IAT_EX Source for GR6

Contents

ontents						3.4	Delimeters	7
						3.5	Operators	7
1	Intro	duction .		1		3.6	Miscellaneous things	7
	1.1	Previo	us version (GR5) \ldots \ldots	1	4	LaTe	X source: high-level code for formatting	8
	1.2	Presen	t version	2		4.1	How information was entered	8
2	Discu	ssion of	code	2		4.2	Dimensions	9
3	LaTel	X source:	low-level code for expressions	2		4.3	Other	9
	3.1	Macro	naming convention for func-		5	Samp	le Source Code	10
		tion re	Detailed functions and	3		5.1	Source Code	10
		5.1.1	their environments	2		5.2	Formatted output	11
		219	Functions and their argu	3	6	Syste	m level details of GR6	12
		0.1.2	ments	3		6.1	LAT _F X packages	12
		313	Special functions	4		6.2	Directories and files	12
		3.1.4	Derivative and integral	т			6.2.1 GR/STYLES files	12
		0.1.1	functions	4			6.2.2 GR/FINAL files	13
		3.1.5	Sum and product functions	4			6.2.2.1 GR6 source	13
	3.2	Consta	nts	4			6.2.2.2 The shell scripts	13
	3.3	Functio	on names	5			6.2.2.3 Other files	14

Introduction 1

This document describes the LATEX source for the sixth edition of Gradshteyn and Ryzhik (denoted GR6).

Previous version (GR5) 1.1

The electronic source of the fifth edition of GR (denoted GR5) was made available from Technical Typesetters. This source consisted of inelegant T_FX code (not I^AT_FX) along with a lengthy collection of macros. Difficulties with this source included:

- 1. The marked up T_FX was not as clear as it could be. For example, the same command means different things in different files:
 - jeffc00.tex has \def\th{\mathop{\rm th}\nolimits}
 - jeffcc07b.tex has \def \th{\theta}
- All of the integrals were displayed using TFX's primitive \displaylines command. 2.
- The mathematics, as written in T_FX, was frequently ambiguous. 3.
- There were many implicit multiplications in the expressions. 4.
- There were numerous "obvious" typographical errors. 5.
- 6. The fonts used were proprietary.
- 7. There was no understanding in the files of the mathematical semantics of what was being typeset. For example, expression 2.01.13 is represented, in part, by line 243 of jeffc02a.tex which has: $\ln {\rm t}{\rm g}{\rm s}^{-2}$.

That is, this is the logarithm of the tangent (the notation "tg" was used for tangent) of x over 2. Unfortunately, the tangent is indicated by two letters which have no clear relation to any function and the argument of neither the logarithm nor the tangent are clearly indicated.

Zwillinger—February 17, 2006

GR6 discussion

(Just for comparison, in GR6 this expression is represented as \ZFUNCTIONArg{\ZFUNCTIONIn}{\ZFUNCTIONArg{\ZFUNCTIONtg}{\Zfrac{x}{2}}}. Here the argument of each mathematical function is clearly indicated.)

- 8. The special functions are not distinguished in the source. For example, B-with-a-subscript is used for all of a Bernoulli number, a Bernoulli polynomial, and an incomplete Beta function. (This makes it hard to electronically archive the results based on the types of functions appearing in each integral.)
- 9. They had a Russian style line breaking: "=", "+", "-", and "×" appeared at the end of a line to be broken and also at the beginning of the next line.
- 10. They used a non-standard mathematical notation: "th" for "tanh", "sh" for "sinh", "ch" for "cosh", etc
- 11. Single chapters were spread across multiple files.

1.2 Present version

We created an object model for the expressions in GR6, and then forced all input to the object model. Lots of "cleaning up" was also performed. For example: all occurrences of **\over** were replaced with a fraction command taking two arguments (such as \frac).

2 Discussion of code

The goal was to replace the T_EX code with IAT_EX code that could be easily formatted for the printed page, but would also contain all of the semantic information for each expression. The new "master electronic source":

- Could render the mathematics into print format, similar to it's present appearance.
- Would be mathematically unambiguous.
- Would be easy to translate the existing source into.

As a result, there are two levels of macros. The low-level is for the representation of each sub-expression; the high-level code is for nicely formatting the information in GR6.

The collections of macro are in the files:

- gr.macros.all: main one (calls all the others)
- gr.macros.diagnostic: (optional)
- gr.macros.math.operators
- gr.macros.object_model
- gr.macros.other

3 LaTeX source: low-level code for expressions

Note that many macros names begin with the letter "Z".

Zwillinger—February 17, 2006

3.1 Macro naming convention for function representation

Numerous commands were defined in LAT_EX to represent expressions. These expressions were semantically complete and can be easily translated into symbolic manipulation languages.

