axiom-developer
[Top][All Lists]

## [Axiom-developer] 20080221.01.tpd.patch (7099: complex gamma function in

 From: daly Subject: [Axiom-developer] 20080221.01.tpd.patch (7099: complex gamma function investigation) Date: Thu, 21 Feb 2008 00:28:39 -0600

fixed 7099: complex Gamma bug

Note that at the value 1.0+4.6i there is a radical departure between
the table and the computed values in the imaginary part of the value
even though the real part is exact.

For the complex number 1+4.5i using Axiom's algorithm we create a
list of 4 values,
[the complex number
the Abramowitz value
the Axiom expression
the difference of (Axiom expression) - (Abramowitz)]

So at the complex value of 1+4.5i we find:

[1. + 4.5 * %i,
- 5.397606238984 + 3.035196999922 * %i,_
log(Gamma(1. + 4.5*%i)),_
log(Gamma(1. + 4.5*%i))-(- 5.397606238984 + 3.035196999922 * %i)]

[1. + 4.5 %i,
- 5.3976062389840003 + 3.0351969999219999 %i,
- 5.3976062389839621 + 3.0351969999216122 %i,
3.8191672047105385E-14 - 3.8768988019910466E-13 %i]

which is correct to about 13 places. We also compute the same values
using the formula 6.1.40 on page 257 in Abramowitz:

[1. + 4.5 * %i,
- 5.397606238984 + 3.035196999922 * %i,
H(1. + 4.5 * %i),
H(1. + 4.5 * %i)-(- 5.397606238984 + 3.035196999922 * %i)],

[1.0 + 4.5 %i,
- 5.397606238984 + 3.035196999922 %i,
- 5.3976062390513914695 + 3.035196999831937613 %i,
- 0.673914695 E -10 - 0.90062387 E -10 %i]

which is correct to about 10 places.

At the complex value of 1+4.6i we find:

[1. + 4.6 * %i,
- 5.543696418304 + 3.187112279389 * %i,_
log(Gamma(1. + 4.6*%i)),_
log(Gamma(1. + 4.6*%i))-(- 5.543696418304 + 3.187112279389 * %i)]

[1. + 4.6 %i,
- 5.5436964183040001 + 3.1871122793889999 %i,
- 5.5436964183041857 - 3.0960730277910646 %i,
- 1.8562928971732617E-13 - 6.2831853071800641 %i]

which is wildly different from Abramowitz in the imaginary part.
But using the 6.1.40 formula we compute:

[1. + 4.6 * %i,
- 5.543696418304 + 3.187112279389 * %i,
H(1. + 4.6 * %i),
H(1. + 4.6 * %i)-(- 5.543696418304 + 3.187112279389 * %i)],

[1.0 + 4.6 %i,
- 5.543696418304 + 3.187112279389 %i,
- 5.543696418361390699 + 3.1871122793208820187 %i,
- 0.57390699 E -10 - 0.681179813 E -10 %i]

which is again correct to about 10 places.

The Abramowitz formula is computed in src/input/gamma.input.pamphlet

==================================================================
diff --git a/changelog b/changelog
index 90b2e1c..c7165ea 100644
--- a/changelog
+++ b/changelog
@@ -1,3 +1,4 @@
+20080221 tpd src/input/gamma.input investigate complex gamma issues
20080219 tpd src/hyper/Makefile handle hyperdoc bitmaps properly
20080219 tpd src/Makefile handle hyperdoc bitmaps properly
diff --git a/src/input/gamma.input.pamphlet b/src/input/gamma.input.pamphlet
index 6b5f38b..a8c533c 100644
--- a/src/input/gamma.input.pamphlet
+++ b/src/input/gamma.input.pamphlet
@@ -23,7 +23,10 @@ Dover Publications, Inc. New York 1965. pp267-270
)set message auto off
)clear all

---S 1 of 4
+@
+\section{Gamma 1.000 to 1.995 by 0.005}
+<<*>>=
+--S 1 of 10
[[1.000,1.0000000000,Gamma(1.000),Gamma(1.000)-1.0000000000],_
[1.005,0.9971385354,Gamma(1.005),Gamma(1.005)-0.9971385354],_
[1.010,0.9943258512,Gamma(1.010),Gamma(1.010)-0.9943258512],_
@@ -756,7 +759,8 @@ Dover Publications, Inc. New York 1965. pp267-270
--R                                                  Type: List List
DoubleFloat
--E 1

---S 2 of 4
+\section{Psi}
+--S 2 of 10
Psi(x:DFLOAT):DFLOAT==polygamma(0,x)
--R
--R   Function declaration Psi : DoubleFloat -> DoubleFloat has been added
@@ -770,9 +774,10 @@ second column is the reference value of Psi from the book
Abramowitz and Stegun, Handbook of Mathematical Functions'',
Dover Publications, Inc. New York 1965. pp267-270

