qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Qemu-devel] [RFC v2 1/2] Add bpf support to qemu


From: Sameeh Jubran
Subject: [Qemu-devel] [RFC v2 1/2] Add bpf support to qemu
Date: Mon, 25 Jun 2018 14:07:05 +0300

From: Sameeh Jubran <address@hidden>

This commit adds the libbpf library provided by Linux to Qemu.

Signed-off-by: Sameeh Jubran <address@hidden>
---
 MAINTAINERS                             |    6 +
 configure                               |   46 +
 include/standard-headers/linux/libbpf.h |  284 ++++
 linux-headers/linux/bpf.h               | 2669 +++++++++++++++++++++++++++++++
 scripts/update-linux-headers.sh         |   11 +-
 5 files changed, 3013 insertions(+), 3 deletions(-)
 create mode 100644 include/standard-headers/linux/libbpf.h
 create mode 100644 linux-headers/linux/bpf.h

diff --git a/MAINTAINERS b/MAINTAINERS
index 0fb5f38f9f..341dd3e1d9 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -2126,6 +2126,12 @@ F: hw/rdma/*
 F: hw/rdma/vmw/*
 F: docs/pvrdma.txt
 
+BPF
+M: Sameeh Jubran <address@hidden>
+S: Maintained
+F: linux-headers/linux/bpf.h
+F: include/standard-headers/linux/libbpf.h
+
 Build and test automation
 -------------------------
 Build and test automation
diff --git a/configure b/configure
index a8c4094c87..8140f9b6a9 100755
--- a/configure
+++ b/configure
@@ -348,6 +348,7 @@ libattr=""
 xfs=""
 tcg="yes"
 membarrier=""
+bpf="no"
 vhost_net="no"
 vhost_crypto="no"
 vhost_scsi="no"
@@ -1173,6 +1174,10 @@ for opt do
   ;;
   --enable-membarrier) membarrier="yes"
   ;;
+  --disable-bpf) bpf="no"
+  ;;
+  --enable-bpf) bpf="yes"
+  ;;
   --disable-blobs) blobs="no"
   ;;
   --with-pkgversion=*) pkgversion="$optarg"
@@ -1593,6 +1598,7 @@ disabled with --disable-FEATURE, default is enabled if 
available:
   brlapi          BrlAPI (Braile)
   curl            curl connectivity
   membarrier      membarrier system call (for Linux 4.14+ or Windows)
+  bpf             bpf system calls (for Linux 3.18+)
   fdt             fdt device tree
   bluez           bluez stack connectivity
   kvm             KVM acceleration support
@@ -5232,6 +5238,40 @@ else
 fi
 
 ##########################################
+# check for usable bpf system call
+if test "$bpf" = "yes"; then
+    have_bpf=no
+    if test "$linux" = "yes" ; then
+        cat > $TMPC << EOF
+    #include <sys/syscall.h>
+    #include "libbpf.h"
+    #include <unistd.h>
+    #include <stdlib.h>
+    #include <string.h>
+    int main(void) {
+        union bpf_attr * attr = NULL;
+        struct bpf_object * obj = NULL;
+        syscall(__NR_bpf, BPF_PROG_LOAD, attr, sizeof(attr));
+       bpf_object__load(obj);
+        exit(0);
+    }
+EOF
+        bpf_include="-Iinclude/standard-headers/linux/"
+        bpf_cflags=""
+        bpf_libs="-lelf -lbpf"
+        if compile_prog "$bpf_include" "$bpf_libs" ; then
+            have_bpf=yes
+        fi
+    fi
+    if test "$have_bpf" = "no"; then
+      feature_not_found "bpf" "libbpf/libelf libs are not available or else \
+the bpf system call is not available"
+    fi
+else
+    bpf=no
+fi
+
+##########################################
 # check if rtnetlink.h exists and is useful
 have_rtnetlink=no
 cat > $TMPC << EOF
@@ -5871,6 +5911,7 @@ echo "malloc trim support $malloc_trim"
 echo "RDMA support      $rdma"
 echo "fdt support       $fdt"
 echo "membarrier        $membarrier"
+echo "bpf               $bpf"
 echo "preadv support    $preadv"
 echo "fdatasync         $fdatasync"
 echo "madvise           $madvise"
@@ -6365,6 +6406,11 @@ fi
 if test "$membarrier" = "yes" ; then
   echo "CONFIG_MEMBARRIER=y" >> $config_host_mak
 fi
+if test "$bpf" = "yes" ; then
+  echo "CONFIG_BPF=y" >> $config_host_mak
+  echo "LIBS_BPF=$bpf_libs" >> $config_host_mak
+  echo "CFLAGS_BPF=$bpf_cflags" >> $config_host_mak
+fi
 if test "$signalfd" = "yes" ; then
   echo "CONFIG_SIGNALFD=y" >> $config_host_mak
 fi
diff --git a/include/standard-headers/linux/libbpf.h 
b/include/standard-headers/linux/libbpf.h
new file mode 100644
index 0000000000..1931a07b98
--- /dev/null
+++ b/include/standard-headers/linux/libbpf.h
@@ -0,0 +1,284 @@
+/* SPDX-License-Identifier: LGPL-2.1 */
+
+/*
+ * Common eBPF ELF object loading operations.
+ *
+ * Copyright (C) 2013-2015 Alexei Starovoitov <address@hidden>
+ * Copyright (C) 2015 Wang Nan <address@hidden>
+ * Copyright (C) 2015 Huawei Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation;
+ * version 2.1 of the License (not later!)
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this program; if not,  see <http://www.gnu.org/licenses>
+ */
+#ifndef __BPF_LIBBPF_H
+#define __BPF_LIBBPF_H
+
+#include <stdio.h>
+#include <stdint.h>
+#include <stdbool.h>
+#include <sys/types.h>  // for size_t
+#include <linux/bpf.h>
+
+enum libbpf_errno {
+       __LIBBPF_ERRNO__START = 4000,
+
+       /* Something wrong in libelf */
+       LIBBPF_ERRNO__LIBELF = __LIBBPF_ERRNO__START,
+       LIBBPF_ERRNO__FORMAT,   /* BPF object format invalid */
+       LIBBPF_ERRNO__KVERSION, /* Incorrect or no 'version' section */
+       LIBBPF_ERRNO__ENDIAN,   /* Endian mismatch */
+       LIBBPF_ERRNO__INTERNAL, /* Internal error in libbpf */
+       LIBBPF_ERRNO__RELOC,    /* Relocation failed */
+       LIBBPF_ERRNO__LOAD,     /* Load program failure for unknown reason */
+       LIBBPF_ERRNO__VERIFY,   /* Kernel verifier blocks program loading */
+       LIBBPF_ERRNO__PROG2BIG, /* Program too big */
+       LIBBPF_ERRNO__KVER,     /* Incorrect kernel version */
+       LIBBPF_ERRNO__PROGTYPE, /* Kernel doesn't support this program type */
+       LIBBPF_ERRNO__WRNGPID,  /* Wrong pid in netlink message */
+       LIBBPF_ERRNO__INVSEQ,   /* Invalid netlink sequence */
+       __LIBBPF_ERRNO__END,
+};
+
+int libbpf_strerror(int err, char *buf, size_t size);
+
+/*
+ * __printf is defined in include/linux/compiler-gcc.h. However,
+ * it would be better if libbpf.h didn't depend on Linux header files.
+ * So instead of __printf, here we use gcc attribute directly.
+ */
+typedef int (*libbpf_print_fn_t)(const char *, ...)
+       __attribute__((format(printf, 1, 2)));
+
+void libbpf_set_print(libbpf_print_fn_t warn,
+                     libbpf_print_fn_t info,
+                     libbpf_print_fn_t debug);
+
+/* Hide internal to user */
+struct bpf_object;
+
+struct bpf_object *bpf_object__open(const char *path);
+struct bpf_object *bpf_object__open_buffer(void *obj_buf,
+                                          size_t obj_buf_sz,
+                                          const char *name);
+int bpf_object__pin(struct bpf_object *object, const char *path);
+void bpf_object__close(struct bpf_object *object);
+
+/* Load/unload object into/from kernel */
+int bpf_object__load(struct bpf_object *obj);
+int bpf_object__unload(struct bpf_object *obj);
+const char *bpf_object__name(struct bpf_object *obj);
+unsigned int bpf_object__kversion(struct bpf_object *obj);
+int bpf_object__btf_fd(const struct bpf_object *obj);
+
+struct bpf_object *bpf_object__next(struct bpf_object *prev);
+#define bpf_object__for_each_safe(pos, tmp)                    \
+       for ((pos) = bpf_object__next(NULL),            \
+               (tmp) = bpf_object__next(pos);          \
+            (pos) != NULL;                             \
+            (pos) = (tmp), (tmp) = bpf_object__next(tmp))
+
+typedef void (*bpf_object_clear_priv_t)(struct bpf_object *, void *);
+int bpf_object__set_priv(struct bpf_object *obj, void *priv,
+                        bpf_object_clear_priv_t clear_priv);
+void *bpf_object__priv(struct bpf_object *prog);
+
+/* Accessors of bpf_program */
+struct bpf_program;
+struct bpf_program *bpf_program__next(struct bpf_program *prog,
+                                     struct bpf_object *obj);
+
+#define bpf_object__for_each_program(pos, obj)         \
+       for ((pos) = bpf_program__next(NULL, (obj));    \
+            (pos) != NULL;                             \
+            (pos) = bpf_program__next((pos), (obj)))
+
+typedef void (*bpf_program_clear_priv_t)(struct bpf_program *,
+                                        void *);
+
+int bpf_program__set_priv(struct bpf_program *prog, void *priv,
+                         bpf_program_clear_priv_t clear_priv);
+
+void *bpf_program__priv(struct bpf_program *prog);
+
+const char *bpf_program__title(struct bpf_program *prog, bool needs_copy);
+
+int bpf_program__fd(struct bpf_program *prog);
+int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
+                             int instance);
+int bpf_program__pin(struct bpf_program *prog, const char *path);
+
+struct bpf_insn;
+
+/*
+ * Libbpf allows callers to adjust BPF programs before being loaded
+ * into kernel. One program in an object file can be transformed into
+ * multiple variants to be attached to different hooks.
+ *
+ * bpf_program_prep_t, bpf_program__set_prep and bpf_program__nth_fd
+ * form an API for this purpose.
+ *
+ * - bpf_program_prep_t:
+ *   Defines a 'preprocessor', which is a caller defined function
+ *   passed to libbpf through bpf_program__set_prep(), and will be
+ *   called before program is loaded. The processor should adjust
+ *   the program one time for each instance according to the instance id
+ *   passed to it.
+ *
+ * - bpf_program__set_prep:
+ *   Attaches a preprocessor to a BPF program. The number of instances
+ *   that should be created is also passed through this function.
+ *
+ * - bpf_program__nth_fd:
+ *   After the program is loaded, get resulting FD of a given instance
+ *   of the BPF program.
+ *
+ * If bpf_program__set_prep() is not used, the program would be loaded
+ * without adjustment during bpf_object__load(). The program has only
+ * one instance. In this case bpf_program__fd(prog) is equal to
+ * bpf_program__nth_fd(prog, 0).
+ */
+
+struct bpf_prog_prep_result {
+       /*
+        * If not NULL, load new instruction array.
+        * If set to NULL, don't load this instance.
+        */
+       struct bpf_insn *new_insn_ptr;
+       int new_insn_cnt;
+
+       /* If not NULL, result FD is written to it. */
+       int *pfd;
+};
+
+/*
+ * Parameters of bpf_program_prep_t:
+ *  - prog:    The bpf_program being loaded.
+ *  - n:       Index of instance being generated.
+ *  - insns:   BPF instructions array.
+ *  - insns_cnt:Number of instructions in insns.
+ *  - res:     Output parameter, result of transformation.
+ *
+ * Return value:
+ *  - Zero:    pre-processing success.
+ *  - Non-zero:        pre-processing error, stop loading.
+ */
+typedef int (*bpf_program_prep_t)(struct bpf_program *prog, int n,
+                                 struct bpf_insn *insns, int insns_cnt,
+                                 struct bpf_prog_prep_result *res);
+
+int bpf_program__set_prep(struct bpf_program *prog, int nr_instance,
+                         bpf_program_prep_t prep);
+
+int bpf_program__nth_fd(struct bpf_program *prog, int n);
+
+/*
+ * Adjust type of BPF program. Default is kprobe.
+ */
+int bpf_program__set_socket_filter(struct bpf_program *prog);
+int bpf_program__set_tracepoint(struct bpf_program *prog);
+int bpf_program__set_raw_tracepoint(struct bpf_program *prog);
+int bpf_program__set_kprobe(struct bpf_program *prog);
+int bpf_program__set_sched_cls(struct bpf_program *prog);
+int bpf_program__set_sched_act(struct bpf_program *prog);
+int bpf_program__set_xdp(struct bpf_program *prog);
+int bpf_program__set_perf_event(struct bpf_program *prog);
+void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type);
+void bpf_program__set_expected_attach_type(struct bpf_program *prog,
+                                          enum bpf_attach_type type);
+
+bool bpf_program__is_socket_filter(struct bpf_program *prog);
+bool bpf_program__is_tracepoint(struct bpf_program *prog);
+bool bpf_program__is_raw_tracepoint(struct bpf_program *prog);
+bool bpf_program__is_kprobe(struct bpf_program *prog);
+bool bpf_program__is_sched_cls(struct bpf_program *prog);
+bool bpf_program__is_sched_act(struct bpf_program *prog);
+bool bpf_program__is_xdp(struct bpf_program *prog);
+bool bpf_program__is_perf_event(struct bpf_program *prog);
+
+/*
+ * No need for QEMU_PACKED, all members of 'bpf_map_def'
+ * are all aligned.  In addition, using QEMU_PACKED
+ * would trigger a -Wpacked warning message, and lead to an error
+ * if -Werror is set.
+ */
+struct bpf_map_def {
+       unsigned int type;
+       unsigned int key_size;
+       unsigned int value_size;
+       unsigned int max_entries;
+       unsigned int map_flags;
+};
+
+/*
+ * The 'struct bpf_map' in include/linux/bpf.h is internal to the kernel,
+ * so no need to worry about a name clash.
+ */
+struct bpf_map;
+struct bpf_map *
+bpf_object__find_map_by_name(struct bpf_object *obj, const char *name);
+
+/*
+ * Get bpf_map through the offset of corresponding struct bpf_map_def
+ * in the BPF object file.