The macros names are mostly created from a set of key words strung together. These keywords include:

•	ArbLet	for arbitrary letters
•	Arg	for arguments
•	Power	for powers
•	Prime	for primes (')
•	Prod	for products
•	Sub	for subscripts
•	Sum	for sums
•	Sup	for superscript
•	ZFUNCTION	for introducing a function command or a function

The order in which these keywords appears indicates the order of the arguments to the macro. For example, ZFUNCTIONSupSubArg takes four arguments, a function, a subscript, a superscript, and an argument. As an illustration* $ZFUNCTIONSupSubArg{ZFUNCTIONHankel}{2}{3}{(apphax)}$ would appear as $H_3^2(\alpha x)$.

3.1.1 Detailed functions and their arguments

These constructs include:

- $\langle \text{ZPower} \langle argument \rangle \langle power \rangle$ For example: $\langle \text{Zpower} \{(alpha x)\} \{2\}$ would appear as $(\alpha x)^2$
- \ZFUNCTIONArg(name of function) (argument to function) For example: \ZFUNCTIONArg{\ZFUNCTIONsin}{\alpha x} would appear as
- For example: $ZFUNCTIONArg{ZFUNCTIONsin}{alpha x} would appear as <math>\sin \alpha x$ • $ZFUNCTIONPowerArg(name of function) (argument to function) (power to function) For example: <math>ZFUNCTIONPowerArg{ZFUNCTIONsin}{2} + \alpha x$
- $\ \ EVENCTIONSupSubArg(name of function) \ superscript)(subscript)(argument to function) For example: \ \ EVENCTIONSupSubArg(\ZFUNCTIONHankel){2}{3}(\x) would appear as <math>H_3^2(\alpha x)$

3.1.2 Functions and their arguments

- \ZArbLetPrimeSub{A}{B}{C} would appear as A'_B
- $\ A^{C} \$ would appear as A^{C}_{B}
- \ZFUNCTIONArg{A}{(B)} would appear as A(B)
- \ZFUNCTIONPowerArg{A}{B}(C) would appear as $A^B(C)$
- \ZFUNCTIONPowerSubArg{A}{B}{C}{(D)} would appear as $A_C^B(D)$
- \ZFUNCTIONPowerSubArg{A}{B}{C}(D) would appear as $A_C^{B}(D)$
- \ZFUNCTIONPrimeArg{A}{B} would appear as A'B

*All the terms in this expression are defined in subsequent sections.

Zwillinger-February 17, 2006

- \ZFUNCTIONPrimePrimeArg{A}{B} would appear as A''B
- A'''B• \ZFUNCTIONPrimePrimePrimeArg{A}{B} would appear as
- \ZFUNCTIONPrimePrimePrimeSubArg{A}{B}{(C)} would appear as $A_{R}^{\prime\prime\prime\prime}(C)$
- \ZFUNCTIONPrimePrimeSubArg{A}{B}{(C)} would appear as $A_B''(C)$
- $A'_B(C)$ • \ZFUNCTIONPrimeSubArg{A}{B}{(C)} would appear as
- \ZFUNCTIONSubArg{A}{B}{(C)} would appear as $A_B(C)$
- \ZFUNCTIONSubPowerArg{A}{B}{C}{(D)} $A_B^C(D)$ would appear as
- would appear as $A_B^{\widetilde{C}}(D)$ build appear as $A_B^{C}(D)$ • \ZFUNCTIONSubPowerArg{A}{B}{C}{(D)}
- \ZFUNCTIONSubSupArg{A}{B}{C}{(D)} would appear as
- $\begin{array}{c} A_B^{\widetilde{C}}(D) \\ A_C^B(D) \end{array}$ • \ZFUNCTIONSubSupArg{A}{B}{C}{(D)} would appear as
- \ZFUNCTIONSupSubArg{A}{B}{C}{(D)} would appear as $A^{\breve{B}}_{C}(D)$
- \ZFUNCTIONSupSubArg{A}{B}{C}{(D)} would appear as

3.1.3 Special functions

The hypergeometric function and the Meijer G function were handled separately:

- $G_A^B\left(C \left| \begin{smallmatrix} D \\ E \end{smallmatrix} \right)\right.$ • For example: \ZFUNCTIONMeijerGWithArgs{A}{B}{C}D}E would appear as
- For example: \ZFUNCTIONHypergeometricFunctionWithArgs{A}{B}{C}{D}{E} would appear as $_{A}F_{B}(C; D; E)$

3.1.4 Derivative and integral functions

- \ZIntegralIndefinite would appear as ſ
- \int_{A}^{B} • \ZIntegralLowerUpper{A}{B} would appear as
- \diff{A}{B} would appear as $\frac{dA}{dB}$
- $\frac{d^C A}{dB^C}$ would appear as • $\Mdiff{A}{B}{C}$
- \mpdiff{A}{B}{C} would appear as
- \pdiff{A}{B} would appear as

