In this case, P_{i} is the number hired in period i.
The following example provides a simplified illustration of a single-product, multi-period planning situation.

9.2 A Dynamic Production Problem

A company produces one product for which the demand for the next four quarters is predicted to be:

Spring	Summer	Autumn	Winter
20	30	50	60

Assuming all the demand is to be met, there are two extreme policies that might be followed:

1. "Track" demand with production and carry no inventory.
2. Produce at a constant rate of 40 units per quarter and allow inventory to absorb the fluctuations in demand.

There are costs associated with carrying inventory and costs associated with varying the production level, so one would expect the least-cost policy is probably a combination of (1) and (2) (i.e., carry some inventory, but also vary the production level somewhat).

For costing purposes, the company estimates changing the production level from one period to the next costs $\$ 600$ per unit. These costs are often called "hiring and firing" costs. It is estimated that charging $\$ 700$ for each unit of inventory at the end of the period can accurately approximate inventory costs. The initial inventory is zero and the initial production level is 40 units per quarter. We require these same levels be achieved or returned to at the end of the winter quarter.

We can now calculate the production change costs associated with the no-inventory policy as:

$$
\$ 600 \times(20+10+20+10+20)=\$ 48,000 .
$$

On the other hand, the inventory costs associated with the constant production policy is:

$$
\$ 700 \times(20+30+20+0)=\$ 49,000 .
$$

The least cost policy is probably a mix of these two pure policies. We can find the least-cost policy by formulating a linear program.

9.2.1 Formulation

The following definitions of variables will be useful:
$P_{i}=$ number of units produced in period i, for $i=1,2,3$, and $4 ;$
$I_{i}=$ units in inventory at the end of period i;
$U_{i}=$ increase in production level between period $i-1$ and i;
$D_{i}=$ decrease in production level between $i-1$ and i.
The P_{i} variables are the obvious decision variables. It is useful to define the I_{i}, U_{i}, and D_{i} variables, so we can conveniently compute the costs each period.

To minimize the cost per year, we want to minimize the sum of inventory costs:

$$
\$ 700 I_{1}+\$ 700 I_{2}+\$ 700 I_{3}+\$ 700 I_{4}
$$

plus production change costs:

$$
\begin{gathered}
\$ 600 U_{1}+\$ 600 U_{2}+\$ 600 U_{3}+\$ 600 U_{4}+\$ 600 U_{5} \\
+ \\
+\$ 600 D_{1}+\$ 600 D_{2}+\$ 600 D_{3}+\$ 600 D_{4}+\$ 600 D_{5} .
\end{gathered}
$$

We have added a U_{5} and a D_{5} in order to charge for the production level change back to 40 , if needed at the end of the $4^{\text {th }}$ period.

9.2.2 Constraints

Every multi-period problem will have a "material balance" or "sources = uses" constraint for each product per period. The usual form of these constraints in words is:
beginning inventory + production - ending inventory $=$ demand .
Algebraically, these constraints for the problem at hand are:

$$
\begin{aligned}
P_{1}-I_{1} & =20 \\
I_{1}+P_{2}-I_{2} & =30 \\
I_{2}+P_{3}-I_{3} & =50 \\
I_{3}+P_{4} & =60
\end{aligned}
$$

Notice I_{4} and I_{0} do not appear in the first and last constraints, because initial and ending inventories are required to be zero.

If the formulation is solved as is, there is nothing to force U_{1}, D_{1}, etc., to be greater than zero. Therefore, the solution will be the pure production policy. Namely, $P_{1}=20, P_{2}=30, P_{3}=50, P_{4}=60$. This policy implies a production increase at the end of every period, except the last. This suggests a way of forcing U_{1}, U_{2}, U_{3}, and U_{4} to take the proper values is to append the constraints:

$$
\begin{aligned}
& U_{1} \geq P_{1}-40 \\
& U_{2} \geq P_{2}-P_{1} \\
& U_{3} \geq P_{3}-P_{2} \\
& U_{4} \geq P_{4}-P_{3} .
\end{aligned}
$$

Production decreases are still not properly measured. An analogous set of four constraints should take care of this problem, specifically:

$$
\begin{aligned}
& D_{1} \geq 40-P_{1} \\
& D_{2} \geq P_{1}-P_{2} \\
& D_{3} \geq P_{2}-P_{3} \\
& D_{4} \geq P_{3}-P_{4} .
\end{aligned}
$$

To incorporate the requirement that the production level be returned to 40 at the end of the winter quarter, we add the variables U_{5} and D_{5} to measure changes at the end of the last quarter. U_{5} and D_{5} are forced to take on the right values with the constraints:

$$
\begin{aligned}
& U_{5} \geq 40-P_{4} \\
& D_{5} \geq P_{4}-40 .
\end{aligned}
$$

