
Chapter 11

Packages

One problem with earlier Lisp systems is the use of a single name space for
all symbols. In large Lisp systems, with modules written by many different
programmers, accidental name collisions become a serious problem. Common
Lisp addresses this problem through the package system, derived from an
earlier package system developed for Lisp Machine Lisp [55]. In addition
to preventing name-space conflicts, the package system makes the modular
structure of large Lisp systems more explicit.

A package is a data structure that establishes a mapping from print names
(strings) to symbols. The package thus replaces the “oblist” or “obarray”
machinery of earlier Lisp systems. At any given time one package is current,
and this package is used by the Lisp reader in translating strings into symbols.
The current package is, by definition, the one that is the value of the global
variable *package*. It is possible to refer to symbols in packages other
than the current one through the use of package qualifiers in the printed
representation of the symbol. For example, foo:bar, when seen by the reader,
refers to the symbol whose name is bar in the package whose name is foo.
(Actually, this is true only if bar is an external symbol of foo, that is, a
symbol that is supposed to be visible outside of foo. A reference to an
internal symbol requires the intentionally clumsier syntax foo::bar.)

The string-to-symbol mappings available in a given package are divided
into two classes, external and internal. We refer to the symbols accessible
via these mappings as being external and internal symbols of the package
in question, though really it is the mappings that are different and not the
symbols themselves. Within a given package, a name refers to one symbol
or to none; if it does refer to a symbol, then it is either external or internal

259

260 CHAPTER 11. PACKAGES

in that package, but not both.
External symbols are part of the package’s public interface to other pack-

ages. External symbols are supposed to be chosen with some care and are
advertised to users of the package. Internal symbols are for internal use only,
and these symbols are normally hidden from other packages. Most symbols
are created as internal symbols; they become external only if they appear
explicitly in an export command for the package.

A symbol may appear in many packages. It will always have the same
name wherever it appears, but it may be external in some packages and
internal in others. On the other hand, the same name (string) may refer to
different symbols in different packages.

Normally, a symbol that appears in one or more packages will be owned by
one particular package, called the home package of the symbol; that package
is said to own the symbol. Every symbol has a component called the package
cell that contains a pointer to its home package. A symbol that is owned by
some package is said to be interned. Some symbols are not owned by any
package; such a symbol is said to be uninterned, and its package cell contains
nil.

Packages may be built up in layers. From the point of view of a package’s
user, the package is a single collection of mappings from strings into internal
and external symbols. However, some of these mappings may be established
within the package itself, while other mappings are inherited from other
packages via the use-package construct. (The mechanisms responsible for
this inheritance are described below.) In what follows, we will refer to a
symbol as being accessible in a package if it can be referred to without a
package qualifier when that package is current, regardless of whether the
mapping occurs within that package or via inheritance. We will refer to a
symbol as being present in a package if the mapping is in the package itself
and is not inherited from somewhere else. Thus a symbol present in a package
is accessible, but an accessible symbol is not necessarily present.

A symbol is said to be interned in a package if it is accessible in that
package and also is owned (by either that package or some other package).
Normally all the symbols accessible in a package will in fact be owned by some
package, but the terminology is useful when discussing the pathological case
of an accessible but unowned (uninterned) symbol.

As a verb, to intern a symbol in a package means to cause the symbol to
be interned in the package if it was not already; this process is performed by
the function intern. If the symbol was previously unowned, then the package

11.1. CONSISTENCY RULES 261

it is being interned in becomes its owner (home package); but if the symbol
was previously owned by another package, that other package continues to
own the symbol.

To unintern a symbol from the package means to cause it to be not present
in the package and, additionally, to cause the symbol to be uninterned if
the package was the home package (owner) of the symbol. This process is
performed by the function unintern.

11.1 Consistency Rules

Package-related bugs can be very subtle and confusing: things are not what
they appear to be. The Common Lisp package system is designed with a
number of safety features to prevent most of the common bugs that would
otherwise occur in normal use. This may seem over-protective, but experience
with earlier package systems has shown that such safety features are needed.

In dealing with the package system, it is useful to keep in mind the
following consistency rules, which remain in force as long as the value of
package is not changed by the user:

• Read-read consistency: Reading the same print name always results in
the same (eq) symbol.

• Print-read consistency: An interned symbol always prints as a sequence
of characters that, when read back in, yields the same (eq) symbol.

• Print-print consistency: If two interned symbols are not eq, then their
printed representations will be different sequences of characters.