+ */
+struct bpf_map *
+bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset);
+
+struct bpf_map *
+bpf_map__next(struct bpf_map *map, struct bpf_object *obj);
+#define bpf_map__for_each(pos, obj)            \
+       for ((pos) = bpf_map__next(NULL, (obj));        \
+            (pos) != NULL;                             \
+            (pos) = bpf_map__next((pos), (obj)))
+
+int bpf_map__fd(struct bpf_map *map);
+const struct bpf_map_def *bpf_map__def(struct bpf_map *map);
+const char *bpf_map__name(struct bpf_map *map);
+uint32_t bpf_map__btf_key_type_id(const struct bpf_map *map);
+uint32_t bpf_map__btf_value_type_id(const struct bpf_map *map);
+
+typedef void (*bpf_map_clear_priv_t)(struct bpf_map *, void *);
+int bpf_map__set_priv(struct bpf_map *map, void *priv,
+                     bpf_map_clear_priv_t clear_priv);
+void *bpf_map__priv(struct bpf_map *map);
+int bpf_map__pin(struct bpf_map *map, const char *path);
+
+long libbpf_get_error(const void *ptr);
+
+struct bpf_prog_load_attr {
+       const char *file;
+       enum bpf_prog_type prog_type;
+       enum bpf_attach_type expected_attach_type;
+       int ifindex;
+};
+
+int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
+                       struct bpf_object **pobj, int *prog_fd);
+int bpf_prog_load(const char *file, enum bpf_prog_type type,
+                 struct bpf_object **pobj, int *prog_fd);
+
+int bpf_set_link_xdp_fd(int ifindex, int fd, uint32_t flags);
+
+enum bpf_perf_event_ret {
+       LIBBPF_PERF_EVENT_DONE  = 0,
+       LIBBPF_PERF_EVENT_ERROR = -1,
+       LIBBPF_PERF_EVENT_CONT  = -2,
+};
+
+typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(void *event,
+                                                         void *priv);
+int bpf_perf_event_read_simple(void *mem, unsigned long size,
+                              unsigned long page_size,
+                              void **buf, size_t *buf_len,
+                              bpf_perf_event_print_t fn, void *priv);
+#endif
diff --git a/linux-headers/linux/bpf.h b/linux-headers/linux/bpf.h
new file mode 100644
index 0000000000..db4620a970
--- /dev/null
+++ b/linux-headers/linux/bpf.h
@@ -0,0 +1,2669 @@
+/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
+/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of version 2 of the GNU General Public
+ * License as published by the Free Software Foundation.
+ */
+#ifndef __LINUX_BPF_H__
+#define __LINUX_BPF_H__
+
+#include <linux/types.h>
+#include <linux/bpf_common.h>
+
+/* Extended instruction set based on top of classic BPF */
+
+/* instruction classes */
+#define BPF_ALU64      0x07    /* alu mode in double word width */
+
+/* ld/ldx fields */
+#define BPF_DW         0x18    /* double word (64-bit) */
+#define BPF_XADD       0xc0    /* exclusive add */
+
+/* alu/jmp fields */
+#define BPF_MOV                0xb0    /* mov reg to reg */
+#define BPF_ARSH       0xc0    /* sign extending arithmetic shift right */
+
+/* change endianness of a register */
+#define BPF_END                0xd0    /* flags for endianness conversion: */
+#define BPF_TO_LE      0x00    /* convert to little-endian */
+#define BPF_TO_BE      0x08    /* convert to big-endian */
+#define BPF_FROM_LE    BPF_TO_LE
+#define BPF_FROM_BE    BPF_TO_BE
+
+/* jmp encodings */
+#define BPF_JNE                0x50    /* jump != */
+#define BPF_JLT                0xa0    /* LT is unsigned, '<' */
+#define BPF_JLE                0xb0    /* LE is unsigned, '<=' */
+#define BPF_JSGT       0x60    /* SGT is signed '>', GT in x86 */
+#define BPF_JSGE       0x70    /* SGE is signed '>=', GE in x86 */
+#define BPF_JSLT       0xc0    /* SLT is signed, '<' */
+#define BPF_JSLE       0xd0    /* SLE is signed, '<=' */
+#define BPF_CALL       0x80    /* function call */
+#define BPF_EXIT       0x90    /* function return */
+
+/* Register numbers */
+enum {
+       BPF_REG_0 = 0,
+       BPF_REG_1,
+       BPF_REG_2,
+       BPF_REG_3,
+       BPF_REG_4,
+       BPF_REG_5,
+       BPF_REG_6,
+       BPF_REG_7,
+       BPF_REG_8,
+       BPF_REG_9,
+       BPF_REG_10,
+       __MAX_BPF_REG,
+};
+
+/* BPF has 10 general purpose 64-bit registers and stack frame. */
+#define MAX_BPF_REG    __MAX_BPF_REG
+
+struct bpf_insn {
+       __u8    code;           /* opcode */
+       __u8    dst_reg:4;      /* dest register */
+       __u8    src_reg:4;      /* source register */
+       __s16   off;            /* signed offset */
+       __s32   imm;            /* signed immediate constant */
+};
+
+/* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
+struct bpf_lpm_trie_key {
+       __u32   prefixlen;      /* up to 32 for AF_INET, 128 for AF_INET6 */
+       __u8    data[0];        /* Arbitrary size */
+};
+
+/* BPF syscall commands, see bpf(2) man-page for details. */
+enum bpf_cmd {
+       BPF_MAP_CREATE,
+       BPF_MAP_LOOKUP_ELEM,
+       BPF_MAP_UPDATE_ELEM,
+       BPF_MAP_DELETE_ELEM,
+       BPF_MAP_GET_NEXT_KEY,
+       BPF_PROG_LOAD,
+       BPF_OBJ_PIN,
+       BPF_OBJ_GET,
+       BPF_PROG_ATTACH,
+       BPF_PROG_DETACH,
+       BPF_PROG_TEST_RUN,
+       BPF_PROG_GET_NEXT_ID,
+       BPF_MAP_GET_NEXT_ID,
+       BPF_PROG_GET_FD_BY_ID,
+       BPF_MAP_GET_FD_BY_ID,
+       BPF_OBJ_GET_INFO_BY_FD,
+       BPF_PROG_QUERY,
+       BPF_RAW_TRACEPOINT_OPEN,
+       BPF_BTF_LOAD,
+       BPF_BTF_GET_FD_BY_ID,
+       BPF_TASK_FD_QUERY,
+};
+
+enum bpf_map_type {
+       BPF_MAP_TYPE_UNSPEC,
+       BPF_MAP_TYPE_HASH,
+       BPF_MAP_TYPE_ARRAY,
+       BPF_MAP_TYPE_PROG_ARRAY,
+       BPF_MAP_TYPE_PERF_EVENT_ARRAY,
+       BPF_MAP_TYPE_PERCPU_HASH,
+       BPF_MAP_TYPE_PERCPU_ARRAY,
+       BPF_MAP_TYPE_STACK_TRACE,
+       BPF_MAP_TYPE_CGROUP_ARRAY,
+       BPF_MAP_TYPE_LRU_HASH,
+       BPF_MAP_TYPE_LRU_PERCPU_HASH,
+       BPF_MAP_TYPE_LPM_TRIE,
+       BPF_MAP_TYPE_ARRAY_OF_MAPS,
+       BPF_MAP_TYPE_HASH_OF_MAPS,
+       BPF_MAP_TYPE_DEVMAP,
+       BPF_MAP_TYPE_SOCKMAP,
+       BPF_MAP_TYPE_CPUMAP,
+       BPF_MAP_TYPE_XSKMAP,
+       BPF_MAP_TYPE_SOCKHASH,
+};
+
+enum bpf_prog_type {
+       BPF_PROG_TYPE_UNSPEC,
+       BPF_PROG_TYPE_SOCKET_FILTER,
+       BPF_PROG_TYPE_KPROBE,
+       BPF_PROG_TYPE_SCHED_CLS,
+       BPF_PROG_TYPE_SCHED_ACT,
+       BPF_PROG_TYPE_TRACEPOINT,
+       BPF_PROG_TYPE_XDP,
+       BPF_PROG_TYPE_PERF_EVENT,
+       BPF_PROG_TYPE_CGROUP_SKB,
+       BPF_PROG_TYPE_CGROUP_SOCK,
+       BPF_PROG_TYPE_LWT_IN,
+       BPF_PROG_TYPE_LWT_OUT,
+       BPF_PROG_TYPE_LWT_XMIT,
+       BPF_PROG_TYPE_SOCK_OPS,
+       BPF_PROG_TYPE_SK_SKB,
+       BPF_PROG_TYPE_CGROUP_DEVICE,
+       BPF_PROG_TYPE_SK_MSG,
+       BPF_PROG_TYPE_RAW_TRACEPOINT,
+       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
+       BPF_PROG_TYPE_LWT_SEG6LOCAL,
+       BPF_PROG_TYPE_LIRC_MODE2,
+};
+
+enum bpf_attach_type {
+       BPF_CGROUP_INET_INGRESS,
+       BPF_CGROUP_INET_EGRESS,
+       BPF_CGROUP_INET_SOCK_CREATE,
+       BPF_CGROUP_SOCK_OPS,
+       BPF_SK_SKB_STREAM_PARSER,
+       BPF_SK_SKB_STREAM_VERDICT,
+       BPF_CGROUP_DEVICE,
+       BPF_SK_MSG_VERDICT,
+       BPF_CGROUP_INET4_BIND,
+       BPF_CGROUP_INET6_BIND,
+       BPF_CGROUP_INET4_CONNECT,
+       BPF_CGROUP_INET6_CONNECT,
+       BPF_CGROUP_INET4_POST_BIND,
+       BPF_CGROUP_INET6_POST_BIND,
+       BPF_CGROUP_UDP4_SENDMSG,
+       BPF_CGROUP_UDP6_SENDMSG,
+       BPF_LIRC_MODE2,
+       __MAX_BPF_ATTACH_TYPE
+};
+
+#define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
+
+/* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
+ *
+ * NONE(default): No further bpf programs allowed in the subtree.
+ *
+ * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
+ * the program in this cgroup yields to sub-cgroup program.
+ *
+ * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
+ * that cgroup program gets run in addition to the program in this cgroup.
+ *
+ * Only one program is allowed to be attached to a cgroup with
+ * NONE or BPF_F_ALLOW_OVERRIDE flag.
+ * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
+ * release old program and attach the new one. Attach flags has to match.
+ *
+ * Multiple programs are allowed to be attached to a cgroup with
+ * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
+ * (those that were attached first, run first)
+ * The programs of sub-cgroup are executed first, then programs of
+ * this cgroup and then programs of parent cgroup.
+ * When children program makes decision (like picking TCP CA or sock bind)
+ * parent program has a chance to override it.
+ *
+ * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
+ * A cgroup with NONE doesn't allow any programs in sub-cgroups.
+ * Ex1:
+ * cgrp1 (MULTI progs A, B) ->
+ *    cgrp2 (OVERRIDE prog C) ->
+ *      cgrp3 (MULTI prog D) ->
+ *        cgrp4 (OVERRIDE prog E) ->
+ *          cgrp5 (NONE prog F)
+ * the event in cgrp5 triggers execution of F,D,A,B in that order.
+ * if prog F is detached, the execution is E,D,A,B
+ * if prog F and D are detached, the execution is E,A,B
+ * if prog F, E and D are detached, the execution is C,A,B
+ *
+ * All eligible programs are executed regardless of return code from
+ * earlier programs.
+ */
+#define BPF_F_ALLOW_OVERRIDE   (1U << 0)
+#define BPF_F_ALLOW_MULTI      (1U << 1)
+
+/* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
+ * verifier will perform strict alignment checking as if the kernel
+ * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
+ * and NET_IP_ALIGN defined to 2.
+ */
+#define BPF_F_STRICT_ALIGNMENT (1U << 0)
+
+/* when bpf_ldimm64->src_reg == BPF_PSEUDO_MAP_FD, bpf_ldimm64->imm == fd */
+#define BPF_PSEUDO_MAP_FD      1
+
+/* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
+ * offset to another bpf function
+ */
+#define BPF_PSEUDO_CALL                1
+
+/* flags for BPF_MAP_UPDATE_ELEM command */
+#define BPF_ANY                0 /* create new element or update existing */
+#define BPF_NOEXIST    1 /* create new element if it didn't exist */
+#define BPF_EXIST      2 /* update existing element */
+
+/* flags for BPF_MAP_CREATE command */
+#define BPF_F_NO_PREALLOC      (1U << 0)
+/* Instead of having one common LRU list in the
+ * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
+ * which can scale and perform better.
+ * Note, the LRU nodes (including free nodes) cannot be moved
+ * across different LRU lists.
+ */
+#define BPF_F_NO_COMMON_LRU    (1U << 1)
+/* Specify numa node during map creation */
+#define BPF_F_NUMA_NODE                (1U << 2)
+
+/* flags for BPF_PROG_QUERY */
+#define BPF_F_QUERY_EFFECTIVE  (1U << 0)
+
+#define BPF_OBJ_NAME_LEN 16U
+
+/* Flags for accessing BPF object */
+#define BPF_F_RDONLY           (1U << 3)
+#define BPF_F_WRONLY           (1U << 4)
+
+/* Flag for stack_map, store build_id+offset instead of pointer */
+#define BPF_F_STACK_BUILD_ID   (1U << 5)
+
+enum bpf_stack_build_id_status {
+       /* user space need an empty entry to identify end of a trace */
+       BPF_STACK_BUILD_ID_EMPTY = 0,
+       /* with valid build_id and offset */
+       BPF_STACK_BUILD_ID_VALID = 1,
+       /* couldn't get build_id, fallback to ip */
+       BPF_STACK_BUILD_ID_IP = 2,
+};
+
+#define BPF_BUILD_ID_SIZE 20
+struct bpf_stack_build_id {
+       __s32           status;
+       unsigned char   build_id[BPF_BUILD_ID_SIZE];
+       union {
+               __u64   offset;
+               __u64   ip;
+       };
+};
+
+union bpf_attr {
+       struct { /* anonymous struct used by BPF_MAP_CREATE command */
+               __u32   map_type;       /* one of enum bpf_map_type */
+               __u32   key_size;       /* size of key in bytes */
+               __u32   value_size;     /* size of value in bytes */
+               __u32   max_entries;    /* max number of entries in a map */
+               __u32   map_flags;      /* BPF_MAP_CREATE related
+                                        * flags defined above.
+                                        */
+               __u32   inner_map_fd;   /* fd pointing to the inner map */
+               __u32   numa_node;      /* numa node (effective only if
+                                        * BPF_F_NUMA_NODE is set).
+                                        */
+               char    map_name[BPF_OBJ_NAME_LEN];
+               __u32   map_ifindex;    /* ifindex of netdev to create on */
+               __u32   btf_fd;         /* fd pointing to a BTF type data */
+               __u32   btf_key_type_id;        /* BTF type_id of the key */
+               __u32   btf_value_type_id;      /* BTF type_id of the value */
+       };
+
+       struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
+               __u32           map_fd;
+               __aligned_u64   key;
+               union {
+                       __aligned_u64 value;
+                       __aligned_u64 next_key;
+               };
+               __u64           flags;
+       };
+
+       struct { /* anonymous struct used by BPF_PROG_LOAD command */
+               __u32           prog_type;      /* one of enum bpf_prog_type */
+               __u32           insn_cnt;
+               __aligned_u64   insns;
+               __aligned_u64   license;
+               __u32           log_level;      /* verbosity level of verifier 
*/
+               __u32           log_size;       /* size of user buffer */
+               __aligned_u64   log_buf;        /* user supplied buffer */
+               __u32           kern_version;   /* checked when 
prog_type=kprobe */
+               __u32           prog_flags;
+               char            prog_name[BPF_OBJ_NAME_LEN];
+               __u32           prog_ifindex;   /* ifindex of netdev to prep 
for */
+               /* For some prog types expected attach type must be known at
+                * load time to verify attach type specific parts of prog
+                * (context accesses, allowed helpers, etc).
