bug-coreutils
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

bug#12350: Composites identified as primes in factor.c (when HAVE_GMP)


From: Torbjorn Granlund
Subject: bug#12350: Composites identified as primes in factor.c (when HAVE_GMP)
Date: Tue, 18 Sep 2012 16:33:53 +0200
User-agent: Gnus/5.11 (Gnus v5.11) Emacs/22.3 (berkeley-unix)

Niels and I made more changes, including some needed to silence
-Wshadow.

We also re-enabled the div_smallq code after a bug fix, allowed squfof
to fail with recovery, and simplified the function factor.

I suppose you'll need to apply these manually, because of the TAB/SPC
problem.

I don't think we anticipate more changes to this code anytime soon.

diff -r 3024e91e4b82 factor.c
--- a/factor.c  Mon Sep 17 19:43:40 2012 +0200
+++ b/factor.c  Tue Sep 18 16:28:09 2012 +0200
@@ -140,7 +140,7 @@
 #endif
 #include "longlong.h"
 #ifdef COUNT_LEADING_ZEROS_NEED_CLZ_TAB
-static const unsigned char factor_clz_tab[129] =
+const unsigned char factor_clz_tab[129] =
 {
   1,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
@@ -479,8 +479,7 @@
 #define factor_insert(f, p) factor_insert_multiplicity(f, p, 1)
 
 static void
-factor_insert_large (struct factors *factors,
-                    uintmax_t p1, uintmax_t p0)
+factor_insert_large (struct factors *factors, uintmax_t p1, uintmax_t p0)
 {
   if (p1 > 0)
     {
@@ -1739,8 +1738,10 @@
   return 0;
 }
 
-static const unsigned short invtab[] =
+/* invtab[i] = floor(0x10000 / (0x100 + i) */
+static const unsigned short invtab[0x81] =
   {
+    0x200,
     0x1fc, 0x1f8, 0x1f4, 0x1f0, 0x1ec, 0x1e9, 0x1e5, 0x1e1,
     0x1de, 0x1da, 0x1d7, 0x1d4, 0x1d0, 0x1cd, 0x1ca, 0x1c7,
     0x1c3, 0x1c0, 0x1bd, 0x1ba, 0x1b7, 0x1b4, 0x1b2, 0x1af,
@@ -1763,17 +1764,22 @@
    that q < 0x40; here it instead uses a table of (Euclidian) inverses.  */
 #define div_smallq(q, r, u, d)                                         \
   do {                                                                 \
-    if (0 && (u) / 0x40 < (d))                                         \
+    if ((u) / 0x40 < (d))                                              \
       {                                                                        
\
        int _cnt;                                                       \
        uintmax_t _dinv, _mask, _q, _r;                                 \
        count_leading_zeros (_cnt, (d));                                \
-                                                                       \
-       _dinv = invtab[((d) >> (W_TYPE_SIZE - 8 - _cnt))                \
-                      - (1 << (8 - 1))];                               \
-                                                                       \
        _r = (u);                                                       \
-       _q = _r * _dinv >> (W_TYPE_SIZE + 8 - _cnt);                    \
+       if (UNLIKELY (_cnt > (W_TYPE_SIZE - 8)))                        \
+         {                                                             \
+           _dinv = invtab[((d) << (_cnt + 8 - W_TYPE_SIZE)) - 0x80];   \
+           _q = _dinv * _r >> (8 + W_TYPE_SIZE - _cnt);                \
+         }                                                             \
+       else                                                            \
+         {                                                             \
+           _dinv = invtab[((d) >> (W_TYPE_SIZE - 8 - _cnt)) - 0x7f];   \
+           _q = _dinv * (_r >> (W_TYPE_SIZE - 3 - _cnt)) >> 11;        \
+         }                                                             \
        _r -= _q*(d);                                                   \
                                                                        \
        _mask = -(uintmax_t) (_r >= (d));                               \
@@ -1833,8 +1839,9 @@
 #define MIN(a,b) ((a) < (b) ? (a) : (b))
 #endif
 
-
-static void
+/* Return true on success. Expected to fail only for numbers >=
+   2^{2*W_TYPE_SIZE - 2}, or close to that limit. */
+static bool
 factor_using_squfof (uintmax_t n1, uintmax_t n0, struct factors *factors)
 {
   /* Uses algorithm and notation from
@@ -1854,35 +1861,41 @@
       1155, 15, 231, 35, 3, 55, 7, 11, 0
     };
 
-  uintmax_t S;
   const unsigned int *m;
 
   struct { uintmax_t Q; uintmax_t P; } queue[QUEUE_SIZE];
 
-  S = isqrt2 (n1, n0);
+  if (n1 >= ((uintmax_t) 1 << (W_TYPE_SIZE - 2)))
+    return false;
 
-  if (n0 == S * S)
+  uintmax_t sqrt_n = isqrt2 (n1, n0);
+
+  if (n0 == sqrt_n * sqrt_n)
     {
       uintmax_t p1, p0;
 