These consistency rules remain true in spite of any amount of implicit
interning caused by typing in Lisp forms, loading files, etc. This has the
important implication that, as long as the current package is not changed,
results are reproducible regardless of the order of loading files or the exact
history of what symbols were typed in when. The rules can only be violated
by explicit action: changing the value of *package*, forcing some action by
continuing from an error, or calling one of the “dangerous” functions unin-
tern, unexport, shadow, shadowing-import, or unuse-package.

262 CHAPTER 11. PACKAGES

11.2 Package Names
Each package has a name (a string) and perhaps some nicknames. These are
assigned when the package is created, though they can be changed later. A
package’s name should be something long and self-explanatory, like editor;
there might be a nickname that is shorter and easier to type, such as ed.

There is a single name space for packages. The function find-package
translates a package name or nickname into the associated package. The func-
tion package-name returns the name of a package. The function package-
nicknames returns a list of all nicknames for a package. The function
rename-package removes a package’s current name and nicknames and
replaces them with new ones specified by the user. Package renaming is
occasionally useful when, for development purposes, it is desirable to load
two versions of a package into the same Lisp. One can load the first version,
rename it, and then load the other version, without getting a lot of name
conflicts.

When the Lisp reader sees a qualified symbol, it handles the package-
name part in the same way as the symbol part with respect to capitalization.
Lowercase characters in the package name are converted to corresponding
uppercase characters unless preceded by the escape character \ or surrounded
by | characters. The lookup done by the find-package function is case-
sensitive, like that done for symbols. Note that |Foo|:|Bar| refers to a
symbol whose name is Bar in a package whose name is Foo. By contrast,
|Foo:Bar| refers to a seven-character symbol that has a colon in its name
(as well as two uppercase letters and four lowercase letters) and is interned in
the current package. Following the convention used in this book for symbols,
we show ordinary package names using lowercase letters, even though the
name string is internally represented with uppercase letters.

Most of the functions that require a package-name argument from the user
accept either a symbol or a string. If a symbol is supplied, its print name
will be used; the print name will already have undergone case-conversion by
the usual rules. If a string is supplied, it must be so capitalized as to match
exactly the string that names the package.

X3J13 voted in January 1989 to clarify that one may use either a package
object or a package name (symbol or string) in any of the following situations:

• the :use argument to make-package

• the first argument to package-use-list, package-used-by-list,

11.3. TRANSLATING STRINGS TO SYMBOLS 263

package-name, package-nicknames, in-package, find-package,
rename-package, or delete-package,

• the second argument to intern, find-symbol, unintern, export, un-
export, import, shadowing-import, or shadow

• the first argument, or a member of the list that is the first argument,
to use-package or unuse-package

• the value of the package given to do-symbols, do-external-symbols,
or do-all-symbols

• a member of the package-list given to with-package-iterator

Note that the first argument to make-package must still be a package name
and not an actual package; it makes no sense to create an already existing
package. Similarly, package nicknames must always be expressed as package
names and not as package objects. If find-package is given a package object
instead of a name, it simply returns that package.

11.3 Translating Strings to Symbols
The value of the special variable *package* must always be a package object
(not a name). Whatever package object is currently the value of *package*
is referred to as the current package.

When the Lisp reader has, by parsing, obtained a string of characters
thought to name a symbol, that name is looked up in the current package.
This lookup may involve looking in other packages whose external symbols
are inherited by the current package. If the name is found, the corresponding
symbol is returned. If the name is not found (that is, there is no symbol of
that name accessible in the current package), a new symbol is created for it
and is placed in the current package as an internal symbol. Moreover, the
current package becomes the owner (home package) of the symbol, and so
the symbol becomes interned in the current package. If the name is later
read again while this same package is current, the same symbol will then be
found and returned.

Often it is desirable to refer to an external symbol in some package other
than the current one. This is done through the use of a qualified name,
consisting of a package name, then a colon, then the name of the symbol.

264 CHAPTER 11. PACKAGES

This causes the symbol’s name to be looked up in the specified package, rather
than in the current one. For example, editor:buffer refers to the external
symbol named buffer accessible in the package named editor, regardless of
whether there is a symbol named buffer in the current package. If there
is no package named editor, or if no symbol named buffer is accessible in
editor, or if buffer is an internal symbol in editor, the Lisp reader will
signal a correctable error to ask the user for instructions.

On rare occasions, a user may need to refer to an internal symbol of some
package other than the current one. It is illegal to do this with the colon
qualifier, since accessing an internal symbol of some other package is usually
a mistake. However, this operation is legal if a doubled colon :: is used as
the separator in place of the usual single colon. If editor::buffer is seen,
the effect is exactly the same as reading buffer with *package* temporarily
rebound to the package whose name is editor. This special-purpose qualifier
should be used with caution.

