol: %d\t", bufp->not_bol);
    printf ("not_eol: %d\t", bufp->not_eol);
!   printf ("syntax: %d\n", bufp->syntax);
    /* Perhaps we should print the translate table?  */
  }
  
  
  void
  print_double_string (where, string1, size1, string2, size2)
!     const char *where;
!     const char *string1;
!     const char *string2;
      int size1;
      int size2;
  {
!   unsigned this_char;
!   
    if (where == NULL)
      printf ("(null)");
    else
      {
        if (FIRST_STRING_P (where))
!         {
!           for (this_char = where - string1; this_char < size1; this_char++)
!             printchar (string1[this_char]);
  
!           where = string2;    
!         }
  
        for (this_char = where - string2; this_char < size2; this_char++)
!         printchar (string2[this_char]);
      }
  }
  
  #else /* not DEBUG */
  
! #undef assert
! #define assert(e)
  
! #define DEBUG_STATEMENT(e)
! #define DEBUG_PRINT1(x)
! #define DEBUG_PRINT2(x1, x2)
! #define DEBUG_PRINT3(x1, x2, x3)
! #define DEBUG_PRINT4(x1, x2, x3, x4)
! #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
! #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
  
  #endif /* not DEBUG */
  
  /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
     also be assigned to arbitrarily: each pattern buffer stores its own
     syntax, so it can be changed between regex compilations.  */
! reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
  
  
  /* Specify the precise syntax of regexps for compilation.  This provides
--- 1171,1233 ----
    printf ("re_nsub: %d\t", bufp->re_nsub);
    printf ("regs_alloc: %d\t", bufp->regs_allocated);
    printf ("can_be_null: %d\t", bufp->can_be_null);
    printf ("no_sub: %d\t", bufp->no_sub);
    printf ("not_bol: %d\t", bufp->not_bol);
    printf ("not_eol: %d\t", bufp->not_eol);
!   printf ("syntax: %lx\n", bufp->syntax);
!   fflush (stdout);
    /* Perhaps we should print the translate table?  */
  }
  
  
  void
  print_double_string (where, string1, size1, string2, size2)
!     re_char *where;
!     re_char *string1;
!     re_char *string2;
      int size1;
      int size2;
  {
!   int this_char;
! 
    if (where == NULL)
      printf ("(null)");
    else
      {
        if (FIRST_STRING_P (where))
!       {
!         for (this_char = where - string1; this_char < size1; this_char++)
!           putchar (string1[this_char]);
  
!         where = string2;
!       }
  
        for (this_char = where - string2; this_char < size2; this_char++)
!       putchar (string2[this_char]);
      }
  }
  
  #else /* not DEBUG */
  
! # undef assert
! # define assert(e)
  
! # define DEBUG_STATEMENT(e)
! # define DEBUG_PRINT1(x)
! # define DEBUG_PRINT2(x1, x2)
! # define DEBUG_PRINT3(x1, x2, x3)
! # define DEBUG_PRINT4(x1, x2, x3, x4)
! # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
! # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
  
  #endif /* not DEBUG */
  
  /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
     also be assigned to arbitrarily: each pattern buffer stores its own
     syntax, so it can be changed between regex compilations.  */
! /* This has no initializer because initialized variables in Emacs
!    become read-only after dumping.  */
! reg_syntax_t re_syntax_options;
  
  
  /* Specify the precise syntax of regexps for compilation.  This provides
***************
*** 809,886 ****
      reg_syntax_t syntax;
  {
    reg_syntax_t ret = re_syntax_options;
!   
    re_syntax_options = syntax;
    return ret;
  }
  
  /* This table gives an error message for each of the error codes listed
!    in regex.h.  Obviously the order here has to be same as there.  */
  
! static const char *re_error_msg[] =
!   { NULL,                                     /* REG_NOERROR */
!     "No match",                                       /* REG_NOMATCH */
!     "Invalid regular expression",             /* REG_BADPAT */
!     "Invalid collation character",            /* REG_ECOLLATE */
!     "Invalid character class name",           /* REG_ECTYPE */
!     "Trailing backslash",                     /* REG_EESCAPE */
!     "Invalid back reference",                 /* REG_ESUBREG */
!     "Unmatched [ or [^",                      /* REG_EBRACK */
!     "Unmatched ( or \\(",                     /* REG_EPAREN */
!     "Unmatched \\{",                          /* REG_EBRACE */
!     "Invalid content of \\{\\}",              /* REG_BADBR */
!     "Invalid range end",                      /* REG_ERANGE */
!     "Memory exhausted",                               /* REG_ESPACE */
!     "Invalid preceding regular expression",   /* REG_BADRPT */
!     "Premature end of regular expression",    /* REG_EEND */
!     "Regular expression too big",             /* REG_ESIZE */
!     "Unmatched ) or \\)",                     /* REG_ERPAREN */
    };
  
! /* Subroutine declarations and macros for regex_compile.  */
  
! static void store_op1 (), store_op2 ();
! static void insert_op1 (), insert_op2 ();
! static boolean at_begline_loc_p (), at_endline_loc_p ();
! static boolean group_in_compile_stack ();
! static reg_errcode_t compile_range ();
! 
! /* Fetch the next character in the uncompiled pattern---translating it 
!    if necessary.  Also cast from a signed character in the constant
!    string passed to us by the user to an unsigned char that we can use
!    as an array index (in, e.g., `translate').  */
! #define PATFETCH(c)                                                   \
!   do {if (p == pend) return REG_EEND;                                 \
!     c = (unsigned char) *p++;                                         \
!     if (translate) c = translate[c];                                  \
!   } while (0)
  
! /* Fetch the next character in the uncompiled pattern, with no
!    translation.  */
! #define PATFETCH_RAW(c)                                                       
\
!   do {if (p == pend) return REG_EEND;                                 \
!     c = (unsigned char) *p++;                                                 
\
!   } while (0)
  
! /* Go backwards one character in the pattern.  */
! #define PATUNFETCH p--
  
  
! /* If `translate' is non-null, return translate[D], else just D.  We
!    cast the subscript to translate because some data is declared as
!    `char *', to avoid warnings when a string constant is passed.  But
!    when we use a character as a subscript we must make it unsigned.  */
! #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
  
  
! /* Macros for outputting the compiled pattern into `buffer'.  */
  
! /* If the buffer isn't allocated when it comes in, use this.  */
! #define INIT_BUF_SIZE  32
  
! /* Make sure we have at least N more bytes of space in buffer.  */
  #define GET_BUFFER_SPACE(n)                                           \
!     while (b - bufp->buffer + (n) > bufp->allocated)                  \
        EXTEND_BUFFER ()
  
  /* Make sure we have one more byte of buffer space and then add C to it.  */
--- 1242,1700 ----
      reg_syntax_t syntax;
  {
    reg_syntax_t ret = re_syntax_options;
! 
    re_syntax_options = syntax;
    return ret;
  }
+ WEAK_ALIAS (__re_set_syntax, re_set_syntax)
  
  /* This table gives an error message for each of the error codes listed
!    in regex.h.  Obviously the order here has to be same as there.
!    POSIX doesn't require that we do anything for REG_NOERROR,
!    but why not be nice?  */
  
! static const char *re_error_msgid[] =
!   {
!     gettext_noop ("Success"), /* REG_NOERROR */
!     gettext_noop ("No match"),        /* REG_NOMATCH */
!     gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
!     gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
!     gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
!     gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
!     gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
!     gettext_noop ("Unmatched [ or [^"),       /* REG_EBRACK */
!     gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
!     gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
!     gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
!     gettext_noop ("Invalid range end"),       /* REG_ERANGE */
!     gettext_noop ("Memory exhausted"), /* REG_ESPACE */
!     gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
!     gettext_noop ("Premature end of regular expression"), /* REG_EEND */
!     gettext_noop ("Regular expression too big"), /* REG_ESIZE */
!     gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
    };
  
! /* Avoiding alloca during matching, to placate r_alloc.  */
  
! /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
!    searching and matching functions should not call alloca.  On some
!    systems, alloca is implemented in terms of malloc, and if we're
!    using the relocating allocator routines, then malloc could cause a
!    relocation, which might (if the strings being searched are in the
!    ralloc heap) shift the data out from underneath the regexp
!    routines.
! 
!    Here's another reason to avoid allocation: Emacs
!    processes input from X in a signal handler; processing X input may
!    call malloc; if input arrives while a matching routine is calling
!    malloc, then we're scrod.  But Emacs can't just block input while
!    calling matching routines; then we don't notice interrupts when
!    they come in.  So, Emacs blocks input around all regexp calls
!    except the matching calls, which it leaves unprotected, in the
!    faith that they will not malloc.  */
  
! /* Normally, this is fine.  */
! #define MATCH_MAY_ALLOCATE
  
! /* When using GNU C, we are not REALLY using the C alloca, no matter
!    what config.h may say.  So don't take precautions for it.  */
! #ifdef __GNUC__
! # undef C_ALLOCA
! #endif
  
+ /* The match routines may not allocate if (1) they would do it with malloc
+    and (2) it's not safe for them to use malloc.
+    Note that if REL_ALLOC is defined, matching would not use malloc for the
+    failure stack, but we would still use it for the register vectors;
+    so REL_ALLOC should not affect this.  */
+ #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
+ # undef MATCH_MAY_ALLOCATE
+ #endif
  
! 
! /* Failure stack declarations and macros; both re_compile_fastmap and
!    re_match_2 use a failure stack.  These have to be macros because of
!    REGEX_ALLOCATE_STACK.  */
  
  
! /* Approximate number of failure points for which to initially allocate space
!    when matching.  If this number is exceeded, we allocate more
!    space, so it is not a hard limit.  */
! #ifndef INIT_FAILURE_ALLOC
! # define INIT_FAILURE_ALLOC 20
! #endif
  
! /* Roughly the maximum number of failure points on the stack.  Would be
!    exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
!    This is a variable only so users of regex can assign to it; we never
!    change it ourselves.  We always multiply it by TYPICAL_FAILURE_SIZE
!    before using it, so it should probably be a byte-count instead.  */
! # if defined MATCH_MAY_ALLOCATE
! /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
!    whose default stack limit is 2mb.  In order for a larger
!    value to work reliably, you have to try to make it accord
!    with the process stack limit.  */
! size_t re_max_failures = 40000;
! # else
! size_t re_max_failures = 4000;
! # endif
  
! union fail_stack_elt
! {
!   re_char *pointer;
!   /* This should be the biggest `int' that's no bigger than a pointer.  */
!   long integer;
! };
! 
! typedef union fail_stack_elt fail_stack_elt_t;
! 
! typedef struct
! {
!   fail_stack_elt_t *stack;
!   size_t size;
!   size_t avail;       /* Offset of next open position.  */
!   size_t frame;       /* Offset of the cur constructed frame.  */
! } fail_stack_type;
! 
! #define FAIL_STACK_EMPTY()     (fail_stack.frame == 0)
! #define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
! 
! 
! /* Define macros to initialize and free the failure stack.
!    Do `return -2' if the alloc fails.  */
! 
! #ifdef MATCH_MAY_ALLOCATE
! # define INIT_FAIL_STACK()                                            \
!   do {                                                                        
\
!     fail_stack.stack = (fail_stack_elt_t *)                           \
!       REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
!                           * sizeof (fail_stack_elt_t));               \
!                                                                       \
!     if (fail_stack.stack == NULL)                                     \
!       return -2;                                                      \
!                                                                       \
!     fail_stack.size = INIT_FAILURE_ALLOC;                             \
!     fail_stack.avail = 0;                                             \
!     fail_stack.frame = 0;                                             \
!   } while (0)
! 
! # define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
! #else
! # define INIT_FAIL_STACK()                                            \
!   do {                                                                        
\
!     fail_stack.avail = 0;                                             \
!     fail_stack.frame = 0;                                             \
!   } while (0)
! 
! # define RESET_FAIL_STACK() ((void)0)
! #endif
! 
! 
! /* Double the size of FAIL_STACK, up to a limit
!    which allows approximately `re_max_failures' items.
! 
!    Return 1 if succeeds, and 0 if either ran out of memory
!    allocating space for it or it was already too large.
! 
!    REGEX_REALLOCATE_STACK requires `destination' be declared.   */
! 
! /* Factor to increase the failure stack size by
!    when we increase it.
!    This used to be 2, but 2 was too wasteful
!    because the old discarded stacks added up to as much space
!    were as ultimate, maximum-size stack.  */
! #define FAIL_STACK_GROWTH_FACTOR 4
! 
! #define GROW_FAIL_STACK(fail_stack)                                   \
!   (((fail_stack).size * sizeof (fail_stack_elt_t)                     \
!     >= re_max_failures * TYPICAL_FAILURE_SIZE)                                
\
!    ? 0                                                                        
\
!    : ((fail_stack).stack                                              \
!       = (fail_stack_elt_t *)                                          \
!       REGEX_REALLOCATE_STACK ((fail_stack).stack,                     \
!         (fail_stack).size * sizeof (fail_stack_elt_t),                \
!         MIN (re_max_failures * TYPICAL_FAILURE_SIZE,                  \
!              ((fail_stack).size * sizeof (fail_stack_elt_t)           \
!               * FAIL_STACK_GROWTH_FACTOR))),                          \
!                                                                       \
!       (fail_stack).stack == NULL                                      \
!       ? 0                                                             \
!       : ((fail_stack).size                                            \
!        = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE,                \
!                ((fail_stack).size * sizeof (fail_stack_elt_t)         \
!                 * FAIL_STACK_GROWTH_FACTOR))                          \
!           / sizeof (fail_stack_elt_t)),                               \
!        1)))
! 
! 
! /* Push a pointer value onto the failure stack.
!    Assumes the variable `fail_stack'.  Probably should only
!    be called from within `PUSH_FAILURE_POINT'.  */
! #define PUSH_FAILURE_POINTER(item)                                    \
!   fail_stack.stack[fail_stack.avail++].pointer = (item)
! 
! /* This pushes an integer-valued item onto the failure stack.
!    Assumes the variable `fail_stack'.  Probably should only
!    be called from within `PUSH_FAILURE_POINT'.  */
! #define PUSH_FAILURE_INT(item)                                        \
!   fail_stack.stack[fail_stack.avail++].integer = (item)
! 
! /* Push a fail_stack_elt_t value onto the failure stack.
!    Assumes the variable `fail_stack'.  Probably should only
!    be called from within `PUSH_FAILURE_POINT'.  */
! #define PUSH_FAILURE_ELT(item)                                        \
!   fail_stack.stack[fail_stack.avail++] =  (item)
! 
! /* These three POP... operations complement the three PUSH... operations.
!    All assume that `fail_stack' is nonempty.  */
! #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
! #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
! #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
! 
! /* Individual items aside from the registers.  */
! #define NUM_NONREG_ITEMS 3
! 
! /* Used to examine the stack (to detect infinite loops).  */
! #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
! #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
! #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
! #define TOP_FAILURE_HANDLE() fail_stack.frame
! 
! 
! #define ENSURE_FAIL_STACK(space)                                      \
! while (REMAINING_AVAIL_SLOTS <= space) {                              \
!   if (!GROW_FAIL_STACK (fail_stack))                                  \
!     return -2;                                                                
\
!   DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n", (fail_stack).size);\
!   DEBUG_PRINT2 ("      slots available: %d\n", REMAINING_AVAIL_SLOTS);\
! }
! 
! /* Push register NUM onto the stack.  */
! #define PUSH_FAILURE_REG(num)                                         \
! do {                                                                  \
!   char *destination;                                                  \
!   ENSURE_FAIL_STACK(3);                                                       
\
!   DEBUG_PRINT4 ("    Push reg %d (spanning %p -> %p)\n",              \
!               num, regstart[num], regend[num]);                       \
!   PUSH_FAILURE_POINTER (regstart[num]);                                       
\
!   PUSH_FAILURE_POINTER (regend[num]);                                 \
!   PUSH_FAILURE_INT (num);                                             \
! } while (0)
! 
! /* Change the counter's value to VAL, but make sure that it will
!    be reset when backtracking.  */
! #define PUSH_NUMBER(ptr,val)                                          \
! do {                                                                  \
!   char *destination;                                                  \
!   int c;                                                              \
!   ENSURE_FAIL_STACK(3);                                                       
\
!   EXTRACT_NUMBER (c, ptr);                                            \
!   DEBUG_PRINT4 ("    Push number %p = %d -> %d\n", ptr, c, val);      \
!   PUSH_FAILURE_INT (c);                                                       
\
!   PUSH_FAILURE_POINTER (ptr);                                         \
!   PUSH_FAILURE_INT (-1);                                              \
!   STORE_NUMBER (ptr, val);                                            \
! } while (0)
! 
! /* Pop a saved register off the stack.  */
! #define POP_FAILURE_REG_OR_COUNT()                                    \
! do {                                                                  \
!   int reg = POP_FAILURE_INT ();                                               
\
!   if (reg == -1)                                                      \
!     {                                                                 \
!       /* It's a counter.  */                                          \
!       /* Here, we discard `const', making re_match non-reentrant.  */ \
!       unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER ();   \
!       reg = POP_FAILURE_INT ();                                               
\
!       STORE_NUMBER (ptr, reg);                                                
\
!       DEBUG_PRINT3 ("     Pop counter %p = %d\n", ptr, reg);          \
!     }                                                                 \
!   else                                                                        
\
!     {                                                                 \
!       regend[reg] = POP_FAILURE_POINTER ();                           \
!       regstart[reg] = POP_FAILURE_POINTER ();                         \
!       DEBUG_PRINT4 ("     Pop reg %d (spanning %p -> %p)\n",          \
!                   reg, regstart[reg], regend[reg]);                   \
!     }                                                                 \
! } while (0)
! 
! /* Check that we are not stuck in an infinite loop.  */
! #define CHECK_INFINITE_LOOP(pat_cur, string_place)                    \
! do {                                                                  \
!   int failure = TOP_FAILURE_HANDLE();                                 \
!   /* Check for infinite matching loops */                             \
!   while (failure > 0 &&                                                       
\
!        (FAILURE_STR (failure) == string_place                         \
!         || FAILURE_STR (failure) == NULL))                            \
!     {                                                                 \
!       assert (FAILURE_PAT (failure) >= bufp->buffer                   \
!             && FAILURE_PAT (failure) <= bufp->buffer + bufp->used);   \
!       if (FAILURE_PAT (failure) == pat_cur)                           \
!       goto fail;                                                      \
!       DEBUG_PRINT2 ("  Other pattern: %p\n", FAILURE_PAT (failure));  \
!       failure = NEXT_FAILURE_HANDLE(failure);                         \
!     }                                                                 \
!   DEBUG_PRINT2 ("  Other string: %p\n", FAILURE_STR (failure));               
\
! } while (0)
!     
! /* Push the information about the state we will need
!    if we ever fail back to it.
! 
!    Requires variables fail_stack, regstart, regend and
!    num_regs be declared.  GROW_FAIL_STACK requires `destination' be
!    declared.
! 
!    Does `return FAILURE_CODE' if runs out of memory.  */
! 
! #define PUSH_FAILURE_POINT(pattern, string_place)                     \
! do {                                                                  \
!   char *destination;                                                  \
!   /* Must be int, so when we don't save any registers, the arithmetic \
!      of 0 + -1 isn't done as unsigned.  */                            \
!                                                                       \
!   DEBUG_STATEMENT (nfailure_points_pushed++);                         \
!   DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n");                           \
!   DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);       
\
!   DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
!                                                                       \
!   ENSURE_FAIL_STACK (NUM_NONREG_ITEMS);                                       
\
!                                                                       \
!   DEBUG_PRINT1 ("\n");                                                        
\
!                                                                       \
!   DEBUG_PRINT2 ("  Push frame index: %d\n", fail_stack.frame);                
\
!   PUSH_FAILURE_INT (fail_stack.frame);                                        
\
!                                                                       \
!   DEBUG_PRINT2 ("  Push string %p: `", string_place);                 \
!   DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
!   DEBUG_PRINT1 ("'\n");                                                       
\
!   PUSH_FAILURE_POINTER (string_place);                                        
\
!                                                                       \
!   DEBUG_PRINT2 ("  Push pattern %p: ", pattern);                      \
!   DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend);                 \
!   PUSH_FAILURE_POINTER (pattern);                                     \
!                                                                       \
!   /* Close the frame by moving the frame pointer past it.  */         \
!   fail_stack.frame = fail_stack.avail;                                        
\
! } while (0)
! 
! /* Estimate the size of data pushed by a typical failure stack entry.
!    An estimate is all we need, because all we use this for
!    is to choose a limit for how big to make the failure stack.  */
! /* BEWARE, the value `20' is hard-coded in emacs.c:main().  */
! #define TYPICAL_FAILURE_SIZE 20
! 
! /* How many items can still be added to the stack without overflowing it.  */
! #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
! 
! 
! /* Pops what PUSH_FAIL_STACK pushes.
! 
!    We restore into the parameters, all of which should be lvalues:
!      STR -- the saved data position.
!      PAT -- the saved pattern position.
!      REGSTART, REGEND -- arrays of string positions.
! 
!    Also assumes the variables `fail_stack' and (if debugging), `bufp',
!    `pend', `string1', `size1', `string2', and `size2'.        */
! 
! #define POP_FAILURE_POINT(str, pat)                                     \
! do {                                                                  \
!   assert (!FAIL_STACK_EMPTY ());                                      \
!                                                                       \
!   /* Remove failure points and point to how many regs pushed.  */     \
!   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");                              \
!   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);  \
!   DEBUG_PRINT2 ("                  size: %d\n", fail_stack.size);     \
!                                                                       \
!   /* Pop the saved registers.  */                                     \
!   while (fail_stack.frame < fail_stack.avail)                         \
!     POP_FAILURE_REG_OR_COUNT ();                                      \
!                                                                       \
!   pat = POP_FAILURE_POINTER ();                               \
!   DEBUG_PRINT2 ("  Popping pattern %p: ", pat);                               
\
!   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);                     \
!                                                                       \
!   /* If the saved string location is NULL, it came from an            \
!      on_failure_keep_string_jump opcode, and we want to throw away the        
\
!      saved NULL, thus retaining our current position in the string.  */       
\
!   str = POP_FAILURE_POINTER ();                                               
\
!   DEBUG_PRINT2 ("  Popping string %p: `", str);                               
\
!   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);    \
!   DEBUG_PRINT1 ("'\n");                                                       
\
!                                                                       \
!   fail_stack.frame = POP_FAILURE_INT ();                              \
!   DEBUG_PRINT2 ("  Popping  frame index: %d\n", fail_stack.frame);    \
!                                                                       \
!   assert (fail_stack.avail >= 0);                                     \
!   assert (fail_stack.frame <= fail_stack.avail);                      \
!                                                                       \
!   DEBUG_STATEMENT (nfailure_points_popped++);                         \
! } while (0) /* POP_FAILURE_POINT */
! 
! 
! 
! /* Registers are set to a sentinel when they haven't yet matched.  */
! #define REG_UNSET(e) ((e) == NULL)
! 
! /* Subroutine declarations and macros for regex_compile.  */
! 
! static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
!                                             reg_syntax_t syntax,
!                                             struct re_pattern_buffer *bufp));
! static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int 
arg));
! static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
!                                int arg1, int arg2));
! static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
!                                 int arg, unsigned char *end));
! static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
!                                 int arg1, int arg2, unsigned char *end));
! static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
!                                          re_char *p,
!                                          reg_syntax_t syntax));
! static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
!                                          re_char *pend,
!                                          reg_syntax_t syntax));
! static re_char *skip_one_char _RE_ARGS ((re_char *p));
! static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
!                                   char *fastmap, const int multibyte));
! 
! /* Fetch the next character in the uncompiled pattern---translating it
!    if necessary.  */
! #define PATFETCH(c)                                                   \
!   do {                                                                        
\
!     PATFETCH_RAW (c);                                                 \
!     c = TRANSLATE (c);                                                        
\
!   } while (0)
! 
! /* Fetch the next character in the uncompiled pattern, with no
!    translation.  */
! #define PATFETCH_RAW(c)                                                       
\
!   do {                                                                        
\
!     int len;                                                          \
!     if (p == pend) return REG_EEND;                                   \
!     c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len);                 \
!     p += len;                                                         \
!   } while (0)
! 
! 
! /* If `translate' is non-null, return translate[D], else just D.  We
!    cast the subscript to translate because some data is declared as
!    `char *', to avoid warnings when a string constant is passed.  But
!    when we use a character as a subscript we must make it unsigned.  */
! #ifndef TRANSLATE
! # define TRANSLATE(d) \
!   (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
! #endif
! 
! 
! /* Macros for outputting the compiled pattern into `buffer'.  */
! 
! /* If the buffer isn't allocated when it comes in, use this.  */
! #define INIT_BUF_SIZE  32
! 
! /* Make sure we have at least N more bytes of space in buffer.  */
  #define GET_BUFFER_SPACE(n)                                           \
!     while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated)               
\
        EXTEND_BUFFER ()
  
  /* Make sure we have one more byte of buffer space and then add C to it.  */
***************
*** 931,966 ****
  /* This is not an arbitrary limit: the arguments which represent offsets
     into the pattern are two bytes long.  So if 2^16 bytes turns out to
     be too small, many things would have to change.  */
! #define MAX_BUF_SIZE (1L << 16)
! 
  
  /* Extend the buffer by twice its current size via realloc and
     reset the pointers that pointed into the old block to point to the
     correct places in the new one.  If extending the buffer results in it
     being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
  #define EXTEND_BUFFER()                                                       
\
!   do {                                                                        
\
!     unsigned char *old_buffer = bufp->buffer;                         \
!     if (bufp->allocated == MAX_BUF_SIZE)                              \
        return REG_ESIZE;                                                       
\
      bufp->allocated <<= 1;                                            \
      if (bufp->allocated > MAX_BUF_SIZE)                                       
\
!       bufp->allocated = MAX_BUF_SIZE;                                         
\
!     bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
      if (bufp->buffer == NULL)                                         \
        return REG_ESPACE;                                              \
      /* If the buffer moved, move all the pointers into it.  */                
\
      if (old_buffer != bufp->buffer)                                   \
        {                                                                       
\
!         b = (b - old_buffer) + bufp->buffer;                          \
!         begalt = (begalt - old_buffer) + bufp->buffer;                        
\
!         if (fixup_alt_jump)                                           \
!           fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
!         if (laststart)                                                        
\
!           laststart = (laststart - old_buffer) + bufp->buffer;                
\
!         if (pending_exact)                                            \
!           pending_exact = (pending_exact - old_buffer) + bufp->buffer;        
\
        }                                                                       
\
    } while (0)
  
  
--- 1745,1811 ----
  /* This is not an arbitrary limit: the arguments which represent offsets
     into the pattern are two bytes long.  So if 2^16 bytes turns out to
     be too small, many things would have to change.  */
! /* Any other compiler which, like MSC, has allocation limit below 2^16
!    bytes will have to use approach similar to what was done below for
!    MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
!    reallocating to 0 bytes.  Such thing is not going to work too well.
!    You have been warned!!  */
! #if defined _MSC_VER  && !defined WIN32
! /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.  */
! # define MAX_BUF_SIZE  65500L
! #else
! # define MAX_BUF_SIZE (1L << 16)
! #endif
  
  /* Extend the buffer by twice its current size via realloc and
     reset the pointers that pointed into the old block to point to the
     correct places in the new one.  If extending the buffer results in it
     being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
+ #if __BOUNDED_POINTERS__
+ # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
+ # define MOVE_BUFFER_POINTER(P) \
+   (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
+ # define ELSE_EXTEND_BUFFER_HIGH_BOUND                \
+   else                                                \
+     {                                         \
+       SET_HIGH_BOUND (b);                     \
+       SET_HIGH_BOUND (begalt);                        \
+       if (fixup_alt_jump)                     \
+       SET_HIGH_BOUND (fixup_alt_jump);        \
+       if (laststart)                          \
+       SET_HIGH_BOUND (laststart);             \
+       if (pending_exact)                      \
+       SET_HIGH_BOUND (pending_exact);         \
+     }
+ #else
+ # define MOVE_BUFFER_POINTER(P) (P) += incr
+ # define ELSE_EXTEND_BUFFER_HIGH_BOUND
+ #endif
  #define EXTEND_BUFFER()                                                       
\
!   do {                                                                        
\
!     re_char *old_buffer = bufp->buffer;                                       
\
!     if (bufp->allocated == MAX_BUF_SIZE)                              \
        return REG_ESIZE;                                                       
\
      bufp->allocated <<= 1;                                            \
      if (bufp->allocated > MAX_BUF_SIZE)                                       
\
!       bufp->allocated = MAX_BUF_SIZE;                                 \
!     RETALLOC (bufp->buffer, bufp->allocated, unsigned char);          \
      if (bufp->buffer == NULL)                                         \
        return REG_ESPACE;                                              \
      /* If the buffer moved, move all the pointers into it.  */                
\
      if (old_buffer != bufp->buffer)                                   \
        {                                                                       
\
!       int incr = bufp->buffer - old_buffer;                           \
!       MOVE_BUFFER_POINTER (b);                                        \
!       MOVE_BUFFER_POINTER (begalt);                                   \
!       if (fixup_alt_jump)                                             \
!         MOVE_BUFFER_POINTER (fixup_alt_jump);                         \
!       if (laststart)                                                  \
!         MOVE_BUFFER_POINTER (laststart);                              \
!       if (pending_exact)                                              \
!         MOVE_BUFFER_POINTER (pending_exact);                          \
        }                                                                       
\
+     ELSE_EXTEND_BUFFER_HIGH_BOUND                                     \
    } while (0)
  
  
***************
*** 978,991 ****
  
  /* Since offsets can go either forwards or backwards, this type needs to
     be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
! typedef int pattern_offset_t;
  
  typedef struct
  {
    pattern_offset_t begalt_offset;
    pattern_offset_t fixup_alt_jump;
!   pattern_offset_t inner_group_offset;
!   pattern_offset_t laststart_offset;  
    regnum_t regnum;
  } compile_stack_elt_t;
  
--- 1823,1836 ----
  
  /* Since offsets can go either forwards or backwards, this type needs to
     be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
! /* int may be not enough when sizeof(int) == 2.  */
! typedef long pattern_offset_t;
  
  typedef struct
  {
    pattern_offset_t begalt_offset;
    pattern_offset_t fixup_alt_jump;
!   pattern_offset_t laststart_offset;
    regnum_t regnum;
  } compile_stack_elt_t;
  
***************
*** 1007,1045 ****
  #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
  
  
  /* Set the bit for character C in a list.  */
! #define SET_LIST_BIT(c)                               \
!   (b[((unsigned char) (c)) / BYTEWIDTH]               \
!    |= 1 << (((unsigned char) c) % BYTEWIDTH))
  
  
  /* Get the next unsigned number in the uncompiled pattern.  */
! #define GET_UNSIGNED_NUMBER(num)                                      \
!   { if (p != pend)                                                    \
       {                                                                        
\
!        PATFETCH (c);                                                  \
!        while (ISDIGIT (c))                                            \
!          {                                                            \
!            if (num < 0)                                                       
\
!               num = 0;                                                        
\
!            num = num * 10 + c - '0';                                  \
!            if (p == pend)                                             \
!               break;                                                  \
!            PATFETCH (c);                                              \
!          }                                                            \
!        }                                                              \
!     }         
! 
! #define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
! 
! #define IS_CHAR_CLASS(string)                                         \
!    (STREQ (string, "alpha") || STREQ (string, "upper")                        
\
!     || STREQ (string, "lower") || STREQ (string, "digit")             \
!     || STREQ (string, "alnum") || STREQ (string, "xdigit")            \
!     || STREQ (string, "space") || STREQ (string, "print")             \
!     || STREQ (string, "punct") || STREQ (string, "graph")             \
!     || STREQ (string, "cntrl") || STREQ (string, "blank"))
  
  /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
     Returns one of error codes defined in `regex.h', or zero for success.
  