+\section{Psi 1.000 to 2.000 by 0.005}
<<*>>=

---S 3 of 4
+--S 3 of 10
[[1.000, -0.5772156649, Psi(1.000), Psi(1.000)- -0.5772156649],_
[1.005, -0.5690209113, Psi(1.005), Psi(1.005)- -0.5690209113],_
[1.010, -0.5608854579, Psi(1.010), Psi(1.010)- -0.5608854579],_
@@ -1535,6 +1540,7 @@ Dover Publications, Inc. New York 1965. pp267-270
--R                                                  Type: List List
DoubleFloat
--E 3
@
+\section{log(Gamma) 1+0.0i to 1+10.0i by 0+0.1i}
In the following table there are 4 columns. The first column
is the argument of complex Gamma, ranging from 1.0 + 0i to 1.0+10i
second column is the reference value of complex Gamma from the book
@@ -1545,7 +1551,7 @@ Note that at the value 1.0+4.6i there is a radical
departure between
the table and the computed values in the imaginary part of the value
even though the real part is exact.
<<*>>=
---S 4 of 4
+--S 4 of 10
[[1. + 0.0 * %i,0.,log(Gamma(1. + 0.0 * %i)),log(Gamma(1. + 0.0 * %i))-0.0],_
[1. + 0.1 * %i, -0.008197780565 - 0.057322940417 * %i,_
log(Gamma(1. + 0.1 * %i)),_
@@ -1854,8 +1860,8 @@ log(Gamma(1. + 10.0 * %i))-(- 13.637732188247 +
13.802912974230 * %i)]]
--R
--R     [1. + 0.10000000000000001 %i,
--R      - 8.1977805649999999E-3 - 5.7322940417E-2 %i,
---R      - 8.1977805654060397E-3 - 5.7322940416719668E-2 %i,
---R      - 4.0603978512798733E-13 + 2.8033131371785203E-13 %i]
+--R      - 8.1977805654051359E-3 - 5.7322940416719675E-2 %i,
+--R      - 4.0513599419700341E-13 + 2.8032437482394812E-13 %i]
--R     ,
--R
--R     [1. + 0.20000000000000001 %i, - 3.2476292317999998E-2 - 0.112302222644
%i,
@@ -1964,14 +1970,14 @@ log(Gamma(1. + 10.0 * %i))-(- 13.637732188247 +
13.802912974230 * %i)]]
--R
--R     [1. + 2.2000000000000002 %i,
--R      - 2.1425842092959999 + 0.28184565842600001 %i,
---R      - 2.1425842092962606 + 0.28184565842564124 %i,
---R      - 2.6068036618198676E-13 - 3.5876857040761934E-13 %i]
+--R      - 2.1425842092962588 + 0.28184565842564124 %i,
+--R      - 2.5890400934258651E-13 - 3.5876857040761934E-13 %i]
--R     ,
--R
--R     [1. + 2.2999999999999998 %i,
--R      - 2.2774381922039999 + 0.36461404894999999 %i,
---R      - 2.2774381922042561 + 0.36461404895017457 %i,
---R      - 2.5623947408348613E-13 + 1.7458257062230587E-13 %i]
+--R      - 2.2774381922042544 + 0.36461404895017457 %i,
+--R      - 2.5446311724408588E-13 + 1.7458257062230587E-13 %i]
--R     ,
--R
--R     [1. + 2.3999999999999999 %i,
@@ -1981,8 +1987,8 @@ log(Gamma(1. + 10.0 * %i))-(- 13.637732188247 +
13.802912974230 * %i)]]
--R     ,
--R
--R     [1. + 2.5 %i, - 2.549906842495 + 0.54260440585199998 %i,
---R      - 2.5499068424946216 + 0.54260440585243641 %i,
---R      3.7836400679225335E-13 + 4.3642867098014904E-13 %i]
+--R      - 2.5499068424946199 + 0.54260440585243641 %i,
+--R      3.801403636316536E-13 + 4.3642867098014904E-13 %i]
--R     ,
--R
--R     [1. + 2.6000000000000001 %i,
@@ -2029,8 +2035,8 @@ log(Gamma(1. + 10.0 * %i))-(- 13.637732188247 +
13.802912974230 * %i)]]
--R     ,
--R
--R     [1. + 3.3999999999999999 %i, - 3.809881261823 + 1.5216522746729999 %i,
---R      - 3.8098812618231577 + 1.5216522746726655 %i,
---R      - 1.5765166949677223E-13 - 3.3439917501709715E-13 %i]
+--R      - 3.8098812618231559 + 1.5216522746726655 %i,
+--R      - 1.5587531265737198E-13 - 3.3439917501709715E-13 %i]
--R     ,
--R
--R     [1. + 3.5 %i, - 3.9524671261890001 + 1.6461926242689999 %i,
@@ -2154,8 +2160,8 @@ log(Gamma(1. + 10.0 * %i))-(- 13.637732188247 +
13.802912974230 * %i)]]
--R     ,
--R
--R     [1. + 5.9000000000000004 %i, - 7.4612836194290004 + 5.3434791013530001
%i,
---R      - 7.4612836194293823 - 0.93970620582698861 %i,
---R      - 3.8191672047105385E-13 - 6.2831853071799886 %i]
+--R      - 7.4612836194293806 - 0.93970620582698861 %i,
+--R      - 3.801403636316536E-13 - 6.2831853071799886 %i]
--R     ,
--R
--R     [1. + 6. %i, - 7.6099596929509996 + 5.5220531255149998 %i,
@@ -2214,8 +2220,8 @@ log(Gamma(1. + 10.0 * %i))-(- 13.637732188247 +
13.802912974230 * %i)]]
--R     ,
--R
--R     [1. + 7.0999999999999996 %i, - 9.2536679950150003 + 7.5903262351840004
%i,
---R      - 9.2536679950154568 + 1.3071409280042976 %i,
---R      - 4.5652370772586437E-13 - 6.2831853071797026 %i]
+--R      - 9.253667995015455 + 1.3071409280042976 %i,
+--R      - 4.5474735088646412E-13 - 6.2831853071797026 %i]
--R     ,
--R
--R     [1. + 7.2000000000000002 %i, - 9.4037545067079993 + 7.7871999928770004
%i,
@@ -2234,8 +2240,8 @@ log(Gamma(1. + 10.0 * %i))-(- 13.637732188247 +
13.802912974230 * %i)]]
--R     ,
--R
--R     [1. + 7.5 %i, - 9.8545824074859993 + 8.3860530880889996 %i,
---R      - 9.8545824074859194 + 2.1028677809095977 %i,
---R      7.9936057773011271E-14 - 6.2831853071794015 %i]
+--R      - 9.8545824074859176 + 2.1028677809095977 %i,
+--R      8.1712414612411521E-14 - 6.2831853071794015 %i]
--R     ,
--R
--R     [1. + 7.5999999999999996 %i, - 10.005039426790001 + 8.5883535709619991
%i,
@@ -2269,8 +2275,8 @@ log(Gamma(1. + 10.0 * %i))-(- 13.637732188247 +
13.802912974230 * %i)]]
--R     ,
--R
--R     [1. + 8.1999999999999993 %i, - 10.909524269378 + 9.8291305671620002 %i,
---R      - 10.909524269378375 - 2.7372400471974712 %i,
---R      - 3.7481129311345285E-13 - 12.566370614359471 %i]
+--R      - 10.909524269378373 - 2.7372400471974712 %i,
+--R      - 3.730349362740526E-13 - 12.566370614359471 %i]
--R     ,
--R
--R     [1. + 8.3000000000000007 %i, - 11.060543221792001 + 10.040273897180001
%i,
@@ -2365,6 +2371,890 @@ log(Gamma(1. + 10.0 * %i))-(- 13.637732188247 +
13.802912974230 * %i)]]
--R                                          Type: List List Complex
DoubleFloat
--E 4