The package named keyword contains all keyword symbols used by the
Lisp system itself and by user-written code. Such symbols must be easily
accessible from any package, and name conflicts are not an issue because these
symbols are used only as labels and never to carry package-specific values
or properties. Because keyword symbols are used so frequently, Common
Lisp provides a special reader syntax for them. Any symbol preceded by
a colon but no package name (for example :foo) is added to (or looked up
in) the keyword package as an external symbol. The keyword package is
also treated specially in that whenever a symbol is added to the keyword
package the symbol is always made external; the symbol is also automatically
declared to be a constant (see defconstant) and made to have itself as its
value. This is why every keyword evaluates to itself. As a matter of style,
keywords should always be accessed using the leading-colon convention; the
user should never import or inherit keywords into any other package. It is
an error to try to apply use-package to the keyword package.

Each symbol contains a package cell that is used to record the home
package of the symbol, or nil if the symbol is uninterned. This cell may be
accessed by using the function symbol-package. When an interned symbol
is printed, if it is a symbol in the keyword package, then it is printed with
a preceding colon; otherwise, if it is accessible (directly or by inheritance) in
the current package, it is printed without any qualification; otherwise, it is
printed with the name of the home package as the qualifier, using : as the
separator if the symbol is external and :: if not.

11.4. EXPORTING AND IMPORTING SYMBOLS 265

A symbol whose package slot contains nil (that is, has no home package) is
printed preceded by #:. It is possible, by the use of import and unintern,
to create a symbol that has no recorded home package but that in fact is
accessible in some package. The system does not check for this pathological
case, and such symbols will always be printed preceded by #:.

In summary, the following four uses of symbol qualifier syntax are defined.

foo:bar When read, looks up BAR among the external symbols of the pack-
age named FOO. Printed when symbol bar is external in its home
package foo and is not accessible in the current package.

foo::bar When read, interns BAR as if FOO were the current package.
Printed when symbol bar is internal in its home package foo and is
not accessible in the current package.

:bar When read, interns BAR as an external symbol in the keyword pack-
age and makes it evaluate to itself. Printed when the home package of
symbol bar is keyword.

#:bar When read, creates a new uninterned symbol named BAR. Printed
when the symbol bar is uninterned (has no home package), even in
the pathological case that bar is uninterned but nevertheless somehow
accessible in the current package.

All other uses of colons within names of symbols are not defined by Com-
mon Lisp but are reserved for implementation-dependent use; this includes
names that end in a colon, contain two or more colons, or consist of just a
colon.

11.4 Exporting and Importing Symbols
Symbols from one package may be made accessible in another package in two
ways.

First, any individual symbol may be added to a package by use of the
function import. The form (import ’editor:buffer) takes the external
symbol named buffer in the editor package (this symbol was located when
the form was read by the Lisp reader) and adds it to the current package as
an internal symbol. The symbol is then present in the current package. The

266 CHAPTER 11. PACKAGES

imported symbol is not automatically exported from the current package,
but if it is already present and external, then the fact that it is external is
not changed. After the call to import it is possible to refer to buffer in the
importing package without any qualifier. The status of buffer in the package
named editor is unchanged, and editor remains the home package for this
symbol. Once imported, a symbol is present in the importing package and
can be removed only by calling unintern.

If the symbol is already present in the importing package, import has
no effect. If a distinct symbol with the name buffer is accessible in the
importing package (directly or by inheritance), then a correctable error is
signaled, as described in section 11.5, because import avoids letting one
symbol shadow another.

A symbol is said to be shadowed by another symbol in some package if
the first symbol would be accessible by inheritance if not for the presence of
the second symbol. To import a symbol without the possibility of getting
an error because of shadowing, use the function shadowing-import. This
inserts the symbol into the specified package as an internal symbol, regardless
of whether another symbol of the same name will be shadowed by this action.
If a different symbol of the same name is already present in the package,
that symbol will first be uninterned from the package (see unintern). The
new symbol is added to the package’s shadowing-symbols list. shadowing-
import should be used with caution. It changes the state of the package
system in such a way that the consistency rules do not hold across the change.

The second mechanism is provided by the function use-package. This
causes a package to inherit all of the external symbols of some other package.
These symbols become accessible as internal symbols of the using package.
That is, they can be referred to without a qualifier while this package is
current, but they are not passed along to any other package that uses this
package. Note that use-package, unlike import, does not cause any new
symbols to be present in the current package but only makes them accessible
by inheritance. use-package checks carefully for name conflicts between
the newly imported symbols and those already accessible in the importing
package. This is described in detail in section 11.5.