-      umul_ppmm (p1, p0, S, S);
+      umul_ppmm (p1, p0, sqrt_n, sqrt_n);
       assert (p0 == n0);
 
       if (n1 == p1)
        {
-         if (prime_p (S))
-           factor_insert_multiplicity (factors, S, 2);
+         if (prime_p (sqrt_n))
+           factor_insert_multiplicity (factors, sqrt_n, 2);
          else
            {
              struct factors f;
 
              f.nfactors = 0;
-             factor_using_squfof (0, S, &f);
+             if (!factor_using_squfof (0, sqrt_n, &f))
+               {
+                 /* Try pollard rho instead */
+                 factor_using_pollard_rho (sqrt_n, 1, &f);
+               }
              /* Duplicate the new factors */
              for (unsigned int i = 0; i < f.nfactors; i++)
                factor_insert_multiplicity (factors, f.p[i], 2*f.e[i]);
            }
-         return;
+         return true;
        }
     }
 
@@ -1921,6 +1934,7 @@
       Dh += n1 * mu;
 
       assert (Dl % 4 != 1);
+      assert (Dh < (uintmax_t) 1 << (W_TYPE_SIZE - 2));
 
       S = isqrt2 (Dh, Dl);
 
@@ -1939,10 +1953,10 @@
 
       for (i = 0; i <= B; i++)
        {
-         uintmax_t q, P1, t, r;
+         uintmax_t q, P1, t, rem;
 
-         div_smallq (q, r, S+P, Q);
-         P1 = S - r;   /* P1 = q*Q - P */
+         div_smallq (q, rem, S+P, Q);
+         P1 = S - rem; /* P1 = q*Q - P */
 
 #if STAT_SQUFOF
          assert (q > 0);
@@ -2021,25 +2035,21 @@
                     for the case D = 2N. */
                  /* Compute Q = (D - P*P) / Q1, but we need double
                     precision. */
-                 {
-                   uintmax_t hi, lo, rem;
+                 uintmax_t hi, lo;
                    umul_ppmm (hi, lo, P, P);
                    sub_ddmmss (hi, lo, Dh, Dl, hi, lo);
                    udiv_qrnnd (Q, rem, hi, lo, Q1);
                    assert (rem == 0);
-                 }
 
                  for (;;)
                    {
-                     uintmax_t r;
-
                      /* Note: There appears to by a typo in the paper,
                         Step 4a in the algorithm description says q <--
                         floor([S+P]/\hat Q), but looking at the equations
                         in Sec. 3.1, it should be q <-- floor([S+P] / Q).
                         (In this code, \hat Q is Q1). */
-                     div_smallq (q, r, S+P, Q);
-                     P1 = S - r;       /* P1 = q*Q - P */
+                     div_smallq (q, rem, S+P, Q);
+                     P1 = S - rem;     /* P1 = q*Q - P */
 
 #if STAT_SQUFOF
                      q_freq[0]++;
@@ -2061,8 +2071,8 @@
 
                  if (prime_p (Q))
                    factor_insert (factors, Q);
-                 else
-                   factor_using_squfof (0, Q, factors);
+                 else if (!factor_using_squfof (0, Q, factors))
+                   factor_using_pollard_rho (Q, 2, factors);
 
                  divexact_21 (n1, n0, n1, n0, Q);
 
@@ -2070,13 +2080,16 @@
                    factor_insert_large (factors, n1, n0);
                  else
                    {
+                     if (!factor_using_squfof (n1, n0, factors))
+                       {
                      if (n1 == 0)
                        factor_using_pollard_rho (n0, 1, factors);
                      else
-                       factor_using_squfof (n1, n0, factors);
+                           factor_using_pollard_rho2 (n1, n0, 1, factors);
+                       }
                    }
 
-                 return;
+                 return true;
                }
            }
        next_i:
@@ -2085,8 +2098,7 @@
     next_multiplier:
       ;
     }
-  fprintf (stderr, "squfof failed.\n");
-  exit (EXIT_FAILURE);
+  return false;
 }
 
 static void
@@ -2100,26 +2112,21 @@
 
   t0 = factor_using_division (&t1, t1, t0, factors);
 
+  if (t1 == 0 && t0 < 2)
+    return;
+
+  if (prime2_p (t1, t0))
+    factor_insert_large (factors, t1, t0);
+  else
+    {
+      if (alg == ALG_SQUFOF)
+       if (factor_using_squfof (t1, t0, factors))
+         return;
+
   if (t1 == 0)
-    {
-      if (t0 != 1)
-       {
-         if (prime_p (t0))
-           factor_insert (factors, t0);
-         else if (alg == ALG_POLLARD_RHO)
            factor_using_pollard_rho (t0, 1, factors);
          else
-           factor_using_squfof (0, t0, factors);
-       }
-    }
-  else
-    {
-      if (prime2_p (t1, t0))
-       factor_insert_large (factors, t1, t0);
-      else if (alg == ALG_POLLARD_RHO)
        factor_using_pollard_rho2 (t1, t0, 1, factors);
-      else
-       factor_using_squfof (t1, t0, factors);
     }
 }
 


-- 
Torbjörn





reply via email to

[Prev in Thread] Current Thread [Next in Thread]