+                */
+               __u32           expected_attach_type;
+       };
+
+       struct { /* anonymous struct used by BPF_OBJ_* commands */
+               __aligned_u64   pathname;
+               __u32           bpf_fd;
+               __u32           file_flags;
+       };
+
+       struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
+               __u32           target_fd;      /* container object to attach 
to */
+               __u32           attach_bpf_fd;  /* eBPF program to attach */
+               __u32           attach_type;
+               __u32           attach_flags;
+       };
+
+       struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
+               __u32           prog_fd;
+               __u32           retval;
+               __u32           data_size_in;
+               __u32           data_size_out;
+               __aligned_u64   data_in;
+               __aligned_u64   data_out;
+               __u32           repeat;
+               __u32           duration;
+       } test;
+
+       struct { /* anonymous struct used by BPF_*_GET_*_ID */
+               union {
+                       __u32           start_id;
+                       __u32           prog_id;
+                       __u32           map_id;
+                       __u32           btf_id;
+               };
+               __u32           next_id;
+               __u32           open_flags;
+       };
+
+       struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
+               __u32           bpf_fd;
+               __u32           info_len;
+               __aligned_u64   info;
+       } info;
+
+       struct { /* anonymous struct used by BPF_PROG_QUERY command */
+               __u32           target_fd;      /* container object to query */
+               __u32           attach_type;
+               __u32           query_flags;
+               __u32           attach_flags;
+               __aligned_u64   prog_ids;
+               __u32           prog_cnt;
+       } query;
+
+       struct {
+               __u64 name;
+               __u32 prog_fd;
+       } raw_tracepoint;
+
+       struct { /* anonymous struct for BPF_BTF_LOAD */
+               __aligned_u64   btf;
+               __aligned_u64   btf_log_buf;
+               __u32           btf_size;
+               __u32           btf_log_size;
+               __u32           btf_log_level;
+       };
+
+       struct {
+               __u32           pid;            /* input: pid */
+               __u32           fd;             /* input: fd */
+               __u32           flags;          /* input: flags */
+               __u32           buf_len;        /* input/output: buf len */
+               __aligned_u64   buf;            /* input/output:
+                                                *   tp_name for tracepoint
+                                                *   symbol for kprobe
+                                                *   filename for uprobe
+                                                */
+               __u32           prog_id;        /* output: prod_id */
+               __u32           fd_type;        /* output: BPF_FD_TYPE_* */
+               __u64           probe_offset;   /* output: probe_offset */
+               __u64           probe_addr;     /* output: probe_addr */
+       } task_fd_query;
+} __attribute__((aligned(8)));
+
+/* The description below is an attempt at providing documentation to eBPF
+ * developers about the multiple available eBPF helper functions. It can be
+ * parsed and used to produce a manual page. The workflow is the following,
+ * and requires the rst2man utility:
+ *
+ *     $ ./scripts/bpf_helpers_doc.py \
+ *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
+ *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
+ *     $ man /tmp/bpf-helpers.7
+ *
+ * Note that in order to produce this external documentation, some RST
+ * formatting is used in the descriptions to get "bold" and "italics" in
+ * manual pages. Also note that the few trailing white spaces are
+ * intentional, removing them would break paragraphs for rst2man.
+ *
+ * Start of BPF helper function descriptions:
+ *
+ * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
+ *     Description
+ *             Perform a lookup in *map* for an entry associated to *key*.
+ *     Return
+ *             Map value associated to *key*, or **NULL** if no entry was
+ *             found.
+ *
+ * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void 
*value, u64 flags)
+ *     Description
+ *             Add or update the value of the entry associated to *key* in
+ *             *map* with *value*. *flags* is one of:
+ *
+ *             **BPF_NOEXIST**
+ *                     The entry for *key* must not exist in the map.
+ *             **BPF_EXIST**
+ *                     The entry for *key* must already exist in the map.
+ *             **BPF_ANY**
+ *                     No condition on the existence of the entry for *key*.
+ *
+ *             Flag value **BPF_NOEXIST** cannot be used for maps of types
+ *             **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
+ *             elements always exist), the helper would return an error.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
+ *     Description
+ *             Delete entry with *key* from *map*.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_probe_read(void *dst, u32 size, const void *src)
+ *     Description
+ *             For tracing programs, safely attempt to read *size* bytes from
+ *             address *src* and store the data in *dst*.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * u64 bpf_ktime_get_ns(void)
+ *     Description
+ *             Return the time elapsed since system boot, in nanoseconds.
+ *     Return
+ *             Current *ktime*.
+ *
+ * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
+ *     Description
+ *             This helper is a "printk()-like" facility for debugging. It
+ *             prints a message defined by format *fmt* (of size *fmt_size*)
+ *             to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
+ *             available. It can take up to three additional **u64**
+ *             arguments (as an eBPF helpers, the total number of arguments is
+ *             limited to five).
+ *
+ *             Each time the helper is called, it appends a line to the trace.
+ *             The format of the trace is customizable, and the exact output
+ *             one will get depends on the options set in
+ *             *\/sys/kernel/debug/tracing/trace_options* (see also the
+ *             *README* file under the same directory). However, it usually
+ *             defaults to something like:
+ *
+ *             ::
+ *
+ *                     telnet-470   [001] .N.. 419421.045894: 0x00000001: 
<formatted msg>
+ *
+ *             In the above:
+ *
+ *                     * ``telnet`` is the name of the current task.
+ *                     * ``470`` is the PID of the current task.
+ *                     * ``001`` is the CPU number on which the task is
+ *                       running.
+ *                     * In ``.N..``, each character refers to a set of
+ *                       options (whether irqs are enabled, scheduling
+ *                       options, whether hard/softirqs are running, level of
+ *                       preempt_disabled respectively). **N** means that
+ *                       **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
+ *                       are set.
+ *                     * ``419421.045894`` is a timestamp.
+ *                     * ``0x00000001`` is a fake value used by BPF for the
+ *                       instruction pointer register.
+ *                     * ``<formatted msg>`` is the message formatted with
+ *                       *fmt*.
+ *
+ *             The conversion specifiers supported by *fmt* are similar, but
+ *             more limited than for printk(). They are **%d**, **%i**,
+ *             **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
+ *             **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
+ *             of field, padding with zeroes, etc.) is available, and the
+ *             helper will return **-EINVAL** (but print nothing) if it
+ *             encounters an unknown specifier.
+ *
+ *             Also, note that **bpf_trace_printk**\ () is slow, and should
+ *             only be used for debugging purposes. For this reason, a notice
+ *             bloc (spanning several lines) is printed to kernel logs and
+ *             states that the helper should not be used "for production use"
+ *             the first time this helper is used (or more precisely, when
+ *             **trace_printk**\ () buffers are allocated). For passing values
+ *             to user space, perf events should be preferred.
+ *     Return
+ *             The number of bytes written to the buffer, or a negative error
+ *             in case of failure.
+ *
+ * u32 bpf_get_prandom_u32(void)
+ *     Description
+ *             Get a pseudo-random number.
+ *
+ *             From a security point of view, this helper uses its own
+ *             pseudo-random internal state, and cannot be used to infer the
+ *             seed of other random functions in the kernel. However, it is
+ *             essential to note that the generator used by the helper is not
+ *             cryptographically secure.
+ *     Return
+ *             A random 32-bit unsigned value.
+ *
+ * u32 bpf_get_smp_processor_id(void)
+ *     Description
+ *             Get the SMP (symmetric multiprocessing) processor id. Note that
+ *             all programs run with preemption disabled, which means that the
+ *             SMP processor id is stable during all the execution of the
+ *             program.
+ *     Return
+ *             The SMP id of the processor running the program.
+ *
+ * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, 
u32 len, u64 flags)
+ *     Description
+ *             Store *len* bytes from address *from* into the packet
+ *             associated to *skb*, at *offset*. *flags* are a combination of
+ *             **BPF_F_RECOMPUTE_CSUM** (automatically recompute the
+ *             checksum for the packet after storing the bytes) and
+ *             **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
+ *             **->swhash** and *skb*\ **->l4hash** to 0).
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, 
u64 size)
+ *     Description
+ *             Recompute the layer 3 (e.g. IP) checksum for the packet
+ *             associated to *skb*. Computation is incremental, so the helper
+ *             must know the former value of the header field that was
+ *             modified (*from*), the new value of this field (*to*), and the
+ *             number of bytes (2 or 4) for this field, stored in *size*.
+ *             Alternatively, it is possible to store the difference between
+ *             the previous and the new values of the header field in *to*, by
+ *             setting *from* and *size* to 0. For both methods, *offset*
+ *             indicates the location of the IP checksum within the packet.
+ *
+ *             This helper works in combination with **bpf_csum_diff**\ (),
+ *             which does not update the checksum in-place, but offers more
+ *             flexibility and can handle sizes larger than 2 or 4 for the
+ *             checksum to update.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, 
u64 flags)
+ *     Description
+ *             Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
+ *             packet associated to *skb*. Computation is incremental, so the
+ *             helper must know the former value of the header field that was
+ *             modified (*from*), the new value of this field (*to*), and the
+ *             number of bytes (2 or 4) for this field, stored on the lowest
+ *             four bits of *flags*. Alternatively, it is possible to store
+ *             the difference between the previous and the new values of the
+ *             header field in *to*, by setting *from* and the four lowest
+ *             bits of *flags* to 0. For both methods, *offset* indicates the
+ *             location of the IP checksum within the packet. In addition to
+ *             the size of the field, *flags* can be added (bitwise OR) actual
+ *             flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
+ *             untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
+ *             for updates resulting in a null checksum the value is set to
+ *             **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
+ *             the checksum is to be computed against a pseudo-header.
+ *
+ *             This helper works in combination with **bpf_csum_diff**\ (),
+ *             which does not update the checksum in-place, but offers more
+ *             flexibility and can handle sizes larger than 2 or 4 for the
+ *             checksum to update.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
+ *     Description
+ *             This special helper is used to trigger a "tail call", or in
+ *             other words, to jump into another eBPF program. The same stack
+ *             frame is used (but values on stack and in registers for the
+ *             caller are not accessible to the callee). This mechanism allows
+ *             for program chaining, either for raising the maximum number of
+ *             available eBPF instructions, or to execute given programs in
+ *             conditional blocks. For security reasons, there is an upper
+ *             limit to the number of successive tail calls that can be
+ *             performed.
+ *
+ *             Upon call of this helper, the program attempts to jump into a
+ *             program referenced at index *index* in *prog_array_map*, a
+ *             special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
+ *             *ctx*, a pointer to the context.
+ *
+ *             If the call succeeds, the kernel immediately runs the first
+ *             instruction of the new program. This is not a function call,
+ *             and it never returns to the previous program. If the call
+ *             fails, then the helper has no effect, and the caller continues
+ *             to run its subsequent instructions. A call can fail if the
+ *             destination program for the jump does not exist (i.e. *index*
+ *             is superior to the number of entries in *prog_array_map*), or
+ *             if the maximum number of tail calls has been reached for this
+ *             chain of programs. This limit is defined in the kernel by the
+ *             macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
+ *             which is currently set to 32.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
+ *     Description
+ *             Clone and redirect the packet associated to *skb* to another
+ *             net device of index *ifindex*. Both ingress and egress
+ *             interfaces can be used for redirection. The **BPF_F_INGRESS**
+ *             value in *flags* is used to make the distinction (ingress path
+ *             is selected if the flag is present, egress path otherwise).
+ *             This is the only flag supported for now.
+ *
+ *             In comparison with **bpf_redirect**\ () helper,
+ *             **bpf_clone_redirect**\ () has the associated cost of
+ *             duplicating the packet buffer, but this can be executed out of
+ *             the eBPF program. Conversely, **bpf_redirect**\ () is more
+ *             efficient, but it is handled through an action code where the
+ *             redirection happens only after the eBPF program has returned.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * u64 bpf_get_current_pid_tgid(void)
+ *     Return
+ *             A 64-bit integer containing the current tgid and pid, and
+ *             created as such:
+ *             *current_task*\ **->tgid << 32 \|**
+ *             *current_task*\ **->pid**.
+ *
+ * u64 bpf_get_current_uid_gid(void)
+ *     Return
+ *             A 64-bit integer containing the current GID and UID, and
+ *             created as such: *current_gid* **<< 32 \|** *current_uid*.
+ *
+ * int bpf_get_current_comm(char *buf, u32 size_of_buf)
+ *     Description
+ *             Copy the **comm** attribute of the current task into *buf* of
+ *             *size_of_buf*. The **comm** attribute contains the name of
+ *             the executable (excluding the path) for the current task. The
+ *             *size_of_buf* must be strictly positive. On success, the
+ *             helper makes sure that the *buf* is NUL-terminated. On failure,
+ *             it is filled with zeroes.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
+ *     Description
+ *             Retrieve the classid for the current task, i.e. for the net_cls
+ *             cgroup to which *skb* belongs.
+ *
+ *             This helper can be used on TC egress path, but not on ingress.
+ *
+ *             The net_cls cgroup provides an interface to tag network packets
+ *             based on a user-provided identifier for all traffic coming from
+ *             the tasks belonging to the related cgroup. See also the related
+ *             kernel documentation, available from the Linux sources in file
+ *             *Documentation/cgroup-v1/net_cls.txt*.
+ *
+ *             The Linux kernel has two versions for cgroups: there are
+ *             cgroups v1 and cgroups v2. Both are available to users, who can
+ *             use a mixture of them, but note that the net_cls cgroup is for
+ *             cgroup v1 only. This makes it incompatible with BPF programs
+ *             run on cgroups, which is a cgroup-v2-only feature (a socket can
+ *             only hold data for one version of cgroups at a time).
+ *
+ *             This helper is only available is the kernel was compiled with
+ *             the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
+ *             "**y**" or to "**m**".
+ *     Return
+ *             The classid, or 0 for the default unconfigured classid.
+ *
+ * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
+ *     Description
+ *             Push a *vlan_tci* (VLAN tag control information) of protocol
+ *             *vlan_proto* to the packet associated to *skb*, then update
+ *             the checksum. Note that if *vlan_proto* is different from
+ *             **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
+ *             be **ETH_P_8021Q**.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_skb_vlan_pop(struct sk_buff *skb)
+ *     Description
+ *             Pop a VLAN header from the packet associated to *skb*.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, 
u32 size, u64 flags)
+ *     Description
+ *             Get tunnel metadata. This helper takes a pointer *key* to an
+ *             empty **struct bpf_tunnel_key** of **size**, that will be
+ *             filled with tunnel metadata for the packet associated to *skb*.