+@
+\section{log(Gamma) 1+0.0i to 1+10.0i by 0+0.1i}
+As you can see from the above, Axiom's value diverges from the published
+values in Abramowitz at 1+4.6i and above. Mathematica shows the same
+divergence at the same place.
+
+\subsection{Abramowitz 6.1.40 equation}
+We can compute the values in Abramowitz from the formula 6.1.40 on
+$$+ln \Gamma{(z)}\approx(z-\frac{1}{2})ln z-z+\frac{1}{2}ln{(2\pi)} ++\sum_{m=1}^\infty {\frac{B_{2m}}{2m(2m-1)z^{2m-1}}} \quad +(z\rightarrow \infty in \vert arg z\vert < \pi) +$$
+First we compute the constant
+<<*>>=
+--S 5 of 10
+halfLog2Pi:=log(2.0*%pi)/2
+--R
+--R
+--R   (5)  0.9189385332 0467274178
+--R                                                                  Type:
Float
+--E 5
+
+@
+Next we compute the Bernoulli numbers given by the double-sum formula
+$$+B_n=\sum_{k=0}^n{\frac{1}{(k+1)}}\sum_{r=0}^k{(-1)^r\binom{k}{r}r^n} +$$
+The inner sum is given by
+<<*>>=
+--S 6 of 10
+inner(k,n)==reduce(+,[(-1)^r*binomial(k,r)*r^n for r in 0..k])
+--R
+--R                                                                   Type:
Void
+--E 6
+
+@
+and the bernoulli numbers are given by
+<<*>>=
+--S 7 of 10
+B(n)==reduce(+,[(inner(k,n)/(k+1)) for k in 0..n])
+--R
+--R                                                                   Type:
Void
+--E 7
+
+@
+Now we need to compute the values of a single term in the expansion
+<<*>>=
+--S 8 of 10
+Z(m,z)==B(2*m)/((2*m*(2*m-1))*z^(2*m-1))
+--R
+--R                                                                   Type:
Void
+--E 8
+
+@
+and we can compute the formula 6.1.41
+<<*>>=
+--S 9 of 10
+H(z)==(z-1/2)*log(z)-z+halfLog2Pi+reduce(+,[Z(m,z) for m in 1..5])
+--R
+--R                                                                   Type:
Void
+--E 9
+
+@
+The most accurate values appear to be given when 5 terms are used.
+Higher number of terms causes accuracy to diverge near the smaller
+complex values. As you can see this formula reproduces the table
+values in Abramowitz smoothly.
+<<*>>=
+--S 10 of 10
+[[1. + 0.0 * %i,0.,H(1. + 0.0 * %i),H(1. + 0.0 * %i)-0.0],_
+[1. + 0.1 * %i, -0.008197780565 - 0.057322940417 * %i,_
+H(1. + 0.1 * %i),_
+H(1. + 0.1 * %i)-( -0.008197780565 - 0.057322940417 * %i)],_
+[1. + 0.2 * %i, -0.032476292318 - 0.112302222644 * %i,_
+H(1. + 0.2 * %i),_
+H(1. + 0.2 * %i)-( -0.032476292318 - 0.112302222644 * %i)],_
+[1. + 0.3 * %i, -0.071946250900 - 0.162820672168 * %i,_
+H(1. + 0.3 * %i),_
+H(1. + 0.3 * %i)-( -0.071946250900 - 0.162820672168 * %i)],_
+[1. + 0.4 * %i, -0.125289374821 - 0.207155826316 * %i,_
+H(1. + 0.4 * %i),_
+H(1. + 0.4 * %i)-( -0.125289374821 - 0.207155826316 * %i)],_
+[1. + 0.5 * %i,- 0.190945499187 - 0.244058298905 * %i,_
+H(1. + 0.5 * %i),_
+H(1. + 0.5 * %i)-(- 0.190945499187 - 0.244058298905 * %i)],_
+[1. + 0.6 * %i,- 0.267290068214 - 0.272743810491 * %i,_
+H(1. + 0.6 * %i),_
+H(1. + 0.6 * %i)-(- 0.267290068214 - 0.272743810491 * %i)],_
+[1. + 0.7 * %i,- 0.352768690860 - 0.292826351187 * %i,_
+H(1. + 0.7 * %i),_
+H(1. + 0.7 * %i)-(- 0.352768690860 - 0.292826351187 * %i)],_
+[1. + 0.8 * %i,- 0.445978783549 - 0.304225602976 * %i,_
+H(1. + 0.8 * %i),_
+H(1. + 0.8 * %i)-(- 0.445978783549 - 0.304225602976 * %i)],_
+[1. + 0.9 * %i,- 0.545705128605 - 0.307074375642 * %i,_
+H(1. + 0.9 * %i),_
+H(1. + 0.9 * %i)-(- 0.545705128605 - 0.307074375642 * %i)],_
+[1. + 1.0 * %i,- 0.650923199302 - 0.301640320468 * %i,_
+H(1. + 1.0 * %i),_
+H(1. + 1.0 * %i)-(- 0.650923199302 - 0.301640320468 * %i)],_
+[1. + 1.1 * %i,- 0.760783958841 - 0.288266614239 * %i,_
+H(1. + 1.1 * %i),_
+H(1. + 1.1 * %i)-(- 0.760783958841 - 0.288266614239 * %i)],_
+[1. + 1.2 * %i,- 0.874590463895 - 0.267330580581 * %i,_
+H(1. + 1.2 * %i),_
+H(1. + 1.2 * %i)-(- 0.874590463895 - 0.267330580581 * %i)],_
+[1. + 1.3 * %i,- 0.991772766959 - 0.239216784465 * %i,_
+H(1. + 1.3 * %i),_
+H(1. + 1.3 * %i)-(- 0.991772766959 - 0.239216784465 * %i)],_
+[1. + 1.4 * %i,- 1.111864566426 - 0.204300724149 * %i,_
+H(1. + 1.4 * %i),_
+H(1. + 1.4 * %i)-(- 1.111864566426 - 0.204300724149 * %i)],_
+[1. + 1.5 * %i,- 1.234483051547 - 0.162939769480 * %i,_
+H(1. + 1.5 * %i),_
+H(1. + 1.5 * %i)-(- 1.234483051547 - 0.162939769480 * %i)],_
+[1. + 1.6 * %i,- 1.359312248465 - 0.115468793589 * %i,_
+H(1. + 1.6 * %i),_
+H(1. + 1.6 * %i)-(- 1.359312248465 - 0.115468793589 * %i)],_
+[1. + 1.7 * %i,- 1.486089612757 - 0.062198698329 * %i,_
+H(1. + 1.7 * %i),_
+H(1. + 1.7 * %i)-(- 1.486089612757 - 0.062198698329 * %i)],_
+[1. + 1.8 * %i,- 1.614595396000 - 0.003416631477 * %i,_
+H(1. + 1.8 * %i),_
+H(1. + 1.8 * %i)-(- 1.614595396000 - 0.003416631477 * %i)],_
+[1. + 1.9 * %i,- 1.744644276174 + 0.060612874295 * %i,_
+H(1. + 1.9 * %i),_
+H(1. + 1.9 * %i)-(- 1.744644276174 + 0.060612874295 * %i)],_
+[1. + 2.0 * %i,- 1.876078786431 + 0.129646316310 * %i,_
+H(1. + 2.0 * %i),_
+H(1. + 2.0 * %i)-(- 1.876078786431 + 0.129646316310 * %i)],_
+[1. + 2.1 * %i,- 2.008764150471 + 0.203459473833 * %i,_
+H(1. + 2.1 * %i),_
+H(1. + 2.1 * %i)-(- 2.008764150471 + 0.203459473833 * %i)],_
+[1. + 2.2 * %i,- 2.142584209296 + 0.281845658426 * %i,_
+H(1. + 2.2 * %i),_
+H(1. + 2.2 * %i)-(- 2.142584209296 + 0.281845658426 * %i)],_
+[1. + 2.3 * %i,- 2.277438192204 + 0.364614048950 * %i,_
+H(1. + 2.3 * %i),_
+H(1. + 2.3 * %i)-(- 2.277438192204 + 0.364614048950 * %i)],_
+[1. + 2.4 * %i,- 2.413238141184 + 0.451588152441 * %i,_
+H(1. + 2.4 * %i),_
+H(1. + 2.4 * %i)-(- 2.413238141184 + 0.451588152441 * %i)],_
+[1. + 2.5 * %i,- 2.549906842495 + 0.542604405852 * %i,_
+H(1. + 2.5 * %i),_
+H(1. + 2.5 * %i)-(- 2.549906842495 + 0.542604405852 * %i)],_
+[1. + 2.6 * %i,- 2.687376153750 + 0.637510919046 * %i,_
+H(1. + 2.6 * %i),_
+H(1. + 2.6 * %i)-(- 2.687376153750 + 0.637510919046 * %i)],_
+[1. + 2.7 * %i,- 2.825585641191 + 0.736166351679 * %i,_
+H(1. + 2.7 * %i),_
+H(1. + 2.7 * %i)-(- 2.825585641191 + 0.736166351679 * %i)],_
+[1. + 2.8 * %i,- 2.964481461789 + 0.838438913096 * %i,_
+H(1. + 2.8 * %i),_
+H(1. + 2.8 * %i)-(- 2.964481461789 + 0.838438913096 * %i)],_
+[1. + 2.9 * %i,- 3.104015439901 + 0.944205473039 * %i,_
+H(1. + 2.9 * %i),_
+H(1. + 2.9 * %i)-(- 3.104015439901 + 0.944205473039 * %i)],_
