help-gsl
[Top][All Lists]

## [Help-gsl] An example of how to solve time dependent ordinary differenti

 From: Juan Pablo Amorocho D. Subject: [Help-gsl] An example of how to solve time dependent ordinary differential equations using gsl Date: Sun, 24 Jun 2012 10:39:25 +0200

```Hi all,

In the last couple of days I have been playing with the ode suite trying to
solve a time dependent equation. Below is the code to solve y'(t) = t*y(t),
y(0) = y0. This is the simplest example I could think about but should help
"newbies" getting started.

Cheers,

Juan Pablo

#include <stdio.h>
#include <math.h>
#include "gsl/gsl_errno.h"
#include "gsl/gsl_matrix.h"
#include "gsl/gsl_odeiv2.h"
int func(double t, const double y[], double f[], void *params) {
f[0] = -t* y[0];
return GSL_SUCCESS;
}
int jac(double t, const double y[], double *dfdy, double dfdt[], void
*params) {
gsl_matrix_view dfdy_mat = gsl_matrix_view_array(dfdy, 1, 1);
gsl_matrix * m = &dfdy_mat.matrix;
gsl_matrix_set(m, 0, 0, -t);
dfdt[0] = -1;
return GSL_SUCCESS;
}
int main(void) {
double mu = 0;
gsl_odeiv2_system sys = { func, jac, 1, &mu };
gsl_odeiv2_driver * d = gsl_odeiv2_driver_alloc_y_new(&sys,
gsl_odeiv2_step_rk1imp, 1e-7, 1e-7, 0.0);
int i;
double t = 0.0, t1 = 2.0;
const double x0 = 1.0;
double y[1] = {x0};
const int N = 100;
printf("time\t \tapprox solution \t exact solution\n");
for (i = 0; i <= N; i++) {
double ti = i * (t1 / N);
int status = gsl_odeiv2_driver_apply(d, &t, ti, y);
if (status != GSL_SUCCESS) {
printf("error, return value=%d\n", status);
break;
}
printf("%.5e\t%.5e\t\t%.5e\n", t, y[0], x0*exp(-0.5*t*t));
}
gsl_odeiv2_driver_free(d);
printf("\n...and done!\n");
return 0;
}

```