+ *             The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
+ *             indicates that the tunnel is based on IPv6 protocol instead of
+ *             IPv4.
+ *
+ *             The **struct bpf_tunnel_key** is an object that generalizes the
+ *             principal parameters used by various tunneling protocols into a
+ *             single struct. This way, it can be used to easily make a
+ *             decision based on the contents of the encapsulation header,
+ *             "summarized" in this struct. In particular, it holds the IP
+ *             address of the remote end (IPv4 or IPv6, depending on the case)
+ *             in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
+ *             this struct exposes the *key*\ **->tunnel_id**, which is
+ *             generally mapped to a VNI (Virtual Network Identifier), making
+ *             it programmable together with the **bpf_skb_set_tunnel_key**\
+ *             () helper.
+ *
+ *             Let's imagine that the following code is part of a program
+ *             attached to the TC ingress interface, on one end of a GRE
+ *             tunnel, and is supposed to filter out all messages coming from
+ *             remote ends with IPv4 address other than 10.0.0.1:
+ *
+ *             ::
+ *
+ *                     int ret;
+ *                     struct bpf_tunnel_key key = {};
+ *                     
+ *                     ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
+ *                     if (ret < 0)
+ *                             return TC_ACT_SHOT;     // drop packet
+ *                     
+ *                     if (key.remote_ipv4 != 0x0a000001)
+ *                             return TC_ACT_SHOT;     // drop packet
+ *                     
+ *                     return TC_ACT_OK;               // accept packet
+ *
+ *             This interface can also be used with all encapsulation devices
+ *             that can operate in "collect metadata" mode: instead of having
+ *             one network device per specific configuration, the "collect
+ *             metadata" mode only requires a single device where the
+ *             configuration can be extracted from this helper.
+ *
+ *             This can be used together with various tunnels such as VXLan,
+ *             Geneve, GRE or IP in IP (IPIP).
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, 
u32 size, u64 flags)
+ *     Description
+ *             Populate tunnel metadata for packet associated to *skb.* The
+ *             tunnel metadata is set to the contents of *key*, of *size*. The
+ *             *flags* can be set to a combination of the following values:
+ *
+ *             **BPF_F_TUNINFO_IPV6**
+ *                     Indicate that the tunnel is based on IPv6 protocol
+ *                     instead of IPv4.
+ *             **BPF_F_ZERO_CSUM_TX**
+ *                     For IPv4 packets, add a flag to tunnel metadata
+ *                     indicating that checksum computation should be skipped
+ *                     and checksum set to zeroes.
+ *             **BPF_F_DONT_FRAGMENT**
+ *                     Add a flag to tunnel metadata indicating that the
+ *                     packet should not be fragmented.
+ *             **BPF_F_SEQ_NUMBER**
+ *                     Add a flag to tunnel metadata indicating that a
+ *                     sequence number should be added to tunnel header before
+ *                     sending the packet. This flag was added for GRE
+ *                     encapsulation, but might be used with other protocols
+ *                     as well in the future.
+ *
+ *             Here is a typical usage on the transmit path:
+ *
+ *             ::
+ *
+ *                     struct bpf_tunnel_key key;
+ *                          populate key ...
+ *                     bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
+ *                     bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
+ *
+ *             See also the description of the **bpf_skb_get_tunnel_key**\ ()
+ *             helper for additional information.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
+ *     Description
+ *             Read the value of a perf event counter. This helper relies on a
+ *             *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
+ *             the perf event counter is selected when *map* is updated with
+ *             perf event file descriptors. The *map* is an array whose size
+ *             is the number of available CPUs, and each cell contains a value
+ *             relative to one CPU. The value to retrieve is indicated by
+ *             *flags*, that contains the index of the CPU to look up, masked
+ *             with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
+ *             **BPF_F_CURRENT_CPU** to indicate that the value for the
+ *             current CPU should be retrieved.
+ *
+ *             Note that before Linux 4.13, only hardware perf event can be
+ *             retrieved.
+ *
+ *             Also, be aware that the newer helper
+ *             **bpf_perf_event_read_value**\ () is recommended over
+ *             **bpf_perf_event_read**\ () in general. The latter has some ABI
+ *             quirks where error and counter value are used as a return code
+ *             (which is wrong to do since ranges may overlap). This issue is
+ *             fixed with **bpf_perf_event_read_value**\ (), which at the same
+ *             time provides more features over the **bpf_perf_event_read**\
+ *             () interface. Please refer to the description of
+ *             **bpf_perf_event_read_value**\ () for details.
+ *     Return
+ *             The value of the perf event counter read from the map, or a
+ *             negative error code in case of failure.
+ *
+ * int bpf_redirect(u32 ifindex, u64 flags)
+ *     Description
+ *             Redirect the packet to another net device of index *ifindex*.
+ *             This helper is somewhat similar to **bpf_clone_redirect**\
+ *             (), except that the packet is not cloned, which provides
+ *             increased performance.
+ *
+ *             Except for XDP, both ingress and egress interfaces can be used
+ *             for redirection. The **BPF_F_INGRESS** value in *flags* is used
+ *             to make the distinction (ingress path is selected if the flag
+ *             is present, egress path otherwise). Currently, XDP only
+ *             supports redirection to the egress interface, and accepts no
+ *             flag at all.
+ *
+ *             The same effect can be attained with the more generic
+ *             **bpf_redirect_map**\ (), which requires specific maps to be
+ *             used but offers better performance.
+ *     Return
+ *             For XDP, the helper returns **XDP_REDIRECT** on success or
+ *             **XDP_ABORTED** on error. For other program types, the values
+ *             are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
+ *             error.
+ *
+ * u32 bpf_get_route_realm(struct sk_buff *skb)
+ *     Description
+ *             Retrieve the realm or the route, that is to say the
+ *             **tclassid** field of the destination for the *skb*. The
+ *             indentifier retrieved is a user-provided tag, similar to the
+ *             one used with the net_cls cgroup (see description for
+ *             **bpf_get_cgroup_classid**\ () helper), but here this tag is
+ *             held by a route (a destination entry), not by a task.
+ *
+ *             Retrieving this identifier works with the clsact TC egress hook
+ *             (see also **tc-bpf(8)**), or alternatively on conventional
+ *             classful egress qdiscs, but not on TC ingress path. In case of
+ *             clsact TC egress hook, this has the advantage that, internally,
+ *             the destination entry has not been dropped yet in the transmit
+ *             path. Therefore, the destination entry does not need to be
+ *             artificially held via **netif_keep_dst**\ () for a classful
+ *             qdisc until the *skb* is freed.
+ *
+ *             This helper is available only if the kernel was compiled with
+ *             **CONFIG_IP_ROUTE_CLASSID** configuration option.
+ *     Return
+ *             The realm of the route for the packet associated to *skb*, or 0
+ *             if none was found.
+ *
+ * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 
flags, void *data, u64 size)
+ *     Description
+ *             Write raw *data* blob into a special BPF perf event held by
+ *             *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
+ *             event must have the following attributes: **PERF_SAMPLE_RAW**
+ *             as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
+ *             **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
+ *
+ *             The *flags* are used to indicate the index in *map* for which
+ *             the value must be put, masked with **BPF_F_INDEX_MASK**.
+ *             Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
+ *             to indicate that the index of the current CPU core should be
+ *             used.
+ *
+ *             The value to write, of *size*, is passed through eBPF stack and
+ *             pointed by *data*.
+ *
+ *             The context of the program *ctx* needs also be passed to the
+ *             helper.
+ *
+ *             On user space, a program willing to read the values needs to
+ *             call **perf_event_open**\ () on the perf event (either for
+ *             one or for all CPUs) and to store the file descriptor into the
+ *             *map*. This must be done before the eBPF program can send data
+ *             into it. An example is available in file
+ *             *samples/bpf/trace_output_user.c* in the Linux kernel source
+ *             tree (the eBPF program counterpart is in
+ *             *samples/bpf/trace_output_kern.c*).
+ *
+ *             **bpf_perf_event_output**\ () achieves better performance
+ *             than **bpf_trace_printk**\ () for sharing data with user
+ *             space, and is much better suitable for streaming data from eBPF
+ *             programs.
+ *
+ *             Note that this helper is not restricted to tracing use cases
+ *             and can be used with programs attached to TC or XDP as well,
+ *             where it allows for passing data to user space listeners. Data
+ *             can be:
+ *
+ *             * Only custom structs,
+ *             * Only the packet payload, or
+ *             * A combination of both.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 
len)
+ *     Description
+ *             This helper was provided as an easy way to load data from a
+ *             packet. It can be used to load *len* bytes from *offset* from
+ *             the packet associated to *skb*, into the buffer pointed by
+ *             *to*.
+ *
+ *             Since Linux 4.7, usage of this helper has mostly been replaced
+ *             by "direct packet access", enabling packet data to be
+ *             manipulated with *skb*\ **->data** and *skb*\ **->data_end**
+ *             pointing respectively to the first byte of packet data and to
+ *             the byte after the last byte of packet data. However, it
+ *             remains useful if one wishes to read large quantities of data
+ *             at once from a packet into the eBPF stack.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags)
+ *     Description
+ *             Walk a user or a kernel stack and return its id. To achieve
+ *             this, the helper needs *ctx*, which is a pointer to the context
+ *             on which the tracing program is executed, and a pointer to a
+ *             *map* of type **BPF_MAP_TYPE_STACK_TRACE**.
+ *
+ *             The last argument, *flags*, holds the number of stack frames to
+ *             skip (from 0 to 255), masked with
+ *             **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
+ *             a combination of the following flags:
+ *
+ *             **BPF_F_USER_STACK**
+ *                     Collect a user space stack instead of a kernel stack.
+ *             **BPF_F_FAST_STACK_CMP**
+ *                     Compare stacks by hash only.
+ *             **BPF_F_REUSE_STACKID**
+ *                     If two different stacks hash into the same *stackid*,
+ *                     discard the old one.
+ *
+ *             The stack id retrieved is a 32 bit long integer handle which
+ *             can be further combined with other data (including other stack
+ *             ids) and used as a key into maps. This can be useful for
+ *             generating a variety of graphs (such as flame graphs or off-cpu
+ *             graphs).
+ *
+ *             For walking a stack, this helper is an improvement over
+ *             **bpf_probe_read**\ (), which can be used with unrolled loops
+ *             but is not efficient and consumes a lot of eBPF instructions.
+ *             Instead, **bpf_get_stackid**\ () can collect up to
+ *             **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
+ *             this limit can be controlled with the **sysctl** program, and
+ *             that it should be manually increased in order to profile long
+ *             user stacks (such as stacks for Java programs). To do so, use:
+ *
+ *             ::
+ *
+ *                     # sysctl kernel.perf_event_max_stack=<new value>
+ *     Return
+ *             The positive or null stack id on success, or a negative error
+ *             in case of failure.
+ *
+ * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, 
__wsum seed)
+ *     Description
+ *             Compute a checksum difference, from the raw buffer pointed by
+ *             *from*, of length *from_size* (that must be a multiple of 4),
+ *             towards the raw buffer pointed by *to*, of size *to_size*
+ *             (same remark). An optional *seed* can be added to the value
+ *             (this can be cascaded, the seed may come from a previous call
+ *             to the helper).
+ *
+ *             This is flexible enough to be used in several ways:
+ *
+ *             * With *from_size* == 0, *to_size* > 0 and *seed* set to
+ *               checksum, it can be used when pushing new data.
+ *             * With *from_size* > 0, *to_size* == 0 and *seed* set to
+ *               checksum, it can be used when removing data from a packet.
+ *             * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
+ *               can be used to compute a diff. Note that *from_size* and
+ *               *to_size* do not need to be equal.
+ *
+ *             This helper can be used in combination with
+ *             **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
+ *             which one can feed in the difference computed with
+ *             **bpf_csum_diff**\ ().
+ *     Return
+ *             The checksum result, or a negative error code in case of
+ *             failure.
+ *
+ * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
+ *     Description
+ *             Retrieve tunnel options metadata for the packet associated to
+ *             *skb*, and store the raw tunnel option data to the buffer *opt*
+ *             of *size*.
+ *
+ *             This helper can be used with encapsulation devices that can
+ *             operate in "collect metadata" mode (please refer to the related
+ *             note in the description of **bpf_skb_get_tunnel_key**\ () for
+ *             more details). A particular example where this can be used is
+ *             in combination with the Geneve encapsulation protocol, where it
+ *             allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
+ *             and retrieving arbitrary TLVs (Type-Length-Value headers) from
+ *             the eBPF program. This allows for full customization of these
+ *             headers.
+ *     Return
+ *             The size of the option data retrieved.
+ *
+ * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
+ *     Description
+ *             Set tunnel options metadata for the packet associated to *skb*
+ *             to the option data contained in the raw buffer *opt* of *size*.
+ *
+ *             See also the description of the **bpf_skb_get_tunnel_opt**\ ()
+ *             helper for additional information.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
+ *     Description
+ *             Change the protocol of the *skb* to *proto*. Currently
+ *             supported are transition from IPv4 to IPv6, and from IPv6 to
+ *             IPv4. The helper takes care of the groundwork for the
+ *             transition, including resizing the socket buffer. The eBPF
+ *             program is expected to fill the new headers, if any, via
+ *             **skb_store_bytes**\ () and to recompute the checksums with
+ *             **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
+ *             (). The main case for this helper is to perform NAT64
+ *             operations out of an eBPF program.
+ *
+ *             Internally, the GSO type is marked as dodgy so that headers are
+ *             checked and segments are recalculated by the GSO/GRO engine.
+ *             The size for GSO target is adapted as well.
+ *
+ *             All values for *flags* are reserved for future usage, and must
+ *             be left at zero.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
+ *     Description
+ *             Change the packet type for the packet associated to *skb*. This
+ *             comes down to setting *skb*\ **->pkt_type** to *type*, except
+ *             the eBPF program does not have a write access to *skb*\
+ *             **->pkt_type** beside this helper. Using a helper here allows
+ *             for graceful handling of errors.
+ *
+ *             The major use case is to change incoming *skb*s to
+ *             **PACKET_HOST** in a programmatic way instead of having to
+ *             recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
+ *             example.
+ *
+ *             Note that *type* only allows certain values. At this time, they
+ *             are:
+ *
+ *             **PACKET_HOST**
+ *                     Packet is for us.
+ *             **PACKET_BROADCAST**
+ *                     Send packet to all.
+ *             **PACKET_MULTICAST**
+ *                     Send packet to group.
+ *             **PACKET_OTHERHOST**
+ *                     Send packet to someone else.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 
index)
+ *     Description
+ *             Check whether *skb* is a descendant of the cgroup2 held by
+ *             *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
+ *     Return
+ *             The return value depends on the result of the test, and can be:
+ *
+ *             * 0, if the *skb* failed the cgroup2 descendant test.