--- 1852,2104 ----
  #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
  
  
+ /* Structure to manage work area for range table.  */
+ struct range_table_work_area
+ {
+   int *table;                 /* actual work area.  */
+   int allocated;              /* allocated size for work area in bytes.  */
+   int used;                   /* actually used size in words.  */
+   int bits;                   /* flag to record character classes */
+ };
+ 
+ /* Make sure that WORK_AREA can hold more N multibyte characters.  */
+ #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n)                      \
+   do {                                                                        
  \
+     if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated)  \
+       {                                                                       
  \
+       (work_area).allocated += 16 * sizeof (int);                       \
+       if ((work_area).table)                                            \
+         (work_area).table                                               \
+           = (int *) realloc ((work_area).table, (work_area).allocated); \
+       else                                                              \
+         (work_area).table                                               \
+           = (int *) malloc ((work_area).allocated);                     \
+       if ((work_area).table == 0)                                       \
+         FREE_STACK_RETURN (REG_ESPACE);                                 \
+       }                                                                       
  \
+   } while (0)
+ 
+ #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit)         \
+   (work_area).bits |= (bit)
+ 
+ /* Bits used to implement the multibyte-part of the various character classes
+    such as [:alnum:] in a charset's range table.  */
+ #define BIT_WORD      0x1
+ #define BIT_LOWER     0x2
+ #define BIT_PUNCT     0x4
+ #define BIT_SPACE     0x8
+ #define BIT_UPPER     0x10
+ #define BIT_MULTIBYTE 0x20
+ 
+ /* Set a range (RANGE_START, RANGE_END) to WORK_AREA.  */
+ #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end)  \
+   do {                                                                        
\
+     EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2);                    \
+     (work_area).table[(work_area).used++] = (range_start);            \
+     (work_area).table[(work_area).used++] = (range_end);              \
+   } while (0)
+ 
+ /* Free allocated memory for WORK_AREA.        */
+ #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
+   do {                                                \
+     if ((work_area).table)                    \
+       free ((work_area).table);                       \
+   } while (0)
+ 
+ #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, 
(work_area).bits = 0)
+ #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
+ #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
+ #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
+ 
+ 
  /* Set the bit for character C in a list.  */
! #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
  
  
  /* Get the next unsigned number in the uncompiled pattern.  */
! #define GET_UNSIGNED_NUMBER(num)                                      \
!  do { if (p != pend)                                                  \
       {                                                                        
\
!        PATFETCH (c);                                                  \
!        while ('0' <= c && c <= '9')                                   \
!        {                                                              \
!          if (num < 0)                                                 \
!             num = 0;                                                  \
!          num = num * 10 + c - '0';                                    \
!          if (p == pend)                                               \
!             break;                                                    \
!          PATFETCH (c);                                                \
!        }                                                              \
!        }                                                              \
!     } while (0)
! 
! #if WIDE_CHAR_SUPPORT
! /* The GNU C library provides support for user-defined character classes
!    and the functions from ISO C amendement 1.  */
! # ifdef CHARCLASS_NAME_MAX
! #  define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
! # else
! /* This shouldn't happen but some implementation might still have this
!    problem.  Use a reasonable default value.  */
! #  define CHAR_CLASS_MAX_LENGTH 256
! # endif
! typedef wctype_t re_wctype_t;
! typedef wchar_t re_wchar_t;
! # define re_wctype wctype
! # define re_iswctype iswctype
! # define re_wctype_to_bit(cc) 0
! #else
! # define CHAR_CLASS_MAX_LENGTH  9 /* Namely, `multibyte'.  */
! # define btowc(c) c
! 
! /* Character classes.  */
! typedef enum { RECC_ERROR = 0,
!              RECC_ALNUM, RECC_ALPHA, RECC_WORD,
!              RECC_GRAPH, RECC_PRINT,
!              RECC_LOWER, RECC_UPPER,
!              RECC_PUNCT, RECC_CNTRL,
!              RECC_DIGIT, RECC_XDIGIT,
!              RECC_BLANK, RECC_SPACE,
!              RECC_MULTIBYTE, RECC_NONASCII,
!              RECC_ASCII, RECC_UNIBYTE
! } re_wctype_t;
! 
! typedef int re_wchar_t;
! 
! /* Map a string to the char class it names (if any).  */
! static re_wctype_t
! re_wctype (str)
!      re_char *str;
! {
!   const char *string = str;
!   if      (STREQ (string, "alnum"))   return RECC_ALNUM;
!   else if (STREQ (string, "alpha"))   return RECC_ALPHA;
!   else if (STREQ (string, "word"))    return RECC_WORD;
!   else if (STREQ (string, "ascii"))   return RECC_ASCII;
!   else if (STREQ (string, "nonascii"))        return RECC_NONASCII;
!   else if (STREQ (string, "graph"))   return RECC_GRAPH;
!   else if (STREQ (string, "lower"))   return RECC_LOWER;
!   else if (STREQ (string, "print"))   return RECC_PRINT;
!   else if (STREQ (string, "punct"))   return RECC_PUNCT;
!   else if (STREQ (string, "space"))   return RECC_SPACE;
!   else if (STREQ (string, "upper"))   return RECC_UPPER;
!   else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
!   else if (STREQ (string, "multibyte"))       return RECC_MULTIBYTE;
!   else if (STREQ (string, "digit"))   return RECC_DIGIT;
!   else if (STREQ (string, "xdigit"))  return RECC_XDIGIT;
!   else if (STREQ (string, "cntrl"))   return RECC_CNTRL;
!   else if (STREQ (string, "blank"))   return RECC_BLANK;
!   else return 0;
! }
! 
! /* True iff CH is in the char class CC.  */
! static boolean
! re_iswctype (ch, cc)
!      int ch;
!      re_wctype_t cc;
! {
!   switch (cc)
!     {
!     case RECC_ALNUM: return ISALNUM (ch);
!     case RECC_ALPHA: return ISALPHA (ch);
!     case RECC_BLANK: return ISBLANK (ch);
!     case RECC_CNTRL: return ISCNTRL (ch);
!     case RECC_DIGIT: return ISDIGIT (ch);
!     case RECC_GRAPH: return ISGRAPH (ch);
!     case RECC_LOWER: return ISLOWER (ch);
!     case RECC_PRINT: return ISPRINT (ch);
!     case RECC_PUNCT: return ISPUNCT (ch);
!     case RECC_SPACE: return ISSPACE (ch);
!     case RECC_UPPER: return ISUPPER (ch);
!     case RECC_XDIGIT: return ISXDIGIT (ch);
!     case RECC_ASCII: return IS_REAL_ASCII (ch);
!     case RECC_NONASCII: return !IS_REAL_ASCII (ch);
!     case RECC_UNIBYTE: return ISUNIBYTE (ch);
!     case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
!     case RECC_WORD: return ISWORD (ch);
!     case RECC_ERROR: return false;
!     default:
!       abort();
!     }
! }
! 
! /* Return a bit-pattern to use in the range-table bits to match multibyte
!    chars of class CC.  */
! static int
! re_wctype_to_bit (cc)
!      re_wctype_t cc;
! {
!   switch (cc)
!     {
!     case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
!     case RECC_MULTIBYTE: return BIT_MULTIBYTE;
!     case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
!     case RECC_LOWER: return BIT_LOWER;
!     case RECC_UPPER: return BIT_UPPER;
!     case RECC_PUNCT: return BIT_PUNCT;
!     case RECC_SPACE: return BIT_SPACE;
!     case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
!     case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
!     default:
!       abort();
!     }
! }
! #endif
! 
! /* Explicit quit checking is only used on NTemacs.  */
! #if defined WINDOWSNT && defined emacs && defined QUIT
! extern int immediate_quit;
! # define IMMEDIATE_QUIT_CHECK                 \
!     do {                                      \
!       if (immediate_quit) QUIT;                       \
!     } while (0)
! #else
! # define IMMEDIATE_QUIT_CHECK    ((void)0)
! #endif
! 
! #ifndef MATCH_MAY_ALLOCATE
! 
! /* If we cannot allocate large objects within re_match_2_internal,
!    we make the fail stack and register vectors global.
!    The fail stack, we grow to the maximum size when a regexp
!    is compiled.
!    The register vectors, we adjust in size each time we
!    compile a regexp, according to the number of registers it needs.  */
! 
! static fail_stack_type fail_stack;
! 
! /* Size with which the following vectors are currently allocated.
!    That is so we can make them bigger as needed,
!    but never make them smaller.  */
! static int regs_allocated_size;
! 
! static re_char **     regstart, **     regend;
! static re_char **best_regstart, **best_regend;
! 
! /* Make the register vectors big enough for NUM_REGS registers,
!    but don't make them smaller.  */
! 
! static
! regex_grow_registers (num_regs)
!      int num_regs;
! {
!   if (num_regs > regs_allocated_size)
!     {
!       RETALLOC_IF (regstart,   num_regs, re_char *);
!       RETALLOC_IF (regend,     num_regs, re_char *);
!       RETALLOC_IF (best_regstart, num_regs, re_char *);
!       RETALLOC_IF (best_regend,        num_regs, re_char *);
! 
!       regs_allocated_size = num_regs;
!     }
! }
! 
! #endif /* not MATCH_MAY_ALLOCATE */
  
+ static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
+                                                compile_stack,
+                                                regnum_t regnum));
+ 
  /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
     Returns one of error codes defined in `regex.h', or zero for success.
  
***************
*** 1054,1090 ****
       `fastmap_accurate' is zero;
       `re_nsub' is the number of subexpressions in PATTERN;
       `not_bol' and `not_eol' are zero;
!    
!    The `fastmap' and `newline_anchor' fields are neither
!    examined nor set.  */
  
  static reg_errcode_t
  regex_compile (pattern, size, syntax, bufp)
!      const char *pattern;
!      int size;
       reg_syntax_t syntax;
       struct re_pattern_buffer *bufp;
  {
!   /* We fetch characters from PATTERN here.  Even though PATTERN is
!      `char *' (i.e., signed), we declare these variables as unsigned, so
!      they can be reliably used as array indices.  */
!   register unsigned char c, c1;
!   
!   /* A random tempory spot in PATTERN.  */
!   const char *p1;
  
    /* Points to the end of the buffer, where we should append.  */
    register unsigned char *b;
!   
    /* Keeps track of unclosed groups.  */
    compile_stack_type compile_stack;
  
    /* Points to the current (ending) position in the pattern.  */
!   const char *p = pattern;
!   const char *pend = pattern + size;
!   
    /* How to translate the characters in the pattern.  */
!   char *translate = bufp->translate;
  
    /* Address of the count-byte of the most recently inserted `exactn'
       command.  This makes it possible to tell if a new exact-match
--- 2113,2168 ----
       `fastmap_accurate' is zero;
       `re_nsub' is the number of subexpressions in PATTERN;
       `not_bol' and `not_eol' are zero;
! 
!    The `fastmap' field is neither examined nor set.  */
! 
! /* Insert the `jump' from the end of last alternative to "here".
!    The space for the jump has already been allocated. */
! #define FIXUP_ALT_JUMP()                                              \
! do {                                                                  \
!   if (fixup_alt_jump)                                                 \
!     STORE_JUMP (jump, fixup_alt_jump, b);                             \
! } while (0)
! 
! 
! /* Return, freeing storage we allocated.  */
! #define FREE_STACK_RETURN(value)              \
!   do {                                                        \
!     FREE_RANGE_TABLE_WORK_AREA (range_table_work);    \
!     free (compile_stack.stack);                               \
!     return value;                                     \
!   } while (0)
  
  static reg_errcode_t
  regex_compile (pattern, size, syntax, bufp)
!      re_char *pattern;
!      size_t size;
       reg_syntax_t syntax;
       struct re_pattern_buffer *bufp;
  {
!   /* We fetch characters from PATTERN here.  */
!   register re_wchar_t c, c1;
! 
!   /* A random temporary spot in PATTERN.  */
!   re_char *p1;
  
    /* Points to the end of the buffer, where we should append.  */
    register unsigned char *b;
! 
    /* Keeps track of unclosed groups.  */
    compile_stack_type compile_stack;
  
    /* Points to the current (ending) position in the pattern.  */
! #ifdef AIX
!   /* `const' makes AIX compiler fail.  */
!   unsigned char *p = pattern;
! #else
!   re_char *p = pattern;
! #endif
!   re_char *pend = pattern + size;
! 
    /* How to translate the characters in the pattern.  */
!   RE_TRANSLATE_TYPE translate = bufp->translate;
  
    /* Address of the count-byte of the most recently inserted `exactn'
       command.  This makes it possible to tell if a new exact-match
***************
*** 1102,1111 ****
  
    /* Place in the uncompiled pattern (i.e., the {) to
       which to go back if the interval is invalid.  */
!   const char *beg_interval;
!                 
    /* Address of the place where a forward jump should go to the end of
!      the containing expression.  Each alternative of an `or' -- except the
       last -- ends with a forward jump of this sort.  */
    unsigned char *fixup_alt_jump = 0;
  
--- 2180,2189 ----
  
    /* Place in the uncompiled pattern (i.e., the {) to
       which to go back if the interval is invalid.  */
!   re_char *beg_interval;
! 
    /* Address of the place where a forward jump should go to the end of
!      the containing expression.        Each alternative of an `or' -- except 
the
       last -- ends with a forward jump of this sort.  */
    unsigned char *fixup_alt_jump = 0;
  
***************
*** 1114,1127 ****
       number is put in the stop_memory as the start_memory.  */
    regnum_t regnum = 0;
  
  #ifdef DEBUG
    DEBUG_PRINT1 ("\nCompiling pattern: ");
!   if (debug)
      {
        unsigned debug_count;
!       
        for (debug_count = 0; debug_count < size; debug_count++)
!         printchar (pattern[debug_count]);
        putchar ('\n');
      }
  #endif /* DEBUG */
--- 2192,2212 ----
       number is put in the stop_memory as the start_memory.  */
    regnum_t regnum = 0;
  
+   /* Work area for range table of charset.  */
+   struct range_table_work_area range_table_work;
+ 
+   /* If the object matched can contain multibyte characters.  */
+   const boolean multibyte = RE_MULTIBYTE_P (bufp);
+ 
  #ifdef DEBUG
+   debug++;
    DEBUG_PRINT1 ("\nCompiling pattern: ");
!   if (debug > 0)
      {
        unsigned debug_count;
! 
        for (debug_count = 0; debug_count < size; debug_count++)
!       putchar (pattern[debug_count]);
        putchar ('\n');
      }
  #endif /* DEBUG */
***************
*** 1134,1139 ****
--- 2219,2227 ----
    compile_stack.size = INIT_COMPILE_STACK_SIZE;
    compile_stack.avail = 0;
  
+   range_table_work.table = 0;
+   range_table_work.allocated = 0;
+ 
    /* Initialize the pattern buffer.  */
    bufp->syntax = syntax;
    bufp->fastmap_accurate = 0;
***************
*** 1143,1153 ****
       printer (for debugging) will think there's no pattern.  We reset it
       at the end.  */
    bufp->used = 0;
!   
    /* Always count groups, whether or not bufp->no_sub is set.  */
!   bufp->re_nsub = 0;                          
  
! #if !defined (emacs) && !defined (SYNTAX_TABLE)
    /* Initialize the syntax table.  */
     init_syntax_once ();
  #endif
--- 2231,2241 ----
       printer (for debugging) will think there's no pattern.  We reset it
       at the end.  */
    bufp->used = 0;
! 
    /* Always count groups, whether or not bufp->no_sub is set.  */
!   bufp->re_nsub = 0;
  
! #if !defined emacs && !defined SYNTAX_TABLE
    /* Initialize the syntax table.  */
     init_syntax_once ();
  #endif
***************
*** 1156,1170 ****
      {
        if (bufp->buffer)
        { /* If zero allocated, but buffer is non-null, try to realloc
!              enough space.  This loses if buffer's address is bogus, but
!              that is the user's responsibility.  */
!           RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
!         }
        else
!         { /* Caller did not allocate a buffer.  Do it for them.  */
!           bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
!         }
!       if (!bufp->buffer) return REG_ESPACE;
  
        bufp->allocated = INIT_BUF_SIZE;
      }
--- 2244,2258 ----
      {
        if (bufp->buffer)
        { /* If zero allocated, but buffer is non-null, try to realloc
!            enough space.  This loses if buffer's address is bogus, but
!            that is the user's responsibility.  */
!         RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
!       }
        else
!       { /* Caller did not allocate a buffer.  Do it for them.  */
!         bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
!       }
!       if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
  
        bufp->allocated = INIT_BUF_SIZE;
      }
***************
*** 1177,2043 ****
        PATFETCH (c);
  
        switch (c)
!         {
!         case '^':
!           {
!             if (   /* If at start of pattern, it's an operator.  */
!                    p == pattern + 1
!                    /* If context independent, it's an operator.  */
!                 || syntax & RE_CONTEXT_INDEP_ANCHORS
!                    /* Otherwise, depends on what's come before.  */
!                 || at_begline_loc_p (pattern, p, syntax))
!               BUF_PUSH (begline);
!             else
!               goto normal_char;
!           }
!           break;
! 
! 
!         case '$':
!           {
!             if (   /* If at end of pattern, it's an operator.  */
!                    p == pend 
!                    /* If context independent, it's an operator.  */
!                 || syntax & RE_CONTEXT_INDEP_ANCHORS
!                    /* Otherwise, depends on what's next.  */
!                 || at_endline_loc_p (p, pend, syntax))
!                BUF_PUSH (endline);
!              else
!                goto normal_char;
!            }
!            break;
  
  
        case '+':
!         case '?':
!           if ((syntax & RE_BK_PLUS_QM)
!               || (syntax & RE_LIMITED_OPS))
!             goto normal_char;
!         handle_plus:
!         case '*':
!           /* If there is no previous pattern... */
!           if (!laststart)
!             {
!               if (syntax & RE_CONTEXT_INVALID_OPS)
!                 return REG_BADRPT;
!               else if (!(syntax & RE_CONTEXT_INDEP_OPS))
!                 goto normal_char;
!             }
! 
!           {
!             /* Are we optimizing this jump?  */
!             boolean keep_string_p = false;
!             
!             /* 1 means zero (many) matches is allowed.  */
!             char zero_times_ok = 0, many_times_ok = 0;
! 
!             /* If there is a sequence of repetition chars, collapse it
!                down to just one (the right one).  We can't combine
!                interval operators with these because of, e.g., `a{2}*',
!                which should only match an even number of `a's.  */
! 
!             for (;;)
!               {
!                 zero_times_ok |= c != '+';
!                 many_times_ok |= c != '?';
! 
!                 if (p == pend)
!                   break;
! 
!                 PATFETCH (c);
! 
!                 if (c == '*'
!                     || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
!                   ;
! 
!                 else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
!                   {
!                     if (p == pend) return REG_EESCAPE;
! 
!                     PATFETCH (c1);
!                     if (!(c1 == '+' || c1 == '?'))
!                       {
!                         PATUNFETCH;
!                         PATUNFETCH;
!                         break;
!                       }
! 
!                     c = c1;
!                   }
!                 else
!                   {
!                     PATUNFETCH;
!                     break;
!                   }
! 
!                 /* If we get here, we found another repeat character.  */
!                }
! 
!             /* Star, etc. applied to an empty pattern is equivalent
!                to an empty pattern.  */
!             if (!laststart)  
!               break;
! 
!             /* Now we know whether or not zero matches is allowed
!                and also whether or not two or more matches is allowed.  */
!             if (many_times_ok)
!               { /* More than one repetition is allowed, so put in at the
!                    end a backward relative jump from `b' to before the next
!                    jump we're going to put in below (which jumps from
!                    laststart to after this jump).  
! 
!                    But if we are at the `*' in the exact sequence `.*\n',
!                    insert an unconditional jump backwards to the .,
!                    instead of the beginning of the loop.  This way we only
!                    push a failure point once, instead of every time
!                    through the loop.  */
!                 assert (p - 1 > pattern);
! 
!                 /* Allocate the space for the jump.  */
!                 GET_BUFFER_SPACE (3);
! 
!                 /* We know we are not at the first character of the pattern,
!                    because laststart was nonzero.  And we've already
!                    incremented `p', by the way, to be the character after
!                    the `*'.  Do we have to do something analogous here
!                    for null bytes, because of RE_DOT_NOT_NULL?  */
!                 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
!                   && zero_times_ok
!                     && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
!                     && !(syntax & RE_DOT_NEWLINE))
!                   { /* We have .*\n.  */
!                     STORE_JUMP (jump, b, laststart);
!                     keep_string_p = true;
!                   }
!                 else
!                   /* Anything else.  */
!                   STORE_JUMP (maybe_pop_jump, b, laststart - 3);
! 
!                 /* We've added more stuff to the buffer.  */
!                 b += 3;
!               }
! 
!             /* On failure, jump from laststart to b + 3, which will be the
!                end of the buffer after this jump is inserted.  */
!             GET_BUFFER_SPACE (3);
!             INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
!                                        : on_failure_jump,
!                          laststart, b + 3);
!             pending_exact = 0;
!             b += 3;
! 
!             if (!zero_times_ok)
!               {
!                 /* At least one repetition is required, so insert a
!                    `dummy_failure_jump' before the initial
!                    `on_failure_jump' instruction of the loop. This
!                    effects a skip over that instruction the first time
!                    we hit that loop.  */
!                 GET_BUFFER_SPACE (3);
!                 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
!                 b += 3;
!               }
!             }
!         break;
  
  
!       case '.':
!           laststart = b;
!           BUF_PUSH (anychar);
!           break;
  
  
!         case '[':
!           {
!             boolean had_char_class = false;
  
!             if (p == pend) return REG_EBRACK;
  
-             /* Ensure that we have enough space to push a charset: the
-                opcode, the length count, and the bitset; 34 bytes in all.  */
-           GET_BUFFER_SPACE (34);
  
!             laststart = b;
  
-             /* We test `*p == '^' twice, instead of using an if
-                statement, so we only need one BUF_PUSH.  */
-             BUF_PUSH (*p == '^' ? charset_not : charset); 
-             if (*p == '^')
-               p++;
- 
-             /* Remember the first position in the bracket expression.  */
-             p1 = p;
- 
-             /* Push the number of bytes in the bitmap.  */
-             BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
- 
-             /* Clear the whole map.  */
-             bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
- 
-             /* charset_not matches newline according to a syntax bit.  */
-             if ((re_opcode_t) b[-2] == charset_not
-                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
-               SET_LIST_BIT ('\n');
- 
-             /* Read in characters and ranges, setting map bits.  */
-             for (;;)
-               {
-                 if (p == pend) return REG_EBRACK;
- 
-                 PATFETCH (c);
- 
-                 /* \ might escape characters inside [...] and [^...].  */
-                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
-                   {
-                     if (p == pend) return REG_EESCAPE;
- 
-                     PATFETCH (c1);
-                     SET_LIST_BIT (c1);
-                     continue;
-                   }
- 
-                 /* Could be the end of the bracket expression.  If it's
-                    not (i.e., when the bracket expression is `[]' so
-                    far), the ']' character bit gets set way below.  */
-                 if (c == ']' && p != p1 + 1)
-                   break;
- 
-                 /* Look ahead to see if it's a range when the last thing
-                    was a character class.  */
-                 if (had_char_class && c == '-' && *p != ']')
-                   return REG_ERANGE;
- 
-                 /* Look ahead to see if it's a range when the last thing
-                    was a character: if this is a hyphen not at the
-                    beginning or the end of a list, then it's the range
-                    operator.  */
-                 if (c == '-' 
-                     && !(p - 2 >= pattern && p[-2] == '[') 
-                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
-                     && *p != ']')
-                   {
-                     reg_errcode_t ret
-                       = compile_range (&p, pend, translate, syntax, b);
-                     if (ret != REG_NOERROR) return ret;
-                   }
- 
-                 else if (p[0] == '-' && p[1] != ']')
-                   { /* This handles ranges made up of characters only.  */
-                     reg_errcode_t ret;
- 
-                   /* Move past the `-'.  */
-                     PATFETCH (c1);
-                     
-                     ret = compile_range (&p, pend, translate, syntax, b);
-                     if (ret != REG_NOERROR) return ret;
-                   }
- 
-                 /* See if we're at the beginning of a possible character
-                    class.  */
- 
-                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
-                   { /* Leave room for the null.  */
-                     char str[CHAR_CLASS_MAX_LENGTH + 1];
  
!                     PATFETCH (c);
!                     c1 = 0;
  
!                     /* If pattern is `[[:'.  */
!                     if (p == pend) return REG_EBRACK;
  
!                     for (;;)
!                       {
!                         PATFETCH (c);
!                         if (c == ':' || c == ']' || p == pend
!                             || c1 == CHAR_CLASS_MAX_LENGTH)
!                           break;
!                         str[c1++] = c;
!                       }
!                     str[c1] = '\0';
! 
!                     /* If isn't a word bracketed by `[:' and:`]':
!                        undo the ending character, the letters, and leave 
!                        the leading `:' and `[' (but set bits for them).  */
!                     if (c == ':' && *p == ']')
!                       {
!                         int ch;
!                         boolean is_alnum = STREQ (str, "alnum");
!                         boolean is_alpha = STREQ (str, "alpha");
!                         boolean is_blank = STREQ (str, "blank");
!                         boolean is_cntrl = STREQ (str, "cntrl");
!                         boolean is_digit = STREQ (str, "digit");
!                         boolean is_graph = STREQ (str, "graph");
!                         boolean is_lower = STREQ (str, "lower");
!                         boolean is_print = STREQ (str, "print");
!                         boolean is_punct = STREQ (str, "punct");
!                         boolean is_space = STREQ (str, "space");
!                         boolean is_upper = STREQ (str, "upper");
!                         boolean is_xdigit = STREQ (str, "xdigit");
!                         
!                         if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
  
!                         /* Throw away the ] at the end of the character
!                            class.  */
!                         PATFETCH (c);                                 
  
!                         if (p == pend) return REG_EBRACK;
  
!                         for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
!                           {
!                             if (   (is_alnum  && ISALNUM (ch))
!                                 || (is_alpha  && ISALPHA (ch))
!                                 || (is_blank  && ISBLANK (ch))
!                                 || (is_cntrl  && ISCNTRL (ch))
!                                 || (is_digit  && ISDIGIT (ch))
!                                 || (is_graph  && ISGRAPH (ch))
!                                 || (is_lower  && ISLOWER (ch))
!                                 || (is_print  && ISPRINT (ch))
!                                 || (is_punct  && ISPUNCT (ch))
!                                 || (is_space  && ISSPACE (ch))
!                                 || (is_upper  && ISUPPER (ch))
!                                 || (is_xdigit && ISXDIGIT (ch)))
!                             SET_LIST_BIT (ch);
!                           }
!                         had_char_class = true;
!                       }
!                     else
!                       {
!                         c1++;
!                         while (c1--)    
!                           PATUNFETCH;
!                         SET_LIST_BIT ('[');
!                         SET_LIST_BIT (':');
!                         had_char_class = false;
!                       }
!                   }
!                 else
!                   {
!                     had_char_class = false;
!                     SET_LIST_BIT (c);
!                   }
!               }
! 
!             /* Discard any (non)matching list bytes that are all 0 at the
!                end of the map.  Decrease the map-length byte too.  */
!             while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) 
!               b[-1]--; 
!             b += b[-1];
!           }
!           break;
  
  
!       case '(':
!           if (syntax & RE_NO_BK_PARENS)
!             goto handle_open;
!           else
!             goto normal_char;
! 
! 
!         case ')':
!           if (syntax & RE_NO_BK_PARENS)
!             goto handle_close;
!           else
!             goto normal_char;
! 
! 
!         case '\n':
!           if (syntax & RE_NEWLINE_ALT)
!             goto handle_alt;
!           else
!             goto normal_char;
  
  
!       case '|':
!           if (syntax & RE_NO_BK_VBAR)
!             goto handle_alt;
!           else
!             goto normal_char;
! 
! 
!         case '{':
!            if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
!              goto handle_interval;
!            else
!              goto normal_char;
! 
! 
!         case '\\':
!           if (p == pend) return REG_EESCAPE;
! 
!           /* Do not translate the character after the \, so that we can
!              distinguish, e.g., \B from \b, even if we normally would
!              translate, e.g., B to b.  */
!           PATFETCH_RAW (c);
! 
!           switch (c)
!             {
!             case '(':
!               if (syntax & RE_NO_BK_PARENS)
!                 goto normal_backslash;
! 
!             handle_open:
!               bufp->re_nsub++;
!               regnum++;
! 
!               if (COMPILE_STACK_FULL)
!                 { 
!                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
!                             compile_stack_elt_t);
!                   if (compile_stack.stack == NULL) return REG_ESPACE;
! 
!                   compile_stack.size <<= 1;
!                 }
! 
!               /* These are the values to restore when we hit end of this
!                  group.  They are all relative offsets, so that if the
!                  whole pattern moves because of realloc, they will still
!                  be valid.  */
!               COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
!               COMPILE_STACK_TOP.fixup_alt_jump 
!                 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
!               COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
!               COMPILE_STACK_TOP.regnum = regnum;
! 
!               /* We will eventually replace the 0 with the number of
!                  groups inner to this one.  But do not push a
!                  start_memory for groups beyond the last one we can
!                  represent in the compiled pattern.  */
!               if (regnum <= MAX_REGNUM)
!                 {
!                   COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
!                   BUF_PUSH_3 (start_memory, regnum, 0);
!                 }
!                 
!               compile_stack.avail++;
! 
!               fixup_alt_jump = 0;
!               laststart = 0;
!               begalt = b;
!             /* If we've reached MAX_REGNUM groups, then this open
!                won't actually generate any code, so we'll have to
!                clear pending_exact explicitly.  */
!             pending_exact = 0;
!               break;
  
  
!             case ')':
!               if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
  
!               if (COMPILE_STACK_EMPTY)
!                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
!                   goto normal_backslash;
!                 else
!                   return REG_ERPAREN;
! 
!             handle_close:
!               if (fixup_alt_jump)
!                 { /* Push a dummy failure point at the end of the
!                      alternative for a possible future
!                      `pop_failure_jump' to pop.  See comments at
!                      `push_dummy_failure' in `re_match_2'.  */
!                   BUF_PUSH (push_dummy_failure);
!                   
!                   /* We allocated space for this jump when we assigned
!                      to `fixup_alt_jump', in the `handle_alt' case below.  */
!                   STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
!                 }
! 
!               /* See similar code for backslashed left paren above.  */
!               if (COMPILE_STACK_EMPTY)
!                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
!                   goto normal_char;
!                 else
!                   return REG_ERPAREN;
! 
!               /* Since we just checked for an empty stack above, this
!                  ``can't happen''.  */
!               assert (compile_stack.avail != 0);
!               {
!                 /* We don't just want to restore into `regnum', because
!                    later groups should continue to be numbered higher,
!                    as in `(ab)c(de)' -- the second group is #2.  */
!                 regnum_t this_group_regnum;
! 
!                 compile_stack.avail--;                
!                 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
!                 fixup_alt_jump
!                   = COMPILE_STACK_TOP.fixup_alt_jump
!                     ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 
!                     : 0;
!                 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
!                 this_group_regnum = COMPILE_STACK_TOP.regnum;
!               /* If we've reached MAX_REGNUM groups, then this open
!                  won't actually generate any code, so we'll have to
!                  clear pending_exact explicitly.  */
!               pending_exact = 0;
  
!                 /* We're at the end of the group, so now we know how many
!                    groups were inside this one.  */
!                 if (this_group_regnum <= MAX_REGNUM)
!                   {
!                     unsigned char *inner_group_loc
!                       = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
!                     
!                     *inner_group_loc = regnum - this_group_regnum;
!                     BUF_PUSH_3 (stop_memory, this_group_regnum,
!                                 regnum - this_group_regnum);
!                   }
!               }
!               break;
! 
! 
!             case '|':                                 /* `\|'.  */
!               if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
!                 goto normal_backslash;
!             handle_alt:
!               if (syntax & RE_LIMITED_OPS)
!                 goto normal_char;
! 
!               /* Insert before the previous alternative a jump which
!                  jumps to this alternative if the former fails.  */
!               GET_BUFFER_SPACE (3);
!               INSERT_JUMP (on_failure_jump, begalt, b + 6);
!               pending_exact = 0;
!               b += 3;
! 
!               /* The alternative before this one has a jump after it
!                  which gets executed if it gets matched.  Adjust that
!                  jump so it will jump to this alternative's analogous
!                  jump (put in below, which in turn will jump to the next
!                  (if any) alternative's such jump, etc.).  The last such
!                  jump jumps to the correct final destination.  A picture:
!                           _____ _____ 
!                           |   | |   |   
!                           |   v |   v 
!                          a | b   | c   
! 
!                  If we are at `b', then fixup_alt_jump right now points to a
!                  three-byte space after `a'.  We'll put in the jump, set
!                  fixup_alt_jump to right after `b', and leave behind three
!                  bytes which we'll fill in when we get to after `c'.  */
! 
!               if (fixup_alt_jump)
!                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
! 
!               /* Mark and leave space for a jump after this alternative,
!                  to be filled in later either by next alternative or
!                  when know we're at the end of a series of alternatives.  */
!               fixup_alt_jump = b;
!               GET_BUFFER_SPACE (3);
!               b += 3;
! 
!               laststart = 0;
!               begalt = b;
!               break;
! 
! 
!             case '{': 
!               /* If \{ is a literal.  */
!               if (!(syntax & RE_INTERVALS)
!                      /* If we're at `\{' and it's not the open-interval 
!                         operator.  */
!                   || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
!                   || (p - 2 == pattern  &&  p == pend))
!                 goto normal_backslash;
! 
!             handle_interval:
!               {
!                 /* If got here, then the syntax allows intervals.  */
! 
!                 /* At least (most) this many matches must be made.  */
!                 int lower_bound = -1, upper_bound = -1;
! 
!                 beg_interval = p - 1;
! 
!                 if (p == pend)
!                   {
!                     if (syntax & RE_NO_BK_BRACES)
!                       goto unfetch_interval;
!                     else
!                       return REG_EBRACE;
!                   }
! 
!                 GET_UNSIGNED_NUMBER (lower_bound);
! 
!                 if (c == ',')
!                   {
!                     GET_UNSIGNED_NUMBER (upper_bound);
!                     if (upper_bound < 0) upper_bound = RE_DUP_MAX;
!                   }
!                 else
!                   /* Interval such as `{1}' => match exactly once. */
!                   upper_bound = lower_bound;
! 
!                 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
!                     || lower_bound > upper_bound)
!                   {
!                     if (syntax & RE_NO_BK_BRACES)
!                       goto unfetch_interval;
!                     else 
!                       return REG_BADBR;
!                   }
! 
!                 if (!(syntax & RE_NO_BK_BRACES)) 
!                   {
!                     if (c != '\\') return REG_EBRACE;
! 
!                     PATFETCH (c);
!                   }
! 
!                 if (c != '}')
!                   {
!                     if (syntax & RE_NO_BK_BRACES)
!                       goto unfetch_interval;
!                     else 
!                       return REG_BADBR;
!                   }
! 
!                 /* We just parsed a valid interval.  */
! 
!                 /* If it's invalid to have no preceding re.  */
!                 if (!laststart)
!                   {
!                     if (syntax & RE_CONTEXT_INVALID_OPS)
!                       return REG_BADRPT;
!                     else if (syntax & RE_CONTEXT_INDEP_OPS)
!                       laststart = b;
!                     else
!                       goto unfetch_interval;
!                   }
! 
!                 /* If the upper bound is zero, don't want to succeed at
!                    all; jump from `laststart' to `b + 3', which will be
!                    the end of the buffer after we insert the jump.  */
!                  if (upper_bound == 0)
!                    {
!                      GET_BUFFER_SPACE (3);
!                      INSERT_JUMP (jump, laststart, b + 3);
!                      b += 3;
!                    }
! 
!                  /* Otherwise, we have a nontrivial interval.  When
!                     we're all done, the pattern will look like:
!                       set_number_at <jump count> <upper bound>
!                       set_number_at <succeed_n count> <lower bound>
!                       succeed_n <after jump addr> <succed_n count>
!                       <body of loop>
!                       jump_n <succeed_n addr> <jump count>
!                     (The upper bound and `jump_n' are omitted if
!                     `upper_bound' is 1, though.)  */
!                  else 
!                    { /* If the upper bound is > 1, we need to insert
!                         more at the end of the loop.  */
!                      unsigned nbytes = 10 + (upper_bound > 1) * 10;
! 
!                      GET_BUFFER_SPACE (nbytes);
! 
!                      /* Initialize lower bound of the `succeed_n', even
!                         though it will be set during matching by its
!                         attendant `set_number_at' (inserted next),
!                         because `re_compile_fastmap' needs to know.
!                         Jump to the `jump_n' we might insert below.  */
!                      INSERT_JUMP2 (succeed_n, laststart,
!                                    b + 5 + (upper_bound > 1) * 5,
!                                    lower_bound);
!                      b += 5;
! 
!                      /* Code to initialize the lower bound.  Insert 
!                         before the `succeed_n'.  The `5' is the last two
!                         bytes of this `set_number_at', plus 3 bytes of
!                         the following `succeed_n'.  */
!                      insert_op2 (set_number_at, laststart, 5, lower_bound, b);
!                      b += 5;
! 
!                      if (upper_bound > 1)
!                        { /* More than one repetition is allowed, so
!                             append a backward jump to the `succeed_n'
!                             that starts this interval.
!                             
!                             When we've reached this during matching,
!                             we'll have matched the interval once, so
!                             jump back only `upper_bound - 1' times.  */
!                          STORE_JUMP2 (jump_n, b, laststart + 5,
!                                       upper_bound - 1);
!                          b += 5;
! 
!                          /* The location we want to set is the second
!                             parameter of the `jump_n'; that is `b-2' as
!                             an absolute address.  `laststart' will be
!                             the `set_number_at' we're about to insert;
!                             `laststart+3' the number to set, the source
!                             for the relative address.  But we are
!                             inserting into the middle of the pattern --
!                             so everything is getting moved up by 5.
!                             Conclusion: (b - 2) - (laststart + 3) + 5,
!                             i.e., b - laststart.
!                             
!                             We insert this at the beginning of the loop
!                             so that if we fail during matching, we'll
!                             reinitialize the bounds.  */
!                          insert_op2 (set_number_at, laststart, b - laststart,
!                                      upper_bound - 1, b);
!                          b += 5;
!                        }
!                    }
!                 pending_exact = 0;
!                 beg_interval = NULL;
!               }
!               break;
! 
!             unfetch_interval:
!               /* If an invalid interval, match the characters as literals.  */
!                assert (beg_interval);
!                p = beg_interval;
!                beg_interval = NULL;
! 
!                /* normal_char and normal_backslash need `c'.  */
!                PATFETCH (c);  
! 
!                if (!(syntax & RE_NO_BK_BRACES))
!                  {
!                    if (p > pattern  &&  p[-1] == '\\')
!                      goto normal_backslash;
!                  }
!                goto normal_char;
  