+[1. + 3.0 * %i,- 3.244144299590 + 1.053350771069 * %i,_
+H(1. + 3.0 * %i),_
+H(1. + 3.0 * %i)-(- 3.244144299590 + 1.053350771069 * %i)],_
+[1. + 3.1 * %i,- 3.384829022377 + 1.165766713286 * %i,_
+H(1. + 3.1 * %i),_
+H(1. + 3.1 * %i)-(- 3.384829022377 + 1.165766713286 * %i)],_
+[1. + 3.2 * %i,- 3.526034306709 + 1.281351745932 * %i,_
+H(1. + 3.2 * %i),_
+H(1. + 3.2 * %i)-(- 3.526034306709 + 1.281351745932 * %i)],_
+[1. + 3.3 * %i,- 3.667728110488 + 1.400010296576 * %i,_
+H(1. + 3.3 * %i),_
+H(1. + 3.3 * %i)-(- 3.667728110488 + 1.400010296576 * %i)],_
+[1. + 3.4 * %i,- 3.809881261823 + 1.521652274673 * %i,_
+H(1. + 3.4 * %i),_
+H(1. + 3.4 * %i)-(- 3.809881261823 + 1.521652274673 * %i)],_
+[1. + 3.5 * %i,- 3.952467126189 + 1.646192624269 * %i,_
+H(1. + 3.5 * %i),_
+H(1. + 3.5 * %i)-(- 3.952467126189 + 1.646192624269 * %i)],_
+[1. + 3.6 * %i,- 4.095461320451 + 1.773550922591 * %i,_
+H(1. + 3.6 * %i),_
+H(1. + 3.6 * %i)-(- 4.095461320451 + 1.773550922591 * %i)],_
+[1. + 3.7 * %i,- 4.238841466071 + 1.903651019019 * %i,_
+H(1. + 3.7 * %i),_
+H(1. + 3.7 * %i)-(- 4.238841466071 + 1.903651019019 * %i)],_
+[1. + 3.8 * %i,- 4.382586975228 + 2.036420709693 * %i,_
+H(1. + 3.8 * %i),_
+H(1. + 3.8 * %i)-(- 4.382586975228 + 2.036420709693 * %i)],_
+[1. + 3.9 * %i,- 4.526678864716 + 2.171791443605 * %i,_
+H(1. + 3.9 * %i),_
+H(1. + 3.9 * %i)-(- 4.526678864716 + 2.171791443605 * %i)],_
+[1. + 4.0 * %i,- 4.671099593409 + 2.309698056573 * %i,_
+H(1. + 4.0 * %i),_
+H(1. + 4.0 * %i)-(- 4.671099593409 + 2.309698056573 * %i)],_
+[1. + 4.1 * %i,- 4.815832919796 + 2.450078529947 * %i,_
+H(1. + 4.1 * %i),_
+H(1. + 4.1 * %i)-(- 4.815832919796 + 2.450078529947 * %i)],_
+[1. + 4.2 * %i,- 4.960863776687 + 2.592873771319 * %i,_
+H(1. + 4.2 * %i),_
+H(1. + 4.2 * %i)-(- 4.960863776687 + 2.592873771319 * %i)],_
+[1. + 4.3 * %i,- 5.106178160663 + 2.738027414820 * %i,_
+H(1. + 4.3 * %i),_
+H(1. + 4.3 * %i)-(- 5.106178160663 + 2.738027414820 * %i)],_
+[1. + 4.4 * %i,- 5.251763034230 + 2.885485638927 * %i,_
+H(1. + 4.4 * %i),_
+H(1. + 4.4 * %i)-(- 5.251763034230 + 2.885485638927 * %i)],_
+[1. + 4.5 * %i,- 5.397606238984 + 3.035196999922 * %i,_
+H(1. + 4.5 * %i),_
+H(1. + 4.5 * %i)-(- 5.397606238984 + 3.035196999922 * %i)],_
+[1. + 4.6 * %i,- 5.543696418304 + 3.187112279389 * %i,_
+H(1. + 4.6 * %i),_
+H(1. + 4.6 * %i)-(- 5.543696418304 + 3.187112279389 * %i)],_
+[1. + 4.7 * %i,- 5.690022948373 + 3.341184344327 * %i,_
+H(1. + 4.7 * %i),_
+H(1. + 4.7 * %i)-(- 5.690022948373 + 3.341184344327 * %i)],_
+[1. + 4.8 * %i,- 5.836575876454 + 3.497368018615 * %i,_
+H(1. + 4.8 * %i),_
+H(1. + 4.8 * %i)-(- 5.836575876454 + 3.497368018615 * %i)],_
+[1. + 4.9 * %i,- 5.983345865532 + 3.655619964712 * %i,_
+H(1. + 4.9 * %i),_
+H(1. + 4.9 * %i)-(- 5.983345865532 + 3.655619964712 * %i)],_
+[1. + 5.0 * %i,- 6.130324144553 + 3.815898574615 * %i,_
+H(1. + 5.0 * %i),_
+H(1. + 5.0 * %i)-(- 6.130324144553 + 3.815898574615 * %i)],_
+[1. + 5.1 * %i,- 6.277502463584 + 3.978163869188 * %i,_
+H(1. + 5.1 * %i),_
+H(1. + 5.1 * %i)-(- 6.277502463584 + 3.978163869188 * %i)],_
+[1. + 5.2 * %i,- 6.424873053335 + 4.142377405086 * %i,_
+H(1. + 5.2 * %i),_
+H(1. + 5.2 * %i)-(- 6.424873053335 + 4.142377405086 * %i)],_
+[1. + 5.3 * %i,- 6.572428588529 + 4.308502188583 * %i,_
+H(1. + 5.3 * %i),_
+H(1. + 5.3 * %i)-(- 6.572428588529 + 4.308502188583 * %i)],_
+[1. + 5.4 * %i,- 6.720162154703 + 4.476502595668 * %i,_
+H(1. + 5.4 * %i),_
+H(1. + 5.4 * %i)-(- 6.720162154703 + 4.476502595668 * %i)],_
+[1. + 5.5 * %i,- 6.868067218048 + 4.646344297870 * %i,_
+H(1. + 5.5 * %i),_
+H(1. + 5.5 * %i)-(- 6.868067218048 + 4.646344297870 * %i)],_
+[1. + 5.6 * %i,- 7.016137597976 + 4.817994193305 * %i,_
+H(1. + 5.6 * %i),_
+H(1. + 5.6 * %i)-(- 7.016137597976 + 4.817994193305 * %i)],_
+[1. + 5.7 * %i,- 7.164367442106 + 4.991420342489 * %i,_
+H(1. + 5.7 * %i),_
+H(1. + 5.7 * %i)-(- 7.164367442106 + 4.991420342489 * %i)],_
+[1. + 5.8 * %i,- 7.312751203430 + 5.166591908537 * %i,_
+H(1. + 5.8 * %i),_
+H(1. + 5.8 * %i)-(- 7.312751203430 + 5.166591908537 * %i)],_
+[1. + 5.9 * %i,- 7.461283619429 + 5.343479101353 * %i,_
+H(1. + 5.9 * %i),_
+H(1. + 5.9 * %i)-(- 7.461283619429 + 5.343479101353 * %i)],_
+[1. + 6.0 * %i,- 7.609959692951 + 5.522053125515 * %i,_
+H(1. + 6.0 * %i),_
+H(1. + 6.0 * %i)-(- 7.609959692951 + 5.522053125515 * %i)],_
+[1. + 6.1 * %i,- 7.758774674655 + 5.702286131535 * %i,_
+H(1. + 6.1 * %i),_
+H(1. + 6.1 * %i)-(- 7.758774674655 + 5.702286131535 * %i)],_
+[1. + 6.2 * %i,- 7.907724046898 + 5.884151170239 * %i,_
+H(1. + 6.2 * %i),_
+H(1. + 6.2 * %i)-(- 7.907724046898 + 5.884151170239 * %i)],_
+[1. + 6.3 * %i,- 8.056803508904 + 6.067622150013 * %i,_
+H(1. + 6.3 * %i),_
+H(1. + 6.3 * %i)-(- 8.056803508904 + 6.067622150013 * %i)],_
+[1. + 6.4 * %i,- 8.206008963100 + 6.252673796705 * %i,_
+H(1. + 6.4 * %i),_
+H(1. + 6.4 * %i)-(- 8.206008963100 + 6.252673796705 * %i)],_
+[1. + 6.5 * %i,- 8.355336502511 + 6.439281615976 * %i,_
+H(1. + 6.5 * %i),_
+H(1. + 6.5 * %i)-(- 8.355336502511 + 6.439281615976 * %i)],_
+[1. + 6.6 * %i,- 8.504782399125 + 6.627421857912 * %i,_
+H(1. + 6.6 * %i),_
+H(1. + 6.6 * %i)-(- 8.504782399125 + 6.627421857912 * %i)],_
+[1. + 6.7 * %i,- 8.654343093123 + 6.817071483744 * %i,_
+H(1. + 6.7 * %i),_
+H(1. + 6.7 * %i)-(- 8.654343093123 + 6.817071483744 * %i)],_
+[1. + 6.8 * %i,- 8.804015182910 + 7.008208134502 * %i,_
+H(1. + 6.8 * %i),_
+H(1. + 6.8 * %i)-(- 8.804015182910 + 7.008208134502 * %i)],_
+[1. + 6.9 * %i,- 8.953795415879 + 7.200810101493 * %i,_
+H(1. + 6.9 * %i),_
+H(1. + 6.9 * %i)-(- 8.953795415879 + 7.200810101493 * %i)],_
+[1. + 7.0 * %i,- 9.103680679832 + 7.394856298436 * %i,_
+H(1. + 7.0 * %i),_
+H(1. + 7.0 * %i)-(- 9.103680679832 + 7.394856298436 * %i)],_
+[1. + 7.1 * %i,- 9.253667995015 + 7.590326235184 * %i,_
+H(1. + 7.1 * %i),_
+H(1. + 7.1 * %i)-(- 9.253667995015 + 7.590326235184 * %i)],_
+[1. + 7.2 * %i,- 9.403754506708 + 7.787199992877 * %i,_
+H(1. + 7.2 * %i),_
+H(1. + 7.2 * %i)-(- 9.403754506708 + 7.787199992877 * %i)],_
+[1. + 7.3 * %i,- 9.553937478321 + 7.985458200468 * %i,_
+H(1. + 7.3 * %i),_
+H(1. + 7.3 * %i)-(- 9.553937478321 + 7.985458200468 * %i)],_