+ *             * 1, if the *skb* succeeded the cgroup2 descendant test.
+ *             * A negative error code, if an error occurred.
+ *
+ * u32 bpf_get_hash_recalc(struct sk_buff *skb)
+ *     Description
+ *             Retrieve the hash of the packet, *skb*\ **->hash**. If it is
+ *             not set, in particular if the hash was cleared due to mangling,
+ *             recompute this hash. Later accesses to the hash can be done
+ *             directly with *skb*\ **->hash**.
+ *
+ *             Calling **bpf_set_hash_invalid**\ (), changing a packet
+ *             prototype with **bpf_skb_change_proto**\ (), or calling
+ *             **bpf_skb_store_bytes**\ () with the
+ *             **BPF_F_INVALIDATE_HASH** are actions susceptible to clear
+ *             the hash and to trigger a new computation for the next call to
+ *             **bpf_get_hash_recalc**\ ().
+ *     Return
+ *             The 32-bit hash.
+ *
+ * u64 bpf_get_current_task(void)
+ *     Return
+ *             A pointer to the current task struct.
+ *
+ * int bpf_probe_write_user(void *dst, const void *src, u32 len)
+ *     Description
+ *             Attempt in a safe way to write *len* bytes from the buffer
+ *             *src* to *dst* in memory. It only works for threads that are in
+ *             user context, and *dst* must be a valid user space address.
+ *
+ *             This helper should not be used to implement any kind of
+ *             security mechanism because of TOC-TOU attacks, but rather to
+ *             debug, divert, and manipulate execution of semi-cooperative
+ *             processes.
+ *
+ *             Keep in mind that this feature is meant for experiments, and it
+ *             has a risk of crashing the system and running programs.
+ *             Therefore, when an eBPF program using this helper is attached,
+ *             a warning including PID and process name is printed to kernel
+ *             logs.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
+ *     Description
+ *             Check whether the probe is being run is the context of a given
+ *             subset of the cgroup2 hierarchy. The cgroup2 to test is held by
+ *             *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
+ *     Return
+ *             The return value depends on the result of the test, and can be:
+ *
+ *             * 0, if the *skb* task belongs to the cgroup2.
+ *             * 1, if the *skb* task does not belong to the cgroup2.
+ *             * A negative error code, if an error occurred.
+ *
+ * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
+ *     Description
+ *             Resize (trim or grow) the packet associated to *skb* to the
+ *             new *len*. The *flags* are reserved for future usage, and must
+ *             be left at zero.
+ *
+ *             The basic idea is that the helper performs the needed work to
+ *             change the size of the packet, then the eBPF program rewrites
+ *             the rest via helpers like **bpf_skb_store_bytes**\ (),
+ *             **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
+ *             and others. This helper is a slow path utility intended for
+ *             replies with control messages. And because it is targeted for
+ *             slow path, the helper itself can afford to be slow: it
+ *             implicitly linearizes, unclones and drops offloads from the
+ *             *skb*.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
+ *     Description
+ *             Pull in non-linear data in case the *skb* is non-linear and not
+ *             all of *len* are part of the linear section. Make *len* bytes
+ *             from *skb* readable and writable. If a zero value is passed for
+ *             *len*, then the whole length of the *skb* is pulled.
+ *
+ *             This helper is only needed for reading and writing with direct
+ *             packet access.
+ *
+ *             For direct packet access, testing that offsets to access
+ *             are within packet boundaries (test on *skb*\ **->data_end**) is
+ *             susceptible to fail if offsets are invalid, or if the requested
+ *             data is in non-linear parts of the *skb*. On failure the
+ *             program can just bail out, or in the case of a non-linear
+ *             buffer, use a helper to make the data available. The
+ *             **bpf_skb_load_bytes**\ () helper is a first solution to access
+ *             the data. Another one consists in using **bpf_skb_pull_data**
+ *             to pull in once the non-linear parts, then retesting and
+ *             eventually access the data.
+ *
+ *             At the same time, this also makes sure the *skb* is uncloned,
+ *             which is a necessary condition for direct write. As this needs
+ *             to be an invariant for the write part only, the verifier
+ *             detects writes and adds a prologue that is calling
+ *             **bpf_skb_pull_data()** to effectively unclone the *skb* from
+ *             the very beginning in case it is indeed cloned.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
+ *     Description
+ *             Add the checksum *csum* into *skb*\ **->csum** in case the
+ *             driver has supplied a checksum for the entire packet into that
+ *             field. Return an error otherwise. This helper is intended to be
+ *             used in combination with **bpf_csum_diff**\ (), in particular
+ *             when the checksum needs to be updated after data has been
+ *             written into the packet through direct packet access.
+ *     Return
+ *             The checksum on success, or a negative error code in case of
+ *             failure.
+ *
+ * void bpf_set_hash_invalid(struct sk_buff *skb)
+ *     Description
+ *             Invalidate the current *skb*\ **->hash**. It can be used after
+ *             mangling on headers through direct packet access, in order to
+ *             indicate that the hash is outdated and to trigger a
+ *             recalculation the next time the kernel tries to access this
+ *             hash or when the **bpf_get_hash_recalc**\ () helper is called.
+ *
+ * int bpf_get_numa_node_id(void)
+ *     Description
+ *             Return the id of the current NUMA node. The primary use case
+ *             for this helper is the selection of sockets for the local NUMA
+ *             node, when the program is attached to sockets using the
+ *             **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
+ *             but the helper is also available to other eBPF program types,
+ *             similarly to **bpf_get_smp_processor_id**\ ().
+ *     Return
+ *             The id of current NUMA node.
+ *
+ * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
+ *     Description
+ *             Grows headroom of packet associated to *skb* and adjusts the
+ *             offset of the MAC header accordingly, adding *len* bytes of
+ *             space. It automatically extends and reallocates memory as
+ *             required.
+ *
+ *             This helper can be used on a layer 3 *skb* to push a MAC header
+ *             for redirection into a layer 2 device.
+ *
+ *             All values for *flags* are reserved for future usage, and must
+ *             be left at zero.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
+ *     Description
+ *             Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
+ *             it is possible to use a negative value for *delta*. This helper
+ *             can be used to prepare the packet for pushing or popping
+ *             headers.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr)
+ *     Description
+ *             Copy a NUL terminated string from an unsafe address
+ *             *unsafe_ptr* to *dst*. The *size* should include the
+ *             terminating NUL byte. In case the string length is smaller than
+ *             *size*, the target is not padded with further NUL bytes. If the
+ *             string length is larger than *size*, just *size*-1 bytes are
+ *             copied and the last byte is set to NUL.
+ *
+ *             On success, the length of the copied string is returned. This
+ *             makes this helper useful in tracing programs for reading
+ *             strings, and more importantly to get its length at runtime. See
+ *             the following snippet:
+ *
+ *             ::
+ *
+ *                     SEC("kprobe/sys_open")
+ *                     void bpf_sys_open(struct pt_regs *ctx)
+ *                     {
+ *                             char buf[PATHLEN]; // PATHLEN is defined to 256
+ *                             int res = bpf_probe_read_str(buf, sizeof(buf),
+ *                                                          ctx->di);
+ *
+ *                             // Consume buf, for example push it to
+ *                             // userspace via bpf_perf_event_output(); we
+ *                             // can use res (the string length) as event
+ *                             // size, after checking its boundaries.
+ *                     }
+ *
+ *             In comparison, using **bpf_probe_read()** helper here instead
+ *             to read the string would require to estimate the length at
+ *             compile time, and would often result in copying more memory
+ *             than necessary.
+ *
+ *             Another useful use case is when parsing individual process
+ *             arguments or individual environment variables navigating
+ *             *current*\ **->mm->arg_start** and *current*\
+ *             **->mm->env_start**: using this helper and the return value,
+ *             one can quickly iterate at the right offset of the memory area.
+ *     Return
+ *             On success, the strictly positive length of the string,
+ *             including the trailing NUL character. On error, a negative
+ *             value.
+ *
+ * u64 bpf_get_socket_cookie(struct sk_buff *skb)
+ *     Description
+ *             If the **struct sk_buff** pointed by *skb* has a known socket,
+ *             retrieve the cookie (generated by the kernel) of this socket.
+ *             If no cookie has been set yet, generate a new cookie. Once
+ *             generated, the socket cookie remains stable for the life of the
+ *             socket. This helper can be useful for monitoring per socket
+ *             networking traffic statistics as it provides a unique socket
+ *             identifier per namespace.
+ *     Return
+ *             A 8-byte long non-decreasing number on success, or 0 if the
+ *             socket field is missing inside *skb*.
+ *
+ * u32 bpf_get_socket_uid(struct sk_buff *skb)
+ *     Return
+ *             The owner UID of the socket associated to *skb*. If the socket
+ *             is **NULL**, or if it is not a full socket (i.e. if it is a
+ *             time-wait or a request socket instead), **overflowuid** value
+ *             is returned (note that **overflowuid** might also be the actual
+ *             UID value for the socket).
+ *
+ * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
+ *     Description
+ *             Set the full hash for *skb* (set the field *skb*\ **->hash**)
+ *             to value *hash*.
+ *     Return
+ *             0
+ *
+ * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, 
char *optval, int optlen)
+ *     Description
+ *             Emulate a call to **setsockopt()** on the socket associated to
+ *             *bpf_socket*, which must be a full socket. The *level* at
+ *             which the option resides and the name *optname* of the option
+ *             must be specified, see **setsockopt(2)** for more information.
+ *             The option value of length *optlen* is pointed by *optval*.
+ *
+ *             This helper actually implements a subset of **setsockopt()**.
+ *             It supports the following *level*\ s:
+ *
+ *             * **SOL_SOCKET**, which supports the following *optname*\ s:
+ *               **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
+ *               **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
+ *             * **IPPROTO_TCP**, which supports the following *optname*\ s:
+ *               **TCP_CONGESTION**, **TCP_BPF_IW**,
+ *               **TCP_BPF_SNDCWND_CLAMP**.
+ *             * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
+ *             * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_skb_adjust_room(struct sk_buff *skb, u32 len_diff, u32 mode, u64 
flags)
+ *     Description
+ *             Grow or shrink the room for data in the packet associated to
+ *             *skb* by *len_diff*, and according to the selected *mode*.
+ *
+ *             There is a single supported mode at this time:
+ *
+ *             * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
+ *               (room space is added or removed below the layer 3 header).
+ *
+ *             All values for *flags* are reserved for future usage, and must
+ *             be left at zero.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
+ *     Description
+ *             Redirect the packet to the endpoint referenced by *map* at
+ *             index *key*. Depending on its type, this *map* can contain
+ *             references to net devices (for forwarding packets through other
+ *             ports), or to CPUs (for redirecting XDP frames to another CPU;
+ *             but this is only implemented for native XDP (with driver
+ *             support) as of this writing).
+ *
+ *             All values for *flags* are reserved for future usage, and must
+ *             be left at zero.
+ *
+ *             When used to redirect packets to net devices, this helper
+ *             provides a high performance increase over **bpf_redirect**\ ().
+ *             This is due to various implementation details of the underlying
+ *             mechanisms, one of which is the fact that **bpf_redirect_map**\
+ *             () tries to send packet as a "bulk" to the device.
+ *     Return
+ *             **XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
+ *
+ * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags)
+ *     Description
+ *             Redirect the packet to the socket referenced by *map* (of type
+ *             **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
+ *             egress interfaces can be used for redirection. The
+ *             **BPF_F_INGRESS** value in *flags* is used to make the
+ *             distinction (ingress path is selected if the flag is present,
+ *             egress path otherwise). This is the only flag supported for now.
+ *     Return
+ *             **SK_PASS** on success, or **SK_DROP** on error.
+ *
+ * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, 
void *key, u64 flags)
+ *     Description
+ *             Add an entry to, or update a *map* referencing sockets. The
+ *             *skops* is used as a new value for the entry associated to
+ *             *key*. *flags* is one of:
+ *
+ *             **BPF_NOEXIST**
+ *                     The entry for *key* must not exist in the map.
+ *             **BPF_EXIST**
+ *                     The entry for *key* must already exist in the map.
+ *             **BPF_ANY**
+ *                     No condition on the existence of the entry for *key*.
+ *
+ *             If the *map* has eBPF programs (parser and verdict), those will
+ *             be inherited by the socket being added. If the socket is
+ *             already attached to eBPF programs, this results in an error.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
+ *     Description
+ *             Adjust the address pointed by *xdp_md*\ **->data_meta** by
+ *             *delta* (which can be positive or negative). Note that this
+ *             operation modifies the address stored in *xdp_md*\ **->data**,
+ *             so the latter must be loaded only after the helper has been
+ *             called.
+ *
+ *             The use of *xdp_md*\ **->data_meta** is optional and programs
+ *             are not required to use it. The rationale is that when the
+ *             packet is processed with XDP (e.g. as DoS filter), it is
+ *             possible to push further meta data along with it before passing
+ *             to the stack, and to give the guarantee that an ingress eBPF
+ *             program attached as a TC classifier on the same device can pick
+ *             this up for further post-processing. Since TC works with socket
+ *             buffers, it remains possible to set from XDP the **mark** or
+ *             **priority** pointers, or other pointers for the socket buffer.
+ *             Having this scratch space generic and programmable allows for
+ *             more flexibility as the user is free to store whatever meta
+ *             data they need.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct 
bpf_perf_event_value *buf, u32 buf_size)
+ *     Description
+ *             Read the value of a perf event counter, and store it into *buf*
+ *             of size *buf_size*. This helper relies on a *map* of type
+ *             **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
+ *             counter is selected when *map* is updated with perf event file
+ *             descriptors. The *map* is an array whose size is the number of
+ *             available CPUs, and each cell contains a value relative to one
+ *             CPU. The value to retrieve is indicated by *flags*, that
+ *             contains the index of the CPU to look up, masked with
+ *             **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
+ *             **BPF_F_CURRENT_CPU** to indicate that the value for the
+ *             current CPU should be retrieved.
+ *
+ *             This helper behaves in a way close to
+ *             **bpf_perf_event_read**\ () helper, save that instead of
+ *             just returning the value observed, it fills the *buf*
+ *             structure. This allows for additional data to be retrieved: in
+ *             particular, the enabled and running times (in *buf*\
+ *             **->enabled** and *buf*\ **->running**, respectively) are
+ *             copied. In general, **bpf_perf_event_read_value**\ () is
+ *             recommended over **bpf_perf_event_read**\ (), which has some
+ *             ABI issues and provides fewer functionalities.
+ *
+ *             These values are interesting, because hardware PMU (Performance
+ *             Monitoring Unit) counters are limited resources. When there are
+ *             more PMU based perf events opened than available counters,
+ *             kernel will multiplex these events so each event gets certain
+ *             percentage (but not all) of the PMU time. In case that
+ *             multiplexing happens, the number of samples or counter value
+ *             will not reflect the case compared to when no multiplexing
+ *             occurs. This makes comparison between different runs difficult.
