## Copyright (C) 2008 Marco Caliari ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {Function File} address@hidden =} legendre (@var{n}, @var{X}) ## @deftypefnx {Function File} address@hidden =} legendre (@var{n}, @var{X}, "unnorm") ## ## Legendre Function of degree n and order m ## where all values for m = address@hidden are returned. ## @var{n} must be an integer. ## The return value has one dimension more than @var{x}. ## ## @example ## The Legendre Function of degree n and order m ## ## @group ## m m 2 m/2 d^m ## P(x) = (-1) * (1-x ) * ---- P (x) ## n dx^m n ## @end group ## ## with: ## Legendre polynomial of degree n ## ## @group ## 1 d^n 2 n ## P (x) = ------ [----(x - 1) ] ## n 2^n n! dx^n ## @end group ## ## legendre(3,[-1.0 -0.9 -0.8]) returns the matrix ## ## @group ## x | -1.0 | -0.9 | -0.8 ## ------------------------------------ ## m=0 | -1.00000 | -0.47250 | -0.08000 ## m=1 | 0.00000 | -1.99420 | -1.98000 ## m=2 | 0.00000 | -2.56500 | -4.32000 ## m=3 | 0.00000 | -1.24229 | -3.24000 ## @end group ## @end example ## ## @deftypefnx {Function File} address@hidden =} legendre (@var{n}, @var{X}, "sch") ## ## Computes the Schmidt semi-normalized associated Legendre function. ## The Schmidt semi-normalized associated Legendre function is related ## to the unnormalized Legendre functions by ## ## @example ## For Legendre functions of degree n and order 0 ## ## @group ## 0 0 ## SP (x) = P (x) ## n n ## @end group ## ## For Legendre functions of degree n and order m ## ## @group ## m m m 2(n-m)! 0.5 ## SP (x) = P (x) * (-1) * [-------] ## n n (n+m)! ## @end group ## @end example ## ## @deftypefnx {Function File} address@hidden =} legendre (@var{n}, @var{X}, "norm") ## ## Computes the fully normalized associated Legendre function. ## The fully normalized associated Legendre function is related ## to the unnormalized Legendre functions by ## ## @example ## For Legendre functions of degree n and order m ## ## @group ## m m m (n+0.5)(n-m)! 0.5 ## NP (x) = P (x) * (-1) * [-------------] ## n n (n+m)! ## @end group ## @end example ## ## @end deftypefn ## Author: Marco Caliari function L = legendre(n,x,varargin) x = x(:).'; L = zeros(n+1,length(x)); if (nargin == 2) normalization = "unnorm"; else normalization = varargin{1}; end if (strcmp(normalization,"norm")) scale = sqrt(n+0.5); elseif (strcmp(normalization,"sch")) scale = sqrt(2); elseif (strcmp(normalization,"unnorm")) scale = 1; else error("Normalization option not recognized.") end % Based on the first recurrence relation found in % http://en.wikipedia.org/wiki/Associated_Legendre_function for m = 1:n LP = ones(n+1,length(x)); LP(m,:) = scale*LP(m,:).*sqrt(1-x.^2).^(m-1); LP(m+1,:) = (2*m-1).*x.*LP(m,:); for l = m+1:n LP(l+1,:) = ((2*l-1).*x.*LP(l,:)-(l+m-2).*LP(l-1,:))./(l-m+1); end L(m,:) = LP(n+1,:); if (strcmp(normalization,"unnorm")) scale = -scale*(2*m-1); else # normalization == "sch" or normalization == "norm" scale = scale/sqrt((n-m+1)*(n+m))*(2*m-1); end end L(n+1,:) = scale.*sqrt(1-x.^2).^n; if (strcmp(normalization,"sch")) L(1,:) = L(1,:)/sqrt(2); end