3.1.5 Sum and product functions

- $\prod_{A}^{\prime B}$ • \ZProdPrimeSubSup{A}{B} would appear as
- \prod_{A}^{B} • \ZProdSubSup{A}{B} would appear as
- \ZProdSub{A} would appear as \prod_{A}
- \ZProdSupSub{A}{B} would appear as \prod_{B}^{A}
- \ZSumPrimeSubSup{A}{B} would appear as \sum_{A}
- \sum_{A}^{B} • \ZSumSubSup{A}{B} would appear as
- would appear as • \ZSumSub{A} \sum_{A}
- \ZSumprime would appear as

3.2Constants

The following constants were defined:

Zwillinger—February 17, 2006

1.	G	\ConstantCatalan	6.	e	$\setminus \texttt{ConstantE}$
2.	D	ConstantEllipticFunctionDz	7.	∞	$\setminus Constantinfty$
3.	${oldsymbol E}$	ConstantEllipticFunctionEz	8.	i	$\backslash \texttt{Constanti}$
4.	\boldsymbol{K}	ConstantEllipticFunctionKz	9.	π	\Constantpi
5.	C	$\backslash \texttt{ConstantEuler}$			

The following constants were indexed, each took one argument (which appeared as a subscript):

- \CONSTANTBernoulli{n} would appear as B_n
- \CONSTANTBernoulliMod{n} would appear as B_n^*
- \CONSTANTEuler{n} would appear as E_n

3.3 Function names

The function names were changed from being single letters (or short names), which were sometime ambiguous, into long description names.

1.	Ai	\MATHAi	36.	Fe	\MATHFe
2.	J	MATHAngerFunction	37.	C	MATHFresnelCosineIntegral
3.	arcosech	\MATHArcosech	38.	S	\MATHFresnelSineIntegral
4.	arcsech	MATHArsech	39.	Г	\MATHGammaIncomplete
5.	P	MATHAssociatedLegendreFunctionFir	stt0.	Г	MATHGamma
6.	Q	\MATHAssociatedLegendreFunctionSec	oʻhild	C	\MATHGegenbauerPolynomial
7.	k	\MATHBatemanFunction	42.	Gek	\MATHGek
8.	B	\MATHBernoulliPolynomial	43.	Gey	\MATHGey
9.	Ι	\MATHBesselI	44.	Ge	\MATHGe
10.	J	\MATHBesselJ	45.	H	\MATHHTheta
11.	K	\MATHBesselK	46.	H	\MATHHankel
12.	Y	\MATHBesselY	47.	Н	\MATHHeavisideFunction
13.	3	MATHBesselZFraktur	48.	He	MATHHermitePolynomialHe
14.	Z	\MATHBesselZ	49.	H	\MATHHermitePolynomial
15.	Z	\MATHBessel	50.	chi	\MATHHyperbolicCosineIntegral
16.	В	\MATHBeta	51.	$_{\rm shi}$	\MATHHyperbolicSineIntegral
17.	0	\MATHBig0	52.	Im	\MATHIm
18.	Bi	\MATHBi	53.	В	\MATHIncompleteBetaB
19.	Ce	\MATHCe	54.	Ι	\MATHIncompleteBetaI
20.	T	MATHChebyshevPolynomialOne	55.	P	\MATHJacobiPolynomial
21.	U	MATHChebyshevPolynomialTwo	56.	L	\MATHLaguerrePolynomial
22.	Cin	\MATHCin	57.	L	\MATHLaguerre
23.	Ci	\MATHCi	58.	P	MATHLegendreFunctionFirst
24.	Ei	\MATHEi	59.	Q	MATHLegendreFunctionSecond
25.	D	\MATHEllipticFunctionD	60.	Φ	\MATHLerch
26.	$oldsymbol{E}$	MATHELLipticFunctionEComplete	61.	L	MATHLobachevskiyFunction
27.	E	\MATHEllipticFunctionE	62.	S	\MATHLommelFunctionS
28.	F	\MATHEllipticFunctionF	63.	U	\MATHLommelFunctionU
29.	K	MATHELLipticFunctionKComplete	64.	V	\MATHLommelFunctionV
30.	K	\MATHEllipticFunctionK	65.	s	\MATHLommelFunctions
31.	П	\MATHEllipticFunctionPi	66.	E	\MATHMacRobertE
32.	E	\MATHEulerPolynomial	67.	\mathbf{L}	\MATHModifiedStruve
33.	E	MATHExponentialIntegral	68.	0	MATHNeumannPolynomial
34.	Fek	\MATHFek	69.	D	MATHParabolicCylinder
35.	Fey	\MATHFey	70.	Φ	MATHPhiConfluentHypergeometric