Typically a user, working by default in the user package, will load a
number of packages into Lisp to provide an augmented working environ-
ment, and then call use-package on each of these packages to allow easy
access to their external symbols. unuse-package undoes the effects of a
previous use-package. The external symbols of the used package are no

11.4. EXPORTING AND IMPORTING SYMBOLS 267

longer inherited. However, any symbols that have been imported into the
using package continue to be present in that package.

There is no way to inherit the internal symbols of another package; to
refer to an internal symbol, the user must either make that symbol’s home
package current, use a qualifier, or import that symbol into the current pack-
age.

The distinction between external and internal symbols is a primary means
of hiding names so that one program does not tread on the namespace of
another.

When intern or some other function wants to look up a symbol in a given
package, it first looks for the symbol among the external and internal symbols
of the package itself; then it looks through the external symbols of the used
packages in some unspecified order. The order does not matter; according to
the rules for handling name conflicts (see below), if conflicting symbols appear
in two or more packages inherited by package X, a symbol of this name must
also appear in X itself as a shadowing symbol. Of course, implementations
are free to choose other, more efficient ways of implementing this search, as
long as the user-visible behavior is equivalent to what is described here.

The function export takes a symbol that is accessible in some specified
package (directly or by inheritance) and makes it an external symbol of that
package. If the symbol is already accessible as an external symbol in the
package, export has no effect. If the symbol is directly present in the pack-
age as an internal symbol, it is simply changed to external status. If it is
accessible as an internal symbol via use-package, the symbol is first im-
ported into the package, then exported. (The symbol is then present in the
specified package whether or not the package continues to use the package
through which the symbol was originally inherited.) If the symbol is not
accessible at all in the specified package, a correctable error is signaled that,
upon continuing, asks the user whether the symbol should be imported.

The function unexport is provided mainly as a way to undo erroneous
calls to export. It works only on symbols directly present in the current
package, switching them back to internal status. If unexport is given a
symbol already accessible as an internal symbol in the current package, it
does nothing; if it is given a symbol not accessible in the package at all, it
signals an error.

268 CHAPTER 11. PACKAGES

11.5 Name Conflicts
A fundamental invariant of the package system is that within one package
any particular name can refer to at most one symbol. A name conflict is said
to occur when there is more than one candidate symbol and it is not obvious
which one to choose. If the system does not always choose the same way, the
read-read consistency rule would be violated. For example, some programs
or data might have been read in under a certain mapping of the name to
a symbol. If the mapping changes to a different symbol, and subsequently
additional programs or data are read, then the two programs will not access
the same symbol even though they use the same name. Even if the system did
always choose the same way, a name conflict is likely to result in a mapping
from names to symbols different from what was expected by the user, causing
programs to execute incorrectly. Therefore, any time a name conflict is about
to occur, an error is signaled. The user may continue from the error and tell
the package system how to resolve the conflict.

It may be that the same symbol is accessible to a package through more
than one path. For example, the symbol might be an external symbol of
more than one used package, or the symbol might be directly present in a
package and also inherited from another package. In such cases there is no
name conflict. The same identical symbol cannot conflict with itself. Name
conflicts occur only between distinct symbols with the same name.

The creator of a package can tell the system in advance how to resolve
a name conflict through the use of shadowing. Every package has a list of
shadowing symbols. A shadowing symbol takes precedence over any other
symbol of the same name that would otherwise be accessible to the package.
A name conflict involving a shadowing symbol is always resolved in favor of
the shadowing symbol, without signaling an error (except for one instance
involving import described below). The functions shadow and shadowing-
import may be used to declare shadowing symbols.

Name conflicts are detected when they become possible, that is, when
the package structure is altered. There is no need to check for name conflicts
during every name lookup.

The functions use-package, import, and export check for name con-
flicts. use-package makes the external symbols of the package being used
accessible to the using package; each of these symbols is checked for name
conflicts with the symbols already accessible. import adds a single symbol
to the internals of a package, checking for a name conflict with an exist-

11.5. NAME CONFLICTS 269

ing symbol either present in the package or accessible to it. import signals
a name conflict error even if the conflict is with a shadowing symbol, the
rationale being that the user has given two explicit and inconsistent direc-
tives. export makes a single symbol accessible to all the packages that use
the package from which the symbol is exported. All of these packages are
checked for name conflicts: (export s p) does (find-symbol (symbol-
name s) q) for each package q in (package-used-by-list p). Note that
in the usual case of an export during the initial definition of a package, the
result of package-used-by-list will be nil and the name-conflict checking
will take negligible time.