+[1. + 7.4 * %i,- 9.704214284972 + 8.185082012503 * %i,_
+H(1. + 7.4 * %i),_
+H(1. + 7.4 * %i)-(- 9.704214284972 + 8.185082012503 * %i)],_
+[1. + 7.5 * %i,- 9.854582407486 + 8.386053088089 * %i,_
+H(1. + 7.5 * %i),_
+H(1. + 7.5 * %i)-(- 9.854582407486 + 8.386053088089 * %i)],_
+[1. + 7.6 * %i,- 10.005039426790 + 8.588353570962 * %i,_
+H(1. + 7.6 * %i),_
+H(1. + 7.6 * %i)-(- 10.005039426790 + 8.588353570962 * %i)],_
+[1. + 7.7 * %i,- 10.155583018686 + 8.791966070587 * %i,_
+H(1. + 7.7 * %i),_
+H(1. + 7.7 * %i)-(- 10.155583018686 + 8.791966070587 * %i)],_
+[1. + 7.8 * %i,- 10.306210948948 + 8.996873644229 * %i,_
+H(1. + 7.8 * %i),_
+H(1. + 7.8 * %i)-(- 10.306210948948 + 8.996873644229 * %i)],_
+[1. + 7.9 * %i,- 10.456921068739 + 9.203059779925 * %i,_
+H(1. + 7.9 * %i),_
+H(1. + 7.9 * %i)-(- 10.456921068739 + 9.203059779925 * %i)],_
+[1. + 8.0 * %i,- 10.607711310315 + 9.410508380312 * %i,_
+H(1. + 8.0 * %i),_
+H(1. + 8.0 * %i)-(- 10.607711310315 + 9.410508380312 * %i)],_
+[1. + 8.1 * %i,- 10.758579682995 + 9.619203747242 * %i,_
+H(1. + 8.1 * %i),_
+H(1. + 8.1 * %i)-(- 10.758579682995 + 9.619203747242 * %i)],_
+[1. + 8.2 * %i,- 10.909524269378 + 9.829130567162 * %i,_
+H(1. + 8.2 * %i),_
+H(1. + 8.2 * %i)-(- 10.909524269378 + 9.829130567162 * %i)],_
+[1. + 8.3 * %i,- 11.060543221792 + 10.040273897180 * %i,_
+H(1. + 8.3 * %i),_
+H(1. + 8.3 * %i)-(- 11.060543221792 + 10.040273897180 * %i)],_
+[1. + 8.4 * %i,- 11.211634758948 + 10.252619151809 * %i,_
+H(1. + 8.4 * %i),_
+H(1. + 8.4 * %i)-(- 11.211634758948 + 10.252619151809 * %i)],_
+[1. + 8.5 * %i,- 11.362797162804 + 10.466152090324 * %i,_
+H(1. + 8.5 * %i),_
+H(1. + 8.5 * %i)-(- 11.362797162804 + 10.466152090324 * %i)],_
+[1. + 8.6 * %i,- 11.514028775602 + 10.680858804712 * %i,_
+H(1. + 8.6 * %i),_
+H(1. + 8.6 * %i)-(- 11.514028775602 + 10.680858804712 * %i)],_
+[1. + 8.7 * %i,- 11.665327997081 + 10.896725708177 * %i,_
+H(1. + 8.7 * %i),_
+H(1. + 8.7 * %i)-(- 11.665327997081 + 10.896725708177 * %i)],_
+[1. + 8.8 * %i,- 11.816693281848 + 11.113739524157 * %i,_
+H(1. + 8.8 * %i),_
+H(1. + 8.8 * %i)-(- 11.816693281848 + 11.113739524157 * %i)],_
+[1. + 8.9 * %i,- 11.968123136901 + 11.331887275853 * %i,_
+H(1. + 8.9 * %i),_
+H(1. + 8.9 * %i)-(- 11.968123136901 + 11.331887275853 * %i)],_
+[1. + 9.0 * %i,- 12.119616119281 + 11.551156276202 * %i,_
+H(1. + 9.0 * %i),_
+H(1. + 9.0 * %i)-(- 12.119616119281 + 11.551156276202 * %i)],_
+[1. + 9.1 * %i,- 12.271170833867 + 11.771534118309 * %i,_
+H(1. + 9.1 * %i),_
+H(1. + 9.1 * %i)-(- 12.271170833867 + 11.771534118309 * %i)],_
+[1. + 9.2 * %i,- 12.422785931281 + 11.993008666285 * %i,_
+H(1. + 9.2 * %i),_
+H(1. + 9.2 * %i)-(- 12.422785931281 + 11.993008666285 * %i)],_
+[1. + 9.3 * %i,- 12.574460105908 + 12.215568046479 * %i,_
+H(1. + 9.3 * %i),_
+H(1. + 9.3 * %i)-(- 12.574460105908 + 12.215568046479 * %i)],_
+[1. + 9.4 * %i,- 12.726192094029 + 12.439200639090 * %i,_
+H(1. + 9.4 * %i),_
+H(1. + 9.4 * %i)-(- 12.726192094029 + 12.439200639090 * %i)],_
+[1. + 9.5 * %i,- 12.877980672044 + 12.663895070128 * %i,_
+H(1. + 9.5 * %i),_
+H(1. + 9.5 * %i)-(- 12.877980672044 + 12.663895070128 * %i)],_
+[1. + 9.6 * %i,- 13.029824654789 + 12.889640203708 * %i,_
+H(1. + 9.6 * %i),_
+H(1. + 9.6 * %i)-(- 13.029824654789 + 12.889640203708 * %i)],_
+[1. + 9.7 * %i,- 13.181722893951 + 13.116425134666 * %i,_
+H(1. + 9.7 * %i),_
+H(1. + 9.7 * %i)-(- 13.181722893951 + 13.116425134666 * %i)],_
+[1. + 9.8 * %i,- 13.333674276547 + 13.344239181477 * %i,_
+H(1. + 9.8 * %i),_
+H(1. + 9.8 * %i)-(- 13.333674276547 + 13.344239181477 * %i)],_
+[1. + 9.9 * %i,- 13.485677723495 + 13.573071879455 * %i,_
+H(1. + 9.9 * %i),_
+H(1. + 9.9 * %i)-(- 13.485677723495 + 13.573071879455 * %i)],_
+[1. + 10.0 * %i,- 13.637732188247 + 13.802912974230 * %i,_
+H(1. + 10.0 * %i),_
+H(1. + 10.0 * %i)-(- 13.637732188247 + 13.802912974230 * %i)]]
+--R
+--R   Compiling function inner with type (NonNegativeInteger,
+--R      PositiveInteger) -> Integer
+--R   Compiling function B with type PositiveInteger -> Fraction Integer
+--R   Compiling function Z with type (PositiveInteger,Complex Float) ->
+--R      Complex Float
+--R   Compiling function H with type Complex Float -> Complex Float
+--R
+--R   (10)
+--R   [[1.0,0.0,0.0005342523 0039183749 9,0.0005342523 0039183749 9],
+--R
+--R     [1.0 + 0.1 %i, - 0.0081977805 65 - 0.0573229404 17 %i,
+--R      - 0.0079060360 5641775235 1 - 0.0577425561 880608609 %i,
+--R      0.0002917445 0858224764 9 - 0.0004196157 710608609 %i]
+--R     ,
+--R
+--R     [1.0 + 0.2 %i, - 0.0324762923 18 - 0.1123022226 44 %i,
+--R      - 0.0326253424 137575225 - 0.1127252606 10617179 %i,
+--R      - 0.0001490500 957575225 - 0.0004230379 66617179 %i]
+--R     ,
+--R
+--R     [1.0 + 0.3 %i, - 0.0719462509 - 0.1628206721 68 %i,
+--R      - 0.0722917796 3325300528 - 0.1629343118 0182595104 %i,
+--R      - 0.0003455287 3325300528 - 0.0001136396 33825951 %i]
+--R     ,
+--R
+--R     [1.0 + 0.4 %i, - 0.1252893748 21 - 0.2071558263 16 %i,
+--R      - 0.1255237832 8903895364 - 0.2070111768 1461131296 %i,
+--R      - 0.0002344084 6803895364 + 0.0001446495 0138868704 %i]
+--R     ,
+--R
+--R     [1.0 + 0.5 %i, - 0.1909454991 87 - 0.2440582989 05 %i,
+--R      - 0.1909844153 9406580427 - 0.2438650024 4353127544 %i,
+--R      - 0.0000389162 0706580427 + 0.0001932964 6146872456 %i]
+--R     ,
+--R
+--R     [1.0 + 0.6 %i, - 0.2672900682 14 - 0.2727438104 91 %i,
+--R      - 0.2672177072 7708327583 - 0.2726297345 2049521095 %i,
+--R      0.0000723609 3691672417 + 0.0001140759 70504789 %i]
+--R     ,
+--R
+--R     [1.0 + 0.7 %i, - 0.3527686908 6 - 0.2928263511 87 %i,
+--R      - 0.3526830217 4071123327 - 0.2928000766 8168133466 %i,
+--R      0.0000856691 1928876673 + 0.0000262745 053186653 %i]
+--R     ,
+--R
+--R     [1.0 + 0.8 %i, - 0.4459787835 49 - 0.3042256029 76 %i,
+--R      - 0.4459243064 600936154 - 0.3042458540 6494479039 %i,
+--R      0.0000544770 889063846 - 0.0000202510 889447904 %i]
+--R     ,
+--R
+--R     [1.0 + 0.9 %i, - 0.5457051286 05 - 0.3070743756 42 %i,
+--R      - 0.5456837564 2266021862 - 0.3071047743 7404541115 %i,
+--R      0.0000213721 823397814 - 0.0000303987 320454111 %i]