Zwillinger—February 17, 2006

71.	Φ	\MATHPhi	115.	ds	MATHds
72.	Ψ	\MATHPsiConfluentHypergeometric	116.	erfc	\MATHerfc
73.	Re	\MATHRe	117.	erf	\MATHerf
74.	S	\MATHSchlafliPolynomial	118.	\exp	MATHexp
75.	Se	\MATHSe	119.	fe	\MATHfe
76.	Si	\MATHSi	120.	γ	\MATHgammaIncomplete
77.	н	MATHStruve	121.	γ	MATHgamma
78.	Θ	MATHTheta	122.	gd	MATHgd
79.	\mathbf{E}	MATHWeberFunction	123.	ge	\MATHge
80.	M	MATHWhittakerFunctionM	124.	hei	MATHhei
81.	W	MATHWhittakerFunctionW	125.	her	MATHher
82.	C	MATHYoung	126.	kei	MATHkei
83.	am	MATHam	127.	ker	MATHker
84.	arccosec	MATHarccosec	128.	λ	MATHlambda
85.	arccosh	MATHarccosh	129.	li	MATHli
86.	arccos	MATHarccos	130.	ln	MATHln
87.	arccoth	MATHarccoth	131.	log	MATHlogBase
88.	arccot	MATHarccot	132.	log	MATHlog
89.		MATHarcctg	133.	μ	MATHmu
90.	arcsec	MATHarcsec	134.	nc	MATHnc
91.	arcsinh	MATHarcsinh	135.	nd	MATHnd
92.	arcsin	MATHarcsin	136.	ns	MATHns
93.	arctanh	MATHarctanh	137.	ν	MATHnu
94.	arctan	MATHarctan	138.	ψ	MATHpsi
95.	arg	MATHarg	139.	sc	MATHsc
96.	bei	MATHbei	140.	sd	MATHsd
97.	ber	MATHber	141.	sech	MATHsech
98.	β	MATHbetaFunction	142.	sec	MATHsec
99.	ß	MATHbeta	143.	se	MATHse
100.	cd	MATHcd	144.	sgn	MATHsgn
101.	ce	MATHce	145.	σ	\MATHsigma
102.	chi	MATHchi	146.	sign	\MATHsign
103.	ci	MATHci	147.	sinh	\MATHsinh
104.	cn	MATHcn	148.	sin	MATHsin
105.	cosech	MATHcosech	149.	si	MATHsi
106.	cosec	MATHcosec	150.	sn	MATHsn
107.	cosh	MATHcosh	151.	tanh	MATHtanh
108.	cos	MATHcos	152.	tan	MATHtan
109.	coth	MATHcoth	153.	19	MATHtheta
110.	cot	MATHcot	154.	tr	MATHtrace
111.	cs	MATHcs	155.	p	MATHwp
112.	de	MATHdc	156.	Ě	MATHxi
113.	δ	\MATHdelta	157.	č	\MATHzeta
114	dn	\MATHdn	158	s zn	\MATHzn
	un	\	±00.		\

Corresponding to each function name of the form Mathfoo there was also a function ZFUNCTIONfoo. This second form was used in GR6. It called the Mathfoo macro for the actual representation of the function, sent information to the index, etc.

Zwillinger—February 17, 2006

3.4 Delimeters

Parenthesis, brackets, and the like that are applied to expressions were replaced with commands (many grow in size as needed):

1.	(a)	$Zsurround{a}$	6. a	$\exists a $
2.	[a]	$Zsurbrack{a}$	7. $ a $	$Zsurvert{a}$
3.	$\{a\}$	$Zsurbrace{a}$	8. $a!$	$ZFactorial{a}$
4.	a	$Zabs{a}$	9. $a!!$	$\langle ZFactorialDouble{a} \rangle$
5.	a	$\langle Zdeterminant\{a\}$		

3.5 Operators

The following operators are defined (the textual representation is followed by the macro name):

1.	Н	\Hermitian	6.	curl	\curl
2.	\mathbf{PV}	\PrincipalValue	7.	div	\div
3.	Т	\Transpose	8.	grad	∖grad
4.	adj	\Zadj	9.	rot	\rot
5.	∇	\Znabla	10.	tr	\tr

3.6 Miscellaneous things

For ease of typing, letters that were bolded, or had bars over them were represented by simple macros:

1.	ξ	\barxi	20.	b	\bfb	39.	У	\bfy
2.	$\frac{z}{z}$	\setminus barz	21.	с	\bfc	40.	0	\bfzero
3.	Α	\bfA	22.	е	\bfe	41.	\mathbf{z}	\bfz
4.	в	bfB	23.	f	$egin{array}{c} bff \end{array}$	42.	F	\capF
5.	\mathbf{C}	\bfC	24.	g	$egin{array}{c} bfg \end{array}$	43.	Ι	\capI
6.	н	bfH	25.	i	\bfi	44.	\hat{x}	\hatx
7.	Ι	\bfI	26.	j	\bfj	45.	F_c	\FourierCosineFunction
8.	K	\bfK	27.	k	$egin{array}{c} bfk \end{array}$	46.	${\cal F}_c$	\FourierCosineTransform
9.	\mathbf{M}	bfM	28.	λ	\bflambda	47.	F_s	\FourierSineFunction
10.	Р	\bfP	29.	μ	\bfmu	48.	${\cal F}_s$	\FourierSineTransform
11.	\mathbf{Q}	\bfQ	30.	m	$egin{array}{c} bfm \end{array}$	49.	${\cal F}$	\setminus FourierTransform
12.	\mathbf{R}	bfR	31.	n	bfn	50.	S	FrakturS
13.	\mathbf{S}	\bfS	32.	$oldsymbol{\phi}$	ackslashbfphi	51.	3	FrakturZ
14.	\mathbf{U}	\bfU	33.	\mathbf{q}	\bfq	52.	\mathcal{L}	\LaplaceTransform
15.	\mathbf{V}	bfV	34.	\mathbf{r}	$egin{array}{c} bfr \end{array}$	53.	\mathcal{M}	\mathbb{N}
16.	\mathbf{W}	\bfW	35.	u	\bfu	54.	\mathbb{N}	\backslash ZNaturalNumbers
17.	\mathbf{X}	\bfX	36.	\mathbf{v}	\bfv	55.	\mathbb{Z}	\Zinteger
18.	Y	\bfY	37.	w	$egin{array}{c} bfw \end{array}$	56.	\mathbb{N}	\backslash Znatural
19.	a	\bfa	38.	x	bfx	57.	\mathbb{R}	\Zreal

Other things:

Zwillinger—February 17, 2006

1.	κ	\curlykappa	4.		\pminus
2.	k'	\kPrime	5.	κ	\varkappa
3.	n'	\nPrime	6.	0	$\backslash zdegrees$

4 LaTeX source: high-level code for formatting

The $\square T_EX$ macros used to create GR6 recognize that an object has one or more of the following components:

- a number (stored away with \ZDefNumber{...})
- an integral (stored away with \ZDefIntegral{...})
- a constraint (stored away with \ZDefConstraint{...})
- a reference (stored away with \ZDefReference{...})
- a left hand side to an expression (stored away with \ZDefLHS{...})
- a right hand side to an expression (stored away with \ZDefRHS{...})

If an integral had 4 right hand sides, then they would be stored away with the commands \ZDefrhsONE{...}, \ZDefrhsTWO{...}, \ZDefrhsTWO{...}, \ZDefrhsTHREE{...}, and \ZDefrhsFOUR{...}. In general, for those things that there could one of more or, we sometimes used a suffix of ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, X, XI, XII, for the "first occurrence of something" through to the "twelfth occurrence of something".

4.1 How information was entered

Typically, for integrals in a list, an entire expression might look like:

```
\Zitem
\ZDefIntegral{...}
\ZDefReference{...}
\ZDefConstraint{...}
\ZZdoit
```

where not all the components need be present, and the order (aside from the $\forall Zitem and \forall ZZdoit$) is irrelevant. Another form might be

```
\Zitem
\ZDefLHS{...}
\ZDefrhsONE{= ...}
\ZDefConstraintONE{...}
\ZDefrhsTW0{=...}
\ZDefrhsTHREE{\ZContinuationSpacing + ...} = ....}
\ZDefrhsFOUR{\ZContinuationSpacing -...}
\ZDefReferenceFOUR{...}
\ZDefConstraintFOUR{...}
\ZZdoit
```

In this case, there are two right hand sides, one takes a single line and one takes three lines.

The macro \ZZdoit chooses the most appropriate formatting for the given expression. This is done, in part, by defining many dimensions (see next section).

Zwillinger—February 17, 2006

4.2 Dimensions

The control of the output was controlled by many lengths that were defined in the program. These included:

- 1. $10.84006 \text{pt} \setminus \text{WidthCONtoRightMargin}$
- 2. $10.84006 \text{pt} \setminus \text{WidthCONtoREF}$
- 4. 14.45377 pt WidthINTtoCON
- 5. 14.45377 pt WidthINTtoREF
- $6. \qquad 10.84006 {\rm pt} \ \verb"WidthRHStoREF"$
- 7. 72.26999pt \WidthItemBoxInZitemList
- $8. \qquad 10.84006 pt \ \texttt{WidthLeftofNumberInList}$
- 9. 7.22743pt \WidthListToINT
- $10. \quad 7.22743 pt \quad \verb"WidthMultiLineToRightMargin"$
- $11. \quad 420.06937 p \verb"\WidthOfTextMinusLeftMarginToText"$
- 12. $57.81621 pt \setminus WidthCON$
- 13. 108.405 pt \WidthREF
- $14. 177.06126 {\rm pt} {\rm Width CONplus REF}$
- 15. 01em \ZContinuationSpacing

For example, the dimension WidthCONtoREF was the space between a constraint and a reference when they appeared on the same line.