The function intern, which is the one used most frequently by the Lisp
reader for looking up names of symbols, does not need to do any name-
conflict checking, because it never creates a new symbol if there is already
an accessible symbol with the name given.

shadow and shadowing-import never signal a name-conflict error be-
cause the user, by calling these functions, has specified how any possible
conflict is to be resolved. shadow does name-conflict checking to the extent
that it checks whether a distinct existing symbol with the specified name is
accessible and, if so, whether it is directly present in the package or inherited.
In the latter case, a new symbol is created to shadow it. shadowing-import
does name-conflict checking to the extent that it checks whether a distinct
existing symbol with the same name is accessible; if so, it is shadowed by
the new symbol, which implies that it must be uninterned if it was directly
present in the package.

unuse-package, unexport, and unintern (when the symbol being un-
interned is not a shadowing symbol) do not need to do any name-conflict
checking because they only remove symbols from a package; they do not
make any new symbols accessible.

Giving a shadowing symbol to unintern can uncover a name conflict that
had previously been resolved by the shadowing. If package A uses packages B
and C, A contains a shadowing symbol x, and B and C each contain external
symbols named x, then removing the shadowing symbol x from A will reveal
a name conflict between b:x and c:x if those two symbols are distinct. In
this case unintern will signal an error.

Aborting from a name-conflict error leaves the original symbol accessi-
ble. Package functions always signal name-conflict errors before making any
change to the package structure. When multiple changes are to be made,
however, for example when export is given a list of symbols, it is permissible

270 CHAPTER 11. PACKAGES

for the implementation to process each change separately, so that aborting
from a name conflict caused by the second symbol in the list will not un-
export the first symbol in the list. However, aborting from a name-conflict
error caused by export of a single symbol will not leave that symbol accessi-
ble to some packages and inaccessible to others; with respect to each symbol
processed, export behaves as if it were an atomic operation.

Continuing from a name-conflict error should offer the user a chance to
resolve the name conflict in favor of either of the candidates. The package
structure should be altered to reflect the resolution of the name conflict, via
shadowing-import, unintern, or unexport.

A name conflict in use-package between a symbol directly present in the
using package and an external symbol of the used package may be resolved in
favor of the first symbol by making it a shadowing symbol, or in favor of the
second symbol by uninterning the first symbol from the using package. The
latter resolution is dangerous if the symbol to be uninterned is an external
symbol of the using package, since it will cease to be an external symbol.

A name conflict in use-package between two external symbols inherited
by the using package from other packages may be resolved in favor of either
symbol by importing it into the using package and making it a shadowing
symbol.

A name conflict in export between the symbol being exported and a
symbol already present in a package that would inherit the newly exported
symbol may be resolved in favor of the exported symbol by uninterning the
other one, or in favor of the already-present symbol by making it a shadowing
symbol.

A name conflict in export or unintern due to a package inheriting two
distinct symbols with the same name from two other packages may be re-
solved in favor of either symbol by importing it into the using package and
making it a shadowing symbol, just as with use-package.

A name conflict in import between the symbol being imported and a
symbol inherited from some other package may be resolved in favor of the
symbol being imported by making it a shadowing symbol, or in favor of
the symbol already accessible by not doing the import. A name conflict in
import with a symbol already present in the package may be resolved by
uninterning that symbol, or by not doing the import.

Good user-interface style dictates that use-package and export, which
can cause many name conflicts simultaneously, first check for all of the name
conflicts before presenting any of them to the user. The user may then choose

11.6. BUILT-IN PACKAGES 271

to resolve all of them wholesale or to resolve each of them individually, the
latter requiring a lot of interaction but permitting different conflicts to be
resolved different ways.

Implementations may offer other ways of resolving name conflicts. For
instance, if the symbols that conflict are not being used as objects but only
as names for functions, it may be possible to “merge” the two symbols by
putting the function definition onto both symbols. References to either sym-
bol for purposes of calling a function would be equivalent. A similar merging
operation can be done for variable values and for things stored on the prop-
erty list. In Lisp Machine Lisp, for example, one can also forward the value,
function, and property cells so that future changes to either symbol will prop-
agate to the other one. Some other implementations are able to do this with
value cells but not with property lists. Only the user can know whether this
way of resolving a name conflict is adequate, because it will work only if the
use of two non-eq symbols with the same name will not prevent the correct
operation of the program. The value of offering symbol merging as a way
of resolving name conflicts is that it can avoid the need to throw away the
whole Lisp world, correct the package-definition forms that caused the error,
and start over from scratch.