! #ifdef emacs
!             /* There is no way to specify the before_dot and after_dot
!                operators.  rms says this is ok.  --karl  */
!             case '=':
!               BUF_PUSH (at_dot);
!               break;
! 
!             case 's': 
!               laststart = b;
!               PATFETCH (c);
!               BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
!               break;
! 
!             case 'S':
!               laststart = b;
!               PATFETCH (c);
!               BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
!               break;
! #endif /* emacs */
  
  
!             case 'w':
!               laststart = b;
!               BUF_PUSH (wordchar);
!               break;
! 
! 
!             case 'W':
!               laststart = b;
!               BUF_PUSH (notwordchar);
!               break;
! 
! 
!             case '<':
!               BUF_PUSH (wordbeg);
!               break;
! 
!             case '>':
!               BUF_PUSH (wordend);
!               break;
! 
!             case 'b':
!               BUF_PUSH (wordbound);
!               break;
! 
!             case 'B':
!               BUF_PUSH (notwordbound);
!               break;
! 
!             case '`':
!               BUF_PUSH (begbuf);
!               break;
! 
!             case '\'':
!               BUF_PUSH (endbuf);
!               break;
! 
!             case '1': case '2': case '3': case '4': case '5':
!             case '6': case '7': case '8': case '9':
!               if (syntax & RE_NO_BK_REFS)
!                 goto normal_char;
! 
!               c1 = c - '0';
! 
!               if (c1 > regnum)
!                 return REG_ESUBREG;
! 
!               /* Can't back reference to a subexpression if inside of it.  */
!               if (group_in_compile_stack (compile_stack, c1))
!                 goto normal_char;
! 
!               laststart = b;
!               BUF_PUSH_2 (duplicate, c1);
!               break;
! 
! 
!             case '+':
!             case '?':
!               if (syntax & RE_BK_PLUS_QM)
!                 goto handle_plus;
!               else
!                 goto normal_backslash;
! 
!             default:
!             normal_backslash:
!               /* You might think it would be useful for \ to mean
!                  not to translate; but if we don't translate it
!                  it will never match anything.  */
!               c = TRANSLATE (c);
!               goto normal_char;
!             }
!           break;
  
  
!       default:
!         /* Expects the character in `c'.  */
        normal_char:
              /* If no exactn currently being built.  */
!           if (!pending_exact 
  
!               /* If last exactn not at current position.  */
!               || pending_exact + *pending_exact + 1 != b
!               
!               /* We have only one byte following the exactn for the count.  */
!             || *pending_exact == (1 << BYTEWIDTH) - 1
  
!               /* If followed by a repetition operator.  */
!               || *p == '*' || *p == '^'
              || ((syntax & RE_BK_PLUS_QM)
!                 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
!                 : (*p == '+' || *p == '?'))
              || ((syntax & RE_INTERVALS)
!                   && ((syntax & RE_NO_BK_BRACES)
!                     ? *p == '{'
!                       : (p[0] == '\\' && p[1] == '{'))))
            {
              /* Start building a new exactn.  */
!               
!               laststart = b;
  
              BUF_PUSH_2 (exactn, 0);
              pending_exact = b - 1;
!             }
!             
!         BUF_PUSH (c);
!           (*pending_exact)++;
          break;
!         } /* switch (c) */
      } /* while p != pend */
  
!   
    /* Through the pattern now.  */
-   
-   if (fixup_alt_jump)
-     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
  
!   if (!COMPILE_STACK_EMPTY) 
!     return REG_EPAREN;
  
    free (compile_stack.stack);
  
--- 2265,3262 ----
        PATFETCH (c);
  
        switch (c)
!       {
!       case '^':
!         {
!           if (   /* If at start of pattern, it's an operator.  */
!                  p == pattern + 1
!                  /* If context independent, it's an operator.  */
!               || syntax & RE_CONTEXT_INDEP_ANCHORS
!                  /* Otherwise, depends on what's come before.  */
!               || at_begline_loc_p (pattern, p, syntax))
!             BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
!           else
!             goto normal_char;
!         }
!         break;
! 
! 
!       case '$':
!         {
!           if (   /* If at end of pattern, it's an operator.  */
!                  p == pend
!                  /* If context independent, it's an operator.  */
!               || syntax & RE_CONTEXT_INDEP_ANCHORS
!                  /* Otherwise, depends on what's next.  */
!               || at_endline_loc_p (p, pend, syntax))
!              BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
!            else
!              goto normal_char;
!          }
!          break;
  
  
        case '+':
!       case '?':
!         if ((syntax & RE_BK_PLUS_QM)
!             || (syntax & RE_LIMITED_OPS))
!           goto normal_char;
!       handle_plus:
!       case '*':
!         /* If there is no previous pattern... */
!         if (!laststart)
!           {
!             if (syntax & RE_CONTEXT_INVALID_OPS)
!               FREE_STACK_RETURN (REG_BADRPT);
!             else if (!(syntax & RE_CONTEXT_INDEP_OPS))
!               goto normal_char;
!           }
  
+         {
+           /* 1 means zero (many) matches is allowed.  */
+           boolean zero_times_ok = 0, many_times_ok = 0;
+           boolean greedy = 1;
+ 
+           /* If there is a sequence of repetition chars, collapse it
+              down to just one (the right one).  We can't combine
+              interval operators with these because of, e.g., `a{2}*',
+              which should only match an even number of `a's.  */
  
!           for (;;)
!             {
!               if ((syntax & RE_FRUGAL)
!                   && c == '?' && (zero_times_ok || many_times_ok))
!                 greedy = 0;
!               else
!                 {
!                   zero_times_ok |= c != '+';
!                   many_times_ok |= c != '?';
!                 }
  
+               if (p == pend)
+                 break;
+               else if (*p == '*'
+                        || (!(syntax & RE_BK_PLUS_QM)
+                            && (*p == '+' || *p == '?')))
+                 ;
+               else if (syntax & RE_BK_PLUS_QM  && *p == '\\')
+                 {
+                   if (p+1 == pend)
+                     FREE_STACK_RETURN (REG_EESCAPE);
+                   if (p[1] == '+' || p[1] == '?')
+                     PATFETCH (c); /* Gobble up the backslash.  */
+                   else
+                     break;
+                 }
+               else
+                 break;
+               /* If we get here, we found another repeat character.  */
+               PATFETCH (c);
+              }
+ 
+           /* Star, etc. applied to an empty pattern is equivalent
+              to an empty pattern.  */
+           if (!laststart || laststart == b)
+             break;
+ 
+           /* Now we know whether or not zero matches is allowed
+              and also whether or not two or more matches is allowed.  */
+           if (greedy)
+             {
+               if (many_times_ok)
+                 {
+                   boolean simple = skip_one_char (laststart) == b;
+                   unsigned int startoffset = 0;
+                   re_opcode_t ofj =
+                     /* Check if the loop can match the empty string.  */
+                     (simple || !analyse_first (laststart, b, NULL, 0)) ?
+                     on_failure_jump : on_failure_jump_loop;
+                   assert (skip_one_char (laststart) <= b);
+                   
+                   if (!zero_times_ok && simple)
+                     { /* Since simple * loops can be made faster by using
+                          on_failure_keep_string_jump, we turn simple P+
+                          into PP* if P is simple.  */
+                       unsigned char *p1, *p2;
+                       startoffset = b - laststart;
+                       GET_BUFFER_SPACE (startoffset);
+                       p1 = b; p2 = laststart;
+                       while (p2 < p1)
+                         *b++ = *p2++;
+                       zero_times_ok = 1;
+                     }
+ 
+                   GET_BUFFER_SPACE (6);
+                   if (!zero_times_ok)
+                     /* A + loop.  */
+                     STORE_JUMP (ofj, b, b + 6);
+                   else
+                     /* Simple * loops can use on_failure_keep_string_jump
+                        depending on what follows.  But since we don't know
+                        that yet, we leave the decision up to
+                        on_failure_jump_smart.  */
+                     INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
+                                  laststart + startoffset, b + 6);
+                   b += 3;
+                   STORE_JUMP (jump, b, laststart + startoffset);
+                   b += 3;
+                 }
+               else
+                 {
+                   /* A simple ? pattern.  */
+                   assert (zero_times_ok);
+                   GET_BUFFER_SPACE (3);
+                   INSERT_JUMP (on_failure_jump, laststart, b + 3);
+                   b += 3;
+                 }
+             }
+           else                /* not greedy */
+             { /* I wish the greedy and non-greedy cases could be merged. */
  
!               GET_BUFFER_SPACE (7); /* We might use less.  */
!               if (many_times_ok)
!                 {
!                   boolean emptyp = analyse_first (laststart, b, NULL, 0);
  
!                   /* The non-greedy multiple match looks like a repeat..until:
!                      we only need a conditional jump at the end of the loop */
!                   if (emptyp) BUF_PUSH (no_op);
!                   STORE_JUMP (emptyp ? on_failure_jump_nastyloop
!                               : on_failure_jump, b, laststart);
!                   b += 3;
!                   if (zero_times_ok)
!                     {
!                       /* The repeat...until naturally matches one or more.
!                          To also match zero times, we need to first jump to
!                          the end of the loop (its conditional jump). */
!                       INSERT_JUMP (jump, laststart, b);
!                       b += 3;
!                     }
!                 }
!               else
!                 {
!                   /* non-greedy a?? */
!                   INSERT_JUMP (jump, laststart, b + 3);
!                   b += 3;
!                   INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
!                   b += 3;
!                 }
!             }
!         }
!         pending_exact = 0;
!         break;
  
  
!       case '.':
!         laststart = b;
!         BUF_PUSH (anychar);
!         break;
  
  
!       case '[':
!         {
!           CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
  
!           if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
  
!           /* Ensure that we have enough space to push a charset: the
!              opcode, the length count, and the bitset; 34 bytes in all.  */
!           GET_BUFFER_SPACE (34);
  
!           laststart = b;
  
!           /* We test `*p == '^' twice, instead of using an if
!              statement, so we only need one BUF_PUSH.  */
!           BUF_PUSH (*p == '^' ? charset_not : charset);
!           if (*p == '^')
!             p++;
  
!           /* Remember the first position in the bracket expression.  */
!           p1 = p;
  
+           /* Push the number of bytes in the bitmap.  */
+           BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
  
!           /* Clear the whole map.  */
!           bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
  
+           /* charset_not matches newline according to a syntax bit.  */
+           if ((re_opcode_t) b[-2] == charset_not
+               && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
+             SET_LIST_BIT ('\n');
  
!           /* Read in characters and ranges, setting map bits.  */
!           for (;;)
!             {
!               boolean escaped_char = false;
!               const unsigned char *p2 = p;
  
+               if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
  
!               PATFETCH (c);
  
!               /* \ might escape characters inside [...] and [^...].  */
!               if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
!                 {
!                   if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
  
!                   PATFETCH (c);
!                   escaped_char = true;
!                 }
!               else
!                 {
!                   /* Could be the end of the bracket expression.      If it's
!                      not (i.e., when the bracket expression is `[]' so
!                      far), the ']' character bit gets set way below.  */
!                   if (c == ']' && p2 != p1)
!                     break;
!                 }
  
!               /* What should we do for the character which is
!                  greater than 0x7F, but not BASE_LEADING_CODE_P?
!                  XXX */
  
+               /* See if we're at the beginning of a possible character
+                  class.  */
  
!               if (!escaped_char &&
!                   syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
!                 {
!                   /* Leave room for the null.  */
!                   unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
!                   const unsigned char *class_beg;
! 
!                   PATFETCH (c);
!                   c1 = 0;
!                   class_beg = p;
! 
!                   /* If pattern is `[[:'.  */
!                   if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
! 
!                   for (;;)
!                     {
!                       PATFETCH (c);
!                       if ((c == ':' && *p == ']') || p == pend)
!                         break;
!                       if (c1 < CHAR_CLASS_MAX_LENGTH)
!                         str[c1++] = c;
!                       else
!                         /* This is in any case an invalid class name.  */
!                         str[0] = '\0';
!                     }
!                   str[c1] = '\0';
! 
!                   /* If isn't a word bracketed by `[:' and `:]':
!                      undo the ending character, the letters, and
!                      leave the leading `:' and `[' (but set bits for
!                      them).  */
!                   if (c == ':' && *p == ']')
!                     {
!                       int ch;
!                       re_wctype_t cc;
  
+                       cc = re_wctype (str);
  
!                       if (cc == 0)
!                         FREE_STACK_RETURN (REG_ECTYPE);
! 
!                         /* Throw away the ] at the end of the character
!                            class.  */
!                         PATFETCH (c);
! 
!                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
! 
!                       /* Most character classes in a multibyte match
!                          just set a flag.  Exceptions are is_blank,
!                          is_digit, is_cntrl, and is_xdigit, since
!                          they can only match ASCII characters.  We
!                          don't need to handle them for multibyte.
!                          They are distinguished by a negative wctype.  */
! 
!                       if (multibyte)
!                         SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
!                                                        re_wctype_to_bit (cc));
! 
!                         for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
!                         {
!                           int translated = TRANSLATE (ch);
!                           if (re_iswctype (btowc (ch), cc))
!                             SET_LIST_BIT (translated);
!                         }
! 
!                       /* Repeat the loop. */
!                       continue;
!                     }
!                   else
!                     {
!                       /* Go back to right after the "[:".  */
!                       p = class_beg;
!                       SET_LIST_BIT ('[');
! 
!                       /* Because the `:' may starts the range, we
!                          can't simply set bit and repeat the loop.
!                          Instead, just set it to C and handle below.  */
!                       c = ':';
!                     }
!                 }
! 
!               if (p < pend && p[0] == '-' && p[1] != ']')
!                 {
! 
!                   /* Discard the `-'. */
!                   PATFETCH (c1);
! 
!                   /* Fetch the character which ends the range. */
!                   PATFETCH (c1);
! 
!                   if (SINGLE_BYTE_CHAR_P (c))
!                     {
!                       if (! SINGLE_BYTE_CHAR_P (c1))
!                         {
!                           /* Handle a range starting with a
!                              character of less than 256, and ending
!                              with a character of not less than 256.
!                              Split that into two ranges, the low one
!                              ending at 0377, and the high one
!                              starting at the smallest character in
!                              the charset of C1 and ending at C1.  */
!                           int charset = CHAR_CHARSET (c1);
!                           int c2 = MAKE_CHAR (charset, 0, 0);
!                           
!                           SET_RANGE_TABLE_WORK_AREA (range_table_work,
!                                                      c2, c1);
!                           c1 = 0377;
!                         }
!                     }
!                   else if (!SAME_CHARSET_P (c, c1))
!                     FREE_STACK_RETURN (REG_ERANGE);
!                 }
!               else
!                 /* Range from C to C. */
!                 c1 = c;
! 
!               /* Set the range ... */
!               if (SINGLE_BYTE_CHAR_P (c))
!                 /* ... into bitmap.  */
!                 {
!                   re_wchar_t this_char;
!                   int range_start = c, range_end = c1;
! 
!                   /* If the start is after the end, the range is empty.  */
!                   if (range_start > range_end)
!                     {
!                       if (syntax & RE_NO_EMPTY_RANGES)
!                         FREE_STACK_RETURN (REG_ERANGE);
!                       /* Else, repeat the loop.  */
!                     }
!                   else
!                     {
!                       for (this_char = range_start; this_char <= range_end;
!                            this_char++)
!                         SET_LIST_BIT (TRANSLATE (this_char));
!                     }
!                 }
!               else
!                 /* ... into range table.  */
!                 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
!             }
! 
!           /* Discard any (non)matching list bytes that are all 0 at the
!              end of the map.  Decrease the map-length byte too.  */
!           while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
!             b[-1]--;
!           b += b[-1];
! 
!           /* Build real range table from work area.  */
!           if (RANGE_TABLE_WORK_USED (range_table_work)
!               || RANGE_TABLE_WORK_BITS (range_table_work))
!             {
!               int i;
!               int used = RANGE_TABLE_WORK_USED (range_table_work);
! 
!               /* Allocate space for COUNT + RANGE_TABLE.  Needs two
!                  bytes for flags, two for COUNT, and three bytes for
!                  each character. */
!               GET_BUFFER_SPACE (4 + used * 3);
! 
!               /* Indicate the existence of range table.  */
!               laststart[1] |= 0x80;
! 
!               /* Store the character class flag bits into the range table.
!                  If not in emacs, these flag bits are always 0.  */
!               *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
!               *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
! 
!               STORE_NUMBER_AND_INCR (b, used / 2);
!               for (i = 0; i < used; i++)
!                 STORE_CHARACTER_AND_INCR
!                   (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
!             }
!         }
!         break;
! 
! 
!       case '(':
!         if (syntax & RE_NO_BK_PARENS)
!           goto handle_open;
!         else
!           goto normal_char;
! 
! 
!       case ')':
!         if (syntax & RE_NO_BK_PARENS)
!           goto handle_close;
!         else
!           goto normal_char;
! 
! 
!       case '\n':
!         if (syntax & RE_NEWLINE_ALT)
!           goto handle_alt;
!         else
!           goto normal_char;
! 
! 
!       case '|':
!         if (syntax & RE_NO_BK_VBAR)
!           goto handle_alt;
!         else
!           goto normal_char;
! 
! 
!       case '{':
!          if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
!            goto handle_interval;
!          else
!            goto normal_char;
! 
! 
!       case '\\':
!         if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
! 
!         /* Do not translate the character after the \, so that we can
!            distinguish, e.g., \B from \b, even if we normally would
!            translate, e.g., B to b.  */
!         PATFETCH_RAW (c);
! 
!         switch (c)
!           {
!           case '(':
!             if (syntax & RE_NO_BK_PARENS)
!               goto normal_backslash;
! 
!           handle_open:
!             {
!               int shy = 0;
!               if (p+1 < pend)
!                 {
!                   /* Look for a special (?...) construct */
!                   if ((syntax & RE_SHY_GROUPS) && *p == '?')
!                     {
!                       PATFETCH (c); /* Gobble up the '?'.  */
!                       PATFETCH (c);
!                       switch (c)
!                         {
!                         case ':': shy = 1; break;
!                         default:
!                           /* Only (?:...) is supported right now. */
!                           FREE_STACK_RETURN (REG_BADPAT);
!                         }
!                     }
!                 }
! 
!               if (!shy)
!                 {
!                   bufp->re_nsub++;
!                   regnum++;
!                 }
! 
!               if (COMPILE_STACK_FULL)
!                 {
!                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
!                             compile_stack_elt_t);
!                   if (compile_stack.stack == NULL) return REG_ESPACE;
! 
!                   compile_stack.size <<= 1;
!                 }
! 
!               /* These are the values to restore when we hit end of this
!                  group.        They are all relative offsets, so that if the
!                  whole pattern moves because of realloc, they will still
!                  be valid.  */
!               COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
!               COMPILE_STACK_TOP.fixup_alt_jump
!                 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
!               COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
!               COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
! 
!               /* Do not push a
!                  start_memory for groups beyond the last one we can
!                  represent in the compiled pattern.  */
!               if (regnum <= MAX_REGNUM && !shy)
!                 BUF_PUSH_2 (start_memory, regnum);
! 
!               compile_stack.avail++;
! 
!               fixup_alt_jump = 0;
!               laststart = 0;
!               begalt = b;
!               /* If we've reached MAX_REGNUM groups, then this open
!                  won't actually generate any code, so we'll have to
!                  clear pending_exact explicitly.  */
!               pending_exact = 0;
!               break;
!             }
! 
!           case ')':
!             if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
! 
!             if (COMPILE_STACK_EMPTY)
!               {
!                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
!                   goto normal_backslash;
!                 else
!                   FREE_STACK_RETURN (REG_ERPAREN);
!               }
! 
!           handle_close:
!             FIXUP_ALT_JUMP ();
! 
!             /* See similar code for backslashed left paren above.  */
!             if (COMPILE_STACK_EMPTY)
!               {
!                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
!                   goto normal_char;
!                 else
!                   FREE_STACK_RETURN (REG_ERPAREN);
!               }
! 
!             /* Since we just checked for an empty stack above, this
!                ``can't happen''.  */
!             assert (compile_stack.avail != 0);
!             {
!               /* We don't just want to restore into `regnum', because
!                  later groups should continue to be numbered higher,
!                  as in `(ab)c(de)' -- the second group is #2.  */
!               regnum_t this_group_regnum;
! 
!               compile_stack.avail--;
!               begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
!               fixup_alt_jump
!                 = COMPILE_STACK_TOP.fixup_alt_jump
!                   ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
!                   : 0;
!               laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
!               this_group_regnum = COMPILE_STACK_TOP.regnum;
!               /* If we've reached MAX_REGNUM groups, then this open
!                  won't actually generate any code, so we'll have to
!                  clear pending_exact explicitly.  */
!               pending_exact = 0;
! 
!               /* We're at the end of the group, so now we know how many
!                  groups were inside this one.  */
!               if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
!                 BUF_PUSH_2 (stop_memory, this_group_regnum);
!             }
!             break;
! 
! 
!           case '|':                                   /* `\|'.  */
!             if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
!               goto normal_backslash;
!           handle_alt:
!             if (syntax & RE_LIMITED_OPS)
!               goto normal_char;
! 
!             /* Insert before the previous alternative a jump which
!                jumps to this alternative if the former fails.  */
!             GET_BUFFER_SPACE (3);
!             INSERT_JUMP (on_failure_jump, begalt, b + 6);
!             pending_exact = 0;
!             b += 3;
! 
!             /* The alternative before this one has a jump after it
!                which gets executed if it gets matched.  Adjust that
!                jump so it will jump to this alternative's analogous
!                jump (put in below, which in turn will jump to the next
!                (if any) alternative's such jump, etc.).  The last such
!                jump jumps to the correct final destination.  A picture:
!                         _____ _____
!                         |   | |   |
!                         |   v |   v
!                        a | b   | c
! 
!                If we are at `b', then fixup_alt_jump right now points to a
!                three-byte space after `a'.  We'll put in the jump, set
!                fixup_alt_jump to right after `b', and leave behind three
!                bytes which we'll fill in when we get to after `c'.  */
! 
!             FIXUP_ALT_JUMP ();
! 
!             /* Mark and leave space for a jump after this alternative,
!                to be filled in later either by next alternative or
!                when know we're at the end of a series of alternatives.  */
!             fixup_alt_jump = b;
!             GET_BUFFER_SPACE (3);
!             b += 3;
! 
!             laststart = 0;
!             begalt = b;
!             break;
! 
! 
!           case '{':
!             /* If \{ is a literal.  */
!             if (!(syntax & RE_INTERVALS)
!                    /* If we're at `\{' and it's not the open-interval
!                       operator.  */
!                 || (syntax & RE_NO_BK_BRACES))
!               goto normal_backslash;
! 
!           handle_interval:
!             {
!               /* If got here, then the syntax allows intervals.  */
! 
!               /* At least (most) this many matches must be made.  */
!               int lower_bound = 0, upper_bound = -1;
! 
!               beg_interval = p;
! 
!               if (p == pend)
!                 FREE_STACK_RETURN (REG_EBRACE);
! 
!               GET_UNSIGNED_NUMBER (lower_bound);
! 
!               if (c == ',')
!                 GET_UNSIGNED_NUMBER (upper_bound);
!               else
!                 /* Interval such as `{1}' => match exactly once. */
!                 upper_bound = lower_bound;
! 
!               if (lower_bound < 0 || upper_bound > RE_DUP_MAX
!                   || (upper_bound >= 0 && lower_bound > upper_bound))
!                 FREE_STACK_RETURN (REG_BADBR);
! 
!               if (!(syntax & RE_NO_BK_BRACES))
!                 {
!                   if (c != '\\')
!                     FREE_STACK_RETURN (REG_BADBR);
! 
!                   PATFETCH (c);
!                 }
! 
!               if (c != '}')
!                 FREE_STACK_RETURN (REG_BADBR);
! 
!               /* We just parsed a valid interval.  */
! 
!               /* If it's invalid to have no preceding re.  */
!               if (!laststart)
!                 {
!                   if (syntax & RE_CONTEXT_INVALID_OPS)
!                     FREE_STACK_RETURN (REG_BADRPT);
!                   else if (syntax & RE_CONTEXT_INDEP_OPS)
!                     laststart = b;
!                   else
!                     goto unfetch_interval;
!                 }
! 
!                if (upper_bound == 0)
!                  /* If the upper bound is zero, just drop the sub pattern
!                     altogether.  */
!                  b = laststart;
!                else if (lower_bound == 1 && upper_bound == 1)
!                  /* Just match it once: nothing to do here.  */
!                  ;
! 
!                /* Otherwise, we have a nontrivial interval.  When
!                   we're all done, the pattern will look like:
!                     set_number_at <jump count> <upper bound>
!                     set_number_at <succeed_n count> <lower bound>
!                     succeed_n <after jump addr> <succeed_n count>
!                     <body of loop>
!                     jump_n <succeed_n addr> <jump count>
!                   (The upper bound and `jump_n' are omitted if
!                   `upper_bound' is 1, though.)  */
!                else
!                  { /* If the upper bound is > 1, we need to insert
!                       more at the end of the loop.  */
!                    unsigned int nbytes = (upper_bound < 0 ? 3
!                                           : upper_bound > 1 ? 5 : 0);
!                    unsigned int startoffset = 0;
! 
!                    GET_BUFFER_SPACE (20); /* We might use less.  */
! 
!                    if (lower_bound == 0)
!                      {
!                        /* A succeed_n that starts with 0 is really a
!                           a simple on_failure_jump_loop.  */
!                        INSERT_JUMP (on_failure_jump_loop, laststart,
!                                     b + 3 + nbytes);
!                        b += 3;
!                      }
!                    else
!                      {
!                        /* Initialize lower bound of the `succeed_n', even
!                           though it will be set during matching by its
!                           attendant `set_number_at' (inserted next),
!                           because `re_compile_fastmap' needs to know.
!                           Jump to the `jump_n' we might insert below.  */
!                        INSERT_JUMP2 (succeed_n, laststart,
!                                      b + 5 + nbytes,
!                                      lower_bound);
!                        b += 5;
! 
!                        /* Code to initialize the lower bound.  Insert
!                           before the `succeed_n'.      The `5' is the last two
!                           bytes of this `set_number_at', plus 3 bytes of
!                           the following `succeed_n'.  */
!                        insert_op2 (set_number_at, laststart, 5, lower_bound, 
b);
!                        b += 5;
!                        startoffset += 5;
!                      }
! 
!                    if (upper_bound < 0)
!                      {
!                        /* A negative upper bound stands for infinity,
!                           in which case it degenerates to a plain jump.  */
!                        STORE_JUMP (jump, b, laststart + startoffset);
!                        b += 3;
!                      }
!                    else if (upper_bound > 1)
!                      { /* More than one repetition is allowed, so
!                           append a backward jump to the `succeed_n'
!                           that starts this interval.
! 
!                           When we've reached this during matching,
!                           we'll have matched the interval once, so
!                           jump back only `upper_bound - 1' times.  */
!                        STORE_JUMP2 (jump_n, b, laststart + startoffset,
!                                     upper_bound - 1);
!                        b += 5;
! 
!                        /* The location we want to set is the second
!                           parameter of the `jump_n'; that is `b-2' as
!                           an absolute address.  `laststart' will be
!                           the `set_number_at' we're about to insert;
!                           `laststart+3' the number to set, the source
!                           for the relative address.  But we are
!                           inserting into the middle of the pattern --
!                           so everything is getting moved up by 5.
!                           Conclusion: (b - 2) - (laststart + 3) + 5,
!                           i.e., b - laststart.
! 
!                           We insert this at the beginning of the loop
!                           so that if we fail during matching, we'll
!                           reinitialize the bounds.  */
!                        insert_op2 (set_number_at, laststart, b - laststart,
!                                    upper_bound - 1, b);
!                        b += 5;
!                      }
!                  }
!               pending_exact = 0;
!               beg_interval = NULL;
!             }
!             break;
! 
!           unfetch_interval:
!             /* If an invalid interval, match the characters as literals.  */
!              assert (beg_interval);
!              p = beg_interval;
!              beg_interval = NULL;
! 
!              /* normal_char and normal_backslash need `c'.  */
!              c = '{';
! 
!              if (!(syntax & RE_NO_BK_BRACES))
!                {
!                  assert (p > pattern && p[-1] == '\\');
!                  goto normal_backslash;
!                }
!              else
!                goto normal_char;
! 
! #ifdef emacs
!           /* There is no way to specify the before_dot and after_dot
!              operators.  rms says this is ok.  --karl  */
!           case '=':
!             BUF_PUSH (at_dot);
!             break;
! 
!           case 's':
!             laststart = b;
!             PATFETCH (c);
!             BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
!             break;
! 
!           case 'S':
!             laststart = b;
!             PATFETCH (c);
!             BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
!             break;
! 
!           case 'c':
!             laststart = b;
!             PATFETCH_RAW (c);
!             BUF_PUSH_2 (categoryspec, c);
!             break;
! 
!           case 'C':
!             laststart = b;
!             PATFETCH_RAW (c);
!             BUF_PUSH_2 (notcategoryspec, c);
!             break;
! #endif /* emacs */
! 
! 
!           case 'w':
!             if (syntax & RE_NO_GNU_OPS)
!               goto normal_char;
!             laststart = b;
!             BUF_PUSH_2 (syntaxspec, Sword);
!             break;
! 
! 
!           case 'W':
!             if (syntax & RE_NO_GNU_OPS)
!               goto normal_char;
!             laststart = b;
!             BUF_PUSH_2 (notsyntaxspec, Sword);
!             break;
! 
! 
!           case '<':
!             if (syntax & RE_NO_GNU_OPS)
!               goto normal_char;
!             BUF_PUSH (wordbeg);
!             break;
! 
!           case '>':
!             if (syntax & RE_NO_GNU_OPS)
!               goto normal_char;
!             BUF_PUSH (wordend);
!             break;
! 
!           case 'b':
!             if (syntax & RE_NO_GNU_OPS)
!               goto normal_char;
!             BUF_PUSH (wordbound);
!             break;
! 
!           case 'B':
!             if (syntax & RE_NO_GNU_OPS)
!               goto normal_char;
!             BUF_PUSH (notwordbound);
!             break;
! 
!           case '`':
!             if (syntax & RE_NO_GNU_OPS)
!               goto normal_char;
!             BUF_PUSH (begbuf);
!             break;
! 
!           case '\'':
!             if (syntax & RE_NO_GNU_OPS)
!               goto normal_char;
!             BUF_PUSH (endbuf);
!             break;
! 
!           case '1': case '2': case '3': case '4': case '5':
!           case '6': case '7': case '8': case '9':
!             {
!               regnum_t reg;
! 
!               if (syntax & RE_NO_BK_REFS)
!                 goto normal_backslash;
! 
!               reg = c - '0';
! 
!               /* Can't back reference to a subexpression before its end.  */
!               if (reg > regnum || group_in_compile_stack (compile_stack, reg))
!                 FREE_STACK_RETURN (REG_ESUBREG);
! 
!               laststart = b;
!               BUF_PUSH_2 (duplicate, reg);
!             }
!             break;
! 
! 
!           case '+':
!           case '?':
!             if (syntax & RE_BK_PLUS_QM)
!               goto handle_plus;
!             else
!               goto normal_backslash;
! 
!           default:
!           normal_backslash:
!             /* You might think it would be useful for \ to mean
!                not to translate; but if we don't translate it
!                it will never match anything.  */
!             c = TRANSLATE (c);
!             goto normal_char;
!           }
!         break;
! 
! 
!       default:
!       /* Expects the character in `c'.  */
        normal_char:
              /* If no exactn currently being built.  */
!         if (!pending_exact
! 
!             /* If last exactn not at current position.  */
!             || pending_exact + *pending_exact + 1 != b
  