Before moving on, we will note the production-change constraints can be reduced to 5 constraints from the 10 implied by the above form. The key observation is two constraints such as:

$$
\begin{aligned}
& U_{2} \geq P_{2}-P_{1} \\
& D_{2} \geq P_{1}-P_{2}
\end{aligned}
$$

can be replaced by the single constraint:

$$
U_{2}-D_{2}=P_{2}-P_{1} .
$$

The argument is more economic than algebraic. The purpose with either formulation is to force $U_{2}=P_{2}-P_{1}$ if $P_{2}-P_{1} \geq 0$ and $D_{2}=P_{1}-P_{2}$ if $P_{1}-P_{2} \geq 0$. From economics, you can argue that, at the optimal solution, you will find at most one of U_{2} and D_{2} are greater than 0 under either formulation. If both U_{2} and D_{2} are greater than 0 under the second formulation, then both can be reduced by an equal amount. Thus, reducing costs without violating any constraints.

The complete formulation is:

```
MODEL:
    !Minimize inventory + workforce change costs;
    MIN = 700 * I1 + 700 * I2 + 700 * I3 + 700 * I4
        + 600 * U1 + 600 * U2 + 600 * U3 + 600 * U4
        + 600 * D1 + 600 * D2 + 600 * D3 + 600 * D4
        + 600 * U5 + 600 * D5;
    !Initial conditions on inventory & production;
    [CNDBI] IO = 0;
    [CNDBP] P0 = 40;
    !Beginning inventory + production = demand + ending inventory;
    [INV1] I0 + P1 = 20 + I1;
    [INV2] I1 + P2 = 30 + I2;
    [INV3] I2 + P3 = 50 + I3;
    [INV4] I3 + P4 = 60 + I4;
    !Change up - change down = prod. this period - prod. prev. period;
    [CHG1] U1 - D1 = P1 - P0;
    [CHG2] U2 - D2 = P2 - P1;
    [CHG3] U3 - D3 = P3 - P2;
    [CHG4] U4 - D4 = P4 - P3;
    [CHG5] U5 - D5 = P5 - P4;
    !Ending conditions;
    [CNDEI] I4 = 0;
    [CNDEP] P5 = 40;
END
```

The solution is:

Optimal solution found at step:		
Objective value:	7 Variable	43000.00
I1	5.000000	Reduced Cost
I2	0.0000000	0.0000000
I3	5.000000	200.0000
I4	0.0000000	0.0000000
U1	0.0000000	0.0000000
U2	0.0000000	1200.000
U3	30.00000	250.0000
		0.0000000

U4	0.0000000	250.0000
D1	15.00000	0.0000000
D2	0.0000000	950.0000
D3	0.0000000	1200.000
D4	0.0000000	950.0000
U5	0.0000000	1200.000
D5	15.00000	0.0000000
I0	0.0000000	0.0000000
P0	40.00000	0.0000000
P1	25.00000	0.0000000
P2	25.00000	0.0000000
P3	55.00000	0.0000000
P4	55.00000	0.0000000
P5	40.00000	0.0000000
Row	Slack	01 Surplus
1	43000.00	Dual Price
CNDBI	0.0000000	-1.000000
CNDBP	0.0000000	-950.0000
INV1	0.0000000	-600.0000
INV2	0.0000000	950.0000
INV3	0.0000000	250.0000
INV4	0.0000000	-250.0000
CHG1	0.0000000	-950.0000
CHG2	0.0000000	600.0000
CHG3	0.0000000	-350.0000
CHG4	0.0000000	-600.0000
CHG5	0.0000000	-350.0000
CNDEI	0.0000000	600.0000
CNDEP	0.0000000	-1650.000

We see the solution is a mixed policy:

$$
P_{1}=P_{2}=25 ; \quad P_{3}=P_{4}=55 .
$$

The mixed policy found by LP is $\$ 5,000$ cheaper than the best pure policy.

9.2.3 Representing Absolute Values

You may be tempted to represent the production-change costs in the above model by the expression:

```
600 * (@ABS(P1 - P0) + @ABS(P2 - P1) + ...+@ABS (P5 - P4));
```

This is mathematically correct, but computationally unwise, because it converts a linear program into a nonlinear program. Nonlinear programs are always more time consuming to solve. We have exploited the following result to obtain a linear program from an apparently nonlinear program. Subject to a certain condition, any appearance in a model of a term of the form:
@,ABS (expression)
can be replaced by the term $U+D$, if we add the constraint:

$$
U-D=\text { expression }
$$

