
Final Project Report
Modulate of Internet Radio Into FM Using GNU Radio

Department of Electrical and Computer Engineering

Cleveland State University

Mobile Computing Class
By Elie Salameh

I-Introduction:

Internet radio (also known as Webcasting) is becoming more and more popular.
Especially that it covers a wide range of choices for users (specific kind of music, news,
commerce…), it is also very convenient for people traveling all the time or living away
from there home country, internet radio helps them keep in touch with there favorite
radio stations. Technology is growing fast and so is the availability of Internet
connections. Nowadays we can access the Internet from any location around the world (if
we had the right technology) and thus in our cars. So why don’t we use this Internet
connection to listen to our favorite Internet radio station from around the world while we
are driving our cars or even when walking around our houses.

In this project, we use GNU radio along with a USRP device to try modulating Internet
radio into FM.

II-Background:

What is GNU radio?

Briefly GNU radio is a free software radio tool. In other words it is a tool that help us implement
a radio (transmitter or receiver) in software rather than hardware. It helps us get rid of as much
hardware as possible eventually bringing the software as close as possible to the antenna. It uses
Python as programming language for its simplicity and flexibility. GNU radio is mostly
associated with the USRP device (universal software radio peripheral), which is the hardware end
of the software radio. USRP has a wide range of frequency for wireless transmission and
reception or even wired communication.

What is FM modulation?

FM modulation is technique used to transmit information over electromagnetic waves. It uses
frequency variations. It is used over a wide range of today’s technology (FM radio stations, some
TV signals, VCR…)

Figure 1-FM modulation.

III-Topic

Project Goal

Given the availability of the GNU radio and the USRP at our mobile computing lab. I decided to
modulate the Internet radio signal into an FM signal and transmit it wirelessly and receive it on a
radio device.

Experiment Setup

To run this experiment the following was done:

- Install and configure a Linux based operating system on a machine. (cygwin
might work too but I do not recommend it, a lot of patches are needed and
sometimes it acts up). In this case Ubuntu was installed and configured.

- Install and configure GNU radio on Ubuntu. The instructions on how to do that
are available in reference [5].

- Setup the USRP device: connect the daughter boards needed for the experiment in
this case Basic Tx was mounted on the USRP. The choice of daughter boards is
mainly based on the type of project one is doing and on the frequency that one is
using. In this case, an FM transmission is made on a frequency range from 87.0 to
107.9 MHZ. Basic Tx will work fine in this project. Information on Basic Tx can
be found in reference [6]

These are mainly the three steps needed to setup this experiment. Now we can start
working on the project.

In a few words we can describe the project as follows:
1- Using GNU radio to modulate audio signal into FM
2- Importing internet radio stream into GNU radio
3- Use the USRP to transmit the FM signal generated by GNU radio

I-using GNU radio to modulate audio signal into FM:

After a lot of research I found out that GNU radio accept audio files in the “.raw” format.
Using fm_tx4.py as a skeleton code I started working on how to modulate audio signal
into FM. Luckily GNU radio provides a lot of blocks for signal processing and one of the
useful blocks is wfm_tx() [7]; which stands for wide band FM transmitter. This block
was used to modulate the signal to FM.

II- Importing Internet radio stream into GNU radio

 The biggest challenge in this project was to import the Internet audio stream into GNU
radio. After a lot of research I found out that Internet radio are not uniform in a sense that
every station has its own audio format. Some of the types of formats used are: mp3, OGG
Vorbis, windows media audio, real audio…

The plan was to record the audio stream from the internet to a mp3 file than load that file
into GNU radio. Another challenge occurred which is how to transform the mp3 file into
a .raw audio file. I found out that this could be done using the Linux command “sox”:
Sox- Sound eXchange: universal sound sample translator [8]. Sox can translate almost all
kind of audio files to any format needed. It takes a lot of arguments; some of them are:
input file, output file, extension of output file, sampling rate, size of the sample….
This command can be used as follows: sox test.mp3 -r 32000 -t raw -l -c 1 test.raw
When trying to figure out how to record the internet radio into an mp3 file, I found out a
play list format which is “.pls”. This format can take as arguments Internet URL’s in
addition to local addresses of mp3 files. I modified the code to be able to read mp3 files
from the play list. But when I tried to include url’s in that file I got an error that says that
the sox command cannot handle such kind of files. So now only local mo3 files could be
imported to GNU radio.