+ *             Typically, the counter value should be normalized before
+ *             comparing to other experiments. The usual normalization is done
+ *             as follows.
+ *
+ *             ::
+ *
+ *                     normalized_counter = counter * t_enabled / t_running
+ *
+ *             Where t_enabled is the time enabled for event and t_running is
+ *             the time running for event since last normalization. The
+ *             enabled and running times are accumulated since the perf event
+ *             open. To achieve scaling factor between two invocations of an
+ *             eBPF program, users can can use CPU id as the key (which is
+ *             typical for perf array usage model) to remember the previous
+ *             value and do the calculation inside the eBPF program.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct 
bpf_perf_event_value *buf, u32 buf_size)
+ *     Description
+ *             For en eBPF program attached to a perf event, retrieve the
+ *             value of the event counter associated to *ctx* and store it in
+ *             the structure pointed by *buf* and of size *buf_size*. Enabled
+ *             and running times are also stored in the structure (see
+ *             description of helper **bpf_perf_event_read_value**\ () for
+ *             more details).
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, 
char *optval, int optlen)
+ *     Description
+ *             Emulate a call to **getsockopt()** on the socket associated to
+ *             *bpf_socket*, which must be a full socket. The *level* at
+ *             which the option resides and the name *optname* of the option
+ *             must be specified, see **getsockopt(2)** for more information.
+ *             The retrieved value is stored in the structure pointed by
+ *             *opval* and of length *optlen*.
+ *
+ *             This helper actually implements a subset of **getsockopt()**.
+ *             It supports the following *level*\ s:
+ *
+ *             * **IPPROTO_TCP**, which supports *optname*
+ *               **TCP_CONGESTION**.
+ *             * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
+ *             * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_override_return(struct pt_reg *regs, u64 rc)
+ *     Description
+ *             Used for error injection, this helper uses kprobes to override
+ *             the return value of the probed function, and to set it to *rc*.
+ *             The first argument is the context *regs* on which the kprobe
+ *             works.
+ *
+ *             This helper works by setting setting the PC (program counter)
+ *             to an override function which is run in place of the original
+ *             probed function. This means the probed function is not run at
+ *             all. The replacement function just returns with the required
+ *             value.
+ *
+ *             This helper has security implications, and thus is subject to
+ *             restrictions. It is only available if the kernel was compiled
+ *             with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
+ *             option, and in this case it only works on functions tagged with
+ *             **ALLOW_ERROR_INJECTION** in the kernel code.
+ *
+ *             Also, the helper is only available for the architectures having
+ *             the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
+ *             x86 architecture is the only one to support this feature.
+ *     Return
+ *             0
+ *
+ * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
+ *     Description
+ *             Attempt to set the value of the **bpf_sock_ops_cb_flags** field
+ *             for the full TCP socket associated to *bpf_sock_ops* to
+ *             *argval*.
+ *
+ *             The primary use of this field is to determine if there should
+ *             be calls to eBPF programs of type
+ *             **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
+ *             code. A program of the same type can change its value, per
+ *             connection and as necessary, when the connection is
+ *             established. This field is directly accessible for reading, but
+ *             this helper must be used for updates in order to return an
+ *             error if an eBPF program tries to set a callback that is not
+ *             supported in the current kernel.
+ *
+ *             The supported callback values that *argval* can combine are:
+ *
+ *             * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
+ *             * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
+ *             * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
+ *
+ *             Here are some examples of where one could call such eBPF
+ *             program:
+ *
+ *             * When RTO fires.
+ *             * When a packet is retransmitted.
+ *             * When the connection terminates.
+ *             * When a packet is sent.
+ *             * When a packet is received.
+ *     Return
+ *             Code **-EINVAL** if the socket is not a full TCP socket;
+ *             otherwise, a positive number containing the bits that could not
+ *             be set is returned (which comes down to 0 if all bits were set
+ *             as required).
+ *
+ * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 
key, u64 flags)
+ *     Description
+ *             This helper is used in programs implementing policies at the
+ *             socket level. If the message *msg* is allowed to pass (i.e. if
+ *             the verdict eBPF program returns **SK_PASS**), redirect it to
+ *             the socket referenced by *map* (of type
+ *             **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
+ *             egress interfaces can be used for redirection. The
+ *             **BPF_F_INGRESS** value in *flags* is used to make the
+ *             distinction (ingress path is selected if the flag is present,
+ *             egress path otherwise). This is the only flag supported for now.
+ *     Return
+ *             **SK_PASS** on success, or **SK_DROP** on error.
+ *
+ * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
+ *     Description
+ *             For socket policies, apply the verdict of the eBPF program to
+ *             the next *bytes* (number of bytes) of message *msg*.
+ *
+ *             For example, this helper can be used in the following cases:
+ *
+ *             * A single **sendmsg**\ () or **sendfile**\ () system call
+ *               contains multiple logical messages that the eBPF program is
+ *               supposed to read and for which it should apply a verdict.
+ *             * An eBPF program only cares to read the first *bytes* of a
+ *               *msg*. If the message has a large payload, then setting up
+ *               and calling the eBPF program repeatedly for all bytes, even
+ *               though the verdict is already known, would create unnecessary
+ *               overhead.
+ *
+ *             When called from within an eBPF program, the helper sets a
+ *             counter internal to the BPF infrastructure, that is used to
+ *             apply the last verdict to the next *bytes*. If *bytes* is
+ *             smaller than the current data being processed from a
+ *             **sendmsg**\ () or **sendfile**\ () system call, the first
+ *             *bytes* will be sent and the eBPF program will be re-run with
+ *             the pointer for start of data pointing to byte number *bytes*
+ *             **+ 1**. If *bytes* is larger than the current data being
+ *             processed, then the eBPF verdict will be applied to multiple
+ *             **sendmsg**\ () or **sendfile**\ () calls until *bytes* are
+ *             consumed.
+ *
+ *             Note that if a socket closes with the internal counter holding
+ *             a non-zero value, this is not a problem because data is not
+ *             being buffered for *bytes* and is sent as it is received.
+ *     Return
+ *             0
+ *
+ * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
+ *     Description
+ *             For socket policies, prevent the execution of the verdict eBPF
+ *             program for message *msg* until *bytes* (byte number) have been
+ *             accumulated.
+ *
+ *             This can be used when one needs a specific number of bytes
+ *             before a verdict can be assigned, even if the data spans
+ *             multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
+ *             case would be a user calling **sendmsg**\ () repeatedly with
+ *             1-byte long message segments. Obviously, this is bad for
+ *             performance, but it is still valid. If the eBPF program needs
+ *             *bytes* bytes to validate a header, this helper can be used to
+ *             prevent the eBPF program to be called again until *bytes* have
+ *             been accumulated.
+ *     Return
+ *             0
+ *
+ * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 
flags)
+ *     Description
+ *             For socket policies, pull in non-linear data from user space
+ *             for *msg* and set pointers *msg*\ **->data** and *msg*\
+ *             **->data_end** to *start* and *end* bytes offsets into *msg*,
+ *             respectively.
+ *
+ *             If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
+ *             *msg* it can only parse data that the (**data**, **data_end**)
+ *             pointers have already consumed. For **sendmsg**\ () hooks this
+ *             is likely the first scatterlist element. But for calls relying
+ *             on the **sendpage** handler (e.g. **sendfile**\ ()) this will
+ *             be the range (**0**, **0**) because the data is shared with
+ *             user space and by default the objective is to avoid allowing
+ *             user space to modify data while (or after) eBPF verdict is
+ *             being decided. This helper can be used to pull in data and to
+ *             set the start and end pointer to given values. Data will be
+ *             copied if necessary (i.e. if data was not linear and if start
+ *             and end pointers do not point to the same chunk).
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *
+ *             All values for *flags* are reserved for future usage, and must
+ *             be left at zero.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
+ *     Description
+ *             Bind the socket associated to *ctx* to the address pointed by
+ *             *addr*, of length *addr_len*. This allows for making outgoing
+ *             connection from the desired IP address, which can be useful for
+ *             example when all processes inside a cgroup should use one
+ *             single IP address on a host that has multiple IP configured.
+ *
+ *             This helper works for IPv4 and IPv6, TCP and UDP sockets. The
+ *             domain (*addr*\ **->sa_family**) must be **AF_INET** (or
+ *             **AF_INET6**). Looking for a free port to bind to can be
+ *             expensive, therefore binding to port is not permitted by the
+ *             helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
+ *             must be set to zero.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
+ *     Description
+ *             Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
+ *             only possible to shrink the packet as of this writing,
+ *             therefore *delta* must be a negative integer.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct 
bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
+ *     Description
+ *             Retrieve the XFRM state (IP transform framework, see also
+ *             **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
+ *
+ *             The retrieved value is stored in the **struct bpf_xfrm_state**
+ *             pointed by *xfrm_state* and of length *size*.
+ *
+ *             All values for *flags* are reserved for future usage, and must
+ *             be left at zero.
+ *
+ *             This helper is available only if the kernel was compiled with
+ *             **CONFIG_XFRM** configuration option.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags)
+ *     Description
+ *             Return a user or a kernel stack in bpf program provided buffer.
+ *             To achieve this, the helper needs *ctx*, which is a pointer
+ *             to the context on which the tracing program is executed.
+ *             To store the stacktrace, the bpf program provides *buf* with
+ *             a nonnegative *size*.
+ *
+ *             The last argument, *flags*, holds the number of stack frames to
+ *             skip (from 0 to 255), masked with
+ *             **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
+ *             the following flags:
+ *
+ *             **BPF_F_USER_STACK**
+ *                     Collect a user space stack instead of a kernel stack.
+ *             **BPF_F_USER_BUILD_ID**
+ *                     Collect buildid+offset instead of ips for user stack,
+ *                     only valid if **BPF_F_USER_STACK** is also specified.
+ *
+ *             **bpf_get_stack**\ () can collect up to
+ *             **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
+ *             to sufficient large buffer size. Note that
+ *             this limit can be controlled with the **sysctl** program, and
+ *             that it should be manually increased in order to profile long
+ *             user stacks (such as stacks for Java programs). To do so, use:
+ *
+ *             ::
+ *
+ *                     # sysctl kernel.perf_event_max_stack=<new value>
+ *     Return
+ *             A non-negative value equal to or less than *size* on success,
+ *             or a negative error in case of failure.
+ *
+ * int skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void 
*to, u32 len, u32 start_header)
+ *     Description
+ *             This helper is similar to **bpf_skb_load_bytes**\ () in that
+ *             it provides an easy way to load *len* bytes from *offset*
+ *             from the packet associated to *skb*, into the buffer pointed
+ *             by *to*. The difference to **bpf_skb_load_bytes**\ () is that
+ *             a fifth argument *start_header* exists in order to select a
+ *             base offset to start from. *start_header* can be one of:
+ *
+ *             **BPF_HDR_START_MAC**
+ *                     Base offset to load data from is *skb*'s mac header.
+ *             **BPF_HDR_START_NET**
+ *                     Base offset to load data from is *skb*'s network header.
+ *
+ *             In general, "direct packet access" is the preferred method to
+ *             access packet data, however, this helper is in particular useful
+ *             in socket filters where *skb*\ **->data** does not always point
+ *             to the start of the mac header and where "direct packet access"
+ *             is not available.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 
flags)
+ *     Description
+ *             Do FIB lookup in kernel tables using parameters in *params*.
+ *             If lookup is successful and result shows packet is to be
+ *             forwarded, the neighbor tables are searched for the nexthop.
+ *             If successful (ie., FIB lookup shows forwarding and nexthop
+ *             is resolved), the nexthop address is returned in ipv4_dst
+ *             or ipv6_dst based on family, smac is set to mac address of
+ *             egress device, dmac is set to nexthop mac address, rt_metric
+ *             is set to metric from route (IPv4/IPv6 only).
+ *
+ *             *plen* argument is the size of the passed in struct.
+ *             *flags* argument can be a combination of one or more of the
+ *             following values:
+ *
+ *             **BPF_FIB_LOOKUP_DIRECT**
+ *                     Do a direct table lookup vs full lookup using FIB
+ *                     rules.
+ *             **BPF_FIB_LOOKUP_OUTPUT**
+ *                     Perform lookup from an egress perspective (default is
+ *                     ingress).
+ *
+ *             *ctx* is either **struct xdp_md** for XDP programs or
+ *             **struct sk_buff** tc cls_act programs.
+ *     Return
+ *             Egress device index on success, 0 if packet needs to continue
+ *             up the stack for further processing or a negative error in case
+ *             of failure.
+ *
+ * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map 
*map, void *key, u64 flags)
+ *     Description
+ *             Add an entry to, or update a sockhash *map* referencing sockets.
+ *             The *skops* is used as a new value for the entry associated to
+ *             *key*. *flags* is one of:
+ *
+ *             **BPF_NOEXIST**
+ *                     The entry for *key* must not exist in the map.
+ *             **BPF_EXIST**
+ *                     The entry for *key* must already exist in the map.
+ *             **BPF_ANY**
+ *                     No condition on the existence of the entry for *key*.
+ *
+ *             If the *map* has eBPF programs (parser and verdict), those will
+ *             be inherited by the socket being added. If the socket is
+ *             already attached to eBPF programs, this results in an error.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, 
void *key, u64 flags)
+ *     Description
+ *             This helper is used in programs implementing policies at the
+ *             socket level. If the message *msg* is allowed to pass (i.e. if
+ *             the verdict eBPF program returns **SK_PASS**), redirect it to
+ *             the socket referenced by *map* (of type
+ *             **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
+ *             egress interfaces can be used for redirection. The
+ *             **BPF_F_INGRESS** value in *flags* is used to make the
+ *             distinction (ingress path is selected if the flag is present,
+ *             egress path otherwise). This is the only flag supported for now.
+ *     Return
+ *             **SK_PASS** on success, or **SK_DROP** on error.
+ *
+ * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void 
*key, u64 flags)
+ *     Description
+ *             This helper is used in programs implementing policies at the
+ *             skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
+ *             if the verdeict eBPF program returns **SK_PASS**), redirect it
+ *             to the socket referenced by *map* (of type
+ *             **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
+ *             egress interfaces can be used for redirection. The
+ *             **BPF_F_INGRESS** value in *flags* is used to make the
+ *             distinction (ingress path is selected if the flag is present,
+ *             egress otherwise). This is the only flag supported for now.
+ *     Return
+ *             **SK_PASS** on success, or **SK_DROP** on error.
+ *
+ * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
+ *     Description
+ *             Encapsulate the packet associated to *skb* within a Layer 3
+ *             protocol header. This header is provided in the buffer at
+ *             address *hdr*, with *len* its size in bytes. *type* indicates
+ *             the protocol of the header and can be one of:
+ *
+ *             **BPF_LWT_ENCAP_SEG6**
+ *                     IPv6 encapsulation with Segment Routing Header
+ *                     (**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
+ *                     the IPv6 header is computed by the kernel.