11.6 Built-in Packages
common-lisp The package named common-lisp contains the primitives of

the ANSI Common Lisp system (as opposed to a Common Lisp system
based on the 1984 specification). Its external symbols include all of
the user-visible functions and global variables that are present in the
ANSI Common Lisp system, such as car, cdr, and *package*. Note,
however, that the home package of such symbols is not necessarily the
common-lisp package (this makes it easier for symbols such as t and
lambda to be shared between the common-lisp package and another
package, possibly one named lisp). Almost all other packages ought
to use common-lisp so that these symbols will be accessible without
qualification. This package has the nickname cl.

common-lisp-user The common-lisp-user package is, by default, the
current package at the time an ANSI Common Lisp system starts up.
This package uses the common-lisp package and has the nickname

272 CHAPTER 11. PACKAGES

cl-user. It may contain other implementation-dependent symbols and
may use other implementation-specific packages.

keyword This package contains all of the keywords used by built-in or user-
defined Lisp functions. Printed symbol representations that start with
a colon are interpreted as referring to symbols in this package, which
are always external symbols. All symbols in this package are treated as
constants that evaluate to themselves, so that the user can type :foo
instead of ’:foo.

X3J13 voted in January 1989 to modify the requirements on the built-
in packages so as to limit what may appear in the common-lisp package
and to lift the requirement that every implementation have a package named
system. The details are as follows.

Not only must the common-lisp package in any given implementation
contain all the external symbols prescribed by the standard; the common-
lisp package moreover may not contain any external symbol that is not pre-
scribed by the standard. However, the common-lisp package may contain
additional internal symbols, depending on the implementation.

An external symbol of the common-lisp package may not have a func-
tion, macro, or special operator definition, or a top-level value, or a special
proclamation, or a type definition, unless specifically permitted by the stan-
dard. Programmers may validly rely on this fact; for example, fboundp is
guaranteed to be false for all external symbols of the common-lisp package
except those explicitly specified in the standard to name functions, macros,
and special operators. Similarly, boundp will be false of all such external
symbols except those documented to be variables or constants.

Portable programs may use external symbols in the common-lisp pack-
age that are not documented to be constants or variables as names of local
lexical variables with the presumption that the implementation has not pro-
claimed such variables to be special; this legitimizes the common practice of
using such names as list and string as names for local variables.

A valid implementation may initially have properties on any symbol, or
dynamically put new properties on symbols (even user-created symbols), as
long as no property indicator used for this purpose is an external symbol of
any package defined by the standard or a symbol that is accessible from the
common-lisp-user package or any package defined by the user.

This vote eliminates the requirement that every implementation have a
predefined package named system. An implementation may provide any

11.6. BUILT-IN PACKAGES 273

number of predefined packages; these should be described in the documenta-
tion for that implementation.

The common-lisp-user package may contain symbols not described by
the standard and may use other implementation-specific packages.

X3J13 voted in March 1989 to restrict user programs from performing
certain actions that might interfere with built-in facilities or interact badly
with them. Except where explicitly allowed, the consequences are undefined
if any of the following actions are performed on a symbol in the common-
lisp package.

• binding or altering its value (lexically or dynamically)

• defining or binding it as a function

• defining or binding it as a macro

• defining it as a type specifier (defstruct, defclass, deftype)

• defining it as a structure (defstruct)

• defining it as a declaration

• design it as a symbol macro FIXME

• altering its print name

• altering its package

• tracing it

• declaring or proclaiming it special or lexical

• declaring or proclaiming its type or ftype

• removing it from the package common-lisp

X3J13 also voted in June 1989 to add to this list the item

• defining it as a compiler macro

274 CHAPTER 11. PACKAGES

If such a symbol is not globally defined as a variable or a constant, a user
program is allowed to lexically bind it and declare the type of that binding.

If such a symbol is not defined as a function, macro, or special operator,
a user program is allowed to (lexically) bind it as a function and to declare
the ftype of that binding and to trace that binding.

If such a symbol is not defined as a function, macro, or special operator,
a user program is allowed to (lexically) bind it as a macro.

As an example, the behavior of the code fragment

(flet ((open (filename &key direction)
(format t "~%OPEN was called.")
(open filename :direction direction)))

(with-open-file (x "frob" :direction ’:output)
(format t "~%Was OPEN called?")))

is undefined. Even in a “reasonable” implementation, for example, the
macro expansion of with-open-file might refer to the open function and
might not. However, the preceding rules eliminate the burden of deciding
whether an implementation is reasonable. The code fragment violates the
rules; officially its behavior is therefore completely undefined, and that’s
that.

Note that “altering the property list” is not in the list of proscribed ac-
tions, so a user program is permitted to add properties to or remove prop-
erties from symbols in the common-lisp package.