Figure 2- .pls format [1]

One more solution was there and it was recording the Internet radio into mp3 files. A lot
of software’s are available to purchase online. Most of them record anything that is
played on the sound card. Also I found a freeware called opD2d [9], which does the same
thing, but unfortunately it didn’t work; somehow the recorded mp3 file is corrupted and
could not be played.

III- Use the USRP to transmit the FM signal generated by GNU radio

After the code is finalized the FM signal was transmitted using the USRP on which we
have mounted the basic TX daughter board to which an antenna was attached.

Results

The results of this experiment were pretty convincing since I was able to transmit an mp3
file and receive it on radio device.

Discussion

Future work might be done in a sense that to find a way to import directly the Internet
radio audio stream into GNU radio.

GNU radio is a bit complicated to use since it has a lot of features, but once you get
comfortable with python it will be fun to try all the different features that can be used in
it.

The commented python code can be found in appendix A.

This code could be run using the following command:
Sudo python “filename.py” –l “playlistfilename.pls”
Note that the .pls file should contain the location the mp3 file in the format shown in
figure 2.

IV-References:

[1]-www.wikipedia.org
[2]-http://www.ettus.com/
[3]-http://academic.csuohio.edu/yuc/mobile08/08_week04_USRP.pdf
[4]-http://www.gnu.org/software/gnuradio/index.html

[5]- http://www.gnuradio.org/trac/wiki/UbuntuInstall
[6]- http://www.ettus.com/Download.html
[7]- http://www.gnuradio.org/trac/browser/gnuradio/trunk/gnuradio-

core/src/python/gnuradio/blksimpl/wfm_tx.py?rev=3534
[8]- http://sox.sourceforge.net/
[9]- http://www.opcode.co.uk/opd2d/default.asp

Appendix A:

#!/usr/bin/env python2.4

from gnuradio import gr, eng_notation
from gnuradio import usrp
from gnuradio import audio
from gnuradio import blks
from gnuradio.eng_option import eng_option
from optparse import OptionParser
from usrpm import usrp_dbid

import math, re, sys, thread, time, tempfile, os, r andom

this function sends a command to Linux that will
use sox to transform mp3 to raw
def mp3toraw(filename,outputfile):
 print("nice -n 19 sox \"%s\" -r 32000 -t raw -f -l -c 1 %s\n" %
(filename,outputfile))
 os.system("nice -n 19 sox \"%s\" -r 32000 -t ra w -f -l -c 1 %s" %
(filename,outputfile))

this function will read the location of the mp3 f iles out of the
#.pls file
def read_playlist(fname):
 input = open(fname, 'r')
 playlist=[]
 l = input.readline()
 # NumberOfEntries
 l = input.readline()
 nentries = int(re.findall("NumberOfEntries=([0- 9]+)",l)[0])

 print "Number of items in list %d\n" % nentries
 i = 1
 while l:
 l=input.readline()

 filepath = re.findall("File[0-9]+=(.*)$",l)
 if filepath:
 print filepath[0]
 playlist.append(filepath[0])
 i = i + 1

 input.close()
 return(playlist)
#this function will create a temprary .raw file tha t will used by the
sox command
def mktempfn():
 tf = tempfile.mkstemp(".raw")
 outputfile = tf[1]
 os.close(tf[0])

 os.remove(tf[1])
 return(outputfile)

this code is used for mudulation
it takes options from the command line
most of this code is take from fm_tx4.py
class wfm_tx:
 def __init__(self):

 parser = OptionParser (option_class=eng_opt ion)
 parser.add_option("-T", "--tx-subdev-spec", type="subdev",
default=None,
 help="select USRP Tx side A or B")
 parser.add_option("-f", "--freq", type="eng _float",
default=90.1e6,
 help="set Tx frequency t o FREQ (default
90.1e6)", metavar="FREQ")

 parser.add_option("-l","--playlist", action ="store",
default=None,
 help="MP3 playlist contai ning files to air.")