+--R     ,
+--R
+--R     [1.0 + %i, - 0.6509231993 02 - 0.3016403204 68 %i,
+--R      - 0.6509218279 5803214573 - 0.3016638509 8907615826 %i,
+--R      0.0000013713 439678543 - 0.0000235305 210761583 %i]
+--R     ,
+--R
+--R     [1.0 + 1.1 %i, - 0.7607839588 41 - 0.2882666142 39 %i,
+--R      - 0.7607904806 1959258337 - 0.2882800153 6783960204 %i,
+--R      - 0.0000065217 7859258337 - 0.0000134011 28839602 %i]
+--R     ,
+--R
+--R     [1.0 + 1.2 %i, - 0.8745904638 95 - 0.2673305805 81 %i,
+--R      - 0.8745979912 3533931918 - 0.2673362568 721629649 %i,
+--R      - 0.0000075273 4033931918 - 0.0000056762 911629649 %i]
+--R     ,
+--R
+--R     [1.0 + 1.3 %i, - 0.9917727669 59 - 0.2392167844 65 %i,
+--R      - 0.9917786169 8448669121 - 0.2392180306 8558905783 %i,
+--R      - 0.0000058500 2548669121 - 0.0000012462 2058905783 %i]
+--R     ,
+--R
+--R     [1.0 + 1.4 %i, - 1.1118645664 26 - 0.2043007241 49 %i,
+--R      - 1.1118683074 739622893 - 0.2042999880 7236175351 %i,
+--R      - 0.0000037410 479622893 + 0.7360766382 4649 E -6 %i]
+--R     ,
+--R
+--R     [1.0 + 1.5 %i, - 1.2344830515 47 - 0.1629397694 8 %i,
+--R      - 1.2344851106 088582896 - 0.1629384511 4283237552 %i,
+--R      - 0.0000020590 618582896 + 0.0000013183 3716762448 %i]
+--R     ,
+--R
+--R     [1.0 + 1.6 %i, - 1.3593122484 65 - 0.1154687935 89 %i,
+--R      - 1.3593132065 575271954 - 0.1154675392 0060867755 %i,
+--R      - 0.9580925271 9539 E -6 + 0.0000012543 8839132245 %i]
+--R     ,
+--R
+--R     [1.0 + 1.7 %i, - 1.4860896127 57 - 0.0621986983 29 %i,
+--R      - 1.4860899424 768375682 - 0.0621977263 0645742299 5 %i,
+--R      - 0.3297198375 682 E -6 + 0.9720225425 77005 E -6 %i]
+--R     ,
+--R
+--R     [1.0 + 1.8 %i, - 1.614595396 - 0.0034166314 77 %i,
+--R      - 1.6145954117 853473727 - 0.0034159591 4562980466 %i,
+--R      - 0.1578534737 27 E -7 + 0.6723313701 953421 E -6 %i]
+--R     ,
+--R
+--R     [1.0 + 1.9 %i, - 1.7446442761 74 + 0.0606128742 95 %i,
+--R      - 1.7446441619 196944916 + 0.0606133033 8564864100 7 %i,
+--R      0.1142543055 08 E -6 + 0.4290906486 41007 E -6 %i]
+--R     ,
+--R
+--R     [1.0 + 2.0 %i, - 1.8760787864 31 + 0.1296463163 1 %i,
+--R      - 1.8760786381 585810542 + 0.1296465718 833341783 %i,
+--R      0.1482724189 458 E -6 + 0.2555733341 783 E -6 %i]
+--R     ,
+--R
+--R     [1.0 + 2.1 %i, - 2.0087641504 71 + 0.2034594738 33 %i,
+--R      - 2.0087640119 218530981 + 0.2034596154 799745979 %i,
+--R      0.1385491469 02 E -6 + 0.1416469745 979 E -6 %i]
+--R     ,
+--R
+--R     [1.0 + 2.2 %i, - 2.1425842092 96 + 0.2818456584 26 %i,
+--R      - 2.1425840960 876952162 + 0.2818457299 3685319226 %i,
+--R      0.1132083047 84 E -6 + 0.7151085319 226 E -7 %i]
+--R     ,
+--R
+--R     [1.0 + 2.3 %i, - 2.2774381922 04 + 0.3646140489 5 %i,
+--R      - 2.2774381063 831111412 + 0.3646140797 7055414725 %i,
+--R      0.8582088885 88 E -7 + 0.3082055414 725 E -7 %i]
+--R     ,
+--R
+--R     [1.0 + 2.4 %i, - 2.4132381411 84 + 0.4515881524 41 %i,
+--R      - 2.4132380792 215488516 + 0.4515881611 4945339852 %i,
+--R      0.6196245114 84 E -7 + 0.8708453398 52 E -8 %i]
+--R     ,
+--R
+--R     [1.0 + 2.5 %i, - 2.5499068424 95 + 0.5426044058 52 %i,
+--R      - 2.5499067992 955284158 + 0.5426044035 6280478379 %i,
+--R      0.4319947158 42 E -7 - 0.2289195216 2 E -8 %i]
+--R     ,
+--R
+--R     [1.0 + 2.6 %i, - 2.6873761537 5 + 0.6375109190 46 %i,
+--R      - 2.6873761244 380686304 + 0.6375109120 6490899231 %i,
+--R      0.2931193136 96 E -7 - 0.6981091007 69 E -8 %i]
+--R     ,
+--R
+--R     [1.0 + 2.7 %i, - 2.8255856411 91 + 0.7361663516 79 %i,
+--R      - 2.8255856217 482878084 + 0.7361663433 7467081169 %i,
+--R      0.1944271219 16 E -7 - 0.8304329188 32 E -8 %i]
+--R     ,
+--R
+--R     [1.0 + 2.8 %i, - 2.9644814617 89 + 0.8384389130 96 %i,
+--R      - 2.9644814491 554295115 + 0.8384389051 1754275168 %i,
+--R      0.1263357048 8 E -7 - 0.7978457248 32 E -8 %i]
+--R     ,
+--R
+--R     [1.0 + 2.9 %i, - 3.1040154399 01 + 0.9442054730 39 %i,
+--R      - 3.1040154318 565321996 + 0.9442054660 7862553084 %i,
+--R      0.8044467800 4 E -8 - 0.6960374469 16 E -8 %i]
+--R     ,
+--R
+--R     [1.0 + 3.0 %i, - 3.2441442995 9 + 1.0533507710 69 %i,
+--R      - 3.2441442945 809249541 + 1.0533507653 179013667 %i,
+--R      0.5009075046 E -8 - 0.5751098633 3 E -8 %i]
+--R     ,
+--R
+--R     [1.0 + 3.1 %i, - 3.3848290223 77 + 1.1657667132 86 %i,
+--R      - 3.3848290193 409889189 + 1.1657667086 926332139 %i,
+--R      0.3036011081 1 E -8 - 0.4593366786 1 E -8 %i]
+--R     ,
+--R
+--R     [1.0 + 3.2 %i, - 3.5260343067 09 + 1.2813517459 32 %i,
+--R      - 3.5260343049 347826646 + 1.2813517423 440037128 %i,
+--R      0.1774217335 E -8 - 0.3587996287 2 E -8 %i]
+--R     ,
+--R
+--R     [1.0 + 3.3 %i, - 3.6677281104 88 + 1.4000102965 76 %i,
+--R      - 3.6677281095 052040502 + 1.4000102938 163542918 %i,
+--R      0.9827959498 E -9 - 0.2759645708 2 E -8 %i]
+--R     ,
+--R
+--R     [1.0 + 3.4 %i, - 3.8098812618 23 + 1.5216522746 73 %i,
+--R      - 3.8098812613 276184867 + 1.5216522725 71566048 %i,
+--R      0.4953815133 E -9 - 0.2101433952 E -8 %i]
+--R     ,
+--R
+--R     [1.0 + 3.5 %i, - 3.9524671261 89 + 1.6461926242 69 %i,
+--R      - 3.9524671259 853198893 + 1.6461926226 807455415 %i,
+--R      0.203680111 E -9 - 0.1588254458 5 E -8 %i]
+--R     ,
+--R
+--R     [1.0 + 3.6 %i, - 4.0954613204 51 + 1.7735509225 91 %i,
+--R      - 4.0954613204 155384205 + 1.7735509213 962023574 %i,
+--R      0.354615795 E -10 - 0.1194797642 6 E -8 %i]
+--R     ,
+--R
+--R     [1.0 + 3.7 %i, - 4.2388414660 71 + 1.9036510190 19 %i,
+--R      - 4.2388414661 27781932 + 1.9036510181 226951001 %i,
+--R      - 0.56781932 E -10 - 0.8963048999 E -9 %i]
+--R     ,
+--R
+--R     [1.0 + 3.8 %i, - 4.3825869752 28 + 2.0364207096 93 %i,
+--R      - 4.3825869753 299956382 + 2.0364207090 215572509 %i,
+--R      - 0.101995638 E -9 - 0.6714427491 E -9 %i]
+--R     ,
+--R
+--R     [1.0 + 3.9 %i, - 4.5266788647 16 + 2.1717914436 05 %i,
+--R      - 4.5266788648 352793739 + 2.1717914431 026276223 %i,
+--R      - 0.119279374 E -9 - 0.5023723777 E -9 %i]
+--R     ,
+--R