+ *             **BPF_LWT_ENCAP_SEG6_INLINE**
+ *                     Only works if *skb* contains an IPv6 packet. Insert a
+ *                     Segment Routing Header (**struct ipv6_sr_hdr**) inside
+ *                     the IPv6 header.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void 
*from, u32 len)
+ *     Description
+ *             Store *len* bytes from address *from* into the packet
+ *             associated to *skb*, at *offset*. Only the flags, tag and TLVs
+ *             inside the outermost IPv6 Segment Routing Header can be
+ *             modified through this helper.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
+ *     Description
+ *             Adjust the size allocated to TLVs in the outermost IPv6
+ *             Segment Routing Header contained in the packet associated to
+ *             *skb*, at position *offset* by *delta* bytes. Only offsets
+ *             after the segments are accepted. *delta* can be as well
+ *             positive (growing) as negative (shrinking).
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 
param_len)
+ *     Description
+ *             Apply an IPv6 Segment Routing action of type *action* to the
+ *             packet associated to *skb*. Each action takes a parameter
+ *             contained at address *param*, and of length *param_len* bytes.
+ *             *action* can be one of:
+ *
+ *             **SEG6_LOCAL_ACTION_END_X**
+ *                     End.X action: Endpoint with Layer-3 cross-connect.
+ *                     Type of *param*: **struct in6_addr**.
+ *             **SEG6_LOCAL_ACTION_END_T**
+ *                     End.T action: Endpoint with specific IPv6 table lookup.
+ *                     Type of *param*: **int**.
+ *             **SEG6_LOCAL_ACTION_END_B6**
+ *                     End.B6 action: Endpoint bound to an SRv6 policy.
+ *                     Type of param: **struct ipv6_sr_hdr**.
+ *             **SEG6_LOCAL_ACTION_END_B6_ENCAP**
+ *                     End.B6.Encap action: Endpoint bound to an SRv6
+ *                     encapsulation policy.
+ *                     Type of param: **struct ipv6_sr_hdr**.
+ *
+ *             A call to this helper is susceptible to change the underlaying
+ *             packet buffer. Therefore, at load time, all checks on pointers
+ *             previously done by the verifier are invalidated and must be
+ *             performed again, if the helper is used in combination with
+ *             direct packet access.
+ *     Return
+ *             0 on success, or a negative error in case of failure.
+ *
+ * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
+ *     Description
+ *             This helper is used in programs implementing IR decoding, to
+ *             report a successfully decoded key press with *scancode*,
+ *             *toggle* value in the given *protocol*. The scancode will be
+ *             translated to a keycode using the rc keymap, and reported as
+ *             an input key down event. After a period a key up event is
+ *             generated. This period can be extended by calling either
+ *             **bpf_rc_keydown** () again with the same values, or calling
+ *             **bpf_rc_repeat** ().
+ *
+ *             Some protocols include a toggle bit, in case the button was
+ *             released and pressed again between consecutive scancodes.
+ *
+ *             The *ctx* should point to the lirc sample as passed into
+ *             the program.
+ *
+ *             The *protocol* is the decoded protocol number (see
+ *             **enum rc_proto** for some predefined values).
+ *
+ *             This helper is only available is the kernel was compiled with
+ *             the **CONFIG_BPF_LIRC_MODE2** configuration option set to
+ *             "**y**".
+ *
+ *     Return
+ *             0
+ *
+ * int bpf_rc_repeat(void *ctx)
+ *     Description
+ *             This helper is used in programs implementing IR decoding, to
+ *             report a successfully decoded repeat key message. This delays
+ *             the generation of a key up event for previously generated
+ *             key down event.
+ *
+ *             Some IR protocols like NEC have a special IR message for
+ *             repeating last button, for when a button is held down.
+ *
+ *             The *ctx* should point to the lirc sample as passed into
+ *             the program.
+ *
+ *             This helper is only available is the kernel was compiled with
+ *             the **CONFIG_BPF_LIRC_MODE2** configuration option set to
+ *             "**y**".
+ *
+ *     Return
+ *             0
+ *
+ * uint64_t bpf_skb_cgroup_id(struct sk_buff *skb)
+ *     Description
+ *             Return the cgroup v2 id of the socket associated with the *skb*.
+ *             This is roughly similar to the **bpf_get_cgroup_classid**\ ()
+ *             helper for cgroup v1 by providing a tag resp. identifier that
+ *             can be matched on or used for map lookups e.g. to implement
+ *             policy. The cgroup v2 id of a given path in the hierarchy is
+ *             exposed in user space through the f_handle API in order to get
+ *             to the same 64-bit id.
+ *
+ *             This helper can be used on TC egress path, but not on ingress,
+ *             and is available only if the kernel was compiled with the
+ *             **CONFIG_SOCK_CGROUP_DATA** configuration option.
+ *     Return
+ *             The id is returned or 0 in case the id could not be retrieved.
+ *
+ * u64 bpf_get_current_cgroup_id(void)
+ *     Return
+ *             A 64-bit integer containing the current cgroup id based
+ *             on the cgroup within which the current task is running.
+ */
+#define __BPF_FUNC_MAPPER(FN)          \
+       FN(unspec),                     \
+       FN(map_lookup_elem),            \
+       FN(map_update_elem),            \
+       FN(map_delete_elem),            \
+       FN(probe_read),                 \
+       FN(ktime_get_ns),               \
+       FN(trace_printk),               \
+       FN(get_prandom_u32),            \
+       FN(get_smp_processor_id),       \
+       FN(skb_store_bytes),            \
+       FN(l3_csum_replace),            \
+       FN(l4_csum_replace),            \
+       FN(tail_call),                  \
+       FN(clone_redirect),             \
+       FN(get_current_pid_tgid),       \
+       FN(get_current_uid_gid),        \
+       FN(get_current_comm),           \
+       FN(get_cgroup_classid),         \
+       FN(skb_vlan_push),              \
+       FN(skb_vlan_pop),               \
+       FN(skb_get_tunnel_key),         \
+       FN(skb_set_tunnel_key),         \
+       FN(perf_event_read),            \
+       FN(redirect),                   \
+       FN(get_route_realm),            \
+       FN(perf_event_output),          \
+       FN(skb_load_bytes),             \
+       FN(get_stackid),                \
+       FN(csum_diff),                  \
+       FN(skb_get_tunnel_opt),         \
+       FN(skb_set_tunnel_opt),         \
+       FN(skb_change_proto),           \
+       FN(skb_change_type),            \
+       FN(skb_under_cgroup),           \
+       FN(get_hash_recalc),            \
+       FN(get_current_task),           \
+       FN(probe_write_user),           \
+       FN(current_task_under_cgroup),  \
+       FN(skb_change_tail),            \
+       FN(skb_pull_data),              \
+       FN(csum_update),                \
+       FN(set_hash_invalid),           \
+       FN(get_numa_node_id),           \
+       FN(skb_change_head),            \
+       FN(xdp_adjust_head),            \
+       FN(probe_read_str),             \
+       FN(get_socket_cookie),          \
+       FN(get_socket_uid),             \
+       FN(set_hash),                   \
+       FN(setsockopt),                 \
+       FN(skb_adjust_room),            \
+       FN(redirect_map),               \
+       FN(sk_redirect_map),            \
+       FN(sock_map_update),            \
+       FN(xdp_adjust_meta),            \
+       FN(perf_event_read_value),      \
+       FN(perf_prog_read_value),       \
+       FN(getsockopt),                 \
+       FN(override_return),            \
+       FN(sock_ops_cb_flags_set),      \
+       FN(msg_redirect_map),           \
+       FN(msg_apply_bytes),            \
+       FN(msg_cork_bytes),             \
+       FN(msg_pull_data),              \
+       FN(bind),                       \
+       FN(xdp_adjust_tail),            \
+       FN(skb_get_xfrm_state),         \
+       FN(get_stack),                  \
+       FN(skb_load_bytes_relative),    \
+       FN(fib_lookup),                 \
+       FN(sock_hash_update),           \
+       FN(msg_redirect_hash),          \
+       FN(sk_redirect_hash),           \
+       FN(lwt_push_encap),             \
+       FN(lwt_seg6_store_bytes),       \
+       FN(lwt_seg6_adjust_srh),        \
+       FN(lwt_seg6_action),            \
+       FN(rc_repeat),                  \
+       FN(rc_keydown),                 \
+       FN(skb_cgroup_id),              \
+       FN(get_current_cgroup_id),
+
+/* integer value in 'imm' field of BPF_CALL instruction selects which helper
+ * function eBPF program intends to call
+ */
+#define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
+enum bpf_func_id {
+       __BPF_FUNC_MAPPER(__BPF_ENUM_FN)
+       __BPF_FUNC_MAX_ID,
+};
+#undef __BPF_ENUM_FN
+
+/* All flags used by eBPF helper functions, placed here. */
+
+/* BPF_FUNC_skb_store_bytes flags. */
+#define BPF_F_RECOMPUTE_CSUM           (1ULL << 0)
+#define BPF_F_INVALIDATE_HASH          (1ULL << 1)
+
+/* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
+ * First 4 bits are for passing the header field size.
+ */
+#define BPF_F_HDR_FIELD_MASK           0xfULL
+
+/* BPF_FUNC_l4_csum_replace flags. */
+#define BPF_F_PSEUDO_HDR               (1ULL << 4)
+#define BPF_F_MARK_MANGLED_0           (1ULL << 5)
+#define BPF_F_MARK_ENFORCE             (1ULL << 6)
+
+/* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
+#define BPF_F_INGRESS                  (1ULL << 0)
+
+/* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
+#define BPF_F_TUNINFO_IPV6             (1ULL << 0)
+
+/* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
+#define BPF_F_SKIP_FIELD_MASK          0xffULL
+#define BPF_F_USER_STACK               (1ULL << 8)
+/* flags used by BPF_FUNC_get_stackid only. */
+#define BPF_F_FAST_STACK_CMP           (1ULL << 9)
+#define BPF_F_REUSE_STACKID            (1ULL << 10)
+/* flags used by BPF_FUNC_get_stack only. */
+#define BPF_F_USER_BUILD_ID            (1ULL << 11)
+
+/* BPF_FUNC_skb_set_tunnel_key flags. */
+#define BPF_F_ZERO_CSUM_TX             (1ULL << 1)
+#define BPF_F_DONT_FRAGMENT            (1ULL << 2)
+#define BPF_F_SEQ_NUMBER               (1ULL << 3)
+
+/* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
+ * BPF_FUNC_perf_event_read_value flags.
+ */
+#define BPF_F_INDEX_MASK               0xffffffffULL
+#define BPF_F_CURRENT_CPU              BPF_F_INDEX_MASK
+/* BPF_FUNC_perf_event_output for sk_buff input context. */
+#define BPF_F_CTXLEN_MASK              (0xfffffULL << 32)
+
+/* Mode for BPF_FUNC_skb_adjust_room helper. */
+enum bpf_adj_room_mode {
+       BPF_ADJ_ROOM_NET,
+};
+
+/* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
+enum bpf_hdr_start_off {
+       BPF_HDR_START_MAC,
+       BPF_HDR_START_NET,
+};
+
+/* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
+enum bpf_lwt_encap_mode {
+       BPF_LWT_ENCAP_SEG6,
+       BPF_LWT_ENCAP_SEG6_INLINE
+};
+
+/* user accessible mirror of in-kernel sk_buff.
+ * new fields can only be added to the end of this structure
+ */
+struct __sk_buff {
+       __u32 len;
+       __u32 pkt_type;
+       __u32 mark;
+       __u32 queue_mapping;
+       __u32 protocol;
+       __u32 vlan_present;
+       __u32 vlan_tci;
+       __u32 vlan_proto;
+       __u32 priority;
+       __u32 ingress_ifindex;
+       __u32 ifindex;
+       __u32 tc_index;
+       __u32 cb[5];
+       __u32 hash;
+       __u32 tc_classid;
+       __u32 data;
+       __u32 data_end;
+       __u32 napi_id;
+
+       /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
+       __u32 family;
+       __u32 remote_ip4;       /* Stored in network byte order */
+       __u32 local_ip4;        /* Stored in network byte order */
+       __u32 remote_ip6[4];    /* Stored in network byte order */
+       __u32 local_ip6[4];     /* Stored in network byte order */
+       __u32 remote_port;      /* Stored in network byte order */
+       __u32 local_port;       /* stored in host byte order */
+       /* ... here. */
+
+       __u32 data_meta;
+};
+
+struct bpf_tunnel_key {
+       __u32 tunnel_id;
+       union {
+               __u32 remote_ipv4;
+               __u32 remote_ipv6[4];
+       };
+       __u8 tunnel_tos;
+       __u8 tunnel_ttl;
+       __u16 tunnel_ext;       /* Padding, future use. */
+       __u32 tunnel_label;
+};
+
+/* user accessible mirror of in-kernel xfrm_state.
+ * new fields can only be added to the end of this structure
+ */
+struct bpf_xfrm_state {
+       __u32 reqid;
+       __u32 spi;      /* Stored in network byte order */
+       __u16 family;
+       __u16 ext;      /* Padding, future use. */
+       union {
+               __u32 remote_ipv4;      /* Stored in network byte order */
+               __u32 remote_ipv6[4];   /* Stored in network byte order */
+       };
+};
+
+/* Generic BPF return codes which all BPF program types may support.
+ * The values are binary compatible with their TC_ACT_* counter-part to
+ * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
+ * programs.
+ *
+ * XDP is handled seprately, see XDP_*.
+ */
+enum bpf_ret_code {
+       BPF_OK = 0,
+       /* 1 reserved */
+       BPF_DROP = 2,
+       /* 3-6 reserved */
+       BPF_REDIRECT = 7,
+       /* >127 are reserved for prog type specific return codes */
+};
+
+struct bpf_sock {
+       __u32 bound_dev_if;
+       __u32 family;
+       __u32 type;
+       __u32 protocol;
+       __u32 mark;
+       __u32 priority;
+       __u32 src_ip4;          /* Allows 1,2,4-byte read.
+                                * Stored in network byte order.
+                                */
+       __u32 src_ip6[4];       /* Allows 1,2,4-byte read.
+                                * Stored in network byte order.
+                                */
+       __u32 src_port;         /* Allows 4-byte read.
+                                * Stored in host byte order
+                                */
+};
+
+#define XDP_PACKET_HEADROOM 256
+
+/* User return codes for XDP prog type.