11.7 Package System Functions and Variables

Implementation note: In the past, some Lisp compilers have read the entire file
into Lisp before processing any of the forms. Other compilers have arranged for
the loader to do all of its intern operations before evaluating any of the top-level
forms. Neither of these techniques will work in a straightforward way in Common
Lisp because of the presence of multiple packages.

For the functions described here, all optional arguments named package
default to the current value of *package*. Where a function takes an argu-
ment that is either a symbol or a list of symbols, an argument of nil is treated
as an empty list of symbols. Any argument described as a package name may

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 275

be either a string or a symbol. If a symbol is supplied, its print name will
be used as the package name; if a string is supplied, the user must take care
to specify the same capitalization used in the package name, normally all
uppercase.

[Variable] *package*

The value of this variable must be a package; this package is said to be
the current package. The initial value of *package* is the user package.

The functions load and compile-file rebind *package* to its current
value. If some form in the file changes the value of *package* during loading
or compilation, the old value will be restored when the loading is completed.

[Function] make-package package-name &key :nicknames :use

This creates and returns a new package with the specified package name.
As described above, this argument may be either a string or a symbol. The
:nicknames argument must be a list of strings to be used as alternative
names for the package. Once again, the user may supply symbols in place
of the strings, in which case the print names of the symbols are used. These
names and nicknames must not conflict with any existing package names; if
they do, a correctable error is signaled.

The :use argument is a list of packages or the names (strings or symbols)
of packages whose external symbols are to be inherited by the new package.
These packages must already exist. If not supplied, :use defaults to a list of
one package, the lisp package.
[Macro] in-package name

This macro causes *package* to be set to the package named name,
which must be a symbol or string. The name is not evaluated. An error is
signaled if the package does not already exist. Everything this macro does is
also performed at compile time if the call appears at top level.

in-package returns the new package, that is, the value of *package*
after the operation has been executed.

[Function] find-package name

The name must be a string that is the name or nickname for a package.
This argument may also be a symbol, in which case the symbol’s print name

276 CHAPTER 11. PACKAGES

is used. The package with that name or nickname is returned; if no such
package exists, find-package returns nil. The matching of names observes
case (as in string=).

package argument may be either a package object or a package name (see
section 11.2).

[Function] package-name package

The argument must be a package. This function returns the string that
names that package.

package argument may be either a package object or a package name (see
section 11.2).

package-name returns nil instead of the package if the package has been
removed. See delete-package.

[Function] package-nicknames package

The argument must be a package. This function returns the list of nick-
name strings for that package, not including the primary name.

package argument may be either a package object or a package name (see
section 11.2).

[Function] rename-package package new-name &optional
new-nicknames

The old name and all of the old nicknames of package are eliminated and
are replaced by new-name and new-nicknames. The new-name argument is
a string or symbol; the new-nicknames argument, which defaults to nil, is a
list of strings or symbols.

package argument may be either a package object or a package name (see
section 11.2).

[Function] package-use-list package

A list of other packages used by the argument package is returned.
package argument may be either a package object or a package name (see

section 11.2).

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 277

[Function] package-used-by-list package

A list of other packages that use the argument package is returned.
package argument may be either a package object or a package name (see

section 11.2).

[Function] package-shadowing-symbols package

A list is returned of symbols that have been declared as shadowing sym-
bols in this package by shadow or shadowing-import. All symbols on this
list are present in the specified package.

package argument may be either a package object or a package name (see
section 11.2).

[Function] list-all-packages

This function returns a list of all packages that currently exist in the Lisp
system.

[Function] delete-package package

The delete-package function deletes the specified package from all pack-
age system data structures. The package argument may be either a package
or the name of a package.

If package is a name but there is currently no package of that name, a
correctable error is signaled. Continuing from the error makes no deletion
attempt but merely returns nil from the call to delete-package.

If package is a package object that has already been deleted, no error is
signaled and no deletion is attempted; instead, delete-package immediately
returns nil.

If the package specified for deletion is currently used by other packages,
a correctable error is signaled. Continuing from this error, the effect of
the function unuse-package is performed on all such other packages so as
to remove their dependency on the specified package, after which delete-
package proceeds to delete the specified package as if no other package had
been using it.

If any symbol had the specified package as its home package before the
call to delete-package, then its home package is unspecified (that is, the

278 CHAPTER 11. PACKAGES

contents of its package cell are unspecified) after the delete-package oper-
ation has been completed. Symbols in the deleted package are not modified
in any other way.

The name and nicknames of the package cease to be recognized package
names. The package object is still a package, but anonymous; packagep will
be true of it, but package-name applied to it will return nil.

The effect of any other package operation on a deleted package object
is undefined. In particular, an attempt to locate a symbol within a deleted
package (using intern or find-symbol, for example) will have unspecified
results.

delete-package returns t if the deletion succeeds, and nil otherwise.

