Werner,

There can be lots of cases when a propedskimg cf could be very helpful. Herg'a smple example, an
eps file containing a full-page ascii85 encoded image (the middle of standalone-eps.eps is erased and it is
converted to pdf in order to comply with the 100k limit).

This file is to be included in a gfafocument, with a bit of editing (it needs to be shifted up and right and
clipped), whilst not changing the original.

Yes, | could edit the file, | could print it separatdlgould write a page number on it by hand, | could
meirge it into the printed gréfdocument, but | think that it is quite legitimate to ask a word processor
today to do this dordy work for me.

And why full-page? For simplicityThis way there is no need to deal with the placementxbf tieat
would only cloud the issuéWhat is the issue? It is the lack of the graphicswatgnt of Unix’s cp com-
mand. In Unix analogy we lia three variants ofp here:

cf does cop verbatim, can &lays be used, but it selects its own destination.
trf can alvays be used, has the right destination, but sometimes it makes modifications.
file copies verbatim, to the right destination, but sometimes one can not use it.

Jeez, what wuld Unix do in such a situation? The nemesigrfois an ascii85 encoded image that may
legdly contain lots of backslashes. Sowhot asciih& encoding instead? Because reducing ynbig
images to nearly half size without loss of quality is something to be cherished.

A macro to include a full-page image in a groff document

The macro (pGepsl) on the follwing pages has 4 parts. The beige part is fair dinkum troff, parts 2-4
are PostScript.Pat-2 is the preparation for the image. It calculates the dimensions of tHeplgpf
ground, and the viewport for the image. Sets-up clipping in case the image needs to be trimmed.

This is a \Y type embedded auxiliary macro. &uld be nice if one could upload the image here and fin-
ish the whole bisiness hereHowever, the file is ascii85 encoded, only \X’ps: can handle that, and \X'ps:
would not be welcome within a \Y thing. So you need to close part-2, open part-3 for \X’'ps:, then open
another auxiliary \Y type macro to finish the business (e.g. plotting the playground botimatamas not
possible whilst in the clipping regime.

In grops’ output parts 2-4 are bracketed by the EBEGIN and EEND commands from the prologse.
separate the userPS ad grof's PS. Originallythey were not setup correctlyhey only prevented the
spoiling of gropss PS ariables. Br better protection tlyeshould implement sa-restore pairs.That's

what | use.

Now a dight problem. Part-1 ends with a routine that would process the image immediateljyrigltbe
routine. Hmmm, there is a restore (to avpasly saed date) and sz pair between them. The poor
image can not meet its processbvell, this can still vork. The Rimage gcl routine uses readline on
currentfile to &tract information from the header of the eps file, until it reaches the pixel data. What it
does not need, it ignores them. Jeeez\ibdes the EEND-EBEGIN pair! Ingenious? Yes. Is this done in
away one could recommend to othefd®ll, no. What was the problem? That ascii85 files could only be
handled witHfile and this construct could not be used within part-2.

Including PS files with no ascii85 images

Easy No ascii85, the whole PS program can be read into a macro, the macro can be uploaded into part-2,
no need for parts 3-4. Thanks God.

File: readme.grf

1st part of the macro: fair dinkum troff stuff

A Ful | page "standard" eps inage:
A\ size & placement adjustments (left, bot, ...)
AN optional stroking of image bbox and groff playground
A
AN if debug is set: no clipping
A" plot mm grid
AN stroke image bbox
AN stroke playground
.de pG.epsl \" 1: directory of eps-file: envir var, no $
\ " 2: n ame of eps-file, no leading slash
\ v
\ " o ptionals (defaults provided)
\ "
\ " 3" [dx1..dy2]" extend playground for mapping (millimetres)
" d x1 < 0 and dx2 > 0 is shift to right
" d x1 > 0 and dx2 > 0 is making it bigger
! s ubject to clipping to groff playground
\' " 4: (h) horizontal adjustment (I) or (m) or (r)
\ "5 (v vertical adjustment (b) or (m) or (t)
" 1-4 mapping scheme: 1: full-fill: non-uniform
! 4 : u niform scales
! 3: u niform, keep width
" 4 : u niform, keep height
\"7:(9) stroke image bbox
\ "8 (s stroke groff playground boundary

\"--- parameters into strings and registers

f ullnamel \$1 \$2\" \" assemble full name in string t

ds t_ext\$3\"
ds t_adx \\$4\"
ds t _ady \$5\"
nr t _map\$6\"
ds t_img\$7\"
ds t_pgr\$8\"

\"--- defaults

i f ! \WwW\$3" .ds
i f!\WwW\$4' .ds
i f1\Ww\$5 .ds
i f ! \WwW\$6" .nr
i f ! \WwW\$7" .ds
i f ! \WwW\$8 .ds

t_ext"[0000]
t _adx (m)

t _ady (m)
t_map 2

t _img (S)
t_par (s)

\"--- new page, grid if debugging is on

pG \" n ew page
i f\ \n[debug]=1 .grid _a4d \" draw grid first
i f \ \n[debug]=1 .dst _img (s) \" set "stroke image bbox"

=

_full

File: readme.grf

EBEGIN
2nd part: PostScript, prepare for the image
AR 1st auxiliary, ending with image setup (but not the image)
.de pG_epsl_auxl endl
ps: exec
%--- dimensions of playground (x1 ... y2), viewport of image (X1 ... Y2), MMs
/x1\\n[.0] G _u2mmd_ /x2\n[.ll G _u2mm x1 addd _
/y1 \\n[bott _origl G _u2mmd_ /y2\\n[.p] G _u2mm\ntm] G _u2mmsubd _
WMt _ext] I"y2 add /Y3 e _ X2 add /X2e _ % etend pg forimage
ylexchsub/Y2e _ xlexchsub/X1le
%--- calculate playground path, stroke with red if debug, clip if not
x1ylx2y2P _tport _pathl % clip path
\\n[debug] 1 eq{.6 P _widthP _redS _ } { clip N_} i felse
%--- set-up image proc routine: to be followed by the eps file by "\X ..."
% etracts Width Height gray/colour hex/85
% ips everything until "} exec"
% including EEND EBEGIN, why do | have to do this
%
[[X1 Y2 X2 Y3\t _adx] *[t _ady] \\n[t _map] *t _img]]]P _image _gcl
.endl
AR upload 1st auxiliary into the PS file
\'Y[pG_epsl_auxl1]
EEND
. . . EBEGIN
3rd part: PostScript, upload the image file
AR upload the image, can be ascii85
\ X ps: file *[t_full]”’
EEND
EBEGIN
4th part: PostScript, finish the picture
N 2nd auxiliary to finish PS: no clipping here
A\ dimensions to be recalculated (EEND ...)
A\ stroke groff playground if wanted
.de pG_epsl_aux2 end2
ps: exec
/X1 \\n[.0] G —u2mmd_ /x2\n[.ll] G _u2mm x1 addd _
/y1 \\n[bott _orig] G _u2mmd_ /y2\\n[.p] G _u2mm\n[tm] G _u2mmsubd _
\\n[debug] 1 ne *[t _par] (s) eq and % tport frame if wanted
{x1 yl x2 y2 P _tport _pathl 3P _widthP _gray _70S_ } i f
. end2
AR upload 2nd auxiliary (closed with EEND)
\ Y[pG_epsl_aux2]
EEND

File: readme.grf

| hope that this example makes it cleareywie need a n& version ofcf in groff.
Thanks,
Miklos

File: readme.grf