!             /* We have only one byte following the exactn for the count.  */
!             || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
  
!             /* If followed by a repetition operator.  */
!             || (p != pend && (*p == '*' || *p == '^'))
              || ((syntax & RE_BK_PLUS_QM)
!                 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
!                 : p != pend && (*p == '+' || *p == '?'))
              || ((syntax & RE_INTERVALS)
!                 && ((syntax & RE_NO_BK_BRACES)
!                     ? p != pend && *p == '{'
!                     : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
            {
              /* Start building a new exactn.  */
! 
!             laststart = b;
  
              BUF_PUSH_2 (exactn, 0);
              pending_exact = b - 1;
!           }
! 
!         GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
!         {
!           int len;
! 
!           if (multibyte)
!             len = CHAR_STRING (c, b);
!           else
!             *b = c, len = 1;
!           b += len;
!           (*pending_exact) += len;
!         }
! 
          break;
!       } /* switch (c) */
      } /* while p != pend */
  
! 
    /* Through the pattern now.  */
  
!   FIXUP_ALT_JUMP ();
! 
!   if (!COMPILE_STACK_EMPTY)
!     FREE_STACK_RETURN (REG_EPAREN);
! 
!   /* If we don't want backtracking, force success
!      the first time we reach the end of the compiled pattern.  */
!   if (syntax & RE_NO_POSIX_BACKTRACKING)
!     BUF_PUSH (succeed);
  
    free (compile_stack.stack);
  
***************
*** 2045,2063 ****
    bufp->used = b - bufp->buffer;
  
  #ifdef DEBUG
!   if (debug)
      {
!       DEBUG_PRINT1 ("\nCompiled pattern: ");
        print_compiled_pattern (bufp);
      }
  #endif /* DEBUG */
  
    return REG_NOERROR;
  } /* regex_compile */
  
  /* Subroutines for `regex_compile'.  */
  
! /* Store OP at LOC followed by two-byte integer parameter ARG.  */
  
  static void
  store_op1 (op, loc, arg)
--- 3264,3310 ----
    bufp->used = b - bufp->buffer;
  
  #ifdef DEBUG
!   if (debug > 0)
      {
!       re_compile_fastmap (bufp);
!       DEBUG_PRINT1 ("\nCompiled pattern: \n");
        print_compiled_pattern (bufp);
      }
+   debug--;
  #endif /* DEBUG */
  
+ #ifndef MATCH_MAY_ALLOCATE
+   /* Initialize the failure stack to the largest possible stack.  This
+      isn't necessary unless we're trying to avoid calling alloca in
+      the search and match routines.  */
+   {
+     int num_regs = bufp->re_nsub + 1;
+ 
+     if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
+       {
+       fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
+ 
+       if (! fail_stack.stack)
+         fail_stack.stack
+           = (fail_stack_elt_t *) malloc (fail_stack.size
+                                          * sizeof (fail_stack_elt_t));
+       else
+         fail_stack.stack
+           = (fail_stack_elt_t *) realloc (fail_stack.stack,
+                                           (fail_stack.size
+                                            * sizeof (fail_stack_elt_t)));
+       }
+ 
+     regex_grow_registers (num_regs);
+   }
+ #endif /* not MATCH_MAY_ALLOCATE */
+ 
    return REG_NOERROR;
  } /* regex_compile */
  
  /* Subroutines for `regex_compile'.  */
  
! /* Store OP at LOC followed by two-byte integer parameter ARG.        */
  
  static void
  store_op1 (op, loc, arg)
***************
*** 2092,2105 ****
      re_opcode_t op;
      unsigned char *loc;
      int arg;
!     unsigned char *end;    
  {
    register unsigned char *pfrom = end;
    register unsigned char *pto = end + 3;
  
    while (pfrom != loc)
      *--pto = *--pfrom;
!     
    store_op1 (op, loc, arg);
  }
  
--- 3339,3352 ----
      re_opcode_t op;
      unsigned char *loc;
      int arg;
!     unsigned char *end;
  {
    register unsigned char *pfrom = end;
    register unsigned char *pto = end + 3;
  
    while (pfrom != loc)
      *--pto = *--pfrom;
! 
    store_op1 (op, loc, arg);
  }
  
***************
*** 2111,2124 ****
      re_opcode_t op;
      unsigned char *loc;
      int arg1, arg2;
!     unsigned char *end;    
  {
    register unsigned char *pfrom = end;
    register unsigned char *pto = end + 5;
  
    while (pfrom != loc)
      *--pto = *--pfrom;
!     
    store_op2 (op, loc, arg1, arg2);
  }
  
--- 3358,3371 ----
      re_opcode_t op;
      unsigned char *loc;
      int arg1, arg2;
!     unsigned char *end;
  {
    register unsigned char *pfrom = end;
    register unsigned char *pto = end + 5;
  
    while (pfrom != loc)
      *--pto = *--pfrom;
! 
    store_op2 (op, loc, arg1, arg2);
  }
  
***************
*** 2129,2145 ****
  
  static boolean
  at_begline_loc_p (pattern, p, syntax)
!     const char *pattern, *p;
      reg_syntax_t syntax;
  {
!   const char *prev = p - 2;
    boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
!   
    return
         /* After a subexpression?  */
         (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
!        /* After an alternative?  */
!     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
  }
  
  
--- 3376,3397 ----
  
  static boolean
  at_begline_loc_p (pattern, p, syntax)
!     re_char *pattern, *p;
      reg_syntax_t syntax;
  {
!   re_char *prev = p - 2;
    boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
! 
    return
         /* After a subexpression?  */
         (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
!        /* After an alternative?        */
!     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
!        /* After a shy subexpression?  */
!     || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
!       && prev[-1] == '?' && prev[-2] == '('
!       && (syntax & RE_NO_BK_PARENS
!           || (prev - 3 >= pattern && prev[-3] == '\\')));
  }
  
  
***************
*** 2148,2171 ****
  
  static boolean
  at_endline_loc_p (p, pend, syntax)
!     const char *p, *pend;
!     int syntax;
  {
!   const char *next = p;
    boolean next_backslash = *next == '\\';
!   const char *next_next = p + 1 < pend ? p + 1 : NULL;
!   
    return
         /* Before a subexpression?  */
         (syntax & RE_NO_BK_PARENS ? *next == ')'
!         : next_backslash && next_next && *next_next == ')')
         /* Before an alternative?  */
      || (syntax & RE_NO_BK_VBAR ? *next == '|'
!         : next_backslash && next_next && *next_next == '|');
  }
  
  
! /* Returns true if REGNUM is in one of COMPILE_STACK's elements and 
     false if it's not.  */
  
  static boolean
--- 3400,3423 ----
  
  static boolean
  at_endline_loc_p (p, pend, syntax)
!     re_char *p, *pend;
!     reg_syntax_t syntax;
  {
!   re_char *next = p;
    boolean next_backslash = *next == '\\';
!   re_char *next_next = p + 1 < pend ? p + 1 : 0;
! 
    return
         /* Before a subexpression?  */
         (syntax & RE_NO_BK_PARENS ? *next == ')'
!       : next_backslash && next_next && *next_next == ')')
         /* Before an alternative?  */
      || (syntax & RE_NO_BK_VBAR ? *next == '|'
!       : next_backslash && next_next && *next_next == '|');
  }
  
  
! /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
     false if it's not.  */
  
  static boolean
***************
*** 2175,2802 ****
  {
    int this_element;
  
!   for (this_element = compile_stack.avail - 1;  
!        this_element >= 0; 
         this_element--)
      if (compile_stack.stack[this_element].regnum == regnum)
        return true;
  
    return false;
  }
- 
- 
- /* Read the ending character of a range (in a bracket expression) from the
-    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
-    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
-    Then we set the translation of all bits between the starting and
-    ending characters (inclusive) in the compiled pattern B.
-    
-    Return an error code.
-    
-    We use these short variable names so we can use the same macros as
-    `regex_compile' itself.  */
- 
- static reg_errcode_t
- compile_range (p_ptr, pend, translate, syntax, b)
-     const char **p_ptr, *pend;
-     char *translate;
-     reg_syntax_t syntax;
-     unsigned char *b;
- {
-   unsigned this_char;
- 
-   const char *p = *p_ptr;
-   int range_start, range_end;
-   
-   if (p == pend)
-     return REG_ERANGE;
- 
-   /* Even though the pattern is a signed `char *', we need to fetch
-      with unsigned char *'s; if the high bit of the pattern character
-      is set, the range endpoints will be negative if we fetch using a
-      signed char *.
- 
-      We also want to fetch the endpoints without translating them; the 
-      appropriate translation is done in the bit-setting loop below.  */
-   range_start = ((unsigned char *) p)[-2];
-   range_end   = ((unsigned char *) p)[0];
- 
-   /* Have to increment the pointer into the pattern string, so the
-      caller isn't still at the ending character.  */
-   (*p_ptr)++;
- 
-   /* If the start is after the end, the range is empty.  */
-   if (range_start > range_end)
-     return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
- 
-   /* Here we see why `this_char' has to be larger than an `unsigned
-      char' -- the range is inclusive, so if `range_end' == 0xff
-      (assuming 8-bit characters), we would otherwise go into an infinite
-      loop, since all characters <= 0xff.  */
-   for (this_char = range_start; this_char <= range_end; this_char++)
-     {
-       SET_LIST_BIT (TRANSLATE (this_char));
-     }
-   
-   return REG_NOERROR;
- }
- 
- /* Failure stack declarations and macros; both re_compile_fastmap and
-    re_match_2 use a failure stack.  These have to be macros because of
-    REGEX_ALLOCATE.  */
-    
- 
- /* Number of failure points for which to initially allocate space
-    when matching.  If this number is exceeded, we allocate more
-    space, so it is not a hard limit.  */
- #ifndef INIT_FAILURE_ALLOC
- #define INIT_FAILURE_ALLOC 5
- #endif
- 
- /* Roughly the maximum number of failure points on the stack.  Would be
-    exactly that if always used MAX_FAILURE_SPACE each time we failed.
-    This is a variable only so users of regex can assign to it; we never
-    change it ourselves.  */
- static int re_max_failures = 2000;
- 
- typedef const unsigned char *fail_stack_elt_t;
- 
- typedef struct
- {
-   fail_stack_elt_t *stack;
-   unsigned size;
-   unsigned avail;                     /* Offset of next open position.  */
- } fail_stack_type;
- 
- #define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
- #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
- #define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
- #define FAIL_STACK_TOP()       (fail_stack.stack[fail_stack.avail])
- 
- 
- /* Initialize `fail_stack'.  Do `return -2' if the alloc fails.  */
- 
- #define INIT_FAIL_STACK()                                             \
-   do {                                                                        
\
-     fail_stack.stack = (fail_stack_elt_t *)                           \
-       REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t));        
\
-                                                                       \
-     if (fail_stack.stack == NULL)                                     \
-       return -2;                                                      \
-                                                                       \
-     fail_stack.size = INIT_FAILURE_ALLOC;                             \
-     fail_stack.avail = 0;                                             \
-   } while (0)
- 
- 
- /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
- 
-    Return 1 if succeeds, and 0 if either ran out of memory
-    allocating space for it or it was already too large.  
-    
-    REGEX_REALLOCATE requires `destination' be declared.   */
- 
- #define DOUBLE_FAIL_STACK(fail_stack)                                 \
-   ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS            \
-    ? 0                                                                        
\
-    : ((fail_stack).stack = (fail_stack_elt_t *)                               
\
-         REGEX_REALLOCATE ((fail_stack).stack,                                 
\
-           (fail_stack).size * sizeof (fail_stack_elt_t),              \
-           ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),      \
-                                                                       \
-       (fail_stack).stack == NULL                                      \
-       ? 0                                                             \
-       : ((fail_stack).size <<= 1,                                     \
-          1)))
- 
- 
- /* Push PATTERN_OP on FAIL_STACK. 
- 
-    Return 1 if was able to do so and 0 if ran out of memory allocating
-    space to do so.  */
- #define PUSH_PATTERN_OP(pattern_op, fail_stack)                               
\
-   ((FAIL_STACK_FULL ()                                                        
\
-     && !DOUBLE_FAIL_STACK (fail_stack))                                       
\
-     ? 0                                                                       
\
-     : ((fail_stack).stack[(fail_stack).avail++] = pattern_op,         \
-        1))
- 
- /* This pushes an item onto the failure stack.  Must be a four-byte
-    value.  Assumes the variable `fail_stack'.  Probably should only
-    be called from within `PUSH_FAILURE_POINT'.  */
- #define PUSH_FAILURE_ITEM(item)                                               
\
-   fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
- 
- /* The complement operation.  Assumes `fail_stack' is nonempty.  */
- #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
- 
- /* Used to omit pushing failure point id's when we're not debugging.  */
- #ifdef DEBUG
- #define DEBUG_PUSH PUSH_FAILURE_ITEM
- #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
- #else
- #define DEBUG_PUSH(item)
- #define DEBUG_POP(item_addr)
- #endif
- 
- 
- /* Push the information about the state we will need
-    if we ever fail back to it.  
-    
-    Requires variables fail_stack, regstart, regend, reg_info, and
-    num_regs be declared.  DOUBLE_FAIL_STACK requires `destination' be
-    declared.
-    
-    Does `return FAILURE_CODE' if runs out of memory.  */
- 
- #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
-   do {                                                                        
\
-     char *destination;                                                        
\
-     /* Must be int, so when we don't save any registers, the arithmetic       
\
-        of 0 + -1 isn't done as unsigned.  */                          \
-     int this_reg;                                                     \
-                                                                       \
-     DEBUG_STATEMENT (failure_id++);                                   \
-     DEBUG_STATEMENT (nfailure_points_pushed++);                               
\
-     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);         \
-     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
-     DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
-                                                                       \
-     DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);         \
-     DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);     \
-                                                                       \
-     /* Ensure we have enough space allocated for what we will push.  */       
\
-     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)                 \
-       {                                                                       
\
-         if (!DOUBLE_FAIL_STACK (fail_stack))                  \
-           return failure_code;                                                
\
-                                                                       \
-         DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",            \
-                      (fail_stack).size);                              \
-         DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
-       }                                                                       
\
-                                                                       \
-     /* Push the info, starting with the registers.  */                        
\
-     DEBUG_PRINT1 ("\n");                                              \
-                                                                       \
-     for (this_reg = lowest_active_reg; this_reg <= highest_active_reg;        
\
-          this_reg++)                                                  \
-       {                                                                       
\
-       DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);                 \
-         DEBUG_STATEMENT (num_regs_pushed++);                          \
-                                                                       \
-       DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);         \
-         PUSH_FAILURE_ITEM (regstart[this_reg]);                               
\
-                                                                         \
-       DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);             \
-         PUSH_FAILURE_ITEM (regend[this_reg]);                         \
-                                                                       \
-       DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);    \
-         DEBUG_PRINT2 (" match_null=%d",                                       
\
-                       REG_MATCH_NULL_STRING_P (reg_info[this_reg]));  \
-         DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));  \
-         DEBUG_PRINT2 (" matched_something=%d",                                
\
-                       MATCHED_SOMETHING (reg_info[this_reg]));                
\
-         DEBUG_PRINT2 (" ever_matched=%d",                             \
-                       EVER_MATCHED_SOMETHING (reg_info[this_reg]));   \
-       DEBUG_PRINT1 ("\n");                                            \
-         PUSH_FAILURE_ITEM (reg_info[this_reg].word);                  \
-       }                                                                       
\
-                                                                       \
-     DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
-     PUSH_FAILURE_ITEM (lowest_active_reg);                            \
-                                                                       \
-     DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
-     PUSH_FAILURE_ITEM (highest_active_reg);                           \
-                                                                       \
-     DEBUG_PRINT2 ("  Pushing pattern 0x%x: ", pattern_place);         \
-     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);         \
-     PUSH_FAILURE_ITEM (pattern_place);                                        
\
-                                                                       \
-     DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);          \
-     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
-                                size2);                                \
-     DEBUG_PRINT1 ("'\n");                                             \
-     PUSH_FAILURE_ITEM (string_place);                                 \
-                                                                       \
-     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);          \
-     DEBUG_PUSH (failure_id);                                          \
-   } while (0)
- 
- /* This is the number of items that are pushed and popped on the stack
-    for each register.  */
- #define NUM_REG_ITEMS  3
- 
- /* Individual items aside from the registers.  */
- #ifdef DEBUG
- #define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
- #else
- #define NUM_NONREG_ITEMS 4
- #endif
- 
- /* We push at most this many items on the stack.  */
- #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
- 
- /* We actually push this many items.  */
- #define NUM_FAILURE_ITEMS                                             \
-   ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS       \
-     + NUM_NONREG_ITEMS)
- 
- /* How many items can still be added to the stack without overflowing it.  */
- #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
- 
- 
- /* Pops what PUSH_FAIL_STACK pushes.
- 
-    We restore into the parameters, all of which should be lvalues:
-      STR -- the saved data position.
-      PAT -- the saved pattern position.
-      LOW_REG, HIGH_REG -- the highest and lowest active registers.
-      REGSTART, REGEND -- arrays of string positions.
-      REG_INFO -- array of information about each subexpression.
-    
-    Also assumes the variables `fail_stack' and (if debugging), `bufp',
-    `pend', `string1', `size1', `string2', and `size2'.  */
- 
- #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, 
reg_info)\
- {                                                                     \
-   DEBUG_STATEMENT (fail_stack_elt_t failure_id;)                      \
-   int this_reg;                                                               
\
-   const unsigned char *string_temp;                                   \
-                                                                       \
-   assert (!FAIL_STACK_EMPTY ());                                      \
-                                                                       \
-   /* Remove failure points and point to how many regs pushed.  */     \
-   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");                              \
-   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);  \
-   DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);   \
-                                                                       \
-   assert (fail_stack.avail >= NUM_NONREG_ITEMS);                      \
-                                                                       \
-   DEBUG_POP (&failure_id);                                            \
-   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);            \
-                                                                       \
-   /* If the saved string location is NULL, it came from an            \
-      on_failure_keep_string_jump opcode, and we want to throw away the        
\
-      saved NULL, thus retaining our current position in the string.  */       
\
-   string_temp = POP_FAILURE_ITEM ();                                  \
-   if (string_temp != NULL)                                            \
-     str = (const char *) string_temp;                                 \
-                                                                       \
-   DEBUG_PRINT2 ("  Popping string 0x%x: `", str);                     \
-   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);    \
-   DEBUG_PRINT1 ("'\n");                                                       
\
-                                                                       \
-   pat = (unsigned char *) POP_FAILURE_ITEM ();                                
\
-   DEBUG_PRINT2 ("  Popping pattern 0x%x: ", pat);                     \
-   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);                     \
-                                                                       \
-   /* Restore register info.  */                                               
\
-   high_reg = (unsigned) POP_FAILURE_ITEM ();                          \
-   DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);         \
-                                                                       \
-   low_reg = (unsigned) POP_FAILURE_ITEM ();                           \
-   DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);          \
-                                                                       \
-   for (this_reg = high_reg; this_reg >= low_reg; this_reg--)          \
-     {                                                                 \
-       DEBUG_PRINT2 ("    Popping reg: %d\n", this_reg);                       
\
-                                                                       \
-       reg_info[this_reg].word = POP_FAILURE_ITEM ();                  \
-       DEBUG_PRINT2 ("      info: 0x%x\n", reg_info[this_reg]);                
\
-                                                                       \
-       regend[this_reg] = (const char *) POP_FAILURE_ITEM ();          \
-       DEBUG_PRINT2 ("      end: 0x%x\n", regend[this_reg]);           \
-                                                                       \
-       regstart[this_reg] = (const char *) POP_FAILURE_ITEM ();                
\
-       DEBUG_PRINT2 ("      start: 0x%x\n", regstart[this_reg]);               
\
-     }                                                                 \
-                                                                       \
-   DEBUG_STATEMENT (nfailure_points_popped++);                         \
- } /* POP_FAILURE_POINT */
  
! /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
!    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
!    characters can start a string that matches the pattern.  This fastmap
!    is used by re_search to skip quickly over impossible starting points.
! 
!    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
!    area as BUFP->fastmap.
!    
!    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
!    the pattern buffer.
  
!    Returns 0 if we succeed, -2 if an internal error.   */
! 
! int
! re_compile_fastmap (bufp)
!      struct re_pattern_buffer *bufp;
  {
    int j, k;
!   fail_stack_type fail_stack;
! #ifndef REGEX_MALLOC
!   char *destination;
! #endif
!   /* We don't push any register information onto the failure stack.  */
!   unsigned num_regs = 0;
!   
!   register char *fastmap = bufp->fastmap;
!   unsigned char *pattern = bufp->buffer;
!   unsigned long size = bufp->used;
!   const unsigned char *p = pattern;
!   register unsigned char *pend = pattern + size;
! 
!   /* Assume that each path through the pattern can be null until
!      proven otherwise.  We set this false at the bottom of switch
!      statement, to which we get only if a particular path doesn't
!      match the empty string.  */
!   boolean path_can_be_null = true;
  
!   /* We aren't doing a `succeed_n' to begin with.  */
!   boolean succeed_n_p = false;
  
!   assert (fastmap != NULL && p != NULL);
!   
!   INIT_FAIL_STACK ();
!   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
!   bufp->fastmap_accurate = 1;     /* It will be when we're done.  */
!   bufp->can_be_null = 0;
!       
!   while (p != pend || !FAIL_STACK_EMPTY ())
      {
!       if (p == pend)
!         {
!           bufp->can_be_null |= path_can_be_null;
!           
!           /* Reset for next path.  */
!           path_can_be_null = true;
!           
!           p = fail_stack.stack[--fail_stack.avail];
!       }
  
!       /* We should never be about to go beyond the end of the pattern.  */
!       assert (p < pend);
!       
! #ifdef SWITCH_ENUM_BUG
!       switch ((int) ((re_opcode_t) *p++))
! #else
!       switch ((re_opcode_t) *p++)
! #endif
        {
  
-         /* I guess the idea here is to simply not bother with a fastmap
-            if a backreference is used, since it's too hard to figure out
-            the fastmap for the corresponding group.  Setting
-            `can_be_null' stops `re_search_2' from using the fastmap, so
-            that is all we do.  */
        case duplicate:
!         bufp->can_be_null = 1;
!           return 0;
  
  
        /* Following are the cases which match a character.  These end
!          with `break'.  */
  
        case exactn:
!           fastmap[p[1]] = 1;
!         break;
! 
  
!         case charset:
!           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
!           if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
!               fastmap[j] = 1;
          break;
  
  
!       case charset_not:
!         /* Chars beyond end of map must be allowed.  */
!         for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
!             fastmap[j] = 1;
! 
!         for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
!           if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
!               fastmap[j] = 1;
!           break;
! 
! 
!       case wordchar:
!         for (j = 0; j < (1 << BYTEWIDTH); j++)
!           if (SYNTAX (j) == Sword)
!             fastmap[j] = 1;
!         break;
  
  
!       case notwordchar:
!         for (j = 0; j < (1 << BYTEWIDTH); j++)
!           if (SYNTAX (j) != Sword)
              fastmap[j] = 1;
-         break;
- 
- 
-         case anychar:
-           /* `.' matches anything ...  */
-         for (j = 0; j < (1 << BYTEWIDTH); j++)
-             fastmap[j] = 1;
  
!           /* ... except perhaps newline.  */
!           if (!(bufp->syntax & RE_DOT_NEWLINE))
!             fastmap['\n'] = 0;
! 
!           /* Return if we have already set `can_be_null'; if we have,
!              then the fastmap is irrelevant.  Something's wrong here.  */
!         else if (bufp->can_be_null)
!           return 0;
  
!           /* Otherwise, have to check alternative paths.  */
          break;
  
! 
! #ifdef emacs
!         case syntaxspec:
          k = *p++;
          for (j = 0; j < (1 << BYTEWIDTH); j++)
!           if (SYNTAX (j) == (enum syntaxcode) k)
              fastmap[j] = 1;
          break;
! 
! 
!       case notsyntaxspec:
          k = *p++;
          for (j = 0; j < (1 << BYTEWIDTH); j++)
!           if (SYNTAX (j) != (enum syntaxcode) k)
              fastmap[j] = 1;
-         break;
  
  
        /* All cases after this match the empty string.  These end with
!          `continue'.  */
! 
  
        case before_dot:
        case at_dot:
        case after_dot:
!           continue;
! #endif /* not emacs */
! 
! 
!         case no_op:
!         case begline:
!         case endline:
        case begbuf:
        case endbuf:
        case wordbound:
        case notwordbound:
        case wordbeg:
        case wordend:
!         case push_dummy_failure:
!           continue;
  
  
-       case jump_n:
-         case pop_failure_jump:
-       case maybe_pop_jump:
        case jump:
!         case jump_past_alt:
!       case dummy_failure_jump:
!           EXTRACT_NUMBER_AND_INCR (j, p);
!         p += j;       
!         if (j > 0)
!           continue;
!             
!           /* Jump backward implies we just went through the body of a
!              loop and matched nothing.  Opcode jumped to should be
!              `on_failure_jump' or `succeed_n'.  Just treat it like an
!              ordinary jump.  For a * loop, it has pushed its failure
!              point already; if so, discard that as redundant.  */
!           if ((re_opcode_t) *p != on_failure_jump
!             && (re_opcode_t) *p != succeed_n)
!           continue;
! 
!           p++;
!           EXTRACT_NUMBER_AND_INCR (j, p);
!           p += j;             
!         
!           /* If what's on the stack is where we are now, pop it.  */
!           if (!FAIL_STACK_EMPTY () 
!             && fail_stack.stack[fail_stack.avail - 1] == p)
!             fail_stack.avail--;
! 
!           continue;
! 
! 
!         case on_failure_jump:
!         case on_failure_keep_string_jump:
!       handle_on_failure_jump:
!           EXTRACT_NUMBER_AND_INCR (j, p);
! 
!           /* For some patterns, e.g., `(a?)?', `p+j' here points to the
!              end of the pattern.  We don't want to push such a point,
!              since when we restore it above, entering the switch will
!              increment `p' past the end of the pattern.  We don't need
!              to push such a point since we obviously won't find any more
!              fastmap entries beyond `pend'.  Such a pattern can match
!              the null string, though.  */
!           if (p + j < pend)
!             {
!               if (!PUSH_PATTERN_OP (p + j, fail_stack))
!                 return -2;
!             }
!           else
!             bufp->can_be_null = 1;
! 
!           if (succeed_n_p)
!             {
!               EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n.  */
!               succeed_n_p = false;
!           }
  
!           continue;
  
  
        case succeed_n:
!           /* Get to the number of times to succeed.  */
!           p += 2;             
! 
!           /* Increment p past the n for when k != 0.  */
!           EXTRACT_NUMBER_AND_INCR (k, p);
!           if (k == 0)
!           {
!               p -= 4;
!             succeed_n_p = true;  /* Spaghetti code alert.  */
!               goto handle_on_failure_jump;
!             }
!           continue;
  
  
        case set_number_at:
!           p += 4;
!           continue;
  
  
        case start_memory:
!         case stop_memory:
!         p += 2;
          continue;
  
  
        default:
!           abort (); /* We have listed all the cases.  */
!         } /* switch *p++ */
  
        /* Getting here means we have found the possible starting
!          characters for one path of the pattern -- and that the empty
!          string does not match.  We need not follow this path further.
!          Instead, look at the next alternative (remembered on the
!          stack), or quit if no more.  The test at the top of the loop
!          does these things.  */
!       path_can_be_null = false;
!       p = pend;
      } /* while p */
  
!   /* Set `can_be_null' for the last path (also the first path, if the
!      pattern is empty).  */
!   bufp->can_be_null |= path_can_be_null;
    return 0;
  } /* re_compile_fastmap */
  
--- 3427,3758 ----
  {
    int this_element;
  
!   for (this_element = compile_stack.avail - 1;
!        this_element >= 0;
         this_element--)
      if (compile_stack.stack[this_element].regnum == regnum)
        return true;
  
    return false;
  }
  
! /* analyse_first.
!    If fastmap is non-NULL, go through the pattern and fill fastmap
!    with all the possible leading chars.  If fastmap is NULL, don't
!    bother filling it up (obviously) and only return whether the
!    pattern could potentially match the empty string.
! 
!    Return 1  if p..pend might match the empty string.
!    Return 0  if p..pend matches at least one char.
!    Return -1 if fastmap was not updated accurately.  */
  
! static int
! analyse_first (p, pend, fastmap, multibyte)
!      re_char *p, *pend;
!      char *fastmap;
!      const int multibyte;
  {
    int j, k;
!   boolean not;
  
!   /* If all elements for base leading-codes in fastmap is set, this
!      flag is set true.        */
!   boolean match_any_multibyte_characters = false;
! 
!   assert (p);
! 
!   /* The loop below works as follows:
!      - It has a working-list kept in the PATTERN_STACK and which basically
!        starts by only containing a pointer to the first operation.
!      - If the opcode we're looking at is a match against some set of
!        chars, then we add those chars to the fastmap and go on to the
!        next work element from the worklist (done via `break').
!      - If the opcode is a control operator on the other hand, we either
!        ignore it (if it's meaningless at this point, such as `start_memory')
!        or execute it (if it's a jump).  If the jump has several destinations
!        (i.e. `on_failure_jump'), then we push the other destination onto the
!        worklist.
!      We guarantee termination by ignoring backward jumps (more or less),
!      so that `p' is monotonically increasing.  More to the point, we
!      never set `p' (or push) anything `<= p1'.  */
  
!   while (p < pend)
      {
!       /* `p1' is used as a marker of how far back a `on_failure_jump'
!        can go without being ignored.  It is normally equal to `p'
!        (which prevents any backward `on_failure_jump') except right
!        after a plain `jump', to allow patterns such as:
!           0: jump 10
!           3..9: <body>
!           10: on_failure_jump 3
!        as used for the *? operator.  */
!       re_char *p1 = p;
  
!       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
        {
+       case succeed:
+         return 1;
+         continue;
  
        case duplicate:
!         /* If the first character has to match a backreference, that means
!            that the group was empty (since it already matched).  Since this
!            is the only case that interests us here, we can assume that the
!            backreference must match the empty string.  */
!         p++;
!         continue;
  
  
        /* Following are the cases which match a character.  These end
!        with `break'.  */
  
        case exactn:
!         if (fastmap)
!           {
!             int c = RE_STRING_CHAR (p + 1, pend - p);
  
!             if (SINGLE_BYTE_CHAR_P (c))
!               fastmap[c] = 1;
!             else
!               fastmap[p[1]] = 1;
!           }
          break;
  
  
!       case anychar:
!         /* We could put all the chars except for \n (and maybe \0)
!            but we don't bother since it is generally not worth it.  */
!         if (!fastmap) break;
!         return -1;
  
  
!       case charset_not:
!         /* Chars beyond end of bitmap are possible matches.
!            All the single-byte codes can occur in multibyte buffers.
!            So any that are not listed in the charset
!            are possible matches, even in multibyte buffers.  */
!         if (!fastmap) break;
!         for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
!              j < (1 << BYTEWIDTH); j++)
!           fastmap[j] = 1;
!         /* Fallthrough */
!       case charset:
!         if (!fastmap) break;
!         not = (re_opcode_t) *(p - 1) == charset_not;
!         for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
!              j >= 0; j--)
!           if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
              fastmap[j] = 1;
  