+ * A valid XDP program must return one of these defined values. All other
+ * return codes are reserved for future use. Unknown return codes will
+ * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
+ */
+enum xdp_action {
+       XDP_ABORTED = 0,
+       XDP_DROP,
+       XDP_PASS,
+       XDP_TX,
+       XDP_REDIRECT,
+};
+
+/* user accessible metadata for XDP packet hook
+ * new fields must be added to the end of this structure
+ */
+struct xdp_md {
+       __u32 data;
+       __u32 data_end;
+       __u32 data_meta;
+       /* Below access go through struct xdp_rxq_info */
+       __u32 ingress_ifindex; /* rxq->dev->ifindex */
+       __u32 rx_queue_index;  /* rxq->queue_index  */
+};
+
+enum sk_action {
+       SK_DROP = 0,
+       SK_PASS,
+};
+
+/* user accessible metadata for SK_MSG packet hook, new fields must
+ * be added to the end of this structure
+ */
+struct sk_msg_md {
+       void *data;
+       void *data_end;
+
+       __u32 family;
+       __u32 remote_ip4;       /* Stored in network byte order */
+       __u32 local_ip4;        /* Stored in network byte order */
+       __u32 remote_ip6[4];    /* Stored in network byte order */
+       __u32 local_ip6[4];     /* Stored in network byte order */
+       __u32 remote_port;      /* Stored in network byte order */
+       __u32 local_port;       /* stored in host byte order */
+};
+
+#define BPF_TAG_SIZE   8
+
+struct bpf_prog_info {
+       __u32 type;
+       __u32 id;
+       __u8  tag[BPF_TAG_SIZE];
+       __u32 jited_prog_len;
+       __u32 xlated_prog_len;
+       __aligned_u64 jited_prog_insns;
+       __aligned_u64 xlated_prog_insns;
+       __u64 load_time;        /* ns since boottime */
+       __u32 created_by_uid;
+       __u32 nr_map_ids;
+       __aligned_u64 map_ids;
+       char name[BPF_OBJ_NAME_LEN];
+       __u32 ifindex;
+       __u32 gpl_compatible:1;
+       __u64 netns_dev;
+       __u64 netns_ino;
+       __u32 nr_jited_ksyms;
+       __u32 nr_jited_func_lens;
+       __aligned_u64 jited_ksyms;
+       __aligned_u64 jited_func_lens;
+} __attribute__((aligned(8)));
+
+struct bpf_map_info {
+       __u32 type;
+       __u32 id;
+       __u32 key_size;
+       __u32 value_size;
+       __u32 max_entries;
+       __u32 map_flags;
+       char  name[BPF_OBJ_NAME_LEN];
+       __u32 ifindex;
+       __u32 :32;
+       __u64 netns_dev;
+       __u64 netns_ino;
+       __u32 btf_id;
+       __u32 btf_key_type_id;
+       __u32 btf_value_type_id;
+} __attribute__((aligned(8)));
+
+struct bpf_btf_info {
+       __aligned_u64 btf;
+       __u32 btf_size;
+       __u32 id;
+} __attribute__((aligned(8)));
+
+/* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
+ * by user and intended to be used by socket (e.g. to bind to, depends on
+ * attach attach type).
+ */
+struct bpf_sock_addr {
+       __u32 user_family;      /* Allows 4-byte read, but no write. */
+       __u32 user_ip4;         /* Allows 1,2,4-byte read and 4-byte write.
+                                * Stored in network byte order.
+                                */
+       __u32 user_ip6[4];      /* Allows 1,2,4-byte read an 4-byte write.
+                                * Stored in network byte order.
+                                */
+       __u32 user_port;        /* Allows 4-byte read and write.
+                                * Stored in network byte order
+                                */
+       __u32 family;           /* Allows 4-byte read, but no write */
+       __u32 type;             /* Allows 4-byte read, but no write */
+       __u32 protocol;         /* Allows 4-byte read, but no write */
+       __u32 msg_src_ip4;      /* Allows 1,2,4-byte read an 4-byte write.
+                                * Stored in network byte order.
+                                */
+       __u32 msg_src_ip6[4];   /* Allows 1,2,4-byte read an 4-byte write.
+                                * Stored in network byte order.
+                                */
+};
+
+/* User bpf_sock_ops struct to access socket values and specify request ops
+ * and their replies.
+ * Some of this fields are in network (bigendian) byte order and may need
+ * to be converted before use (bpf_ntohl() defined in 
samples/bpf/bpf_endian.h).
+ * New fields can only be added at the end of this structure
+ */
+struct bpf_sock_ops {
+       __u32 op;
+       union {
+               __u32 args[4];          /* Optionally passed to bpf program */
+               __u32 reply;            /* Returned by bpf program          */
+               __u32 replylong[4];     /* Optionally returned by bpf prog  */
+       };
+       __u32 family;
+       __u32 remote_ip4;       /* Stored in network byte order */
+       __u32 local_ip4;        /* Stored in network byte order */
+       __u32 remote_ip6[4];    /* Stored in network byte order */
+       __u32 local_ip6[4];     /* Stored in network byte order */
+       __u32 remote_port;      /* Stored in network byte order */
+       __u32 local_port;       /* stored in host byte order */
+       __u32 is_fullsock;      /* Some TCP fields are only valid if
+                                * there is a full socket. If not, the
+                                * fields read as zero.
+                                */
+       __u32 snd_cwnd;
+       __u32 srtt_us;          /* Averaged RTT << 3 in usecs */
+       __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
+       __u32 state;
+       __u32 rtt_min;
+       __u32 snd_ssthresh;
+       __u32 rcv_nxt;
+       __u32 snd_nxt;
+       __u32 snd_una;
+       __u32 mss_cache;
+       __u32 ecn_flags;
+       __u32 rate_delivered;
+       __u32 rate_interval_us;
+       __u32 packets_out;
+       __u32 retrans_out;
+       __u32 total_retrans;
+       __u32 segs_in;
+       __u32 data_segs_in;
+       __u32 segs_out;
+       __u32 data_segs_out;
+       __u32 lost_out;
+       __u32 sacked_out;
+       __u32 sk_txhash;
+       __u64 bytes_received;
+       __u64 bytes_acked;
+};
+
+/* Definitions for bpf_sock_ops_cb_flags */
+#define BPF_SOCK_OPS_RTO_CB_FLAG       (1<<0)
+#define BPF_SOCK_OPS_RETRANS_CB_FLAG   (1<<1)
+#define BPF_SOCK_OPS_STATE_CB_FLAG     (1<<2)
+#define BPF_SOCK_OPS_ALL_CB_FLAGS       0x7            /* Mask of all currently
+                                                        * supported cb flags
+                                                        */
+
+/* List of known BPF sock_ops operators.
+ * New entries can only be added at the end
+ */
+enum {
+       BPF_SOCK_OPS_VOID,
+       BPF_SOCK_OPS_TIMEOUT_INIT,      /* Should return SYN-RTO value to use or
+                                        * -1 if default value should be used
+                                        */
+       BPF_SOCK_OPS_RWND_INIT,         /* Should return initial advertized
+                                        * window (in packets) or -1 if default
+                                        * value should be used
+                                        */
+       BPF_SOCK_OPS_TCP_CONNECT_CB,    /* Calls BPF program right before an
+                                        * active connection is initialized
+                                        */
+       BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,     /* Calls BPF program when an
+                                                * active connection is
+                                                * established
+                                                */
+       BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,    /* Calls BPF program when a
+                                                * passive connection is
+                                                * established
+                                                */
+       BPF_SOCK_OPS_NEEDS_ECN,         /* If connection's congestion control
+                                        * needs ECN
+                                        */
+       BPF_SOCK_OPS_BASE_RTT,          /* Get base RTT. The correct value is
+                                        * based on the path and may be
+                                        * dependent on the congestion control
+                                        * algorithm. In general it indicates
+                                        * a congestion threshold. RTTs above
+                                        * this indicate congestion
+                                        */
+       BPF_SOCK_OPS_RTO_CB,            /* Called when an RTO has triggered.
+                                        * Arg1: value of icsk_retransmits
+                                        * Arg2: value of icsk_rto
+                                        * Arg3: whether RTO has expired
+                                        */
+       BPF_SOCK_OPS_RETRANS_CB,        /* Called when skb is retransmitted.
+                                        * Arg1: sequence number of 1st byte
+                                        * Arg2: # segments
+                                        * Arg3: return value of
+                                        *       tcp_transmit_skb (0 => success)
+                                        */
+       BPF_SOCK_OPS_STATE_CB,          /* Called when TCP changes state.
+                                        * Arg1: old_state
+                                        * Arg2: new_state
+                                        */
+};
+
+/* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
+ * changes between the TCP and BPF versions. Ideally this should never happen.
+ * If it does, we need to add code to convert them before calling
+ * the BPF sock_ops function.
+ */
+enum {
+       BPF_TCP_ESTABLISHED = 1,
+       BPF_TCP_SYN_SENT,
+       BPF_TCP_SYN_RECV,
+       BPF_TCP_FIN_WAIT1,
+       BPF_TCP_FIN_WAIT2,
+       BPF_TCP_TIME_WAIT,
+       BPF_TCP_CLOSE,
+       BPF_TCP_CLOSE_WAIT,
+       BPF_TCP_LAST_ACK,
+       BPF_TCP_LISTEN,
+       BPF_TCP_CLOSING,        /* Now a valid state */
+       BPF_TCP_NEW_SYN_RECV,
+
+       BPF_TCP_MAX_STATES      /* Leave at the end! */
+};
+
+#define TCP_BPF_IW             1001    /* Set TCP initial congestion window */
+#define TCP_BPF_SNDCWND_CLAMP  1002    /* Set sndcwnd_clamp */
+
+struct bpf_perf_event_value {
+       __u64 counter;
+       __u64 enabled;
+       __u64 running;
+};
+
+#define BPF_DEVCG_ACC_MKNOD    (1ULL << 0)
+#define BPF_DEVCG_ACC_READ     (1ULL << 1)
+#define BPF_DEVCG_ACC_WRITE    (1ULL << 2)
+
+#define BPF_DEVCG_DEV_BLOCK    (1ULL << 0)
+#define BPF_DEVCG_DEV_CHAR     (1ULL << 1)
+
+struct bpf_cgroup_dev_ctx {
+       /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
+       __u32 access_type;
+       __u32 major;
+       __u32 minor;
+};
+
+struct bpf_raw_tracepoint_args {
+       __u64 args[0];
+};
+
+/* DIRECT:  Skip the FIB rules and go to FIB table associated with device
+ * OUTPUT:  Do lookup from egress perspective; default is ingress
+ */
+#define BPF_FIB_LOOKUP_DIRECT  BIT(0)
+#define BPF_FIB_LOOKUP_OUTPUT  BIT(1)
+
+struct bpf_fib_lookup {
+       /* input:  network family for lookup (AF_INET, AF_INET6)
+        * output: network family of egress nexthop
+        */
+       __u8    family;
+
+       /* set if lookup is to consider L4 data - e.g., FIB rules */
+       __u8    l4_protocol;
+       __be16  sport;
+       __be16  dport;
+
+       /* total length of packet from network header - used for MTU check */
+       __u16   tot_len;
+       __u32   ifindex;  /* L3 device index for lookup */
+
+       union {
+               /* inputs to lookup */
+               __u8    tos;            /* AF_INET  */
+               __be32  flowinfo;       /* AF_INET6, flow_label + priority */
+
+               /* output: metric of fib result (IPv4/IPv6 only) */
+               __u32   rt_metric;
+       };
+
+       union {
+               __be32          ipv4_src;
+               __u32           ipv6_src[4];  /* in6_addr; network order */
+       };
+
+       /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
+        * network header. output: bpf_fib_lookup sets to gateway address
+        * if FIB lookup returns gateway route
+        */
+       union {
+               __be32          ipv4_dst;
+               __u32           ipv6_dst[4];  /* in6_addr; network order */
+       };
+
+       /* output */
+       __be16  h_vlan_proto;
+       __be16  h_vlan_TCI;
+       __u8    smac[6];     /* ETH_ALEN */
+       __u8    dmac[6];     /* ETH_ALEN */
+};
+
+enum bpf_task_fd_type {
+       BPF_FD_TYPE_RAW_TRACEPOINT,     /* tp name */
+       BPF_FD_TYPE_TRACEPOINT,         /* tp name */
+       BPF_FD_TYPE_KPROBE,             /* (symbol + offset) or addr */
+       BPF_FD_TYPE_KRETPROBE,          /* (symbol + offset) or addr */
+       BPF_FD_TYPE_UPROBE,             /* filename + offset */
+       BPF_FD_TYPE_URETPROBE,          /* filename + offset */
+};
+
+#endif /* __LINUX_BPF_H__ */
diff --git a/scripts/update-linux-headers.sh b/scripts/update-linux-headers.sh
index feb75390aa..87672cd29f 100755
--- a/scripts/update-linux-headers.sh
+++ b/scripts/update-linux-headers.sh
@@ -35,6 +35,8 @@ cp_portable() {
         grep '#include' "$f" | grep -v -e 'linux/virtio' \
                                      -e 'linux/types' \
                                      -e 'stdint' \
+                                     -e 'stdio' \
+                                     -e 'stdbool' \
                                      -e 'linux/if_ether' \
                                      -e 'input-event-codes' \
                                      -e 'sys/' \
@@ -44,6 +46,7 @@ cp_portable() {
                                      -e 'linux/kernel' \
                                      -e 'linux/sysinfo' \
                                      -e 'asm-generic/kvm_para' \
+                                     -e 'linux/bpf' \
                                      > /dev/null
     then
         echo "Unexpected #include in input file $f".
@@ -58,7 +61,7 @@ cp_portable() {
         -e 's/__le\([0-9][0-9]*\)/uint\1_t/g' \
         -e 's/__be\([0-9][0-9]*\)/uint\1_t/g' \
         -e 's/"\(input-event-codes\.h\)"/"standard-headers\/linux\/\1"/' \
-        -e 's/<linux\/\([^>]*\)>/"standard-headers\/linux\/\1"/' \
+        -e 's/<linux\/\([^>]*(?!bpf)\)>/"standard-headers\/linux\/\1"/' \
         -e 's/__bitwise//' \
         -e 's/__attribute__((packed))/QEMU_PACKED/' \
         -e 's/__inline__/inline/' \
@@ -126,7 +129,8 @@ done
 rm -rf "$output/linux-headers/linux"
 mkdir -p "$output/linux-headers/linux"
 for header in kvm.h vfio.h vfio_ccw.h vhost.h \
-              psci.h psp-sev.h userfaultfd.h; do
+              psci.h psp-sev.h userfaultfd.h  \
+              bpf.h; do
     cp "$tmpdir/include/linux/$header" "$output/linux-headers/linux"
 done
 
@@ -169,7 +173,8 @@ for i in "$tmpdir"/include/linux/*virtio*.h 
"$tmpdir/include/linux/input.h" \
          "$tmpdir/include/linux/input-event-codes.h" \
          "$tmpdir/include/linux/pci_regs.h" \
          "$tmpdir/include/linux/ethtool.h" "$tmpdir/include/linux/kernel.h" \
-         "$tmpdir/include/linux/sysinfo.h"; do
+         "$tmpdir/include/linux/sysinfo.h"  \
+         "$linux/tools/lib/bpf/libbpf.h"; do
     cp_portable "$i" "$output/include/standard-headers/linux"
 done
 mkdir -p "$output/include/standard-headers/drm"
-- 
2.13.6




reply via email to

[Prev in Thread] Current Thread [Next in Thread]