+--R     [1.0 + 4.0 %i, - 4.6710995934 09 + 2.3096980565 73 %i,
+--R      - 4.6710995935 296268252 + 2.3096980561 967129493 %i,
+--R      - 0.120626825 E -9 - 0.3762870507 E -9 %i]
+--R     ,
+--R
+--R     [1.0 + 4.1 %i, - 4.8158329197 96 + 2.4500785299 47 %i,
+--R      - 4.8158329199 100070487 + 2.4500785296 656839327 %i,
+--R      - 0.114007049 E -9 - 0.2813160673 E -9 %i]
+--R     ,
+--R
+--R     [1.0 + 4.2 %i, - 4.9608637766 87 + 2.5928737713 19 %i,
+--R      - 4.9608637767 906961011 + 2.5928737711 078289946 %i,
+--R      - 0.103696101 E -9 - 0.211171005 E -9 %i]
+--R     ,
+--R
+--R     [1.0 + 4.3 %i, - 5.1061781606 63 + 2.7380274148 2 %i,
+--R      - 5.1061781607 536849241 + 2.7380274146 614806809 %i,
+--R      - 0.906849241 E -10 - 0.158519319 E -9 %i]
+--R     ,
+--R
+--R     [1.0 + 4.4 %i, - 5.2517630342 3 + 2.8854856389 27 %i,
+--R      - 5.2517630343 090783839 + 2.8854856388 07923102 %i,
+--R      - 0.790783839 E -10 - 0.119076898 E -9 %i]
+--R     ,
+--R
+--R     [1.0 + 4.5 %i, - 5.3976062389 84 + 3.0351969999 22 %i,
+--R      - 5.3976062390 513914695 + 3.0351969998 31937613 %i,
+--R      - 0.673914695 E -10 - 0.90062387 E -10 %i]
+--R     ,
+--R
+--R     [1.0 + 4.6 %i, - 5.5436964183 04 + 3.1871122793 89 %i,
+--R      - 5.5436964183 61390699 + 3.1871122793 208820187 %i,
+--R      - 0.57390699 E -10 - 0.681179813 E -10 %i]
+--R     ,
+--R
+--R     [1.0 + 4.7 %i, - 5.6900229483 73 + 3.3411843443 27 %i,
+--R      - 5.6900229484 214997719 + 3.3411843442 759324334 %i,
+--R      - 0.484997719 E -10 - 0.510675666 E -10 %i]
+--R     ,
+--R
+--R     [1.0 + 4.8 %i, - 5.8365758764 54 + 3.4973680186 15 %i,
+--R      - 5.8365758764 943805837 + 3.4973680185 763247957 %i,
+--R      - 0.403805838 E -10 - 0.386752043 E -10 %i]
+--R     ,
+--R
+--R     [1.0 + 4.9 %i, - 5.9833458655 32 + 3.6556199647 12 %i,
+--R      - 5.9833458655 659367284 + 3.6556199646 827616217 %i,
+--R      - 0.339367284 E -10 - 0.292383783 E -10 %i]
+--R     ,
+--R
+--R     [1.0 + 5.0 %i, - 6.1303241445 53 + 3.8158985746 15 %i,
+--R      - 6.1303241445 811123102 + 3.8158985745 927031289 %i,
+--R      - 0.2811231 E -10 - 0.222968711 E -10 %i]
+--R     ,
+--R
+--R     [1.0 + 5.1 %i, - 6.2775024635 84 + 3.9781638691 88 %i,
+--R      - 6.2775024636 078422767 + 3.9781638691 706816787 %i,
+--R      - 0.23842277 E -10 - 0.173183213 E -10 %i]
+--R     ,
+--R
+--R     [1.0 + 5.2 %i, - 6.4248730533 35 + 4.1423774050 86 %i,
+--R      - 6.4248730533 548717638 + 4.1423774050 733123933 %i,
+--R      - 0.19871764 E -10 - 0.12687607 E -10 %i]
+--R     ,
+--R
+--R     [1.0 + 5.3 %i, - 6.5724285885 29 + 4.3085021885 83 %i,
+--R      - 6.5724285885 457509092 + 4.3085021885 732350035 %i,
+--R      - 0.16750909 E -10 - 0.97649965 E -11 %i]
+--R     ,
+--R
+--R     [1.0 + 5.4 %i, - 6.7201621547 03 + 4.4765025956 68 %i,
+--R      - 6.7201621547 164454344 + 4.4765025956 6044423 %i,
+--R      - 0.13445434 E -10 - 0.75557699 E -11 %i]
+--R     ,
+--R
+--R     [1.0 + 5.5 %i, - 6.8680672180 48 + 4.6463442978 7 %i,
+--R      - 6.8680672180 595740196 + 4.6463442978 647410058 %i,
+--R      - 0.1157402 E -10 - 0.52589942 E -11 %i]
+--R     ,
+--R
+--R     [1.0 + 5.6 %i, - 7.0161375979 76 + 4.8179941933 05 %i,
+--R      - 7.0161375979 858421857 + 4.8179941933 005550433 %i,
+--R      - 0.98421857 E -11 - 0.44449567 E -11 %i]
+--R     ,
+--R
+--R     [1.0 + 5.7 %i, - 7.1643674421 06 + 4.9914203424 89 %i,
+--R      - 7.1643674421 140655762 + 4.9914203424 861697905 %i,
+--R      - 0.80655762 E -11 - 0.2830209 E -11 %i]
+--R     ,
+--R
+--R     [1.0 + 5.8 %i, - 7.3127512034 3 + 5.1665919085 37 %i,
+--R      - 7.3127512034 36317679 + 5.1665919085 342976767 %i,
+--R      - 0.6317679 E -11 - 0.2702323 E -11 %i]
+--R     ,
+--R
+--R     [1.0 + 5.9 %i, - 7.4612836194 29 + 5.3434791013 53 %i,
+--R      - 7.4612836194 350723482 + 5.3434791013 5075755 %i,
+--R      - 0.60723482 E -11 - 0.224245 E -11 %i]
+--R     ,
+--R
+--R     [1.0 + 6.0 %i, - 7.6099596929 51 + 5.5220531255 15 %i,
+--R      - 7.6099596929 554672207 + 5.5220531255 133435246 %i,
+--R      - 0.44672207 E -11 - 0.1656475 E -11 %i]
+--R     ,
+--R
+--R     [1.0 + 6.1 %i, - 7.7587746746 55 + 5.7022861315 35 %i,
+--R      - 7.7587746746 585972836 + 5.7022861315 344022325 %i,
+--R      - 0.3597284 E -11 - 0.5977675 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 6.2 %i, - 7.9077240468 98 + 5.8841511702 39 %i,
+--R      - 7.9077240469 015667429 + 5.8841511702 386349799 %i,
+--R      - 0.3566743 E -11 - 0.36502 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 6.3 %i, - 8.0568035089 04 + 6.0676221500 13 %i,
+--R      - 8.0568035089 073088969 + 6.0676221500 126290404 %i,
+--R      - 0.3308897 E -11 - 0.37096 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 6.4 %i, - 8.2060089631 + 6.2526737967 05 %i,
+--R      - 8.2060089631 022876515 + 6.2526737967 049593955 %i,
+--R      - 0.2287651 E -11 - 0.406045 E -13 %i]
+--R     ,
+--R
+--R     [1.0 + 6.5 %i, - 8.3553365025 11 + 6.4392816159 76 %i,
+--R      - 8.3553365025 134245282 + 6.4392816159 757023231 %i,
+--R      - 0.2424528 E -11 - 0.297677 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 6.6 %i, - 8.5047823991 25 + 6.6274218579 12 %i,
+--R      - 8.5047823991 272090321 + 6.6274218579 121383093 %i,
+--R      - 0.2209032 E -11 + 0.138309 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 6.7 %i, - 8.6543430931 23 + 6.8170714837 44 %i,
+--R      - 8.6543430931 241668318 + 6.8170714837 435317714 %i,
+--R      - 0.1166832 E -11 - 0.4682286 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 6.8 %i, - 8.8040151829 1 + 7.0082081345 02 %i,
+--R      - 8.8040151829 108657274 + 7.0082081345 023668668 %i,
+--R      - 0.865727 E -12 + 0.366867 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 6.9 %i, - 8.9537954158 79 + 7.2008101014 93 %i,
+--R      - 8.9537954158 795929843 + 7.2008101014 924740199 %i,
+--R      - 0.592984 E -12 - 0.5259801 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 7.0 %i, - 9.1036806798 32 + 7.3948562984 36 %i,
+--R      - 9.1036806798 328755451 + 7.3948562984 362601022 %i,
