[Top][All Lists]

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Axiom-developer] Re: A Collection of Algebraic Identities

From: Tito Piezas
Subject: [Axiom-developer] Re: A Collection of Algebraic Identities
Date: Tue, 9 Jun 2009 05:26:13 -0600

Hello Tim,
Thank you for the interest.  I just moved to Canada and I am still sorting out all my stuff.  I will get back to your questions in a few days.  :-)

On Sun, Jun 7, 2009 at 8:59 PM, TimDaly <address@hidden> wrote:
On Jun 4, 12:35 pm, address@hidden wrote:
> Hello all,
> Here's a nice identity:
> (p+q)^4 + (r-s)^4 = (p-q)^4 + (r+s)^4
> where {p,q,r,s} = {a^7+a^5-2a^3+a, 3a^2, a^6-2a^4+a^2+1, 3a^5}
> For similar stuff, you may be interested in "A Collection of Algebraic
> Identities":
> It's a 200+ page book I wrote and made available there.  It starts
> with the basics with 2nd powers and goes up to 8th and higher powers.
> Enjoy.
> - Titus

On the page

Theorem: If p^2 + (p+1)^2 = r^2, then q^2 + (q+1)^2 = (p+q+r+1)^2
where q = 3p+2r+1

r:=sqrt(p^2 + (p+1)^2)
q^2 + (q+1)^2 - (p+q+r+1)^2 == (-4r -8p -4)sqrt(2p^2+2p+1)+4r^2+(8p+4)

which is clearly not zero. What am I missing?

reply via email to

[Prev in Thread] Current Thread [Next in Thread]