!         if ((not && multibyte)
!             /* Any character set can possibly contain a character
!                which doesn't match the specified set of characters.  */
!             || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
!                 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
!           /* If we can match a character class, we can match
!              any character set.  */
!           {
!           set_fastmap_for_multibyte_characters:
!             if (match_any_multibyte_characters == false)
!               {
!                 for (j = 0x80; j < 0xA0; j++) /* XXX */
!                   if (BASE_LEADING_CODE_P (j))
!                     fastmap[j] = 1;
!                 match_any_multibyte_characters = true;
!               }
!           }
  
!         else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
!                  && match_any_multibyte_characters == false)
!           {
!             /* Set fastmap[I] 1 where I is a base leading code of each
!                multibyte character in the range table. */
!             int c, count;
! 
!             /* Make P points the range table.  `+ 2' is to skip flag
!                bits for a character class.  */
!             p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
! 
!             /* Extract the number of ranges in range table into COUNT.  */
!             EXTRACT_NUMBER_AND_INCR (count, p);
!             for (; count > 0; count--, p += 2 * 3) /* XXX */
!               {
!                 /* Extract the start of each range.  */
!                 EXTRACT_CHARACTER (c, p);
!                 j = CHAR_CHARSET (c);
!                 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
!               }
!           }
          break;
  
!       case syntaxspec:
!       case notsyntaxspec:
!         if (!fastmap) break;
! #ifndef emacs
!         not = (re_opcode_t)p[-1] == notsyntaxspec;
          k = *p++;
          for (j = 0; j < (1 << BYTEWIDTH); j++)
!           if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
              fastmap[j] = 1;
          break;
! #else  /* emacs */
!         /* This match depends on text properties.  These end with
!            aborting optimizations.  */
!         return -1;
! 
!       case categoryspec:
!       case notcategoryspec:
!         if (!fastmap) break;
!         not = (re_opcode_t)p[-1] == notcategoryspec;
          k = *p++;
          for (j = 0; j < (1 << BYTEWIDTH); j++)
!           if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
              fastmap[j] = 1;
  
+         if (multibyte)
+           /* Any character set can possibly contain a character
+              whose category is K (or not).  */
+           goto set_fastmap_for_multibyte_characters;
+         break;
  
        /* All cases after this match the empty string.  These end with
!        `continue'.  */
  
        case before_dot:
        case at_dot:
        case after_dot:
! #endif /* !emacs */
!       case no_op:
!       case begline:
!       case endline:
        case begbuf:
        case endbuf:
        case wordbound:
        case notwordbound:
        case wordbeg:
        case wordend:
!         continue;
  
  
        case jump:
!         EXTRACT_NUMBER_AND_INCR (j, p);
!         if (j < 0)
!           /* Backward jumps can only go back to code that we've already
!              visited.  `re_compile' should make sure this is true.  */
!           break;
!         p += j;
!         switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
!           {
!           case on_failure_jump:
!           case on_failure_keep_string_jump:
!           case on_failure_jump_loop:
!           case on_failure_jump_nastyloop:
!           case on_failure_jump_smart:
!             p++;
!             break;
!           default:
!             continue;
!           };
!         /* Keep `p1' to allow the `on_failure_jump' we are jumping to
!            to jump back to "just after here".  */
!         /* Fallthrough */
  
!       case on_failure_jump:
!       case on_failure_keep_string_jump:
!       case on_failure_jump_nastyloop:
!       case on_failure_jump_loop:
!       case on_failure_jump_smart:
!         EXTRACT_NUMBER_AND_INCR (j, p);
!         if (p + j <= p1)
!           ; /* Backward jump to be ignored.  */
!         else
!           { /* We have to look down both arms.
!                We first go down the "straight" path so as to minimize
!                stack usage when going through alternatives.  */
!             int r = analyse_first (p, pend, fastmap, multibyte);
!             if (r) return r;
!             p += j;
!           }
!         continue;
  
  
+       case jump_n:
+         /* This code simply does not properly handle forward jump_n.  */
+         DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
+         p += 4;
+         /* jump_n can either jump or fall through.  The (backward) jump
+            case has already been handled, so we only need to look at the
+            fallthrough case.  */
+         continue;
+         
        case succeed_n:
!         /* If N == 0, it should be an on_failure_jump_loop instead.  */
!         DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
!         p += 4;
!         /* We only care about one iteration of the loop, so we don't
!            need to consider the case where this behaves like an
!            on_failure_jump.  */
!         continue;
  
  
        case set_number_at:
!         p += 4;
!         continue;
  
  
        case start_memory:
!       case stop_memory:
!         p += 1;
          continue;
  
  
        default:
!         abort (); /* We have listed all the cases.  */
!       } /* switch *p++ */
  
        /* Getting here means we have found the possible starting
!        characters for one path of the pattern -- and that the empty
!        string does not match.  We need not follow this path further.  */
!       return 0;
      } /* while p */
  
!   /* We reached the end without matching anything.  */
!   return 1;
! 
! } /* analyse_first */
! 
! /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
!    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
!    characters can start a string that matches the pattern.  This fastmap
!    is used by re_search to skip quickly over impossible starting points.
! 
!    Character codes above (1 << BYTEWIDTH) are not represented in the
!    fastmap, but the leading codes are represented.  Thus, the fastmap
!    indicates which character sets could start a match.
! 
!    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
!    area as BUFP->fastmap.
! 
!    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
!    the pattern buffer.
! 
!    Returns 0 if we succeed, -2 if an internal error.   */
! 
! int
! re_compile_fastmap (bufp)
!      struct re_pattern_buffer *bufp;
! {
!   char *fastmap = bufp->fastmap;
!   int analysis;
! 
!   assert (fastmap && bufp->buffer);
! 
!   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.        */
!   bufp->fastmap_accurate = 1;     /* It will be when we're done.  */
! 
!   analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
!                           fastmap, RE_MULTIBYTE_P (bufp));
!   bufp->can_be_null = (analysis != 0);
    return 0;
  } /* re_compile_fastmap */
  
***************
*** 2831,2841 ****
      {
        bufp->regs_allocated = REGS_UNALLOCATED;
        regs->num_regs = 0;
!       regs->start = regs->end = (regoff_t) 0;
      }
  }
  
! /* Searching routines.  */
  
  /* Like re_search_2, below, but only one string is specified, and
     doesn't let you say where to stop matching. */
--- 3787,3798 ----
      {
        bufp->regs_allocated = REGS_UNALLOCATED;
        regs->num_regs = 0;
!       regs->start = regs->end = (regoff_t *) 0;
      }
  }
+ WEAK_ALIAS (__re_set_registers, re_set_registers)
  
! /* Searching routines.        */
  
  /* Like re_search_2, below, but only one string is specified, and
     doesn't let you say where to stop matching. */
***************
*** 2847,2871 ****
       int size, startpos, range;
       struct re_registers *regs;
  {
!   return re_search_2 (bufp, NULL, 0, string, size, startpos, range, 
                      regs, size);
  }
  
  
  /* Using the compiled pattern in BUFP->buffer, first tries to match the
     virtual concatenation of STRING1 and STRING2, starting first at index
     STARTPOS, then at STARTPOS + 1, and so on.
!    
     STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
!    
     RANGE is how far to scan while trying to match.  RANGE = 0 means try
     only at STARTPOS; in general, the last start tried is STARTPOS +
     RANGE.
!    
     In REGS, return the indices of the virtual concatenation of STRING1
     and STRING2 that matched the entire BUFP->buffer and its contained
     subexpressions.
!    
     Do not consider matching one past the index STOP in the virtual
     concatenation of STRING1 and STRING2.
  
--- 3804,3836 ----
       int size, startpos, range;
       struct re_registers *regs;
  {
!   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
                      regs, size);
  }
+ WEAK_ALIAS (__re_search, re_search)
  
+ /* End address of virtual concatenation of string.  */
+ #define STOP_ADDR_VSTRING(P)                          \
+   (((P) >= size1 ? string2 + size2 : string1 + size1))
+ 
+ /* Address of POS in the concatenation of virtual string. */
+ #define POS_ADDR_VSTRING(POS)                                 \
+   (((POS) >= size1 ? string2 - size1 : string1) + (POS))
  
  /* Using the compiled pattern in BUFP->buffer, first tries to match the
     virtual concatenation of STRING1 and STRING2, starting first at index
     STARTPOS, then at STARTPOS + 1, and so on.
! 
     STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
! 
     RANGE is how far to scan while trying to match.  RANGE = 0 means try
     only at STARTPOS; in general, the last start tried is STARTPOS +
     RANGE.
! 
     In REGS, return the indices of the virtual concatenation of STRING1
     and STRING2 that matched the entire BUFP->buffer and its contained
     subexpressions.
! 
     Do not consider matching one past the index STOP in the virtual
     concatenation of STRING1 and STRING2.
  
***************
*** 2874,2882 ****
     stack overflow).  */
  
  int
! re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, 
stop)
       struct re_pattern_buffer *bufp;
!      const char *string1, *string2;
       int size1, size2;
       int startpos;
       int range;
--- 3839,3847 ----
     stack overflow).  */
  
  int
! re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
       struct re_pattern_buffer *bufp;
!      const char *str1, *str2;
       int size1, size2;
       int startpos;
       int range;
***************
*** 2884,3082 ****
       int stop;
  {
    int val;
    register char *fastmap = bufp->fastmap;
!   register char *translate = bufp->translate;
    int total_size = size1 + size2;
    int endpos = startpos + range;
  
    /* Check for out-of-range STARTPOS.  */
    if (startpos < 0 || startpos > total_size)
      return -1;
!     
    /* Fix up RANGE if it might eventually take us outside
!      the virtual concatenation of STRING1 and STRING2.  */
!   if (endpos < -1)
!     range = -1 - startpos;
    else if (endpos > total_size)
      range = total_size - startpos;
  
    /* If the search isn't to be a backwards one, don't waste time in a
!      search for a pattern that must be anchored.  */
    if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
      {
        if (startpos > 0)
        return -1;
        else
!       range = 1;
      }
  
    /* Update the fastmap now if not correct already.  */
    if (fastmap && !bufp->fastmap_accurate)
!     if (re_compile_fastmap (bufp) == -2)
!       return -2;
!   
    /* Loop through the string, looking for a place to start matching.  */
    for (;;)
!     { 
        /* If a fastmap is supplied, skip quickly over characters that
!          cannot be the start of a match.  If the pattern can match the
!          null string, however, we don't need to skip characters; we want
!          the first null string.  */
        if (fastmap && startpos < total_size && !bufp->can_be_null)
        {
!         if (range > 0)        /* Searching forwards.  */
            {
-             register const char *d;
              register int lim = 0;
              int irange = range;
  
!               if (startpos < size1 && startpos + range >= size1)
!                 lim = range - (size1 - startpos);
  
!             d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
!    
!               /* Written out as an if-else to avoid testing `translate'
!                  inside the loop.  */
!             if (translate)
!                 while (range > lim
!                        && !fastmap[(unsigned char)
!                                  translate[(unsigned char) *d++]])
!                   range--;
              else
!                 while (range > lim && !fastmap[(unsigned char) *d++])
!                   range--;
  
              startpos += irange - range;
            }
!         else                          /* Searching backwards.  */
            {
!             register char c = (size1 == 0 || startpos >= size1
!                                  ? string2[startpos - size1] 
!                                  : string1[startpos]);
  
!             if (!fastmap[(unsigned char) TRANSLATE (c)])
                goto advance;
            }
        }
  
        /* If can't match the null string, and that's all we have left, fail.  
*/
        if (range >= 0 && startpos == total_size && fastmap
!           && !bufp->can_be_null)
        return -1;
  
!       val = re_match_2 (bufp, string1, size1, string2, size2,
!                       startpos, regs, stop);
        if (val >= 0)
        return startpos;
!         
        if (val == -2)
        return -2;
  
!     advance:
!       if (!range) 
!         break;
!       else if (range > 0) 
!         {
!           range--; 
!           startpos++;
!         }
!       else
!         {
!           range++; 
!           startpos--;
!         }
      }
    return -1;
  } /* re_search_2 */
  
  /* Declarations and macros for re_match_2.  */
  
! static int bcmp_translate ();
! static boolean alt_match_null_string_p (),
!                common_op_match_null_string_p (),
!                group_match_null_string_p ();
! 
! /* Structure for per-register (a.k.a. per-group) information.
!    This must not be longer than one word, because we push this value
!    onto the failure stack.  Other register information, such as the
!    starting and ending positions (which are addresses), and the list of
!    inner groups (which is a bits list) are maintained in separate
!    variables.  
!    
!    We are making a (strictly speaking) nonportable assumption here: that
!    the compiler will pack our bit fields into something that fits into
!    the type of `word', i.e., is something that fits into one item on the
!    failure stack.  */
! typedef union
! {
!   fail_stack_elt_t word;
!   struct
!   {
!       /* This field is one if this group can match the empty string,
!          zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
! #define MATCH_NULL_UNSET_VALUE 3
!     unsigned match_null_string_p : 2;
!     unsigned is_active : 1;
!     unsigned matched_something : 1;
!     unsigned ever_matched_something : 1;
!   } bits;
! } register_info_type;
! 
! #define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
! #define IS_ACTIVE(R)  ((R).bits.is_active)
! #define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
! #define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
! 
! 
! /* Call this when have matched a real character; it sets `matched' flags
!    for the subexpressions which we are currently inside.  Also records
!    that those subexprs have matched.  */
! #define SET_REGS_MATCHED()                                            \
!   do                                                                  \
!     {                                                                 \
!       unsigned r;                                                     \
!       for (r = lowest_active_reg; r <= highest_active_reg; r++)               
\
!         {                                                             \
!           MATCHED_SOMETHING (reg_info[r])                             \
!             = EVER_MATCHED_SOMETHING (reg_info[r])                    \
!             = 1;                                                      \
!         }                                                             \
!     }                                                                 \
!   while (0)
! 
  
  /* This converts PTR, a pointer into one of the search strings `string1'
     and `string2' into an offset from the beginning of that string.  */
! #define POINTER_TO_OFFSET(ptr)                                                
\
!   (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
! 
! /* Registers are set to a sentinel when they haven't yet matched.  */
! #define REG_UNSET_VALUE ((char *) -1)
! #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
! 
! 
! /* Macros for dealing with the split strings in re_match_2.  */
! 
! #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
  
  /* Call before fetching a character with *d.  This switches over to
!    string2 if necessary.  */
  #define PREFETCH()                                                    \
!   while (d == dend)                                                   \
      {                                                                 \
        /* End of string2 => fail.  */                                  \
!       if (dend == end_match_2)                                                
\
!         goto fail;                                                    \
!       /* End of string1 => advance to string2.  */                    \
!       d = string2;                                                    \
        dend = end_match_2;                                             \
      }
  
  
  /* Test if at very beginning or at very end of the virtual concatenation
!    of `string1' and `string2'.  If only one string, it's `string2'.  */
  #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
! #define AT_STRINGS_END(d) ((d) == end2)       
  
  
  /* Test if D points to a character which is word-constituent.  We have
--- 3849,4120 ----
       int stop;
  {
    int val;
+   re_char *string1 = (re_char*) str1;
+   re_char *string2 = (re_char*) str2;
    register char *fastmap = bufp->fastmap;
!   register RE_TRANSLATE_TYPE translate = bufp->translate;
    int total_size = size1 + size2;
    int endpos = startpos + range;
+   boolean anchored_start;
+ 
+   /* Nonzero if we have to concern multibyte character.        */
+   const boolean multibyte = RE_MULTIBYTE_P (bufp);
  
    /* Check for out-of-range STARTPOS.  */
    if (startpos < 0 || startpos > total_size)
      return -1;
! 
    /* Fix up RANGE if it might eventually take us outside
!      the virtual concatenation of STRING1 and STRING2.
!      Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
!   if (endpos < 0)
!     range = 0 - startpos;
    else if (endpos > total_size)
      range = total_size - startpos;
  
    /* If the search isn't to be a backwards one, don't waste time in a
!      search for a pattern anchored at beginning of buffer.  */
    if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
      {
        if (startpos > 0)
        return -1;
        else
!       range = 0;
!     }
! 
! #ifdef emacs
!   /* In a forward search for something that starts with \=.
!      don't keep searching past point.  */
!   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
!     {
!       range = PT_BYTE - BEGV_BYTE - startpos;
!       if (range < 0)
!       return -1;
      }
+ #endif /* emacs */
  
    /* Update the fastmap now if not correct already.  */
    if (fastmap && !bufp->fastmap_accurate)
!     re_compile_fastmap (bufp);
! 
!   /* See whether the pattern is anchored.  */
!   anchored_start = (bufp->buffer[0] == begline);
! 
! #ifdef emacs
!   gl_state.object = re_match_object;
!   {
!     int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
! 
!     SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
!   }
! #endif
! 
    /* Loop through the string, looking for a place to start matching.  */
    for (;;)
!     {
!       /* If the pattern is anchored,
!        skip quickly past places we cannot match.
!        We don't bother to treat startpos == 0 specially
!        because that case doesn't repeat.  */
!       if (anchored_start && startpos > 0)
!       {
!         if (! ((startpos <= size1 ? string1[startpos - 1]
!                 : string2[startpos - size1 - 1])
!                == '\n'))
!           goto advance;
!       }
! 
        /* If a fastmap is supplied, skip quickly over characters that
!        cannot be the start of a match.  If the pattern can match the
!        null string, however, we don't need to skip characters; we want
!        the first null string.  */
        if (fastmap && startpos < total_size && !bufp->can_be_null)
        {
!         register re_char *d;
!         register re_wchar_t buf_ch;
! 
!         d = POS_ADDR_VSTRING (startpos);
! 
!         if (range > 0)        /* Searching forwards.  */
            {
              register int lim = 0;
              int irange = range;
  
!             if (startpos < size1 && startpos + range >= size1)
!               lim = range - (size1 - startpos);
  
!             /* Written out as an if-else to avoid testing `translate'
!                inside the loop.  */
!             if (RE_TRANSLATE_P (translate))
!               {
!                 if (multibyte)
!                   while (range > lim)
!                     {
!                       int buf_charlen;
! 
!                       buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
!                                                        buf_charlen);
! 
!                       buf_ch = RE_TRANSLATE (translate, buf_ch);
!                       if (buf_ch >= 0400
!                           || fastmap[buf_ch])
!                         break;
! 
!                       range -= buf_charlen;
!                       d += buf_charlen;
!                     }
!                 else
!                   while (range > lim
!                          && !fastmap[RE_TRANSLATE (translate, *d)])
!                     {
!                       d++;
!                       range--;
!                     }
!               }
              else
!               while (range > lim && !fastmap[*d])
!                 {
!                   d++;
!                   range--;
!                 }
  
              startpos += irange - range;
            }
!         else                          /* Searching backwards.  */
            {
!             int room = (startpos >= size1
!                         ? size2 + size1 - startpos
!                         : size1 - startpos);
!             buf_ch = RE_STRING_CHAR (d, room);
!             buf_ch = TRANSLATE (buf_ch);
  
!             if (! (buf_ch >= 0400
!                    || fastmap[buf_ch]))
                goto advance;
            }
        }
  
        /* If can't match the null string, and that's all we have left, fail.  
*/
        if (range >= 0 && startpos == total_size && fastmap
!         && !bufp->can_be_null)
        return -1;
  
!       val = re_match_2_internal (bufp, string1, size1, string2, size2,
!                                startpos, regs, stop);
! #ifndef REGEX_MALLOC
! # ifdef C_ALLOCA
!       alloca (0);
! # endif
! #endif
! 
        if (val >= 0)
        return startpos;
! 
        if (val == -2)
        return -2;
  
!     advance:
!       if (!range)
!       break;
!       else if (range > 0)
!       {
!         /* Update STARTPOS to the next character boundary.  */
!         if (multibyte)
!           {
!             re_char *p = POS_ADDR_VSTRING (startpos);
!             re_char *pend = STOP_ADDR_VSTRING (startpos);
!             int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
! 
!             range -= len;
!             if (range < 0)
!               break;
!             startpos += len;
!           }
!         else
!           {
!             range--;
!             startpos++;
!           }
!       }
!       else
!       {
!         range++;
!         startpos--;
! 
!         /* Update STARTPOS to the previous character boundary.  */
!         if (multibyte)
!           {
!             re_char *p = POS_ADDR_VSTRING (startpos);
!             int len = 0;
! 
!             /* Find the head of multibyte form.  */
!             while (!CHAR_HEAD_P (*p))
!               p--, len++;
! 
!             /* Adjust it. */
! #if 0                         /* XXX */
!             if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
!               ;
!             else
! #endif
!               {
!                 range += len;
!                 if (range > 0)
!                   break;
! 
!                 startpos -= len;
!               }
!           }
!       }
      }
    return -1;
  } /* re_search_2 */
+ WEAK_ALIAS (__re_search_2, re_search_2)
  
  /* Declarations and macros for re_match_2.  */
  
! static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
!                                   register int len,
!                                   RE_TRANSLATE_TYPE translate,
!                                   const int multibyte));
  
  /* This converts PTR, a pointer into one of the search strings `string1'
     and `string2' into an offset from the beginning of that string.  */
! #define POINTER_TO_OFFSET(ptr)                        \
!   (FIRST_STRING_P (ptr)                               \
!    ? ((regoff_t) ((ptr) - string1))           \
!    : ((regoff_t) ((ptr) - string2 + size1)))
  
  /* Call before fetching a character with *d.  This switches over to
!    string2 if necessary.
!    Check re_match_2_internal for a discussion of why end_match_2 might
!    not be within string2 (but be equal to end_match_1 instead).  */
  #define PREFETCH()                                                    \
!   while (d == dend)                                                   \
      {                                                                 \
        /* End of string2 => fail.  */                                  \
!       if (dend == end_match_2)                                                
\
!       goto fail;                                                      \
!       /* End of string1 => advance to string2.  */                    \
!       d = string2;                                                    \
        dend = end_match_2;                                             \
      }
  
+ /* Call before fetching a char with *d if you already checked other limits.
+    This is meant for use in lookahead operations like wordend, etc..
+    where we might need to look at parts of the string that might be
+    outside of the LIMITs (i.e past `stop').  */
+ #define PREFETCH_NOLIMIT()                                            \
+   if (d == end1)                                                      \
+      {                                                                        
\
+        d = string2;                                                   \
+        dend = end_match_2;                                            \
+      }                                                                        
\
  
  /* Test if at very beginning or at very end of the virtual concatenation
!    of `string1' and `string2'.        If only one string, it's `string2'.  */
  #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
! #define AT_STRINGS_END(d) ((d) == end2)
  
  
  /* Test if D points to a character which is word-constituent.  We have
***************
*** 3085,3135 ****
     string2, look at the last character in string1.  */
  #define WORDCHAR_P(d)                                                 \
    (SYNTAX ((d) == end1 ? *string2                                     \
!            : (d) == string2 - 1 ? *(end1 - 1) : *(d))                 \
     == Sword)
  
  /* Test if the character before D and the one at D differ with respect
     to being word-constituent.  */
  #define AT_WORD_BOUNDARY(d)                                           \
    (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)                           \
     || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
! 
  
  /* Free everything we malloc.  */
! #ifdef REGEX_MALLOC
! #define FREE_VAR(var) if (var) free (var); var = NULL
! #define FREE_VARIABLES()                                              \
    do {                                                                        
\
!     FREE_VAR (fail_stack.stack);                                      \
      FREE_VAR (regstart);                                              \
      FREE_VAR (regend);                                                        
\
-     FREE_VAR (old_regstart);                                          \
-     FREE_VAR (old_regend);                                            \
      FREE_VAR (best_regstart);                                         \
      FREE_VAR (best_regend);                                           \
-     FREE_VAR (reg_info);                                              \
-     FREE_VAR (reg_dummy);                                             \
-     FREE_VAR (reg_info_dummy);                                                
\
    } while (0)
! #else /* not REGEX_MALLOC */
! /* Some MIPS systems (at least) want this to free alloca'd storage.  */
! #define FREE_VARIABLES() alloca (0)
! #endif /* not REGEX_MALLOC */
  
  
- /* These values must meet several constraints.  They must not be valid
-    register values; since we have a limit of 255 registers (because
-    we use only one byte in the pattern for the register number), we can
-    use numbers larger than 255.  They must differ by 1, because of
-    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
-    be larger than the value for the highest register, so we do not try
-    to actually save any registers when none are active.  */
- #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
- #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
  
  /* Matching routines.  */
  
! #ifndef emacs   /* Emacs never uses this.  */
  /* re_match is like re_match_2 except it takes only a single string.  */
  
  int
--- 4123,4438 ----
     string2, look at the last character in string1.  */
  #define WORDCHAR_P(d)                                                 \
    (SYNTAX ((d) == end1 ? *string2                                     \
!          : (d) == string2 - 1 ? *(end1 - 1) : *(d))                   \
     == Sword)
  
+ /* Disabled due to a compiler bug -- see comment at case wordbound */
+ 
+ /* The comment at case wordbound is following one, but we don't use
+    AT_WORD_BOUNDARY anymore to support multibyte form.
+ 
+    The DEC Alpha C compiler 3.x generates incorrect code for the
+    test        WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
+    AT_WORD_BOUNDARY, so this code is disabled.        Expanding the
+    macro and introducing temporary variables works around the bug.  */
+ 
+ #if 0
  /* Test if the character before D and the one at D differ with respect
     to being word-constituent.  */
  #define AT_WORD_BOUNDARY(d)                                           \
    (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)                           \
     || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
! #endif
  
  /* Free everything we malloc.  */
! #ifdef MATCH_MAY_ALLOCATE
! # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
! # define FREE_VARIABLES()                                             \
    do {                                                                        
\
!     REGEX_FREE_STACK (fail_stack.stack);                              \
      FREE_VAR (regstart);                                              \
      FREE_VAR (regend);                                                        
\
      FREE_VAR (best_regstart);                                         \
      FREE_VAR (best_regend);                                           \
    } while (0)
! #else
! # define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning.  
*/
! #endif /* not MATCH_MAY_ALLOCATE */
! 
! 
! /* Optimization routines.  */
! 
! /* If the operation is a match against one or more chars,
!    return a pointer to the next operation, else return NULL.  */
! static re_char *
! skip_one_char (p)
!      re_char *p;
! {
!   switch (SWITCH_ENUM_CAST (*p++))
!     {
!     case anychar:
!       break;
!       
!     case exactn:
!       p += *p + 1;
!       break;
! 
!     case charset_not:
!     case charset:
!       if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
!       {
!         int mcnt;
!         p = CHARSET_RANGE_TABLE (p - 1);
!         EXTRACT_NUMBER_AND_INCR (mcnt, p);
!         p = CHARSET_RANGE_TABLE_END (p, mcnt);
!       }
!       else
!       p += 1 + CHARSET_BITMAP_SIZE (p - 1);
!       break;
!       
!     case syntaxspec:
!     case notsyntaxspec:
! #ifdef emacs
!     case categoryspec:
!     case notcategoryspec:
! #endif /* emacs */
!       p++;
!       break;
! 
!     default:
!       p = NULL;
!     }
!   return p;
! }
! 
! 
! /* Jump over non-matching operations.  */
! static unsigned char *
! skip_noops (p, pend)
!      unsigned char *p, *pend;
! {
!   int mcnt;
!   while (p < pend)
!     {
!       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
!       {
!       case start_memory:
!       case stop_memory:
!         p += 2; break;
!       case no_op:
!         p += 1; break;
!       case jump:
!         p += 1;
!         EXTRACT_NUMBER_AND_INCR (mcnt, p);
!         p += mcnt;
!         break;
!       default:
!         return p;
!       }
!     }
!   assert (p == pend);
!   return p;
! }
! 
! /* Non-zero if "p1 matches something" implies "p2 fails".  */
! static int
! mutually_exclusive_p (bufp, p1, p2)
!      struct re_pattern_buffer *bufp;
!      unsigned char *p1, *p2;
! {
!   re_opcode_t op2;
!   const boolean multibyte = RE_MULTIBYTE_P (bufp);
!   unsigned char *pend = bufp->buffer + bufp->used;
! 
!   assert (p1 >= bufp->buffer && p1 < pend
!         && p2 >= bufp->buffer && p2 <= pend);
! 
!   /* Skip over open/close-group commands.
!      If what follows this loop is a ...+ construct,
!      look at what begins its body, since we will have to
!      match at least one of that.  */
!   p2 = skip_noops (p2, pend);
!   /* The same skip can be done for p1, except that this function
!      is only used in the case where p1 is a simple match operator.  */
!   /* p1 = skip_noops (p1, pend); */
! 
!   assert (p1 >= bufp->buffer && p1 < pend
!         && p2 >= bufp->buffer && p2 <= pend);
! 
!   op2 = p2 == pend ? succeed : *p2;
! 
!   switch (SWITCH_ENUM_CAST (op2))
!     {
!     case succeed:
!     case endbuf:
!       /* If we're at the end of the pattern, we can change.  */
!       if (skip_one_char (p1))
!       {
!         DEBUG_PRINT1 ("  End of pattern: fast loop.\n");
!         return 1;
!       }
!       break;
!       
!     case endline:
!     case exactn:
!       {
!       register re_wchar_t c
!         = (re_opcode_t) *p2 == endline ? '\n'
!         : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
! 
!       if ((re_opcode_t) *p1 == exactn)
!         {
!           if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
!             {
!               DEBUG_PRINT3 ("  '%c' != '%c' => fast loop.\n", c, p1[2]);
!               return 1;
!             }
!         }
! 
!       else if ((re_opcode_t) *p1 == charset
!                || (re_opcode_t) *p1 == charset_not)
!         {
!           int not = (re_opcode_t) *p1 == charset_not;
! 
!           /* Test if C is listed in charset (or charset_not)
!              at `p1'.  */
!           if (SINGLE_BYTE_CHAR_P (c))
!             {
!               if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
!                   && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
!                 not = !not;
!             }
!           else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
!             CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
! 
!           /* `not' is equal to 1 if c would match, which means
!              that we can't change to pop_failure_jump.  */
!           if (!not)
!             {
!               DEBUG_PRINT1 ("  No match => fast loop.\n");
!               return 1;
!             }
!         }
!       else if ((re_opcode_t) *p1 == anychar
!                && c == '\n')
!         {
!           DEBUG_PRINT1 ("   . != \\n => fast loop.\n");
!           return 1;
!         }
!       }
!       break;
! 
!     case charset:
!       {
!       if ((re_opcode_t) *p1 == exactn)
!         /* Reuse the code above.  */
!         return mutually_exclusive_p (bufp, p2, p1);
! 
!       /* It is hard to list up all the character in charset
!        P2 if it includes multibyte character.  Give up in
!        such case.  */
!       else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
!       {
!         /* Now, we are sure that P2 has no range table.
!            So, for the size of bitmap in P2, `p2[1]' is
!            enough.    But P1 may have range table, so the
!            size of bitmap table of P1 is extracted by
!            using macro `CHARSET_BITMAP_SIZE'.
! 
!            Since we know that all the character listed in
!            P2 is ASCII, it is enough to test only bitmap
!            table of P1.  */
! 
!         if ((re_opcode_t) *p1 == charset)
!           {
!             int idx;
!             /* We win if the charset inside the loop
!                has no overlap with the one after the loop.  */
!             for (idx = 0;
!                  (idx < (int) p2[1]
!                   && idx < CHARSET_BITMAP_SIZE (p1));
!                  idx++)
!               if ((p2[2 + idx] & p1[2 + idx]) != 0)
!                 break;
! 
!             if (idx == p2[1]
!                 || idx == CHARSET_BITMAP_SIZE (p1))
!               {
!                 DEBUG_PRINT1 ("        No match => fast loop.\n");
!                 return 1;
!               }
!           }
!         else if ((re_opcode_t) *p1 == charset_not)
!           {
!             int idx;
!             /* We win if the charset_not inside the loop lists
!                every character listed in the charset after.    */
!             for (idx = 0; idx < (int) p2[1]; idx++)
!               if (! (p2[2 + idx] == 0
!                      || (idx < CHARSET_BITMAP_SIZE (p1)
!                          && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
!                 break;
! 
!               if (idx == p2[1])
!                 {
!                   DEBUG_PRINT1 ("      No match => fast loop.\n");
!                   return 1;
!                 }
!             }
!         }
!       }
!       break;
!       
!     case charset_not:
!       switch (SWITCH_ENUM_CAST (*p1))
!       {
!       case exactn:
!       case charset:
!         /* Reuse the code above.  */
!         return mutually_exclusive_p (bufp, p2, p1);
!       case charset_not:
!         /* When we have two charset_not, it's very unlikely that
!            they don't overlap.  The union of the two sets of excluded
!            chars should cover all possible chars, which, as a matter of
!            fact, is virtually impossible in multibyte buffers.  */
!         ;
!       }
!       break;
! 
!     case wordend:
!     case notsyntaxspec:
!       return ((re_opcode_t) *p1 == syntaxspec
!             && p1[1] == (op2 == wordend ? Sword : p2[1]));
! 
!     case wordbeg:
!     case syntaxspec:
!       return ((re_opcode_t) *p1 == notsyntaxspec
!             && p1[1] == (op2 == wordend ? Sword : p2[1]));
! 
!     case wordbound:
!       return (((re_opcode_t) *p1 == notsyntaxspec
!              || (re_opcode_t) *p1 == syntaxspec)
!             && p1[1] == Sword);
! 
! #ifdef emacs
!     case categoryspec:
!       return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
!     case notcategoryspec:
!       return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
! #endif /* emacs */
! 
!     default:
!       ;
!     }
  
+   /* Safe default.  */
+   return 0;
+ }
  
  
  /* Matching routines.  */
  
! #ifndef emacs /* Emacs never uses this.  */
  /* re_match is like re_match_2 except it takes only a single string.  */
  
  int
***************
*** 3138,3160 ****
       const char *string;
       int size, pos;
       struct re_registers *regs;
!  {
!   return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size); 
  }
  #endif /* not emacs */
  
  
  /* re_match_2 matches the compiled pattern in BUFP against the
     the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
     and SIZE2, respectively).  We start matching at POS, and stop
     matching at STOP.
!    
     If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
!    store offsets for the substring each group matched in REGS.  See the
     documentation for exactly how many groups we fill.
  
