#!/usr/bin/env python """ Transmit 2 signals, one out each daughterboard. Outputs SSB (USB) signals on side A and side B at frequencies specified on command line. Side A is 600 Hz tone. Side B is 350 + 440 Hz tones. """ from gnuradio import gr from gnuradio.eng_notation import num_to_str, str_to_num from gnuradio import usrp from gnuradio import audio from gnuradio import blks from gnuradio.eng_option import eng_option from optparse import OptionParser import usrp_dbid import math import sys class example_signal_0(gr.hier_block): """ Sinusoid at 600 Hz. """ def __init__(self, fg, sample_rate): src = gr.sig_source_c (sample_rate, # sample rate gr.GR_SIN_WAVE, # waveform type 600, # frequency 1.0, # amplitude 0) # DC Offset gr.hier_block.__init__(self, fg, None, src) class example_signal_1(gr.hier_block): """ North American dial tone (350 + 440 Hz). """ def __init__(self, fg, sample_rate): src0 = gr.sig_source_c (sample_rate, # sample rate gr.GR_SIN_WAVE, # waveform type 350, # frequency 1.0, # amplitude 0) # DC Offset src1 = gr.sig_source_c (sample_rate, # sample rate gr.GR_SIN_WAVE, # waveform type 440, # frequency 1.0, # amplitude 0) # DC Offset sum = gr.add_cc() fg.connect(src0, (sum, 0)) fg.connect(src1, (sum, 1)) gr.hier_block.__init__(self, fg, None, sum) class my_graph(gr.flow_graph): def __init__(self): gr.flow_graph.__init__ (self) usage="%prog: [options] side-A-tx-freq side-B-tx-freq" parser = OptionParser (option_class=eng_option, usage=usage) (options, args) = parser.parse_args () if len(args) != 2: parser.print_help() raise SystemExit else: freq0 = str_to_num(args[0]) freq1 = str_to_num(args[1]) # ---------------------------------------------------------------- # Set up USRP to transmit on both daughterboards self.u = usrp.sink_c(nchan=2) # say we want two channels self.dac_rate = self.u.dac_rate() # 128 MS/s self.usrp_interp = 400 self.u.set_interp_rate(self.usrp_interp) self.usrp_rate = self.dac_rate / self.usrp_interp # 320 kS/s # we're using both daughterboard slots, thus subdev is a 2-tuple self.subdev = (self.u.db[0][0], self.u.db[1][0]) print "Using TX d'board %s" % (self.subdev[0].side_and_name(),) print "Using TX d'board %s" % (self.subdev[1].side_and_name(),) # set up the Tx mux so that # channel 0 goes to Slot A I&Q and channel 1 to Slot B I&Q self.u.set_mux(0xba98) self.subdev[0].set_gain(self.subdev[0].gain_range()[1]) # set max Tx gain self.subdev[1].set_gain(self.subdev[1].gain_range()[1]) # set max Tx gain self.set_freq(0, freq0) self.set_freq(1, freq1) self.subdev[0].set_enable(True) # enable transmitter self.subdev[1].set_enable(True) # enable transmitter # ---------------------------------------------------------------- # build two signal sources, interleave them, amplify and connect them to usrp sig0 = example_signal_0(self, self.usrp_rate) sig1 = example_signal_1(self, self.usrp_rate) intl = gr.interleave(gr.sizeof_gr_complex) self.connect(sig0, (intl, 0)) self.connect(sig1, (intl, 1)) # apply some gain if_gain = 10000 ifamp = gr.multiply_const_cc(if_gain) # and wire them up self.connect(intl, ifamp, self.u) def set_freq(self, side, target_freq): """ Set the center frequency we're interested in. @param side: 0 = side A, 1 = side B @param target_freq: frequency in Hz @rtype: bool Tuning is a two step process. First we ask the front-end to tune as close to the desired frequency as it can. Then we use the result of that operation and our target_frequency to determine the value for the digital up converter. """ print "Tuning side %s to %sHz" % (("A", "B")[side], num_to_str(target_freq)) r = self.u.tune(self.subdev[side]._which, self.subdev[side], target_freq) if r: print " r.baseband_freq =", num_to_str(r.baseband_freq) print " r.dxc_freq =", num_to_str(r.dxc_freq) print " r.residual_freq =", num_to_str(r.residual_freq) print " r.inverted =", r.inverted print " OK" return True else: print " Failed!" return False if __name__ == '__main__': try: my_graph().run() except KeyboardInterrupt: pass