There were also temporary length registers used for computational purposes:

- 1. GlobalTempTextWidthONE,
- 2. GlobalTempTextWidthTWO,
- 3. WidthTemp, and
- 4. WidthTempTwo.
- 5. WidthToFitRHSIn
- 6. NumWidthToFitIntConRef

And there were dimensions that were determined directly from the input expressions:

- 1. WidthLHS
- 2. WidthMultiRHSs
- 3. WidthMultiConstraints
- $4. \qquad \texttt{WidthMultiReferences}$

4.3 Other

- 1. There are flags that can be turned on to follow how \ZZdoit decides how to format the information. Essentially computations were performed to determine how the data should appear (i.e., all on one line or on more than one line) and then a macro for exactly that type of formatting was called. Some of the macro names include (the word "Local" is used for macros that are not called by the source, but only be other macros):
 - $(a) \verb+ LocalZFormatPossibleGlobalConAndRef+$
 - (b) LocalZListIntConaRef
 - $(c) \quad {\tt LocalZListIntCon}$
 - (d) LocalZListIntRef
 - (e) LocalZListInt
 - (f) LocalZListMultilineZwithRHSandCONandREF
 - $(g) \verb+ LocalZListMultilineZwithRHSandCONnoREF$
 - $(h) \verb+ LocalZListMultilineZwithRHSnoCON and REF$
 - $(i) \quad \texttt{LocalZListMultilineZwithRHSnoCONnoREF}$
 - (j) LocalZListSingle
- 2. Of course, all the sectioning routines were re-defined so that the results would set up the appropriate running heads and the like. The list of such commands is

Zwillinger—February 17, 2006

 ${\sf GR6}\ {\sf discussion}$

- (b) \Zchapter
- (c) \ZsectionSHORT(d) \ZsectionWithStar
- (d) \ZsectionWithStar(e) \Zsectiontoc
- (e) \Zsection
- (f) $\forall Zsection$

- (g) $\$ $\$ SubsectionSHORTtoc
- $(h) \ \SubsectionSHORT$
- (i) \ZsubsectionWithStar
- (j) \Zsubsection
 (k) \Zsubsubsection
- $(k) \setminus Zsubsubsection$
- 3. For expressions that were not within a list, (so that \Zitem was not used) the commands following the definitions of all the terms was either \ZZdoit or \ZZCenter (in which case the output should be centered).
- 4. Within the macro source, the following abbreviations were used:
 - Num for "Number"
 - Con for "Constraint"
 - Ref for "Reference"
 - Int for "Integral"
- 5. A new section used the number defined via \ZDefNumber. If text followed the section number than \ZZNumberThenText was used. If a list followed the section number, than \ZZNumberThenList was used.
- 6. Sometimes a small superscript indicating a revision had to be included. This was defined by using of \ModifiedTextSet before \ZZitem or \ZZNumberThenText or \ZZNumberThenList For example, using \ModifiedTextSet{8} would result in a superscript of "8" appearing on an integral number, or on a section number.
- 7. There are a lot more details!

5 Sample Source Code

5.1 Source Code

The following sample source code:

```
1
    \Sigma = \{3, 136\}
    \ZZNumberThenList
 2
3
   \ZbeginE
4
5
    \Zitem
6
   %
7
    \Sigma fLHS{
    {\ZIntegralLowerUpper{-\Constantinfty}{u}}
8
     Zfrac{Zdifferential{dx}}{ZFUNCTIONsqrt{Zpower{(a-x)}{3}}
9
     Zpower{(b-x)}{3}
10
11
     Zpower{(c-x)}{3}}
12
    \Sigma efrhsONE{
13
                  =Zfrac{2}{Zpower{(a-b)}{2}}
     \Zpower{(b-c)}{2} \ZFUNCTIONsqrt{\Zpower{(a-c)}{3}}}
14
15 }
16 %
   \Sigma frhsTWO{
17
    \ZContinuationSpacing
18
    \times
19
20
     Zsurbrack{(b-c)(a+b-2c)}
     \ZFUNCTIONArg{\ZFUNCTIONEllipticFunctionFz}{(\alpha, p)}-2
21
22
     Zsurround{Zpower{c}{2}+Zpower{a}{2}+Zpower{b}{2}-ab-ac-bc}
23
     \ZFUNCTIONArg{\ZFUNCTIONEllipticFunctionEz}{(\alpha, p)}}
```