+--R      - 0.875545 E -12 + 0.260102 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 7.1 %i, - 9.2536679950 15 + 7.5903262351 84 %i,
+--R      - 9.2536679950 162537946 + 7.5903262351 838962951 %i,
+--R      - 0.1253795 E -11 - 0.103705 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 7.2 %i, - 9.4037545067 08 + 7.7871999928 77 %i,
+--R      - 9.4037545067 082605399 + 7.7871999928 769445859 %i,
+--R      - 0.26054 E -12 - 0.554141 E -13 %i]
+--R     ,
+--R
+--R     [1.0 + 7.3 %i, - 9.5539374783 21 + 7.9854582004 68 %i,
+--R      - 9.5539374783 214863185 + 7.9854582004 676249208 %i,
+--R      - 0.486319 E -12 - 0.375079 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 7.4 %i, - 9.7042142849 72 + 8.1850820125 03 %i,
+--R      - 9.7042142849 730050014 + 8.1850820125 028358342 %i,
+--R      - 0.1005001 E -11 - 0.164166 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 7.5 %i, - 9.8545824074 86 + 8.3860530880 89 %i,
+--R      - 9.8545824074 863547157 + 8.3860530880 892263646 %i,
+--R      - 0.354716 E -12 + 0.226365 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 7.6 %i, - 10.0050394267 9 + 8.5883535709 62 %i,
+--R      - 10.0050394267 9077464 + 8.5883535709 621509583 %i,
+--R      - 0.77464 E -12 + 0.150958 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 7.7 %i, - 10.1555830186 86 + 8.7919660705 87 %i,
+--R      - 10.1555830186 86537113 + 8.7919660705 872881232 %i,
+--R      - 0.537113 E -12 + 0.288123 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 7.8 %i, - 10.3062109489 48 + 8.9968736442 29 %i,
+--R      - 10.3062109489 48029324 + 8.9968736442 291265808 %i,
+--R      - 0.29324 E -13 + 0.126581 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 7.9 %i, - 10.4569210687 39 + 9.2030597799 25 %i,
+--R      - 10.4569210687 38766792 + 9.2030597799 254718746 %i,
+--R      0.233208 E -12 + 0.471875 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 8.0 %i, - 10.6077113103 15 + 9.4105083803 12 %i,
+--R      - 10.6077113103 1479434 + 9.4105083803 116483136 %i,
+--R      0.20566 E -12 - 0.351686 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 8.1 %i, - 10.7585796829 95 + 9.6192037472 42 %i,
+--R      - 10.7585796829 94977847 + 9.6192037472 422072521 %i,
+--R      0.22153 E -13 + 0.207252 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 8.2 %i, - 10.9095242693 78 + 9.8291305671 62 %i,
+--R      - 10.9095242693 78536574 + 9.8291305671 617400305 %i,
+--R      - 0.536574 E -12 - 0.25997 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 8.3 %i, - 11.0605432217 92 + 10.0402738971 8 %i,
+--R      - 11.0605432217 91833327 + 10.0402738971 79865529 %i,
+--R      0.166673 E -12 - 0.134471 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 8.4 %i, - 11.2116347589 48 + 10.2526191518 09 %i,
+--R      - 11.2116347589 47947425 + 10.2526191518 08647801 %i,
+--R      0.52575 E -13 - 0.352199 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 8.5 %i, - 11.3627971628 04 + 10.4661520903 24 %i,
+--R      - 11.3627971628 03920333 + 10.4661520903 23625234 %i,
+--R      0.796669 E -13 - 0.374766 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 8.6 %i, - 11.5140287756 02 + 10.6808588047 12 %i,
+--R      - 11.5140287756 01801068 + 10.6808588047 12322866 %i,
+--R      0.198932 E -12 + 0.322866 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 8.7 %i, - 11.6653279970 81 + 10.8967257081 77 %i,
+--R      - 11.6653279970 80741204 + 10.8967257081 76595379 %i,
+--R      0.258796 E -12 - 0.404621 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 8.8 %i, - 11.8166932818 48 + 11.1137395241 57 %i,
+--R      - 11.8166932818 48409467 + 11.1137395241 57428959 %i,
+--R      - 0.409467 E -12 + 0.428959 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 8.9 %i, - 11.9681231369 01 + 11.3318872758 53 %i,
+--R      - 11.9681231369 00923725 + 11.3318872758 52933183 %i,
+--R      0.762754 E -13 - 0.668174 E -13 %i]
+--R     ,
+--R
+--R     [1.0 + 9.0 %i, - 12.1196161192 81 + 11.5511562762 02 %i,
+--R      - 12.1196161192 81343173 + 11.5511562762 02194801 %i,
+--R      - 0.343173 E -12 + 0.194801 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 9.1 %i, - 12.2711708338 67 + 11.7715341183 09 %i,
+--R      - 12.2711708338 67533716 + 11.7715341183 09457939 %i,
+--R      - 0.533716 E -12 + 0.457939 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 9.2 %i, - 12.4227859312 81 + 11.9930086662 85 %i,
+--R      - 12.4227859312 80922451 + 11.9930086662 84752568 %i,
+--R      0.775495 E -13 - 0.247432 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 9.3 %i, - 12.5744601059 08 + 12.2155680464 79 %i,
+--R      - 12.5744601059 08299231 + 12.2155680464 7862654 %i,
+--R      - 0.299231 E -12 - 0.37346 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 9.4 %i, - 12.7261920940 29 + 12.4392006390 9 %i,
+--R      - 12.7261920940 29410474 + 12.4392006390 90056598 %i,
+--R      - 0.410474 E -12 + 0.56598 E -13 %i]
+--R     ,
+--R
+--R     [1.0 + 9.5 %i, - 12.8779806720 44 + 12.6638950701 28 %i,
+--R      - 12.8779806720 43627774 + 12.6638950701 27929907 %i,
+--R      0.372226 E -12 - 0.70093 E -13 %i]
+--R     ,
+--R
+--R     [1.0 + 9.6 %i, - 13.0298246547 89 + 12.8896402037 08 %i,
+--R      - 13.0298246547 89466317 + 12.8896402037 07708444 %i,
+--R      - 0.466316 E -12 - 0.291556 E -12 %i]
+--R     ,
+--R
+--R     [1.0 + 9.7 %i, - 13.1817228939 51 + 13.1164251346 66 %i,
+--R      - 13.1817228939 51179682 + 13.1164251346 66021834 %i,
+--R      - 0.179682 E -12 + 0.21834 E -13 %i]
+--R     ,
+--R
+--R     [1.0 + 9.8 %i, - 13.3336742765 47 + 13.3442391814 77 %i,
+--R      - 13.3336742765 47072151 + 13.3442391814 7698698 %i,
+--R      - 0.721508 E -13 - 0.1302 E -13 %i]
+--R     ,
+--R
+--R     [1.0 + 9.9 %i, - 13.4856777234 95 + 13.5730718794 55 %i,
+--R      - 13.4856777234 94550479 + 13.5730718794 5503157 %i,
+--R      0.449521 E -12 + 0.3157 E -13 %i]
+--R     ,
+--R
+--R     [1.0 + 10.0 %i, - 13.6377321882 47 + 13.8029129742 3 %i,
+--R      - 13.6377321882 47287365 + 13.8029129742 29909153 %i,
+--R      - 0.287365 E -12 - 0.908474 E -13 %i]
+--R     ]
+--R                                                Type: List List Complex
Float
+--E 10
)spool
)lisp (bye)