     We return -1 if no match, -2 if an internal error (such as the
!    failure stack overflowing).  Otherwise, we return the length of the
     matched substring.  */
  
  int
--- 4441,4474 ----
       const char *string;
       int size, pos;
       struct re_registers *regs;
! {
!   int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
!                                   pos, regs, size);
! # if defined C_ALLOCA && !defined REGEX_MALLOC
!   alloca (0);
! # endif
!   return result;
  }
+ WEAK_ALIAS (__re_match, re_match)
  #endif /* not emacs */
  
+ #ifdef emacs
+ /* In Emacs, this is the string or buffer in which we
+    are matching.  It is used for looking up syntax properties.        */
+ Lisp_Object re_match_object;
+ #endif
  
  /* re_match_2 matches the compiled pattern in BUFP against the
     the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
     and SIZE2, respectively).  We start matching at POS, and stop
     matching at STOP.
! 
     If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
!    store offsets for the substring each group matched in REGS.        See the
     documentation for exactly how many groups we fill.
  
     We return -1 if no match, -2 if an internal error (such as the
!    failure stack overflowing).        Otherwise, we return the length of the
     matched substring.  */
  
  int
***************
*** 3166,3215 ****
       struct re_registers *regs;
       int stop;
  {
    /* General temporaries.  */
    int mcnt;
!   unsigned char *p1;
  
    /* Just past the end of the corresponding string.  */
!   const char *end1, *end2;
  
    /* Pointers into string1 and string2, just past the last characters in
!      each to consider matching.  */
!   const char *end_match_1, *end_match_2;
  
    /* Where we are in the data, and the end of the current string.  */
!   const char *d, *dend;
!   
    /* Where we are in the pattern, and the end of the pattern.  */
!   unsigned char *p = bufp->buffer;
!   register unsigned char *pend = p + bufp->used;
  
!   /* We use this to map every character in the string.  */
!   char *translate = bufp->translate;
  
    /* Failure point stack.  Each place that can handle a failure further
       down the line pushes a failure point on this stack.  It consists of
!      restart, regend, and reg_info for all registers corresponding to
       the subexpressions we're currently inside, plus the number of such
       registers, and, finally, two char *'s.  The first char * is where
       to resume scanning the pattern; the second one is where to resume
!      scanning the strings.  If the latter is zero, the failure point is
!      a ``dummy''; if a failure happens and the failure point is a dummy,
!      it gets discarded and the next next one is tried.  */
    fail_stack_type fail_stack;
  #ifdef DEBUG
-   static unsigned failure_id = 0;
    unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
  #endif
  
    /* We fill all the registers internally, independent of what we
!      return, for use in backreferences.  The number here includes
       an element for register zero.  */
!   unsigned num_regs = bufp->re_nsub + 1;
!   
!   /* The currently active registers.  */
!   unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
!   unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
  
    /* Information on the contents of registers. These are pointers into
       the input strings; they record just what was matched (on this
--- 4480,4570 ----
       struct re_registers *regs;
       int stop;
  {
+   int result;
+ 
+ #ifdef emacs
+   int charpos;
+   gl_state.object = re_match_object;
+   charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
+   SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
+ #endif
+ 
+   result = re_match_2_internal (bufp, (re_char*) string1, size1,
+                               (re_char*) string2, size2,
+                               pos, regs, stop);
+ #if defined C_ALLOCA && !defined REGEX_MALLOC
+   alloca (0);
+ #endif
+   return result;
+ }
+ WEAK_ALIAS (__re_match_2, re_match_2)
+ 
+ /* This is a separate function so that we can force an alloca cleanup
+    afterwards.        */
+ static int
+ re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
+      struct re_pattern_buffer *bufp;
+      re_char *string1, *string2;
+      int size1, size2;
+      int pos;
+      struct re_registers *regs;
+      int stop;
+ {
    /* General temporaries.  */
    int mcnt;
!   size_t reg;
!   boolean not;
  
    /* Just past the end of the corresponding string.  */
!   re_char *end1, *end2;
  
    /* Pointers into string1 and string2, just past the last characters in
!      each to consider matching.        */
!   re_char *end_match_1, *end_match_2;
  
    /* Where we are in the data, and the end of the current string.  */
!   re_char *d, *dend;
! 
!   /* Used sometimes to remember where we were before starting matching
!      an operator so that we can go back in case of failure.  This "atomic"
!      behavior of matching opcodes is indispensable to the correctness
!      of the on_failure_keep_string_jump optimization.  */
!   re_char *dfail;
! 
    /* Where we are in the pattern, and the end of the pattern.  */
!   re_char *p = bufp->buffer;
!   re_char *pend = p + bufp->used;
  
!   /* We use this to map every character in the string.        */
!   RE_TRANSLATE_TYPE translate = bufp->translate;
! 
!   /* Nonzero if we have to concern multibyte character.        */
!   const boolean multibyte = RE_MULTIBYTE_P (bufp);
  
    /* Failure point stack.  Each place that can handle a failure further
       down the line pushes a failure point on this stack.  It consists of
!      regstart, and regend for all registers corresponding to
       the subexpressions we're currently inside, plus the number of such
       registers, and, finally, two char *'s.  The first char * is where
       to resume scanning the pattern; the second one is where to resume
!      scanning the strings.    */
! #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.        */
    fail_stack_type fail_stack;
+ #endif
  #ifdef DEBUG
    unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
  #endif
  
+ #if defined REL_ALLOC && defined REGEX_MALLOC
+   /* This holds the pointer to the failure stack, when
+      it is allocated relocatably.  */
+   fail_stack_elt_t *failure_stack_ptr;
+ #endif
+ 
    /* We fill all the registers internally, independent of what we
!      return, for use in backreferences.        The number here includes
       an element for register zero.  */
!   size_t num_regs = bufp->re_nsub + 1;
  
    /* Information on the contents of registers. These are pointers into
       the input strings; they record just what was matched (on this
***************
*** 3218,3270 ****
       matching and the regnum-th regend points to right after where we
       stopped matching the regnum-th subexpression.  (The zeroth register
       keeps track of what the whole pattern matches.)  */
!   const char **regstart, **regend;
! 
!   /* If a group that's operated upon by a repetition operator fails to
!      match anything, then the register for its start will need to be
!      restored because it will have been set to wherever in the string we
!      are when we last see its open-group operator.  Similarly for a
!      register's end.  */
!   const char **old_regstart, **old_regend;
! 
!   /* The is_active field of reg_info helps us keep track of which (possibly
!      nested) subexpressions we are currently in. The matched_something
!      field of reg_info[reg_num] helps us tell whether or not we have
!      matched any of the pattern so far this time through the reg_num-th
!      subexpression.  These two fields get reset each time through any
!      loop their register is in.  */
!   register_info_type *reg_info; 
  
    /* The following record the register info as found in the above
!      variables when we find a match better than any we've seen before. 
       This happens as we backtrack through the failure points, which in
       turn happens only if we have not yet matched the entire string. */
    unsigned best_regs_set = false;
!   const char **best_regstart, **best_regend;
!   
    /* Logically, this is `best_regend[0]'.  But we don't want to have to
       allocate space for that if we're not allocating space for anything
!      else (see below).  Also, we never need info about register 0 for
       any of the other register vectors, and it seems rather a kludge to
       treat `best_regend' differently than the rest.  So we keep track of
       the end of the best match so far in a separate variable.  We
       initialize this to NULL so that when we backtrack the first time
       and need to test it, it's not garbage.  */
!   const char *match_end = NULL;
! 
!   /* Used when we pop values we don't care about.  */
!   const char **reg_dummy;
!   register_info_type *reg_info_dummy;
  
  #ifdef DEBUG
    /* Counts the total number of registers pushed.  */
!   unsigned num_regs_pushed = 0;       
  #endif
  
    DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
!   
    INIT_FAIL_STACK ();
!   
    /* Do not bother to initialize all the register variables if there are
       no groups in the pattern, as it takes a fair amount of time.  If
       there are groups, we include space for register 0 (the whole
--- 4573,4611 ----
       matching and the regnum-th regend points to right after where we
       stopped matching the regnum-th subexpression.  (The zeroth register
       keeps track of what the whole pattern matches.)  */
! #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
!   re_char **regstart, **regend;
! #endif
  
    /* The following record the register info as found in the above
!      variables when we find a match better than any we've seen before.
       This happens as we backtrack through the failure points, which in
       turn happens only if we have not yet matched the entire string. */
    unsigned best_regs_set = false;
! #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
!   re_char **best_regstart, **best_regend;
! #endif
! 
    /* Logically, this is `best_regend[0]'.  But we don't want to have to
       allocate space for that if we're not allocating space for anything
!      else (see below).        Also, we never need info about register 0 for
       any of the other register vectors, and it seems rather a kludge to
       treat `best_regend' differently than the rest.  So we keep track of
       the end of the best match so far in a separate variable.  We
       initialize this to NULL so that when we backtrack the first time
       and need to test it, it's not garbage.  */
!   re_char *match_end = NULL;
  
  #ifdef DEBUG
    /* Counts the total number of registers pushed.  */
!   unsigned num_regs_pushed = 0;
  #endif
  
    DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
! 
    INIT_FAIL_STACK ();
! 
! #ifdef MATCH_MAY_ALLOCATE
    /* Do not bother to initialize all the register variables if there are
       no groups in the pattern, as it takes a fair amount of time.  If
       there are groups, we include space for register 0 (the whole
***************
*** 3272,3302 ****
       array indexing.  We should fix this.  */
    if (bufp->re_nsub)
      {
!       regstart = REGEX_TALLOC (num_regs, const char *);
!       regend = REGEX_TALLOC (num_regs, const char *);
!       old_regstart = REGEX_TALLOC (num_regs, const char *);
!       old_regend = REGEX_TALLOC (num_regs, const char *);
!       best_regstart = REGEX_TALLOC (num_regs, const char *);
!       best_regend = REGEX_TALLOC (num_regs, const char *);
!       reg_info = REGEX_TALLOC (num_regs, register_info_type);
!       reg_dummy = REGEX_TALLOC (num_regs, const char *);
!       reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
! 
!       if (!(regstart && regend && old_regstart && old_regend && reg_info 
!             && best_regstart && best_regend && reg_dummy && reg_info_dummy)) 
!         {
!           FREE_VARIABLES ();
!           return -2;
!         }
      }
    else
      {
        /* We must initialize all our variables to NULL, so that
!          `FREE_VARIABLES' doesn't try to free them.  */
!       regstart = regend = old_regstart = old_regend = best_regstart
!         = best_regend = reg_dummy = NULL;
!       reg_info = reg_info_dummy = (register_info_type *) NULL;
      }
  
    /* The starting position is bogus.  */
    if (pos < 0 || pos > size1 + size2)
--- 4613,4636 ----
       array indexing.  We should fix this.  */
    if (bufp->re_nsub)
      {
!       regstart = REGEX_TALLOC (num_regs, re_char *);
!       regend = REGEX_TALLOC (num_regs, re_char *);
!       best_regstart = REGEX_TALLOC (num_regs, re_char *);
!       best_regend = REGEX_TALLOC (num_regs, re_char *);
! 
!       if (!(regstart && regend && best_regstart && best_regend))
!       {
!         FREE_VARIABLES ();
!         return -2;
!       }
      }
    else
      {
        /* We must initialize all our variables to NULL, so that
!        `FREE_VARIABLES' doesn't try to free them.  */
!       regstart = regend = best_regstart = best_regend = NULL;
      }
+ #endif /* MATCH_MAY_ALLOCATE */
  
    /* The starting position is bogus.  */
    if (pos < 0 || pos > size1 + size2)
***************
*** 3304,3326 ****
        FREE_VARIABLES ();
        return -1;
      }
!     
    /* Initialize subexpression text positions to -1 to mark ones that no
       start_memory/stop_memory has been seen for. Also initialize the
       register information struct.  */
!   for (mcnt = 1; mcnt < num_regs; mcnt++)
!     {
!       regstart[mcnt] = regend[mcnt] 
!         = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
!         
!       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
!       IS_ACTIVE (reg_info[mcnt]) = 0;
!       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
!       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
!     }
!   
    /* We move `string1' into `string2' if the latter's empty -- but not if
!      `string1' is null.  */
    if (size2 == 0 && string1 != NULL)
      {
        string2 = string1;
--- 4638,4652 ----
        FREE_VARIABLES ();
        return -1;
      }
! 
    /* Initialize subexpression text positions to -1 to mark ones that no
       start_memory/stop_memory has been seen for. Also initialize the
       register information struct.  */
!   for (reg = 1; reg < num_regs; reg++)
!     regstart[reg] = regend[reg] = NULL;
! 
    /* We move `string1' into `string2' if the latter's empty -- but not if
!      `string1' is null.        */
    if (size2 == 0 && string1 != NULL)
      {
        string2 = string1;
***************
*** 3328,3366 ****
        string1 = 0;
        size1 = 0;
      }
!   if (string1)
!     end1 = string1 + size1;
!   else
!     end1 = (char *)NULL;
    end2 = string2 + size2;
  
!   /* Compute where to stop matching, within the two strings.  */
!   if (stop <= size1)
!     {
!       end_match_1 = string1 + stop;
!       end_match_2 = string2;
!     }
!   else
!     {
!       end_match_1 = end1;
!       end_match_2 = string2 + stop - size1;
!     }
! 
!   /* `p' scans through the pattern as `d' scans through the data. 
       `dend' is the end of the input string that `d' points within.  `d'
       is advanced into the following input string whenever necessary, but
       this happens before fetching; therefore, at the beginning of the
       loop, `d' can be pointing at the end of a string, but it cannot
       equal `string2'.  */
!   if (size1 > 0 && pos <= size1)
      {
!       d = string1 + pos;
!       dend = end_match_1;
      }
    else
      {
!       d = string2 + pos - size1;
!       dend = end_match_2;
      }
  
    DEBUG_PRINT1 ("The compiled pattern is: ");
--- 4654,4700 ----
        string1 = 0;
        size1 = 0;
      }
!   end1 = string1 + size1;
    end2 = string2 + size2;
  
!   /* `p' scans through the pattern as `d' scans through the data.
       `dend' is the end of the input string that `d' points within.  `d'
       is advanced into the following input string whenever necessary, but
       this happens before fetching; therefore, at the beginning of the
       loop, `d' can be pointing at the end of a string, but it cannot
       equal `string2'.  */
!   if (pos >= size1)
      {
!       /* Only match within string2.  */
!       d = string2 + pos - size1;
!       dend = end_match_2 = string2 + stop - size1;
!       end_match_1 = end1;     /* Just to give it a value.  */
      }
    else
      {
!       if (stop < size1)
!       {
!         /* Only match within string1.  */
!         end_match_1 = string1 + stop;
!         /* BEWARE!
!            When we reach end_match_1, PREFETCH normally switches to string2.
!            But in the present case, this means that just doing a PREFETCH
!            makes us jump from `stop' to `gap' within the string.
!            What we really want here is for the search to stop as
!            soon as we hit end_match_1.  That's why we set end_match_2
!            to end_match_1 (since PREFETCH fails as soon as we hit
!            end_match_2).  */
!         end_match_2 = end_match_1;
!       }
!       else
!       { /* It's important to use this code when stop == size so that
!            moving `d' from end1 to string2 will not prevent the d == dend
!            check from catching the end of string.  */
!         end_match_1 = end1;
!         end_match_2 = string2 + stop - size1;
!       }
!       d = string1 + pos;
!       dend = end_match_1;
      }
  
    DEBUG_PRINT1 ("The compiled pattern is: ");
***************
*** 3368,3820 ****
    DEBUG_PRINT1 ("The string to match is: `");
    DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
    DEBUG_PRINT1 ("'\n");
!   
!   /* This loops over pattern commands.  It exits by returning from the
       function if the match is complete, or it drops through if the match
       fails at this starting point in the input data.  */
    for (;;)
      {
!       DEBUG_PRINT2 ("\n0x%x: ", p);
  
        if (p == pend)
        { /* End of pattern means we might have succeeded.  */
!           DEBUG_PRINT1 ("end of pattern ... ");
!           
          /* If we haven't matched the entire string, and we want the
!              longest match, try backtracking.  */
!           if (d != end_match_2)
            {
!               DEBUG_PRINT1 ("backtracking.\n");
!               
!               if (!FAIL_STACK_EMPTY ())
!                 { /* More failure points to try.  */
!                   boolean same_str_p = (FIRST_STRING_P (match_end) 
!                                       == MATCHING_IN_FIRST_STRING);
! 
!                   /* If exceeds best match so far, save it.  */
!                   if (!best_regs_set
!                       || (same_str_p && d > match_end)
!                       || (!same_str_p && !MATCHING_IN_FIRST_STRING))
!                     {
!                       best_regs_set = true;
!                       match_end = d;
!                       
!                       DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
!                       
!                       for (mcnt = 1; mcnt < num_regs; mcnt++)
!                         {
!                           best_regstart[mcnt] = regstart[mcnt];
!                           best_regend[mcnt] = regend[mcnt];
!                         }
!                     }
!                   goto fail;         
!                 }
! 
!               /* If no failure points, don't restore garbage.  */
!               else if (best_regs_set)   
!                 {
!               restore_best_regs:
!                   /* Restore best match.  It may happen that `dend ==
!                      end_match_1' while the restored d is in string2.
!                      For example, the pattern `x.*y.*z' against the
!                      strings `x-' and `y-z-', if the two strings are
!                      not consecutive in memory.  */
!                   DEBUG_PRINT1 ("Restoring best registers.\n");
!                   
!                   d = match_end;
!                   dend = ((d >= string1 && d <= end1)
!                          ? end_match_1 : end_match_2);
  
!                 for (mcnt = 1; mcnt < num_regs; mcnt++)
                    {
!                     regstart[mcnt] = best_regstart[mcnt];
!                     regend[mcnt] = best_regend[mcnt];
                    }
!                 }
!             } /* d != end_match_2 */
  
!           DEBUG_PRINT1 ("Accepting match.\n");
  
!           /* If caller wants register contents data back, do it.  */
!           if (regs && !bufp->no_sub)
            {
!               /* Have the register data arrays been allocated?  */
!               if (bufp->regs_allocated == REGS_UNALLOCATED)
!                 { /* No.  So allocate them with malloc.  We need one
!                      extra element beyond `num_regs' for the `-1' marker
!                      GNU code uses.  */
!                   regs->num_regs = MAX (RE_NREGS, num_regs + 1);
!                   regs->start = TALLOC (regs->num_regs, regoff_t);
!                   regs->end = TALLOC (regs->num_regs, regoff_t);
!                   if (regs->start == NULL || regs->end == NULL)
!                     return -2;
!                   bufp->regs_allocated = REGS_REALLOCATE;
!                 }
!               else if (bufp->regs_allocated == REGS_REALLOCATE)
!                 { /* Yes.  If we need more elements than were already
!                      allocated, reallocate them.  If we need fewer, just
!                      leave it alone.  */
!                   if (regs->num_regs < num_regs + 1)
!                     {
!                       regs->num_regs = num_regs + 1;
!                       RETALLOC (regs->start, regs->num_regs, regoff_t);
!                       RETALLOC (regs->end, regs->num_regs, regoff_t);
!                       if (regs->start == NULL || regs->end == NULL)
!                         return -2;
!                     }
!                 }
!               else
!                 assert (bufp->regs_allocated == REGS_FIXED);
! 
!               /* Convert the pointer data in `regstart' and `regend' to
!                  indices.  Register zero has to be set differently,
!                  since we haven't kept track of any info for it.  */
!               if (regs->num_regs > 0)
!                 {
!                   regs->start[0] = pos;
!                   regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
!                                 : d - string2 + size1);
!                 }
!               
!               /* Go through the first `min (num_regs, regs->num_regs)'
!                  registers, since that is all we initialized.  */
!             for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
                {
!                   if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
!                     regs->start[mcnt] = regs->end[mcnt] = -1;
!                   else
!                     {
!                     regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
!                       regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
!                     }
                }
!               
!               /* If the regs structure we return has more elements than
!                  were in the pattern, set the extra elements to -1.  If
!                  we (re)allocated the registers, this is the case,
!                  because we always allocate enough to have at least one
!                  -1 at the end.  */
!               for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
!                 regs->start[mcnt] = regs->end[mcnt] = -1;
            } /* regs && !bufp->no_sub */
  
!           FREE_VARIABLES ();
!           DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
!                         nfailure_points_pushed, nfailure_points_popped,
!                         nfailure_points_pushed - nfailure_points_popped);
!           DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
! 
!           mcnt = d - pos - (MATCHING_IN_FIRST_STRING 
!                           ? string1 
!                           : string2 - size1);
! 
!           DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
! 
!           return mcnt;
!         }
! 
!       /* Otherwise match next pattern command.  */
! #ifdef SWITCH_ENUM_BUG
!       switch ((int) ((re_opcode_t) *p++))
! #else
!       switch ((re_opcode_t) *p++)
! #endif
!       {
!         /* Ignore these.  Used to ignore the n of succeed_n's which
!            currently have n == 0.  */
!         case no_op:
!           DEBUG_PRINT1 ("EXECUTING no_op.\n");
!           break;
  
  
!         /* Match the next n pattern characters exactly.  The following
!            byte in the pattern defines n, and the n bytes after that
!            are the characters to match.  */
        case exactn:
          mcnt = *p++;
!           DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
  
!           /* This is written out as an if-else so we don't waste time
!              testing `translate' inside the loop.  */
!           if (translate)
            {
!             do
!               {
!                 PREFETCH ();
!                 if (translate[(unsigned char) *d++] != (char) *p++)
!                     goto fail;
!               }
!             while (--mcnt);
            }
          else
            {
              do
                {
                  PREFETCH ();
!                 if (*d++ != (char) *p++) goto fail;
                }
              while (--mcnt);
            }
!         SET_REGS_MATCHED ();
!           break;
  
  
!         /* Match any character except possibly a newline or a null.  */
        case anychar:
!           DEBUG_PRINT1 ("EXECUTING anychar.\n");
  
!           PREFETCH ();
  
!           if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
!               || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
!           goto fail;
  
!           SET_REGS_MATCHED ();
!           DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
!           d++;
          break;
  
  
        case charset:
        case charset_not:
          {
!           register unsigned char c;
            boolean not = (re_opcode_t) *(p - 1) == charset_not;
  
!             DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
  
            PREFETCH ();
!           c = TRANSLATE (*d); /* The character to match.  */
  
!             /* Cast to `unsigned' instead of `unsigned char' in case the
!                bit list is a full 32 bytes long.  */
!           if (c < (unsigned) (*p * BYTEWIDTH)
!               && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
!             not = !not;
  
!           p += 1 + *p;
  
            if (!not) goto fail;
!             
!           SET_REGS_MATCHED ();
!             d++;
            break;
          }
  
  
!         /* The beginning of a group is represented by start_memory.
!            The arguments are the register number in the next byte, and the
!            number of groups inner to this one in the next.  The text
!            matched within the group is recorded (in the internal
!            registers data structure) under the register number.  */
!         case start_memory:
!         DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
! 
!           /* Find out if this group can match the empty string.  */
!         p1 = p;               /* To send to group_match_null_string_p.  */
!           
!           if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == 
MATCH_NULL_UNSET_VALUE)
!             REG_MATCH_NULL_STRING_P (reg_info[*p]) 
!               = group_match_null_string_p (&p1, pend, reg_info);
! 
!           /* Save the position in the string where we were the last time
!              we were at this open-group operator in case the group is
!              operated upon by a repetition operator, e.g., with `(a*)*b'
!              against `ab'; then we want to ignore where we are now in
!              the string in case this attempt to match fails.  */
!           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
!                              ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
!                              : regstart[*p];
!         DEBUG_PRINT2 ("  old_regstart: %d\n", 
!                        POINTER_TO_OFFSET (old_regstart[*p]));
  
!           regstart[*p] = d;
          DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
  
!           IS_ACTIVE (reg_info[*p]) = 1;
!           MATCHED_SOMETHING (reg_info[*p]) = 0;
!           
!           /* This is the new highest active register.  */
!           highest_active_reg = *p;
!           
!           /* If nothing was active before, this is the new lowest active
!              register.  */
!           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
!             lowest_active_reg = *p;
! 
!           /* Move past the register number and inner group count.  */
!           p += 2;
!           break;
! 
! 
!         /* The stop_memory opcode represents the end of a group.  Its
!            arguments are the same as start_memory's: the register
!            number, and the number of inner groups.  */
        case stop_memory:
!         DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
!              
!           /* We need to save the string position the last time we were at
!              this close-group operator in case the group is operated
!              upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
!              against `aba'; then we want to ignore where we are now in
!              the string in case this attempt to match fails.  */
!           old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
!                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
!                          : regend[*p];
!         DEBUG_PRINT2 ("      old_regend: %d\n", 
!                        POINTER_TO_OFFSET (old_regend[*p]));
  
!           regend[*p] = d;
          DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
  
!           /* This register isn't active anymore.  */
!           IS_ACTIVE (reg_info[*p]) = 0;
!           
!           /* If this was the only register active, nothing is active
!              anymore.  */
!           if (lowest_active_reg == highest_active_reg)
!             {
!               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
!               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
!             }
!           else
!             { /* We must scan for the new highest active register, since
!                  it isn't necessarily one less than now: consider
!                  (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
!                  new highest active register is 1.  */
!               unsigned char r = *p - 1;
!               while (r > 0 && !IS_ACTIVE (reg_info[r]))
!                 r--;
!               
!               /* If we end up at register zero, that means that we saved
!                  the registers as the result of an `on_failure_jump', not
!                  a `start_memory', and we jumped to past the innermost
!                  `stop_memory'.  For example, in ((.)*) we save
!                  registers 1 and 2 as a result of the *, but when we pop
!                  back to the second ), we are at the stop_memory 1.
!                  Thus, nothing is active.  */
!             if (r == 0)
!                 {
!                   lowest_active_reg = NO_LOWEST_ACTIVE_REG;
!                   highest_active_reg = NO_HIGHEST_ACTIVE_REG;
!                 }
!               else
!                 highest_active_reg = r;
!             }
!           
!           /* If just failed to match something this time around with a
!              group that's operated on by a repetition operator, try to
!              force exit from the ``loop'', and restore the register
!              information for this group that we had before trying this
!              last match.  */
!           if ((!MATCHED_SOMETHING (reg_info[*p])
!                || (re_opcode_t) p[-3] == start_memory)
!             && (p + 2) < pend)              
!             {
!               boolean is_a_jump_n = false;
!               
!               p1 = p + 2;
!               mcnt = 0;
!               switch ((re_opcode_t) *p1++)
!                 {
!                   case jump_n:
!                   is_a_jump_n = true;
!                   case pop_failure_jump:
!                 case maybe_pop_jump:
!                 case jump:
!                 case dummy_failure_jump:
!                     EXTRACT_NUMBER_AND_INCR (mcnt, p1);
!                   if (is_a_jump_n)
!                     p1 += 2;
!                     break;
!                   
!                   default:
!                     /* do nothing */ ;
!                 }
!             p1 += mcnt;
!         
!               /* If the next operation is a jump backwards in the pattern
!                to an on_failure_jump right before the start_memory
!                  corresponding to this stop_memory, exit from the loop
!                  by forcing a failure after pushing on the stack the
!                  on_failure_jump's jump in the pattern, and d.  */
!               if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
!                   && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
!               {
!                   /* If this group ever matched anything, then restore
!                      what its registers were before trying this last
!                      failed match, e.g., with `(a*)*b' against `ab' for
!                      regstart[1], and, e.g., with `((a*)*(b*)*)*'
!                      against `aba' for regend[3].
!                      
!                      Also restore the registers for inner groups for,
!                      e.g., `((a*)(b*))*' against `aba' (register 3 would
!                      otherwise get trashed).  */
!                      
!                   if (EVER_MATCHED_SOMETHING (reg_info[*p]))
!                   {
!                     unsigned r; 
!         
!                       EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
!                       
!                     /* Restore this and inner groups' (if any) registers.  */
!                       for (r = *p; r < *p + *(p + 1); r++)
!                         {
!                           regstart[r] = old_regstart[r];
! 
!                           /* xx why this test?  */
!                           if ((int) old_regend[r] >= (int) regstart[r])
!                             regend[r] = old_regend[r];
!                         }     
!                     }
!                 p1++;
!                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
!                   PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
! 
!                   goto fail;
!                 }
!             }
!           
!           /* Move past the register number and the inner group count.  */
!           p += 2;
!           break;
  
  
        /* \<digit> has been turned into a `duplicate' command which is
!            followed by the numeric value of <digit> as the register number.  
*/
!         case duplicate:
          {
!           register const char *d2, *dend2;
!           int regno = *p++;   /* Get which register to match against.  */
            DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
  
!           /* Can't back reference a group which we've never matched.  */
!             if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
!               goto fail;
!               
!             /* Where in input to try to start matching.  */
!             d2 = regstart[regno];
!             
!             /* Where to stop matching; if both the place to start and
!                the place to stop matching are in the same string, then
!                set to the place to stop, otherwise, for now have to use
!                the end of the first string.  */
  
!             dend2 = ((FIRST_STRING_P (regstart[regno]) 
                      == FIRST_STRING_P (regend[regno]))
                     ? regend[regno] : end_match_1);
            for (;;)
              {
                /* If necessary, advance to next segment in register
!                    contents.  */
                while (d2 == dend2)
                  {
                    if (dend2 == end_match_2) break;
                    if (dend2 == regend[regno]) break;
  
!                     /* End of string1 => advance to string2. */
!                     d2 = string2;
!                     dend2 = regend[regno];
                  }
                /* At end of register contents => success */
                if (d2 == dend2) break;
--- 4702,5130 ----
    DEBUG_PRINT1 ("The string to match is: `");
    DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
    DEBUG_PRINT1 ("'\n");
! 
!   /* This loops over pattern commands.        It exits by returning from the
       function if the match is complete, or it drops through if the match
       fails at this starting point in the input data.  */
    for (;;)
      {
!       DEBUG_PRINT2 ("\n%p: ", p);
  
        if (p == pend)
        { /* End of pattern means we might have succeeded.  */
!         DEBUG_PRINT1 ("end of pattern ... ");
! 
          /* If we haven't matched the entire string, and we want the
!            longest match, try backtracking.  */
!         if (d != end_match_2)
            {
!             /* 1 if this match ends in the same string (string1 or string2)
!                as the best previous match.  */
!             boolean same_str_p = (FIRST_STRING_P (match_end)
!                                   == FIRST_STRING_P (d));
!             /* 1 if this match is the best seen so far.  */
!             boolean best_match_p;
! 
!             /* AIX compiler got confused when this was combined
!                with the previous declaration.  */
!             if (same_str_p)
!               best_match_p = d > match_end;
!             else
!               best_match_p = !FIRST_STRING_P (d);
! 
!             DEBUG_PRINT1 ("backtracking.\n");
! 
!             if (!FAIL_STACK_EMPTY ())
!               { /* More failure points to try.  */
! 
!                 /* If exceeds best match so far, save it.  */
!                 if (!best_regs_set || best_match_p)
!                   {
!                     best_regs_set = true;
!                     match_end = d;
! 
!                     DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
! 
!                     for (reg = 1; reg < num_regs; reg++)
!                       {
!                         best_regstart[reg] = regstart[reg];
!                         best_regend[reg] = regend[reg];
!                       }
!                   }
!                 goto fail;
!               }
! 
!             /* If no failure points, don't restore garbage.  And if
!                last match is real best match, don't restore second
!                best one. */
!             else if (best_regs_set && !best_match_p)
!               {
!               restore_best_regs:
!                 /* Restore best match.  It may happen that `dend ==
!                    end_match_1' while the restored d is in string2.
!                    For example, the pattern `x.*y.*z' against the
!                    strings `x-' and `y-z-', if the two strings are
!                    not consecutive in memory.  */
!                 DEBUG_PRINT1 ("Restoring best registers.\n");
! 
!                 d = match_end;
!                 dend = ((d >= string1 && d <= end1)
!                          ? end_match_1 : end_match_2);
  
!                 for (reg = 1; reg < num_regs; reg++)
                    {
!                     regstart[reg] = best_regstart[reg];
!                     regend[reg] = best_regend[reg];
                    }
!               }
!           } /* d != end_match_2 */
  
!       succeed_label:
!         DEBUG_PRINT1 ("Accepting match.\n");
  