 parser.add_option("","--debug", action="sto re_true",
default=False,
 help="Launch Tx debugger")
 (options, args) = parser.parse_args ()

 if len(args) != 0:
 parser.print_help()
 sys.exit(1)

 if options.playlist == None:
 print "No playlist specified\n"
 sys.exit()

 # parse playlist
 playlist = read_playlist(options.playlist)

 # setup IQ rate to 320kS/s and audio rate t o 32kS/s
 self.u = usrp.sink_c()
 self.dac_rate = self.u.dac_rate() # 128 MS/s
 self.usrp_interp = 400
 self.u.set_interp_rate(self.usrp_interp)
 self.usrp_rate = self.dac_rate / self.usrp_ interp # 320 kS/s
 self.sw_interp = 10
 self.audio_rate = self.usrp_rate / self.sw_ interp # 32 kS/s

 # determine the daughterboard subdevice we' re using
 if options.tx_subdev_spec is None:
 options.tx_subdev_spec = usrp.pick_tx_s ubdevice(self.u)

 m = usrp.determine_tx_mux_value(self.u, opt ions.tx_subdev_spec)
 self.u.set_mux(m)

 self.subdev = usrp.selected_subdev(self.u,
options.tx_subdev_spec)
 print "Using TX d'board %s" % (self.subdev. side_and_name(),)

 self.subdev.set_gain(self.subdev.gain_range ()[1]) # set max
Tx gain

 if not self.set_freq(options.freq):
 freq_range = self.subdev.freq_range()
 print "Failed to set frequency to %s. Daughterboard
supports %s to %s" % (
 eng_notation.num_to_str(options.fre q),
 eng_notation.num_to_str(freq_range[0]),
 eng_notation.num_to_str(freq_range[1]))
 raise SystemExit
 self.subdev.set_enable(True) # enable
transmitter
 print "TX freq %1.2f MHz\n" % (options.freq /1e6)

 gain = gr.multiply_const_cc(4000.0)

 i = 0

 while 1:
 self.fg = gr.flow_graph()
 outputfile = mktempfn()
 # write raw sound to named pipe in back ground
 thread.start_new_thread(mp3toraw,(playl ist[i],outputfile))
 # wait untill the conversion of mp3 to raw is completed
 time.sleep(3)

 print "File size %d\n" % int(os.stat(ou tputfile)[6])
 #specify the source file
 src = gr.file_source(gr.sizeof_float, o utputfile, False)
 #configure the modulation block
 fmtx = blks.wfm_tx(self.fg, self.audio_rate,
self.usrp_rate,max_dev=75e3, tau=75e-6)

 # connect blocks
 self.fg.connect(src, fmtx, gain, self.u)

 print "starting to transmit\n"
 self.fg.run()
 print "done..."
 # remove the temprary file
 os.remove(outputfile)
 # stop the sox command if it is still w orking
 os.system("killall sox")

 def set_freq(self, target_freq):
 """
 Set the center frequency we're interested i n.
 """
 r = self.u.tune(self.subdev._which, self.su bdev, target_freq)

 if r:
 print "r.baseband_freq =",
eng_notation.num_to_str(r.baseband_freq)
 print "r.dxc_freq =",
eng_notation.num_to_str(r.dxc_freq)
 print "r.residual_freq =",
eng_notation.num_to_str(r.residual_freq)
 print "r.inverted =", r.inverted
 return True
 return False

if __name__ == '__main__':
 wfm_tx()