Zwillinger—February 17, 2006

```
24 %
25 \ZDefrhsTHREE{
26 \ZContinuationSpacing
27 +Zfrac{2[c(a-c)+b(a-b)-u(2a-c-b)]}{(a-b)(a-c)}
28
    \Zpower{(b-c)}{2} \ZFUNCTIONsqrt{(a-u)(b-u)(c-u)}}
29 }
30 %
31 \ZDefConstraint{ \Zsurbrack{a>b>c>u}}
32 %
33 \ZDefReference{BY (231.14)}
34 %
35 \ZZdoit
36
37
   \Zitem
38
   \ZDefLHS{
39 {\ZIntegralLowerUpper{u}{\Constantinfty}}
40
     Zfrac{Zdifferential{dx}}{ZFUNCTIONsqrt{Zpower{(x-a)}{3}}
41
    \Sigma = {(x-b)}{3}
42
    Zpower{(x-c)}{3}}
43 %
44
   \Sigma EfrhsONE{
45
                 =Zfrac{2}{Zpower{(a-b)}{2}}
46
    \Zpower{(b-c)}{2} \ZFUNCTIONsqrt{\Zpower{(a-c)}{3}}}
47 %
48 \ZDefrhsTWO{
49
    \ZContinuationSpacing
   \times
50
51
    Zsurbrack{(a-b)(2a-b-c)}
    \ZFUNCTIONArg{\ZFUNCTIONEllipticFunctionFz}{(\nu, q)}-2
52
53
     Zsurround{Zpower{a}{2}+Zpower{b}{2}+Zpower{c}{2}-ab-ac-bc}
    \ZFUNCTIONArg{\ZFUNCTIONEllipticFunctionEz}{(\nu, q)}}
54
55 %
56
   \Sigma frhsTHREE{
57
   \ZContinuationSpacing
58 +Zfrac{2[u(a+b-2c)-a(a-c)-b(b-c)]}{Zpower{(a-b)}{2}}
59
        (a-c)(b-c)\ZFUNCTIONsqrt{(u-a)(u-b)(u-c)}}
60 }
61 %
62 \ZDefConstraint{ \Zsurbrack{u>a>b>c}}
63 %
64 \ZDefReference{BY (238.16)}
65 %
66
   \ZZdoit
67
68 \ZendE
```

5.2 Formatted output

Is formatted as follows:

3.136

Zwillinger-February 17, 2006

 ${\sf GR6}\ {\sf discussion}$

1.
$$\int_{-\infty}^{u} \frac{dx}{\sqrt{(a-x)^{3}(b-x)^{3}(c-x)^{3}}} = \frac{2}{(a-b)^{2}(b-c)^{2}\sqrt{(a-c)^{3}}} \times \left[(b-c)(a+b-2c)F(\alpha,p) - 2(c^{2}+a^{2}+b^{2}-ab-ac-bc)E(\alpha,p)\right] + \frac{2[c(a-c)+b(a-b)-u(2a-c-b)]}{(a-b)(a-c)(b-c)^{2}\sqrt{(a-u)(b-u)(c-u)}} = BY (231.14)$$

2.
$$\int_{u}^{\infty} \frac{dx}{\sqrt{(x-a)^{3}(x-b)^{3}(x-c)^{3}}} = \frac{2}{(a-b)^{2}(b-c)^{2}\sqrt{(a-c)^{3}}} \times [(a-b)(2a-b-c)F(\nu,q)-2(a^{2}+b^{2}+c^{2}-ab-ac-bc)E(\nu,q)] + \frac{2[u(a+b-2c)-a(a-c)-b(b-c)]}{(a-b)^{2}(a-c)(b-c)\sqrt{(u-a)(u-b)(u-c)}} = [u > a > b > c]$$
BY (238.16)

System level details of GR6 6

6.1 I₄T_EX packages

 $c\infty$

The ${\rm I\!A} T_{\rm E} X$ packages that were used are:

• graphicx	(needed for its \rotatebox command)
• amsfonts	(for the fonts)
• amsmath	(for mathematics)
• comment	(to comment out sections)
 longtable 	(for run-on tables)
• multicol	(for multi-column material)
• supertabular	(for run-on tables)
• type1cm	(state intention to use type 1 fonts)
• url	(for printing URL's properly)

6.2Directories and files

GR6 has two directories of information:

- GR/FINAL: where all the final book content appears (source for GR6)
- \bullet GR/STYLES: the location of the LATEX style files

The search path for $\mathrm{T}_{\! \mathrm{E}} \! X$ included the directory in GR/STYLES.

6.2.1 GR/STYLES files

The files in GR/STYLES are all standard $T_{EX}/I^{AT}EX$ files, and include:

Zwillinger—February 17, 2006

• Ueuf57.fd	 amsopn.sty 	 lastpage.sty 	• umsa.fd
• Umsa.fd	• amssymb.sty	Iongtable.sty	• umsa57.fd
• Umsa57.fd	• amstext.sty	• minitoc.sty.gz	• umsb.fd
• Umsb.fd	• bk10.clo	• multicol.sty	• umsb57.fd
• Umsb57.fd	• book.cls	• oldgerm.sty	• url.sty
• amsbsy.sty	 cmdtrack.sty 	 supertabular.sty 	 uyfrak.fd
• amsfonts.sty	• comment.sty	• times.sty	
• amsgen.sty	• fullpage.sty	 type1cm.sty 	
• amsmath.sty	• index.sty	• ueuf57.fd	

6.2.2 GR/FINAL files

16.