!         /* If caller wants register contents data back, do it.  */
!         if (regs && !bufp->no_sub)
            {
!             /* Have the register data arrays been allocated?  */
!             if (bufp->regs_allocated == REGS_UNALLOCATED)
!               { /* No.  So allocate them with malloc.  We need one
!                    extra element beyond `num_regs' for the `-1' marker
!                    GNU code uses.  */
!                 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
!                 regs->start = TALLOC (regs->num_regs, regoff_t);
!                 regs->end = TALLOC (regs->num_regs, regoff_t);
!                 if (regs->start == NULL || regs->end == NULL)
!                   {
!                     FREE_VARIABLES ();
!                     return -2;
!                   }
!                 bufp->regs_allocated = REGS_REALLOCATE;
!               }
!             else if (bufp->regs_allocated == REGS_REALLOCATE)
!               { /* Yes.  If we need more elements than were already
!                    allocated, reallocate them.  If we need fewer, just
!                    leave it alone.  */
!                 if (regs->num_regs < num_regs + 1)
!                   {
!                     regs->num_regs = num_regs + 1;
!                     RETALLOC (regs->start, regs->num_regs, regoff_t);
!                     RETALLOC (regs->end, regs->num_regs, regoff_t);
!                     if (regs->start == NULL || regs->end == NULL)
!                       {
!                         FREE_VARIABLES ();
!                         return -2;
!                       }
!                   }
!               }
!             else
                {
!                 /* These braces fend off a "empty body in an else-statement"
!                    warning under GCC when assert expands to nothing.  */
!                 assert (bufp->regs_allocated == REGS_FIXED);
                }
! 
!             /* Convert the pointer data in `regstart' and `regend' to
!                indices.  Register zero has to be set differently,
!                since we haven't kept track of any info for it.  */
!             if (regs->num_regs > 0)
!               {
!                 regs->start[0] = pos;
!                 regs->end[0] = POINTER_TO_OFFSET (d);
!               }
! 
!             /* Go through the first `min (num_regs, regs->num_regs)'
!                registers, since that is all we initialized.  */
!             for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
!               {
!                 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
!                   regs->start[reg] = regs->end[reg] = -1;
!                 else
!                   {
!                     regs->start[reg]
!                       = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
!                     regs->end[reg]
!                       = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
!                   }
!               }
! 
!             /* If the regs structure we return has more elements than
!                were in the pattern, set the extra elements to -1.  If
!                we (re)allocated the registers, this is the case,
!                because we always allocate enough to have at least one
!                -1 at the end.  */
!             for (reg = num_regs; reg < regs->num_regs; reg++)
!               regs->start[reg] = regs->end[reg] = -1;
            } /* regs && !bufp->no_sub */
  
!         DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
!                       nfailure_points_pushed, nfailure_points_popped,
!                       nfailure_points_pushed - nfailure_points_popped);
!         DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
! 
!         mcnt = POINTER_TO_OFFSET (d) - pos;
! 
!         DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
! 
!         FREE_VARIABLES ();
!         return mcnt;
!       }
  
+       /* Otherwise match next pattern command.        */
+       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
+       {
+       /* Ignore these.  Used to ignore the n of succeed_n's which
+          currently have n == 0.  */
+       case no_op:
+         DEBUG_PRINT1 ("EXECUTING no_op.\n");
+         break;
  
!       case succeed:
!         DEBUG_PRINT1 ("EXECUTING succeed.\n");
!         goto succeed_label;
! 
!       /* Match the next n pattern characters exactly.  The following
!          byte in the pattern defines n, and the n bytes after that
!          are the characters to match.  */
        case exactn:
          mcnt = *p++;
!         DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
! 
!         /* Remember the start point to rollback upon failure.  */
!         dfail = d;
  
!         /* This is written out as an if-else so we don't waste time
!            testing `translate' inside the loop.  */
!         if (RE_TRANSLATE_P (translate))
            {
!             if (multibyte)
!               do
!                 {
!                   int pat_charlen, buf_charlen;
!                   unsigned int pat_ch, buf_ch;
! 
!                   PREFETCH ();
!                   pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
!                   buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
! 
!                   if (RE_TRANSLATE (translate, buf_ch)
!                       != pat_ch)
!                     {
!                       d = dfail;
!                       goto fail;
!                     }
! 
!                   p += pat_charlen;
!                   d += buf_charlen;
!                   mcnt -= pat_charlen;
!                 }
!               while (mcnt > 0);
!             else
!               do
!                 {
!                   PREFETCH ();
!                   if (RE_TRANSLATE (translate, *d) != *p++)
!                     {
!                       d = dfail;
!                       goto fail;
!                     }
!                   d++;
!                 }
!               while (--mcnt);
            }
          else
            {
              do
                {
                  PREFETCH ();
!                 if (*d++ != *p++)
!                   {
!                     d = dfail;
!                     goto fail;
!                   }
                }
              while (--mcnt);
            }
!         break;
  
  
!       /* Match any character except possibly a newline or a null.  */
        case anychar:
!         {
!           int buf_charlen;
!           re_wchar_t buf_ch;
  
!           DEBUG_PRINT1 ("EXECUTING anychar.\n");
  
!           PREFETCH ();
!           buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
!           buf_ch = TRANSLATE (buf_ch);
! 
!           if ((!(bufp->syntax & RE_DOT_NEWLINE)
!                && buf_ch == '\n')
!               || ((bufp->syntax & RE_DOT_NOT_NULL)
!                   && buf_ch == '\000'))
!             goto fail;
  
!           DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
!           d += buf_charlen;
!         }
          break;
  
  
        case charset:
        case charset_not:
          {
!           register unsigned int c;
            boolean not = (re_opcode_t) *(p - 1) == charset_not;
+           int len;
+ 
+           /* Start of actual range_table, or end of bitmap if there is no
+              range table.  */
+           re_char *range_table;
  
!           /* Nonzero if there is a range table.  */
!           int range_table_exists;
! 
!           /* Number of ranges of range table.  This is not included
!              in the initial byte-length of the command.  */
!           int count = 0;
! 
!           DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
! 
!           range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
! 
!           if (range_table_exists)
!             {
!               range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. 
 */
!               EXTRACT_NUMBER_AND_INCR (count, range_table);
!             }
  
            PREFETCH ();
!           c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
!           c = TRANSLATE (c); /* The character to match.  */
! 
!           if (SINGLE_BYTE_CHAR_P (c))
!             {                 /* Lookup bitmap.  */
!               /* Cast to `unsigned' instead of `unsigned char' in
!                  case the bit list is a full 32 bytes long.  */
!               if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
!                   && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
!                 not = !not;
!             }
! #ifdef emacs
!           else if (range_table_exists)
!             {
!               int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
  
!               if (  (class_bits & BIT_LOWER && ISLOWER (c))
!                   | (class_bits & BIT_MULTIBYTE)
!                   | (class_bits & BIT_PUNCT && ISPUNCT (c))
!                   | (class_bits & BIT_SPACE && ISSPACE (c))
!                   | (class_bits & BIT_UPPER && ISUPPER (c))
!                   | (class_bits & BIT_WORD  && ISWORD (c)))
!                 not = !not;
!               else
!                 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
!             }
! #endif /* emacs */
  
!           if (range_table_exists)
!             p = CHARSET_RANGE_TABLE_END (range_table, count);
!           else
!             p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
  
            if (!not) goto fail;
! 
!           d += len;
            break;
          }
  
  
!       /* The beginning of a group is represented by start_memory.
!          The argument is the register number.  The text
!          matched within the group is recorded (in the internal
!          registers data structure) under the register number.  */
!       case start_memory:
!         DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
! 
!         /* In case we need to undo this operation (via backtracking).  */
!         PUSH_FAILURE_REG ((unsigned int)*p);
  
!         regstart[*p] = d;
!         regend[*p] = NULL;    /* probably unnecessary.  -sm  */
          DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
  
!         /* Move past the register number and inner group count.  */
!         p += 1;
!         break;
! 
! 
!       /* The stop_memory opcode represents the end of a group.  Its
!          argument is the same as start_memory's: the register number.  */
        case stop_memory:
!         DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
  
!         assert (!REG_UNSET (regstart[*p]));
!         /* Strictly speaking, there should be code such as:
!            
!               assert (REG_UNSET (regend[*p]));
!               PUSH_FAILURE_REGSTOP ((unsigned int)*p);
! 
!            But the only info to be pushed is regend[*p] and it is known to
!            be UNSET, so there really isn't anything to push.
!            Not pushing anything, on the other hand deprives us from the
!            guarantee that regend[*p] is UNSET since undoing this operation
!            will not reset its value properly.  This is not important since
!            the value will only be read on the next start_memory or at
!            the very end and both events can only happen if this stop_memory
!            is *not* undone.  */
! 
!         regend[*p] = d;
          DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
  
!         /* Move past the register number and the inner group count.  */
!         p += 1;
!         break;
  
  
        /* \<digit> has been turned into a `duplicate' command which is
!          followed by the numeric value of <digit> as the register number.  */
!       case duplicate:
          {
!           register re_char *d2, *dend2;
!           int regno = *p++;   /* Get which register to match against.  */
            DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
  
!           /* Can't back reference a group which we've never matched.  */
!           if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
!             goto fail;
! 
!           /* Where in input to try to start matching.  */
!           d2 = regstart[regno];
! 
!           /* Remember the start point to rollback upon failure.  */
!           dfail = d;
! 
!           /* Where to stop matching; if both the place to start and
!              the place to stop matching are in the same string, then
!              set to the place to stop, otherwise, for now have to use
!              the end of the first string.  */
  
!           dend2 = ((FIRST_STRING_P (regstart[regno])
                      == FIRST_STRING_P (regend[regno]))
                     ? regend[regno] : end_match_1);
            for (;;)
              {
                /* If necessary, advance to next segment in register
!                  contents.  */
                while (d2 == dend2)
                  {
                    if (dend2 == end_match_2) break;
                    if (dend2 == regend[regno]) break;
  
!                   /* End of string1 => advance to string2. */
!                   d2 = string2;
!                   dend2 = regend[regno];
                  }
                /* At end of register contents => success */
                if (d2 == dend2) break;
***************
*** 3824,4336 ****
  
                /* How many characters left in this segment to match.  */
                mcnt = dend - d;
!                 
                /* Want how many consecutive characters we can match in
!                    one shot, so, if necessary, adjust the count.  */
!                 if (mcnt > dend2 - d2)
                  mcnt = dend2 - d2;
!                   
                /* Compare that many; failure if mismatch, else move
!                    past them.  */
!               if (translate 
!                     ? bcmp_translate (d, d2, mcnt, translate) 
!                     : bcmp (d, d2, mcnt))
!                 goto fail;
                d += mcnt, d2 += mcnt;
              }
          }
          break;
  
  
!         /* begline matches the empty string at the beginning of the string
!            (unless `not_bol' is set in `bufp'), and, if
!            `newline_anchor' is set, after newlines.  */
        case begline:
!           DEBUG_PRINT1 ("EXECUTING begline.\n");
!           
!           if (AT_STRINGS_BEG (d))
!             {
!               if (!bufp->not_bol) break;
!             }
!           else if (d[-1] == '\n' && bufp->newline_anchor)
!             {
!               break;
!             }
!           /* In all other cases, we fail.  */
!           goto fail;
  
  
!         /* endline is the dual of begline.  */
        case endline:
!           DEBUG_PRINT1 ("EXECUTING endline.\n");
  
!           if (AT_STRINGS_END (d))
!             {
!               if (!bufp->not_eol) break;
!             }
!           
!           /* We have to ``prefetch'' the next character.  */
!           else if ((d == end1 ? *string2 : *d) == '\n'
!                    && bufp->newline_anchor)
!             {
!               break;
!             }
!           goto fail;
  
  
        /* Match at the very beginning of the data.  */
!         case begbuf:
!           DEBUG_PRINT1 ("EXECUTING begbuf.\n");
!           if (AT_STRINGS_BEG (d))
!             break;
!           goto fail;
  
  
        /* Match at the very end of the data.  */
!         case endbuf:
!           DEBUG_PRINT1 ("EXECUTING endbuf.\n");
          if (AT_STRINGS_END (d))
            break;
!           goto fail;
  
  
!         /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
!            pushes NULL as the value for the string on the stack.  Then
!            `pop_failure_point' will keep the current value for the
!            string, instead of restoring it.  To see why, consider
!            matching `foo\nbar' against `.*\n'.  The .* matches the foo;
!            then the . fails against the \n.  But the next thing we want
!            to do is match the \n against the \n; if we restored the
!            string value, we would be back at the foo.
!            
!            Because this is used only in specific cases, we don't need to
!            check all the things that `on_failure_jump' does, to make
!            sure the right things get saved on the stack.  Hence we don't
!            share its code.  The only reason to push anything on the
!            stack at all is that otherwise we would have to change
!            `anychar's code to do something besides goto fail in this
!            case; that seems worse than this.  */
!         case on_failure_keep_string_jump:
!           DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
!           
!           EXTRACT_NUMBER_AND_INCR (mcnt, p);
!           DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
  
!           PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
!           break;
  
  
        /* Uses of on_failure_jump:
-         
-            Each alternative starts with an on_failure_jump that points
-            to the beginning of the next alternative.  Each alternative
-            except the last ends with a jump that in effect jumps past
-            the rest of the alternatives.  (They really jump to the
-            ending jump of the following alternative, because tensioning
-            these jumps is a hassle.)
- 
-            Repeats start with an on_failure_jump that points past both
-            the repetition text and either the following jump or
-            pop_failure_jump back to this on_failure_jump.  */
-       case on_failure_jump:
-         on_failure:
-           DEBUG_PRINT1 ("EXECUTING on_failure_jump");
  
!           EXTRACT_NUMBER_AND_INCR (mcnt, p);
!           DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
  
!           /* If this on_failure_jump comes right before a group (i.e.,
!              the original * applied to a group), save the information
!              for that group and all inner ones, so that if we fail back
!              to this point, the group's information will be correct.
!              For example, in \(a*\)*\1, we need the preceding group,
!              and in \(\(a*\)b*\)\2, we need the inner group.  */
! 
!           /* We can't use `p' to check ahead because we push
!              a failure point to `p + mcnt' after we do this.  */
!           p1 = p;
! 
!           /* We need to skip no_op's before we look for the
!              start_memory in case this on_failure_jump is happening as
!              the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
!              against aba.  */
!           while (p1 < pend && (re_opcode_t) *p1 == no_op)
!             p1++;
! 
!           if (p1 < pend && (re_opcode_t) *p1 == start_memory)
!             {
!               /* We have a new highest active register now.  This will
!                  get reset at the start_memory we are about to get to,
!                  but we will have saved all the registers relevant to
!                  this repetition op, as described above.  */
!               highest_active_reg = *(p1 + 1) + *(p1 + 2);
!               if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
!                 lowest_active_reg = *(p1 + 1);
!             }
! 
!           DEBUG_PRINT1 (":\n");
!           PUSH_FAILURE_POINT (p + mcnt, d, -2);
!           break;
! 
! 
!         /* A smart repeat ends with `maybe_pop_jump'.
!          We change it to either `pop_failure_jump' or `jump'.  */
!         case maybe_pop_jump:
!           EXTRACT_NUMBER_AND_INCR (mcnt, p);
!           DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
!           {
!           register unsigned char *p2 = p;
! 
!             /* Compare the beginning of the repeat with what in the
!                pattern follows its end. If we can establish that there
!                is nothing that they would both match, i.e., that we
!                would have to backtrack because of (as in, e.g., `a*a')
!                then we can change to pop_failure_jump, because we'll
!                never have to backtrack.
!                
!                This is not true in the case of alternatives: in
!                `(a|ab)*' we do need to backtrack to the `ab' alternative
!                (e.g., if the string was `ab').  But instead of trying to
!                detect that here, the alternative has put on a dummy
!                failure point which is what we will end up popping.  */
! 
!           /* Skip over open/close-group commands.  */
!           while (p2 + 2 < pend
!                  && ((re_opcode_t) *p2 == stop_memory
!                      || (re_opcode_t) *p2 == start_memory))
!             p2 += 3;                  /* Skip over args, too.  */
  
!             /* If we're at the end of the pattern, we can change.  */
!             if (p2 == pend)
              {
!               /* Consider what happens when matching ":\(.*\)"
!                  against ":/".  I don't really understand this code
!                  yet.  */
!               p[-3] = (unsigned char) pop_failure_jump;
!                 DEBUG_PRINT1
!                   ("  End of pattern: change to `pop_failure_jump'.\n");
!               }
! 
!             else if ((re_opcode_t) *p2 == exactn
!                    || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
              {
!               register unsigned char c
!                   = *p2 == (unsigned char) endline ? '\n' : p2[2];
!               p1 = p + mcnt;
! 
!                 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
!                    to the `maybe_finalize_jump' of this case.  Examine what 
!                    follows.  */
!                 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
!                   {
!                   p[-3] = (unsigned char) pop_failure_jump;
!                     DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
!                                   c, p1[5]);
!                   }
!                   
!               else if ((re_opcode_t) p1[3] == charset
!                        || (re_opcode_t) p1[3] == charset_not)
!                 {
!                   int not = (re_opcode_t) p1[3] == charset_not;
!                     
!                   if (c < (unsigned char) (p1[4] * BYTEWIDTH)
!                       && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
!                     not = !not;
! 
!                     /* `not' is equal to 1 if c would match, which means
!                         that we can't change to pop_failure_jump.  */
!                   if (!not)
!                       {
!                       p[-3] = (unsigned char) pop_failure_jump;
!                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
!                       }
!                 }
              }
          }
!         p -= 2;               /* Point at relative address again.  */
!         if ((re_opcode_t) p[-1] != pop_failure_jump)
            {
!             p[-1] = (unsigned char) jump;
!               DEBUG_PRINT1 ("  Match => jump.\n");
!             goto unconditional_jump;
            }
!         /* Note fall through.  */
  
  
!       /* The end of a simple repeat has a pop_failure_jump back to
!            its matching on_failure_jump, where the latter will push a
!            failure point.  The pop_failure_jump takes off failure
!            points put on by this pop_failure_jump's matching
!            on_failure_jump; we got through the pattern to here from the
!            matching on_failure_jump, so didn't fail.  */
!         case pop_failure_jump:
!           {
!             /* We need to pass separate storage for the lowest and
!                highest registers, even though we don't care about the
!                actual values.  Otherwise, we will restore only one
!                register from the stack, since lowest will == highest in
!                `pop_failure_point'.  */
!             unsigned dummy_low_reg, dummy_high_reg;
!             unsigned char *pdummy;
!             const char *sdummy;
! 
!             DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
!             POP_FAILURE_POINT (sdummy, pdummy,
!                                dummy_low_reg, dummy_high_reg,
!                                reg_dummy, reg_dummy, reg_info_dummy);
!           }
!           /* Note fall through.  */
! 
!           
!         /* Unconditionally jump (without popping any failure points).  */
!         case jump:
!       unconditional_jump:
!         EXTRACT_NUMBER_AND_INCR (mcnt, p);    /* Get the amount to jump.  */
!           DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
!         p += mcnt;                            /* Do the jump.  */
!           DEBUG_PRINT2 ("(to 0x%x).\n", p);
          break;
  
-       
-         /* We need this opcode so we can detect where alternatives end
-            in `group_match_null_string_p' et al.  */
-         case jump_past_alt:
-           DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
-           goto unconditional_jump;
- 
- 
-         /* Normally, the on_failure_jump pushes a failure point, which
-            then gets popped at pop_failure_jump.  We will end up at
-            pop_failure_jump, also, and with a pattern of, say, `a+', we
-            are skipping over the on_failure_jump, so we have to push
-            something meaningless for pop_failure_jump to pop.  */
-         case dummy_failure_jump:
-           DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
-           /* It doesn't matter what we push for the string here.  What
-              the code at `fail' tests is the value for the pattern.  */
-           PUSH_FAILURE_POINT (0, 0, -2);
-           goto unconditional_jump;
- 
- 
-         /* At the end of an alternative, we need to push a dummy failure
-            point in case we are followed by a `pop_failure_jump', because
-            we don't want the failure point for the alternative to be
-            popped.  For example, matching `(a|ab)*' against `aab'
-            requires that we match the `ab' alternative.  */
-         case push_dummy_failure:
-           DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
-           /* See comments just above at `dummy_failure_jump' about the
-              two zeroes.  */
-           PUSH_FAILURE_POINT (0, 0, -2);
-           break;
- 
-         /* Have to succeed matching what follows at least n times.
-            After that, handle like `on_failure_jump'.  */
-         case succeed_n: 
-           EXTRACT_NUMBER (mcnt, p + 2);
-           DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
- 
-           assert (mcnt >= 0);
-           /* Originally, this is how many times we HAVE to succeed.  */
-           if (mcnt > 0)
-             {
-                mcnt--;
-              p += 2;
-                STORE_NUMBER_AND_INCR (p, mcnt);
-                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p, mcnt);
-             }
-         else if (mcnt == 0)
-             {
-               DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
-             p[2] = (unsigned char) no_op;
-               p[3] = (unsigned char) no_op;
-               goto on_failure;
-             }
-           break;
-         
-         case jump_n: 
-           EXTRACT_NUMBER (mcnt, p + 2);
-           DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
- 
-           /* Originally, this is how many times we CAN jump.  */
-           if (mcnt)
-             {
-                mcnt--;
-                STORE_NUMBER (p + 2, mcnt);
-              goto unconditional_jump;      
-             }
-           /* If don't have to jump any more, skip over the rest of command.  
*/
-         else      
-           p += 4;                  
-           break;
-         
        case set_number_at:
          {
!             DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
  
!             EXTRACT_NUMBER_AND_INCR (mcnt, p);
!             p1 = p + mcnt;
!             EXTRACT_NUMBER_AND_INCR (mcnt, p);
!             DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
!           STORE_NUMBER (p1, mcnt);
!             break;
!           }
! 
!         case wordbound:
!           DEBUG_PRINT1 ("EXECUTING wordbound.\n");
!           if (AT_WORD_BOUNDARY (d))
            break;
!           goto fail;
  
        case notwordbound:
!           DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
!         if (AT_WORD_BOUNDARY (d))
            goto fail;
-           break;
  
        case wordbeg:
!           DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
!         if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
!           break;
!           goto fail;
  
!       case wordend:
!           DEBUG_PRINT1 ("EXECUTING wordend.\n");
!         if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
!               && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
!           break;
!           goto fail;
  
  #ifdef emacs
! #ifdef emacs19
!       case before_dot:
!           DEBUG_PRINT1 ("EXECUTING before_dot.\n");
!         if (PTR_CHAR_POS ((unsigned char *) d) >= point)
!           goto fail;
!         break;
!   
!       case at_dot:
!           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
!         if (PTR_CHAR_POS ((unsigned char *) d) != point)
!           goto fail;
!         break;
!   
!       case after_dot:
!           DEBUG_PRINT1 ("EXECUTING after_dot.\n");
!           if (PTR_CHAR_POS ((unsigned char *) d) <= point)
!           goto fail;
!         break;
! #else /* not emacs19 */
!       case at_dot:
!           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
!         if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
            goto fail;
          break;
- #endif /* not emacs19 */
  
        case syntaxspec:
!           DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
          mcnt = *p++;
!         goto matchsyntax;
! 
!         case wordchar:
!           DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
!         mcnt = (int) Sword;
!         matchsyntax:
          PREFETCH ();
!         if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
!             goto fail;
!           SET_REGS_MATCHED ();
          break;
  
!       case notsyntaxspec:
!           DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
!         mcnt = *p++;
!         goto matchnotsyntax;
  
!         case notwordchar:
!           DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
!         mcnt = (int) Sword;
!         matchnotsyntax:
!         PREFETCH ();
!         if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
!             goto fail;
!         SET_REGS_MATCHED ();
!           break;
  
! #else /* not emacs */
!       case wordchar:
!           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
!         PREFETCH ();
!           if (!WORDCHAR_P (d))
!             goto fail;
!         SET_REGS_MATCHED ();
!           d++;
          break;
!         
!       case notwordchar:
!           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
          PREFETCH ();
!         if (WORDCHAR_P (d))
!             goto fail;
!           SET_REGS_MATCHED ();
!           d++;
          break;
! #endif /* not emacs */
!           
!         default:
!           abort ();
        }
        continue;  /* Successfully executed one pattern command; keep going.  */
  
  
      /* We goto here if a matching operation fails. */
      fail:
        if (!FAIL_STACK_EMPTY ())
!       { /* A restart point is known.  Restore to that state.  */
!           DEBUG_PRINT1 ("\nFAIL:\n");
!           POP_FAILURE_POINT (d, p,
!                              lowest_active_reg, highest_active_reg,
!                              regstart, regend, reg_info);
  
!           /* If this failure point is a dummy, try the next one.  */
!           if (!p)
!           goto fail;
  
!           /* If we failed to the end of the pattern, don't examine *p.  */
!         assert (p <= pend);
!           if (p < pend)
!             {
!               boolean is_a_jump_n = false;
!               
!               /* If failed to a backwards jump that's part of a repetition
!                  loop, need to pop this failure point and use the next one.  
*/
!               switch ((re_opcode_t) *p)
!                 {
!                 case jump_n:
!                   is_a_jump_n = true;
!                 case maybe_pop_jump:
!                 case pop_failure_jump:
!                 case jump:
!                   p1 = p + 1;
!                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
!                   p1 += mcnt; 
! 
!                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
!                       || (!is_a_jump_n
!                           && (re_opcode_t) *p1 == on_failure_jump))
!                     goto fail;
!                   break;
!                 default:
!                   /* do nothing */ ;
!                 }
!             }
  
!           if (d >= string1 && d <= end1)
            dend = end_match_1;
!         }
        else
!         break;   /* Matching at this starting point really fails.  */
      } /* for (;;) */
  
    if (best_regs_set)
--- 5134,5651 ----
  
                /* How many characters left in this segment to match.  */
                mcnt = dend - d;
! 
                /* Want how many consecutive characters we can match in
!                  one shot, so, if necessary, adjust the count.  */
!               if (mcnt > dend2 - d2)
                  mcnt = dend2 - d2;
! 
                /* Compare that many; failure if mismatch, else move
!                  past them.  */
!               if (RE_TRANSLATE_P (translate)
!                   ? bcmp_translate (d, d2, mcnt, translate, multibyte)
!                   : memcmp (d, d2, mcnt))
!                 {
!                   d = dfail;
!                   goto fail;
!                 }
                d += mcnt, d2 += mcnt;
              }
          }
          break;
  
  
!       /* begline matches the empty string at the beginning of the string
!          (unless `not_bol' is set in `bufp'), and after newlines.  */
        case begline:
!         DEBUG_PRINT1 ("EXECUTING begline.\n");
! 
!         if (AT_STRINGS_BEG (d))
!           {
!             if (!bufp->not_bol) break;
!           }
!         else
!           {
!             unsigned char c;
!             GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
!             if (c == '\n')
!               break;
!           }
!         /* In all other cases, we fail.  */
!         goto fail;
  
  
!       /* endline is the dual of begline.  */
        case endline:
!         DEBUG_PRINT1 ("EXECUTING endline.\n");
  
!         if (AT_STRINGS_END (d))
!           {
!             if (!bufp->not_eol) break;
!           }
!         else
!           {
!             PREFETCH_NOLIMIT ();
!             if (*d == '\n')
!               break;
!           }
!         goto fail;
  
  
        /* Match at the very beginning of the data.  */
!       case begbuf:
!         DEBUG_PRINT1 ("EXECUTING begbuf.\n");
!         if (AT_STRINGS_BEG (d))
!           break;
!         goto fail;
  
  
        /* Match at the very end of the data.  */
!       case endbuf:
!         DEBUG_PRINT1 ("EXECUTING endbuf.\n");
          if (AT_STRINGS_END (d))
            break;
!         goto fail;
! 
! 
!       /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
!          pushes NULL as the value for the string on the stack.  Then
!          `POP_FAILURE_POINT' will keep the current value for the
!          string, instead of restoring it.  To see why, consider
!          matching `foo\nbar' against `.*\n'.  The .* matches the foo;
!          then the . fails against the \n.  But the next thing we want
!          to do is match the \n against the \n; if we restored the
!          string value, we would be back at the foo.
! 
!          Because this is used only in specific cases, we don't need to
!          check all the things that `on_failure_jump' does, to make
!          sure the right things get saved on the stack.  Hence we don't
!          share its code.  The only reason to push anything on the
!          stack at all is that otherwise we would have to change
!          `anychar's code to do something besides goto fail in this
!          case; that seems worse than this.  */
!       case on_failure_keep_string_jump:
!         EXTRACT_NUMBER_AND_INCR (mcnt, p);
!         DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
!                       mcnt, p + mcnt);
! 
!         PUSH_FAILURE_POINT (p - 3, NULL);
!         break;
! 
!         /* A nasty loop is introduced by the non-greedy *? and +?.
!            With such loops, the stack only ever contains one failure point
!            at a time, so that a plain on_failure_jump_loop kind of
!            cycle detection cannot work.  Worse yet, such a detection
!            can not only fail to detect a cycle, but it can also wrongly
!            detect a cycle (between different instantiations of the same
!            loop.
!            So the method used for those nasty loops is a little different:
!            We use a special cycle-detection-stack-frame which is pushed
!            when the on_failure_jump_nastyloop failure-point is *popped*.
!            This special frame thus marks the beginning of one iteration
!            through the loop and we can hence easily check right here
!            whether something matched between the beginning and the end of
!            the loop.  */
!       case on_failure_jump_nastyloop:
!         EXTRACT_NUMBER_AND_INCR (mcnt, p);
!         DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
!                       mcnt, p + mcnt);
! 
!         assert ((re_opcode_t)p[-4] == no_op);
!         CHECK_INFINITE_LOOP (p - 4, d);
!         PUSH_FAILURE_POINT (p - 3, d);
!         break;
  
  
!         /* Simple loop detecting on_failure_jump:  just check on the
!            failure stack if the same spot was already hit earlier.  */
!       case on_failure_jump_loop:
!       on_failure:
!         EXTRACT_NUMBER_AND_INCR (mcnt, p);
!         DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
!                       mcnt, p + mcnt);
  
!         CHECK_INFINITE_LOOP (p - 3, d);
!         PUSH_FAILURE_POINT (p - 3, d);
!         break;
  
  
        /* Uses of on_failure_jump:
  
!          Each alternative starts with an on_failure_jump that points
!          to the beginning of the next alternative.  Each alternative
!          except the last ends with a jump that in effect jumps past
!          the rest of the alternatives.  (They really jump to the
!          ending jump of the following alternative, because tensioning
!          these jumps is a hassle.)
! 
!          Repeats start with an on_failure_jump that points past both
!          the repetition text and either the following jump or
!          pop_failure_jump back to this on_failure_jump.  */
!       case on_failure_jump:
!         IMMEDIATE_QUIT_CHECK;
!         EXTRACT_NUMBER_AND_INCR (mcnt, p);
!         DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
!                       mcnt, p + mcnt);
  
!         PUSH_FAILURE_POINT (p -3, d);
!         break;
  
!       /* This operation is used for greedy *.
!          Compare the beginning of the repeat with what in the
!          pattern follows its end. If we can establish that there
!          is nothing that they would both match, i.e., that we
!          would have to backtrack because of (as in, e.g., `a*a')
!          then we can use a non-backtracking loop based on
!          on_failure_keep_string_jump instead of on_failure_jump.  */
!       case on_failure_jump_smart:
!         IMMEDIATE_QUIT_CHECK;
!         EXTRACT_NUMBER_AND_INCR (mcnt, p);
!         DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
!                       mcnt, p + mcnt);
!         {
!           re_char *p1 = p; /* Next operation.  */
!           /* Here, we discard `const', making re_match non-reentrant.  */
!           unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest.  */
!           unsigned char *p3 = (unsigned char*) p - 3; /* opcode location.  */
! 
!           p -= 3;             /* Reset so that we will re-execute the
!                                  instruction once it's been changed. */
! 
!           EXTRACT_NUMBER (mcnt, p2 - 2);
! 
!           /* Ensure this is a indeed the trivial kind of loop
!              we are expecting.  */
!           assert (skip_one_char (p1) == p2 - 3);
!           assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
!           DEBUG_STATEMENT (debug += 2);
!           if (mutually_exclusive_p (bufp, p1, p2))
              {
!               /* Use a fast `on_failure_keep_string_jump' loop.  */
!               DEBUG_PRINT1 ("  smart exclusive => fast loop.\n");
!               *p3 = (unsigned char) on_failure_keep_string_jump;
!               STORE_NUMBER (p2 - 2, mcnt + 3);
!             }
!           else
              {
!               /* Default to a safe `on_failure_jump' loop.  */
!               DEBUG_PRINT1 ("  smart default => slow loop.\n");
!               *p3 = (unsigned char) on_failure_jump;
              }
+           DEBUG_STATEMENT (debug -= 2);
          }
!         break;
! 
!       /* Unconditionally jump (without popping any failure points).  */
!       case jump:
!       unconditional_jump:
!         IMMEDIATE_QUIT_CHECK;
!         EXTRACT_NUMBER_AND_INCR (mcnt, p);    /* Get the amount to jump.  */
!         DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
!         p += mcnt;                            /* Do the jump.  */
!         DEBUG_PRINT2 ("(to %p).\n", p);
!         break;
! 
! 
!       /* Have to succeed matching what follows at least n times.
!          After that, handle like `on_failure_jump'.  */
!       case succeed_n:
!         /* Signedness doesn't matter since we only compare MCNT to 0.  */
!         EXTRACT_NUMBER (mcnt, p + 2);
!         DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
! 
!         /* Originally, mcnt is how many times we HAVE to succeed.  */
!         if (mcnt != 0)
            {
!             /* Here, we discard `const', making re_match non-reentrant.  */
!             unsigned char *p2 = (unsigned char*) p + 2; /* counter loc.  */
!             mcnt--;
!             p += 4;
!             PUSH_NUMBER (p2, mcnt);
            }
!         else
!           /* The two bytes encoding mcnt == 0 are two no_op opcodes.  */
!           goto on_failure;
!         break;
  
+       case jump_n:
+         /* Signedness doesn't matter since we only compare MCNT to 0.  */
+         EXTRACT_NUMBER (mcnt, p + 2);
+         DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
  
!         /* Originally, this is how many times we CAN jump.  */
!         if (mcnt != 0)
!           {
!              /* Here, we discard `const', making re_match non-reentrant.  */
!             unsigned char *p2 = (unsigned char*) p + 2; /* counter loc.  */
!             mcnt--;
!             PUSH_NUMBER (p2, mcnt);
!             goto unconditional_jump;
!           }
!         /* If don't have to jump any more, skip over the rest of command.  */
!         else
!           p += 4;
          break;
  
        case set_number_at:
          {
!           unsigned char *p2;  /* Location of the counter.  */
!           DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
  
!           EXTRACT_NUMBER_AND_INCR (mcnt, p);
!           /* Here, we discard `const', making re_match non-reentrant.  */
!           p2 = (unsigned char*) p + mcnt;
!           /* Signedness doesn't matter since we only copy MCNT's bits .  */
!           EXTRACT_NUMBER_AND_INCR (mcnt, p);
!           DEBUG_PRINT3 ("  Setting %p to %d.\n", p2, mcnt);
!           PUSH_NUMBER (p2, mcnt);
            break;
!         }
  
+       case wordbound:
        case notwordbound:
!         not = (re_opcode_t) *(p - 1) == notwordbound;
!         DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
! 
!         /* We SUCCEED (or FAIL) in one of the following cases: */
! 
!         /* Case 1: D is at the beginning or the end of string.  */
!         if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
!           not = !not;
!         else
!           {
!             /* C1 is the character before D, S1 is the syntax of C1, C2
!                is the character at D, and S2 is the syntax of C2.  */
!             re_wchar_t c1, c2;
!             int s1, s2;
! #ifdef emacs
!             int offset = PTR_TO_OFFSET (d - 1);
!             int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
!             UPDATE_SYNTAX_TABLE (charpos);
! #endif
!             GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
!             s1 = SYNTAX (c1);
! #ifdef emacs
!             UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
! #endif
!             PREFETCH_NOLIMIT ();
!             c2 = RE_STRING_CHAR (d, dend - d);
!             s2 = SYNTAX (c2);
! 
!             if (/* Case 2: Only one of S1 and S2 is Sword.  */
!                 ((s1 == Sword) != (s2 == Sword))
!                 /* Case 3: Both of S1 and S2 are Sword, and macro
!                    WORD_BOUNDARY_P (C1, C2) returns nonzero.  */
!                 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
!               not = !not;
!           }
!         if (not)
!           break;
!         else
            goto fail;
  
        case wordbeg:
!         DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
  
!         /* We FAIL in one of the following cases: */
  
+         /* Case 1: D is at the end of string.  */
+         if (AT_STRINGS_END (d))
+           goto fail;
+         else
+           {
+             /* C1 is the character before D, S1 is the syntax of C1, C2
+                is the character at D, and S2 is the syntax of C2.  */
+             re_wchar_t c1, c2;
+             int s1, s2;
  #ifdef emacs
!             int offset = PTR_TO_OFFSET (d);
!             int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
!             UPDATE_SYNTAX_TABLE (charpos);
! #endif
!             PREFETCH ();
!             c2 = RE_STRING_CHAR (d, dend - d);
!             s2 = SYNTAX (c2);
!       
!             /* Case 2: S2 is not Sword. */
!             if (s2 != Sword)
!               goto fail;
! 
!             /* Case 3: D is not at the beginning of string ... */
!             if (!AT_STRINGS_BEG (d))
!               {
!                 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
! #ifdef emacs
!                 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
! #endif
!                 s1 = SYNTAX (c1);
! 
!                 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
!                    returns 0.  */
!                 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
!                   goto fail;
!               }
!           }
!         break;
! 
!       case wordend:
!         DEBUG_PRINT1 ("EXECUTING wordend.\n");
! 
!         /* We FAIL in one of the following cases: */
! 
!         /* Case 1: D is at the beginning of string.  */
!         if (AT_STRINGS_BEG (d))
            goto fail;
+         else
+           {
+             /* C1 is the character before D, S1 is the syntax of C1, C2
+                is the character at D, and S2 is the syntax of C2.  */
+             re_wchar_t c1, c2;
+             int s1, s2;
+ #ifdef emacs
+             int offset = PTR_TO_OFFSET (d) - 1;
+             int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
+             UPDATE_SYNTAX_TABLE (charpos);
+ #endif
+             GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+             s1 = SYNTAX (c1);
+ 
+             /* Case 2: S1 is not Sword.  */
+             if (s1 != Sword)
+               goto fail;
+ 
+             /* Case 3: D is not at the end of string ... */
+             if (!AT_STRINGS_END (d))
+               {
+                 PREFETCH_NOLIMIT ();
+                 c2 = RE_STRING_CHAR (d, dend - d);
+ #ifdef emacs
+                 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
+ #endif
+                 s2 = SYNTAX (c2);
+ 
+                 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
+                    returns 0.  */
+                 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
+         goto fail;
+               }
+           }
          break;
  
        case syntaxspec:
!       case notsyntaxspec:
!         not = (re_opcode_t) *(p - 1) == notsyntaxspec;
          mcnt = *p++;
!         DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
          PREFETCH ();
! #ifdef emacs
!         {
!           int offset = PTR_TO_OFFSET (d);
!           int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
!           UPDATE_SYNTAX_TABLE (pos1);
!         }
! #endif
!         {
!           int len;
!           re_wchar_t c;
! 
!           c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
! 
!           if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
!             goto fail;
!           d += len;
!         }
          break;
  
! #ifdef emacs
!       case before_dot:
!         DEBUG_PRINT1 ("EXECUTING before_dot.\n");
!         if (PTR_BYTE_POS (d) >= PT_BYTE)
!           goto fail;
!         break;
  
!       case at_dot:
!         DEBUG_PRINT1 ("EXECUTING at_dot.\n");
!         if (PTR_BYTE_POS (d) != PT_BYTE)
!           goto fail;
!         break;
  
!       case after_dot:
!         DEBUG_PRINT1 ("EXECUTING after_dot.\n");
!         if (PTR_BYTE_POS (d) <= PT_BYTE)
!           goto fail;
          break;
! 
!       case categoryspec:
!       case notcategoryspec:
!         not = (re_opcode_t) *(p - 1) == notcategoryspec;
!         mcnt = *p++;
!         DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
          PREFETCH ();
!         {
!           int len;
!           re_wchar_t c;
! 
!           c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
! 
!           if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
!             goto fail;
!           d += len;
!         }
          break;
! 
! #endif /* emacs */
! 
!       default:
!         abort ();
        }
        continue;  /* Successfully executed one pattern command; keep going.  */
  
  
      /* We goto here if a matching operation fails. */
      fail:
+       IMMEDIATE_QUIT_CHECK;
        if (!FAIL_STACK_EMPTY ())
!       {
!         re_char *str, *pat;
!         /* A restart point is known.  Restore to that state.  */
!         DEBUG_PRINT1 ("\nFAIL:\n");
!         POP_FAILURE_POINT (str, pat);
!         switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
!           {
!           case on_failure_keep_string_jump:
!             assert (str == NULL);
!             goto continue_failure_jump;
! 
!           case on_failure_jump_nastyloop:
!             assert ((re_opcode_t)pat[-2] == no_op);
!             PUSH_FAILURE_POINT (pat - 2, str);
!             /* Fallthrough */
! 
!           case on_failure_jump_loop:
!           case on_failure_jump:
!           case succeed_n:
!             d = str;
!           continue_failure_jump:
!             EXTRACT_NUMBER_AND_INCR (mcnt, pat);
!             p = pat + mcnt;
!             break;
! 
!           case no_op:
!             /* A special frame used for nastyloops. */
!             goto fail;
  
!           default:
!             abort();
!           }
  
!         assert (p >= bufp->buffer && p <= pend);
  
!         if (d >= string1 && d <= end1)
            dend = end_match_1;
!       }
        else
!       break;   /* Matching at this starting point really fails.  */
      } /* for (;;) */
  
    if (best_regs_set)
***************
*** 4343,4605 ****
  
  /* Subroutine definitions for re_match_2.  */
  
  
! /* We are passed P pointing to a register number after a start_memory.
!    
!    Return true if the pattern up to the corresponding stop_memory can
!    match the empty string, and false otherwise.
!    
!    If we find the matching stop_memory, sets P to point to one past its 
number.
!    Otherwise, sets P to an undefined byte less than or equal to END.
! 
!    We don't handle duplicates properly (yet).  */
! 
! static boolean
! group_match_null_string_p (p, end, reg_info)
!     unsigned char **p, *end;
!     register_info_type *reg_info;
! {
!   int mcnt;
!   /* Point to after the args to the start_memory.  */
!   unsigned char *p1 = *p + 2;
!   
!   while (p1 < end)
!     {
!       /* Skip over opcodes that can match nothing, and return true or
!        false, as appropriate, when we get to one that can't, or to the
!          matching stop_memory.  */
!       
!       switch ((re_opcode_t) *p1)
!         {
!         /* Could be either a loop or a series of alternatives.  */
!         case on_failure_jump:
!           p1++;
!           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
!           
!           /* If the next operation is not a jump backwards in the
!            pattern.  */
! 
!         if (mcnt >= 0)
!           {
!               /* Go through the on_failure_jumps of the alternatives,
!                  seeing if any of the alternatives cannot match nothing.
!                  The last alternative starts with only a jump,
!                  whereas the rest start with on_failure_jump and end
!                  with a jump, e.g., here is the pattern for `a|b|c':
! 
!                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
!                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
!                  /exactn/1/c                                          
! 
!                  So, we have to first go through the first (n-1)
!                  alternatives and then deal with the last one separately.  */
! 
! 
!               /* Deal with the first (n-1) alternatives, which start
!                  with an on_failure_jump (see above) that jumps to right
!                  past a jump_past_alt.  */
! 
!               while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
!                 {
!                   /* `mcnt' holds how many bytes long the alternative
!                      is, including the ending `jump_past_alt' and
!                      its number.  */
! 
!                   if (!alt_match_null_string_p (p1, p1 + mcnt - 3, 
!                                                     reg_info))
!                     return false;
! 
!                   /* Move to right after this alternative, including the
!                    jump_past_alt.  */
!                   p1 += mcnt; 
! 
!                   /* Break if it's the beginning of an n-th alternative
!                      that doesn't begin with an on_failure_jump.  */
!                   if ((re_opcode_t) *p1 != on_failure_jump)
!                     break;
!               
!                 /* Still have to check that it's not an n-th
!                    alternative that starts with an on_failure_jump.  */
!                 p1++;
!                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
!                   if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
!                     {
!                     /* Get to the beginning of the n-th alternative.  */
!                       p1 -= 3;
!                       break;
!                     }
!                 }
! 
!               /* Deal with the last alternative: go back and get number
!                  of the `jump_past_alt' just before it.  `mcnt' contains
!                  the length of the alternative.  */
!               EXTRACT_NUMBER (mcnt, p1 - 2);
! 
!               if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
!                 return false;
! 
!               p1 += mcnt;     /* Get past the n-th alternative.  */
!             } /* if mcnt > 0 */
!           break;
! 
!           
!         case stop_memory:
!         assert (p1[1] == **p);
!           *p = p1 + 2;
!           return true;
! 
!         
!         default: 
!           if (!common_op_match_null_string_p (&p1, end, reg_info))
!             return false;
!         }
!     } /* while p1 < end */
! 
!   return false;
! } /* group_match_null_string_p */
! 
! 
! /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
!    It expects P to be the first byte of a single alternative and END one
!    byte past the last. The alternative can contain groups.  */
!    
! static boolean
! alt_match_null_string_p (p, end, reg_info)
!     unsigned char *p, *end;
!     register_info_type *reg_info;
! {
!   int mcnt;
!   unsigned char *p1 = p;
!   
!   while (p1 < end)
!     {
!       /* Skip over opcodes that can match nothing, and break when we get 
!          to one that can't.  */
!       
!       switch ((re_opcode_t) *p1)
!         {
!       /* It's a loop.  */
!         case on_failure_jump:
!           p1++;
!           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
!           p1 += mcnt;
!           break;
!           
!       default: 
!           if (!common_op_match_null_string_p (&p1, end, reg_info))
!             return false;
!         }
!     }  /* while p1 < end */
! 
!   return true;
! } /* alt_match_null_string_p */
! 
! 
! /* Deals with the ops common to group_match_null_string_p and
!    alt_match_null_string_p.  
!    
!    Sets P to one after the op and its arguments, if any.  */
! 
! static boolean
! common_op_match_null_string_p (p, end, reg_info)
!     unsigned char **p, *end;
!     register_info_type *reg_info;
  {
!   int mcnt;
!   boolean ret;
!   int reg_no;
!   unsigned char *p1 = *p;
! 
!   switch ((re_opcode_t) *p1++)
      {
!     case no_op:
!     case begline:
!     case endline:
!     case begbuf:
!     case endbuf:
!     case wordbeg:
!     case wordend:
!     case wordbound:
!     case notwordbound:
! #ifdef emacs
!     case before_dot:
!     case at_dot:
!     case after_dot:
! #endif
!       break;
! 
!     case start_memory:
!       reg_no = *p1;
!       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
!       ret = group_match_null_string_p (&p1, end, reg_info);
!       
!       /* Have to set this here in case we're checking a group which
!          contains a group and a back reference to it.  */
! 
!       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == 
MATCH_NULL_UNSET_VALUE)
!         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
! 
!       if (!ret)
!         return false;
!       break;
!           
!     /* If this is an optimized succeed_n for zero times, make the jump.  */
!     case jump:
!       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
!       if (mcnt >= 0)
!         p1 += mcnt;
!       else
!         return false;
!       break;
! 
!     case succeed_n:
!       /* Get to the number of times to succeed.  */
!       p1 += 2;                
!       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
! 
!       if (mcnt == 0)
!         {
!           p1 -= 4;
!           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
!           p1 += mcnt;
!         }
!       else
!         return false;
!       break;
  
!     case duplicate: 
!       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
!         return false;
!       break;
! 
!     case set_number_at:
!       p1 += 4;
  
!     default:
!       /* All other opcodes mean we cannot match the empty string.  */
!       return false;
!   }
  
!   *p = p1;
!   return true;
! } /* common_op_match_null_string_p */
  
  
- /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
-    bytes; nonzero otherwise.  */
-    
- static int
- bcmp_translate (s1, s2, len, translate)
-      unsigned char *s1, *s2;
-      register int len;
-      char *translate;
- {
-   register unsigned char *p1 = s1, *p2 = s2;
-   while (len)
-     {
-       if (translate[*p1++] != translate[*p2++]) return 1;
-       len--;
-     }
    return 0;
  }
  
--- 5658,5697 ----
  
  /* Subroutine definitions for re_match_2.  */
  
+ /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
+    bytes; nonzero otherwise.  */
  
! static int
! bcmp_translate (s1, s2, len, translate, multibyte)
!      re_char *s1, *s2;
!      register int len;
!      RE_TRANSLATE_TYPE translate;
!      const int multibyte;
  {
!   register re_char *p1 = s1, *p2 = s2;
!   re_char *p1_end = s1 + len;
!   re_char *p2_end = s2 + len;
! 
!   /* FIXME: Checking both p1 and p2 presumes that the two strings might have
!      different lengths, but relying on a single `len' would break this. -sm  
*/
!   while (p1 < p1_end && p2 < p2_end)
      {
!       int p1_charlen, p2_charlen;
!       re_wchar_t p1_ch, p2_ch;
  
!       p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
!       p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
  
!       if (RE_TRANSLATE (translate, p1_ch)
!         != RE_TRANSLATE (translate, p2_ch))
!       return 1;
  
!       p1 += p1_charlen, p2 += p2_charlen;
!     }
  
+   if (p1 != p1_end || p2 != p2_end)
+     return 1;
  
    return 0;
  }
  
***************
*** 4608,4662 ****
  /* re_compile_pattern is the GNU regular expression compiler: it
     compiles PATTERN (of length SIZE) and puts the result in BUFP.
     Returns 0 if the pattern was valid, otherwise an error string.
!    
     Assumes the `allocated' (and perhaps `buffer') and `translate' fields
     are set in BUFP on entry.
!    
     We call regex_compile to do the actual compilation.  */
  
  const char *
  re_compile_pattern (pattern, length, bufp)
       const char *pattern;
!      int length;
       struct re_pattern_buffer *bufp;
  {
    reg_errcode_t ret;
!   
    /* GNU code is written to assume at least RE_NREGS registers will be set
       (and at least one extra will be -1).  */
    bufp->regs_allocated = REGS_UNALLOCATED;
!   
    /* And GNU code determines whether or not to get register information
       by passing null for the REGS argument to re_match, etc., not by
       setting no_sub.  */
    bufp->no_sub = 0;
-   
-   /* Match anchors at newline.  */
-   bufp->newline_anchor = 1;
-   
-   ret = regex_compile (pattern, length, re_syntax_options, bufp);
  
!   return re_error_msg[(int) ret];
! }     
  
  /* Entry points compatible with 4.2 BSD regex library.  We don't define
!    them if this is an Emacs or POSIX compilation.  */
  
! #if !defined (emacs) && !defined (_POSIX_SOURCE)
  
  /* BSD has one and only one pattern buffer.  */
  static struct re_pattern_buffer re_comp_buf;
  
  char *
  re_comp (s)
      const char *s;
  {
    reg_errcode_t ret;
!   
    if (!s)
      {
        if (!re_comp_buf.buffer)
!       return "No previous regular expression";
        return 0;
      }
  
--- 5700,5761 ----
  /* re_compile_pattern is the GNU regular expression compiler: it
     compiles PATTERN (of length SIZE) and puts the result in BUFP.
     Returns 0 if the pattern was valid, otherwise an error string.
! 
     Assumes the `allocated' (and perhaps `buffer') and `translate' fields
     are set in BUFP on entry.
! 
     We call regex_compile to do the actual compilation.  */
  
  const char *
  re_compile_pattern (pattern, length, bufp)
       const char *pattern;
!      size_t length;
       struct re_pattern_buffer *bufp;
  {
    reg_errcode_t ret;
! 
    /* GNU code is written to assume at least RE_NREGS registers will be set
       (and at least one extra will be -1).  */
    bufp->regs_allocated = REGS_UNALLOCATED;
! 
    /* And GNU code determines whether or not to get register information
       by passing null for the REGS argument to re_match, etc., not by
       setting no_sub.  */
    bufp->no_sub = 0;
  
!   ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
! 
!   if (!ret)
!     return NULL;
!   return gettext (re_error_msgid[(int) ret]);
! }
! WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
  
  /* Entry points compatible with 4.2 BSD regex library.  We don't define
!    them unless specifically requested.  */
  
! #if defined _REGEX_RE_COMP || defined _LIBC
  
  /* BSD has one and only one pattern buffer.  */
  static struct re_pattern_buffer re_comp_buf;
  
  char *
+ # ifdef _LIBC
+ /* Make these definitions weak in libc, so POSIX programs can redefine
+    these names if they don't use our functions, and still use
+    regcomp/regexec below without link errors.  */
+ weak_function
+ # endif
  re_comp (s)
      const char *s;
  {
    reg_errcode_t ret;
! 
    if (!s)
      {
        if (!re_comp_buf.buffer)
!       /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
!       return (char *) gettext ("No previous regular expression");
        return 0;
      }
  
***************
*** 4664,4691 ****
      {
        re_comp_buf.buffer = (unsigned char *) malloc (200);
        if (re_comp_buf.buffer == NULL)
!         return "Memory exhausted";
        re_comp_buf.allocated = 200;
  
        re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
        if (re_comp_buf.fastmap == NULL)
!       return "Memory exhausted";
      }
  
    /* Since `re_exec' always passes NULL for the `regs' argument, we
       don't need to initialize the pattern buffer fields which affect it.  */
  
-   /* Match anchors at newlines.  */
-   re_comp_buf.newline_anchor = 1;
- 
    ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
!   
!   /* Yes, we're discarding `const' here.  */
!   return (char *) re_error_msg[(int) ret];
  }
  
  
  int
  re_exec (s)
      const char *s;
  {
--- 5763,5795 ----
      {
        re_comp_buf.buffer = (unsigned char *) malloc (200);
        if (re_comp_buf.buffer == NULL)
!       /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
!       return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
        re_comp_buf.allocated = 200;
  
        re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
        if (re_comp_buf.fastmap == NULL)
!       /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
!       return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
      }
  
    /* Since `re_exec' always passes NULL for the `regs' argument, we
       don't need to initialize the pattern buffer fields which affect it.  */
  
    ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
! 
!   if (!ret)
!     return NULL;
! 
!   /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
!   return (char *) gettext (re_error_msgid[(int) ret]);
  }
  
  
  int
+ # ifdef _LIBC
+ weak_function
+ # endif
  re_exec (s)
      const char *s;
  {
***************
*** 4693,4699 ****
    return
      0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
  }
! #endif /* not emacs and not _POSIX_SOURCE */
  
  /* POSIX.2 functions.  Don't define these for Emacs.  */
  
--- 5797,5803 ----
    return
      0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
  }
! #endif /* _REGEX_RE_COMP */
  
  /* POSIX.2 functions.  Don't define these for Emacs.  */
  
***************
*** 4709,4716 ****
       `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
         REG_EXTENDED bit in CFLAGS is set; otherwise, to
         RE_SYNTAX_POSIX_BASIC;
!      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
!      `fastmap' and `fastmap_accurate' to zero;
       `re_nsub' to the number of subexpressions in PATTERN.
  
     PATTERN is the address of the pattern string.
--- 5813,5820 ----
       `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
         REG_EXTENDED bit in CFLAGS is set; otherwise, to
         RE_SYNTAX_POSIX_BASIC;
!      `fastmap' to an allocated space for the fastmap;
!      `fastmap_accurate' to zero;
       `re_nsub' to the number of subexpressions in PATTERN.
  
     PATTERN is the address of the pattern string.
***************
*** 4735,4770 ****
  
  int
  regcomp (preg, pattern, cflags)
!     regex_t *preg;
!     const char *pattern; 
      int cflags;
  {
    reg_errcode_t ret;
!   unsigned syntax
      = (cflags & REG_EXTENDED) ?
        RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
  
    /* regex_compile will allocate the space for the compiled pattern.  */
    preg->buffer = 0;
    preg->allocated = 0;
!   
!   /* Don't bother to use a fastmap when searching.  This simplifies the
!      REG_NEWLINE case: if we used a fastmap, we'd have to put all the
!      characters after newlines into the fastmap.  This way, we just try
!      every character.  */
!   preg->fastmap = 0;
!   
    if (cflags & REG_ICASE)
      {
        unsigned i;
!       
!       preg->translate = (char *) malloc (CHAR_SET_SIZE);
        if (preg->translate == NULL)
!         return (int) REG_ESPACE;
  
        /* Map uppercase characters to corresponding lowercase ones.  */
        for (i = 0; i < CHAR_SET_SIZE; i++)
!         preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
      }
    else
      preg->translate = NULL;
--- 5839,5874 ----
  
  int
  regcomp (preg, pattern, cflags)
!     regex_t *__restrict preg;
!     const char *__restrict pattern;
      int cflags;
  {
    reg_errcode_t ret;
!   reg_syntax_t syntax
      = (cflags & REG_EXTENDED) ?
        RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
  
    /* regex_compile will allocate the space for the compiled pattern.  */
    preg->buffer = 0;
    preg->allocated = 0;
!   preg->used = 0;
! 
!   /* Try to allocate space for the fastmap.  */
!   preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
! 
    if (cflags & REG_ICASE)
      {
        unsigned i;
! 
!       preg->translate
!       = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
!                                     * sizeof (*(RE_TRANSLATE_TYPE)0));
        if (preg->translate == NULL)
!       return (int) REG_ESPACE;
  
        /* Map uppercase characters to corresponding lowercase ones.  */
        for (i = 0; i < CHAR_SET_SIZE; i++)
!       preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
      }
    else
      preg->translate = NULL;
***************
*** 4774,4873 ****
      { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
        syntax &= ~RE_DOT_NEWLINE;
        syntax |= RE_HAT_LISTS_NOT_NEWLINE;
-       /* It also changes the matching behavior.  */
-       preg->newline_anchor = 1;
      }
    else
!     preg->newline_anchor = 0;
  
    preg->no_sub = !!(cflags & REG_NOSUB);
  
!   /* POSIX says a null character in the pattern terminates it, so we 
       can use strlen here in compiling the pattern.  */
!   ret = regex_compile (pattern, strlen (pattern), syntax, preg);
!   
    /* POSIX doesn't distinguish between an unmatched open-group and an
       unmatched close-group: both are REG_EPAREN.  */
!   if (ret == REG_ERPAREN) ret = REG_EPAREN;
!   
    return (int) ret;
  }
  
  
  /* regexec searches for a given pattern, specified by PREG, in the
     string STRING.
!    
     If NMATCH is zero or REG_NOSUB was set in the cflags argument to
     `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
     least NMATCH elements, and we set them to the offsets of the
     corresponding matched substrings.
!    
     EFLAGS specifies `execution flags' which affect matching: if
     REG_NOTBOL is set, then ^ does not match at the beginning of the
     string; if REG_NOTEOL is set, then $ does not match at the end.
!    
     We return 0 if we find a match and REG_NOMATCH if not.  */
  
  int
  regexec (preg, string, nmatch, pmatch, eflags)
!     const regex_t *preg;
!     const char *string; 
!     size_t nmatch; 
!     regmatch_t pmatch[]; 
      int eflags;
  {
    int ret;
    struct re_registers regs;
    regex_t private_preg;
    int len = strlen (string);
!   boolean want_reg_info = !preg->no_sub && nmatch > 0;
  
    private_preg = *preg;
!   
    private_preg.not_bol = !!(eflags & REG_NOTBOL);
    private_preg.not_eol = !!(eflags & REG_NOTEOL);
!   
    /* The user has told us exactly how many registers to return
       information about, via `nmatch'.  We have to pass that on to the
       matching routines.  */
    private_preg.regs_allocated = REGS_FIXED;
!   
    if (want_reg_info)
      {
        regs.num_regs = nmatch;
!       regs.start = TALLOC (nmatch, regoff_t);
!       regs.end = TALLOC (nmatch, regoff_t);
!       if (regs.start == NULL || regs.end == NULL)
!         return (int) REG_NOMATCH;
      }
  
    /* Perform the searching operation.  */
    ret = re_search (&private_preg, string, len,
!                    /* start: */ 0, /* range: */ len,
!                    want_reg_info ? &regs : (struct re_registers *) 0);
!   
    /* Copy the register information to the POSIX structure.  */
    if (want_reg_info)
      {
        if (ret >= 0)
!         {
!           unsigned r;
  
!           for (r = 0; r < nmatch; r++)
!             {
!               pmatch[r].rm_so = regs.start[r];
!               pmatch[r].rm_eo = regs.end[r];
!             }
!         }
  
        /* If we needed the temporary register info, free the space now.  */
        free (regs.start);
-       free (regs.end);
      }
  
    /* We want zero return to mean success, unlike `re_search'.  */
    return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
  }
  
  
  /* Returns a message corresponding to an error code, ERRCODE, returned
--- 5878,5996 ----
      { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
        syntax &= ~RE_DOT_NEWLINE;
        syntax |= RE_HAT_LISTS_NOT_NEWLINE;
      }
    else
!     syntax |= RE_NO_NEWLINE_ANCHOR;
  
    preg->no_sub = !!(cflags & REG_NOSUB);
  
!   /* POSIX says a null character in the pattern terminates it, so we
       can use strlen here in compiling the pattern.  */
!   ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
! 
    /* POSIX doesn't distinguish between an unmatched open-group and an
       unmatched close-group: both are REG_EPAREN.  */
!   if (ret == REG_ERPAREN)
!     ret = REG_EPAREN;
! 
!   if (ret == REG_NOERROR && preg->fastmap)
!     { /* Compute the fastmap now, since regexec cannot modify the pattern
!        buffer.  */
!       re_compile_fastmap (preg);
!       if (preg->can_be_null)
!       { /* The fastmap can't be used anyway.  */
!         free (preg->fastmap);
!         preg->fastmap = NULL;
!       }
!     }
    return (int) ret;
  }
+ WEAK_ALIAS (__regcomp, regcomp)
  
  
  /* regexec searches for a given pattern, specified by PREG, in the
     string STRING.
! 
     If NMATCH is zero or REG_NOSUB was set in the cflags argument to
     `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
     least NMATCH elements, and we set them to the offsets of the
     corresponding matched substrings.
! 
     EFLAGS specifies `execution flags' which affect matching: if
     REG_NOTBOL is set, then ^ does not match at the beginning of the
     string; if REG_NOTEOL is set, then $ does not match at the end.
! 
     We return 0 if we find a match and REG_NOMATCH if not.  */
  
  int
  regexec (preg, string, nmatch, pmatch, eflags)
!     const regex_t *__restrict preg;
!     const char *__restrict string;
!     size_t nmatch;
!     regmatch_t pmatch[];
      int eflags;
  {
    int ret;
    struct re_registers regs;
    regex_t private_preg;
    int len = strlen (string);
!   boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
  
    private_preg = *preg;
! 
    private_preg.not_bol = !!(eflags & REG_NOTBOL);
    private_preg.not_eol = !!(eflags & REG_NOTEOL);
! 
    /* The user has told us exactly how many registers to return
       information about, via `nmatch'.  We have to pass that on to the
       matching routines.  */
    private_preg.regs_allocated = REGS_FIXED;
! 
    if (want_reg_info)
      {
        regs.num_regs = nmatch;
!       regs.start = TALLOC (nmatch * 2, regoff_t);
!       if (regs.start == NULL)
!       return (int) REG_NOMATCH;
!       regs.end = regs.start + nmatch;
      }
  
+   /* Instead of using not_eol to implement REG_NOTEOL, we could simply
+      pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
+      was a little bit longer but still only matching the real part.
+      This works because the `endline' will check for a '\n' and will find a
+      '\0', correctly deciding that this is not the end of a line.
+      But it doesn't work out so nicely for REG_NOTBOL, since we don't have
+      a convenient '\0' there.  For all we know, the string could be preceded
+      by '\n' which would throw things off.  */
+ 
    /* Perform the searching operation.  */
    ret = re_search (&private_preg, string, len,
!                  /* start: */ 0, /* range: */ len,
!                  want_reg_info ? &regs : (struct re_registers *) 0);
! 
    /* Copy the register information to the POSIX structure.  */
    if (want_reg_info)
      {
        if (ret >= 0)
!       {
!         unsigned r;
  
!         for (r = 0; r < nmatch; r++)
!           {
!             pmatch[r].rm_so = regs.start[r];
!             pmatch[r].rm_eo = regs.end[r];
!           }
!       }
  
        /* If we needed the temporary register info, free the space now.  */
        free (regs.start);
      }
  
    /* We want zero return to mean success, unlike `re_search'.  */
    return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
  }
+ WEAK_ALIAS (__regexec, regexec)
  
  
  /* Returns a message corresponding to an error code, ERRCODE, returned
***************
*** 4884,4918 ****
    size_t msg_size;
  
    if (errcode < 0
!       || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
!     /* Only error codes returned by the rest of the code should be passed 
         to this routine.  If we are given anything else, or if other regex
         code generates an invalid error code, then the program has a bug.
         Dump core so we can fix it.  */
      abort ();
  
!   msg = re_error_msg[errcode];
! 
!   /* POSIX doesn't require that we do anything in this case, but why
!      not be nice.  */
!   if (! msg)
!     msg = "Success";
  
    msg_size = strlen (msg) + 1; /* Includes the null.  */
!   
    if (errbuf_size != 0)
      {
        if (msg_size > errbuf_size)
!         {
!           strncpy (errbuf, msg, errbuf_size - 1);
!           errbuf[errbuf_size - 1] = 0;
!         }
        else
!         strcpy (errbuf, msg);
      }
  
    return msg_size;
  }
  
  
  /* Free dynamically allocated space used by PREG.  */
--- 6007,6037 ----
    size_t msg_size;
  
    if (errcode < 0
!       || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
!     /* Only error codes returned by the rest of the code should be passed
         to this routine.  If we are given anything else, or if other regex
         code generates an invalid error code, then the program has a bug.
         Dump core so we can fix it.  */
      abort ();
  
!   msg = gettext (re_error_msgid[errcode]);
  
    msg_size = strlen (msg) + 1; /* Includes the null.  */
! 
    if (errbuf_size != 0)
      {
        if (msg_size > errbuf_size)
!       {
!         strncpy (errbuf, msg, errbuf_size - 1);
!         errbuf[errbuf_size - 1] = 0;
!       }
        else
!       strcpy (errbuf, msg);
      }
  
    return msg_size;
  }
+ WEAK_ALIAS (__regerror, regerror)
  
  
  /* Free dynamically allocated space used by PREG.  */
***************
*** 4924,4930 ****
    if (preg->buffer != NULL)
      free (preg->buffer);
    preg->buffer = NULL;
!   
    preg->allocated = 0;
    preg->used = 0;
  
--- 6043,6049 ----
    if (preg->buffer != NULL)
      free (preg->buffer);
    preg->buffer = NULL;
! 
    preg->allocated = 0;
    preg->used = 0;
  
***************
*** 4937,4949 ****
      free (preg->translate);
    preg->translate = NULL;
  }
  
  #endif /* not emacs  */
- 
- /*
- Local variables:
- make-backup-files: t
- version-control: t
- trim-versions-without-asking: nil
- End:
- */
--- 6056,6061 ----
      free (preg->translate);
    preg->translate = NULL;
  }
+ WEAK_ALIAS (__regfree, regfree)
  
  #endif /* not emacs  */



reply via email to

[Prev in Thread] Current Thread [Next in Thread]