6.2.2.1**GR6 source** There is one source file for each section and chapter of GR6 (when arranged in alphabetical order they create GR6 in the proper order). The source files are:

1.	chapter.0.0.0.title_page.tex.tex	17.	chapter.07.def_spec_funcs_2.tex.tex
2.	chapter.0.0.1.tab_contents.tex.tex	18.	chapter.08.spec_funcs_1.tex.tex
3.	chapter.0.0.2.preface.tex.tex	19.	chapter.09.spec_funcs_2.tex.tex
4.	chapter.0.0.3.acknowledge.tex.tex	20.	chapter.10.vec_field_theory.tex.tex
5.	chapter.0.3.order_present.tex.tex	21.	chapter.11.alg_inequalities.tex.tex
6.	chapter.0.4.using_tables.tex.tex	22.	chapter.12.int_inequalities.tex.tex
7.	chapter.0.5.special_funct.tex.tex	23.	chapter.13.matrices.tex.tex
8.	chapter.0.6.notations.tex.tex	24.	chapter.14.determinants.tex.tex
9.	chapter.0.7.note_on_bib_ref.tex.tex	25.	chapter.15.norms.tex.tex
10.	chapter.00.all.introduction.tex.tex	26.	chapter.16.diff_eqn.tex.tex
11.	chapter.01.all.tex.tex	27.	$chapter.17.int_transforms.tex.tex$
12.	chapter.02.indef_elem_funcs.tex.tex	28.	chapter.18.z_transform.tex.tex
13.	chapter.03.def_elem_funcs_1.tex.tex	29.	chapter.19.references.tex.tex
14.	chapter.04.def_elem_funcs_2.tex.tex	30.	chapter.20.suppl_references.tex.tex
15.	chapter.05.indef_specfn.tex.tex	31.	chapter.Z.index.tex.tex
16.	chapter.06.def_spec_funcs_1.tex.tex		-

6.2.2.2 The shell scripts The shell scripts include scripts for manipulating the index (putting in *continued* at the top of con1tinuation pages, and making page breaks as appropriate)::

- sh.modify_concept_index.pl
- sh.modify_function_index.pl

and the single script that runs everything (including LATEX and the above two shell scripts), doit.gr.all:

#--# run LaTeX on the entire book #-----latex gr.tex.all.tex #-----# Make the indices # Create the files .nfx --> .nfd # .ncx --> .ncd # #----perl -pi.bak -e 's/ZdddZ/\\$/g;' gr.tex.all.nfx
perl -pi.bak -e 's/ZsssZ/\\/g;' gr.tex.all.nfx
perl -pi.bak -e 's/ZbbbZ/_/g;' gr.tex.all.nfx perl -pi.bak -e 's/ZpppZ/\^/g;' gr.tex.all.nfx

Zwillinger—February 17, 2006

```
perl -pi.bak -e 's/Schlafli/Schl\{\\\"a}fli/g;' gr.tex.all.nfx
perl -pi.bak -e 's/Schlafli/Schl\{\\\"a}fli/g;' gr.tex.all.nfd
perl -pi.bak -e 's/Schlafli/Schl\{\\\"a}fli/g;' gr.tex.all.nfc
makeindex -s gr.ist -o gr.tex.all.ncd gr.tex.all.ncx # concept index
makeindex -s gr.ist -o gr.tex.all.nfd gr.tex.all.nfx # functions
#-------
# fix the font on the indices (to make it be \sffamily)
#-------
perl -pi.bak -e 's/(Function and constant index)/\\sffamily $1/;' gr.tex.all.toc
perl -pi.bak -e 's/(General index)/\\sffamily $1/;' gr.tex.all.toc
```

6.2.2.3 Other files The file gr.ist has the format for the index

```
% This is the index style file
% It is modeled after the LaTeX Companion (page 361)
%-----
\% this puts a large letter A, B, etc before the appropriate section
%-----
                          ------
heading_prefix "{\\Large\\bfseries\\hfill
                                        heading_suffix "\\hfill}\\nopagebreak\n "
headings_flag 1
\% this puts leading dots to the page numbers
%-----
      ____
delim_0
          "\\dotfill "
          "\\dotfill "
delim_1
         "\\dotfill "
delim_2
```

There are 11 figures in the book, each is an .eps file. Each figure file is numbered by where it appears in the book. The figures are:

- fig.4_611_1.eps
 fig.4_611_2.eps
 fig.4_612_1.eps
 fig.4_612_2.eps
 fig.4_613_1.eps
 fig.4_613_2.eps
- fig.4_613_3.epsfig.4_613_4.epsfig.4_614.eps
- fig.4_615.eps
- fig.4_616.eps
- fig.8_310_2.eps

- fig.8_412_6.eps
- fig.8_422_2.eps
- fig.8_423_2.eps
- fig.9_512.eps

Zwillinger-February 17, 2006

GR6 discussion

Page 14 of 14