[Function] intern string &optional package

The package, which defaults to the current package, is searched for a
symbol with the name specified by the string argument. This search will
include inherited symbols, as described in section 11.4. If a symbol with the
specified name is found, it is returned. If no such symbol is found, one is
created and is installed in the specified package as an internal symbol (as
an external symbol if the package is the keyword package); the specified
package becomes the home package of the created symbol.

X3J13 voted in March 1989 to specify that intern may in effect perform
the search using a copy of the argument string in which some or all of the
implementation-defined attributes have been removed from the characters of
the string. It is implementation-dependent which attributes are removed.

Two values are returned. The first is the symbol that was found or cre-
ated. The second value is nil if no pre-existing symbol was found, and takes
on one of three values if a symbol was found:

:internal The symbol was directly present in the package as an internal symbol.

:external The symbol was directly present as an external symbol.

:inherited The symbol was inherited via use-package (which implies that the
symbol is internal).

package argument may be either a package object or a package name (see
section 11.2).

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 279

[Function] find-symbol string &optional package

This is identical to intern, but it never creates a new symbol. If a
symbol with the specified name is found in the specified package, directly
or by inheritance, the symbol found is returned as the first value and the
second value is as specified for intern. If the symbol is not accessible in the
specified package, both values are nil.

package argument may be either a package object or a package name (see
section 11.2).

[Function] unintern symbol &optional package

If the specified symbol is present in the specified package, it is removed
from that package and also from the package’s shadowing-symbols list if it is
present there. Moreover, if the package is the home package for the symbol,
the symbol is made to have no home package. Note that in some circum-
stances the symbol may continue to be accessible in the specified package
by inheritance. unintern returns t if it actually removed a symbol, and nil
otherwise.

unintern should be used with caution. It changes the state of the package
system in such a way that the consistency rules do not hold across the change.

package argument may be either a package object or a package name (see
section 11.2).

[Function] export symbols &optional package

The symbols argument should be a list of symbols, or possibly a single
symbol. These symbols become accessible as external symbols in package
(see section 11.4). export returns t.

By convention, a call to export listing all exported symbols is placed
near the start of a file to advertise which of the symbols mentioned in the
file are intended to be used by other programs.

package argument may be either a package object or a package name (see
section 11.2).

[Function] unexport symbols &optional package

The symbols argument should be a list of symbols, or possibly a single
symbol. These symbols become internal symbols in package. It is an error to

280 CHAPTER 11. PACKAGES

unexport a symbol from the keyword package (see section 11.4). unexport
returns t.

The package argument may be either a package object or a package name
(see section 11.2).

[Function] import symbols &optional package

The argument should be a list of symbols, or possibly a single symbol.
These symbols become internal symbols in package and can therefore be
referred to without having to use qualified-name (colon) syntax. import
signals a correctable error if any of the imported symbols has the same name
as some distinct symbol already accessible in the package (see section 11.4).
import returns t.

If any symbol to be imported has no home package then import sets the
home package of the symbol to the package to which the symbol is being
imported.

The package argument may be either a package object or a package name
(see section 11.2).

[Function] shadowing-import symbols &optional package

This is like import, but it does not signal an error even if the importation
of a symbol would shadow some symbol already accessible in the package. In
addition to being imported, the symbol is placed on the shadowing-symbols
list of package (see section 11.5). shadowing-import returns t.

shadowing-import should be used with caution. It changes the state
of the package system in such a way that the consistency rules do not hold
across the change.

The package argument may be either a package object or a package name
(see section 11.2).

[Function] shadow symbols &optional package

The argument should be a list of symbols, or possibly a single symbol.
The print name of each symbol is extracted, and the specified package is
searched for a symbol of that name. If such a symbol is present in this
package (directly, not by inheritance), then nothing is done. Otherwise, a
new symbol is created with this print name, and it is inserted in the package

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 281

as an internal symbol. The symbol is also placed on the shadowing-symbols
list of the package (see section 11.5). shadow returns t.

shadow should be used with caution. It changes the state of the package
system in such a way that the consistency rules do not hold across the change.

The package argument may be either a package object or a package name
(see section 11.2).

[Function] use-package packages-to-use &optional package

The packages-to-use argument should be a list of packages or package
names, or possibly a single package or package name. These packages are
added to the use-list of package if they are not there already. All external
symbols in the packages to use become accessible in package as internal sym-
bols (see section 11.4). It is an error to try to use the keyword package.
use-package returns t.

The package argument may be either a package object or a package name
(see section 11.2).

[Function] unuse-package packages-to-unuse &optional package

The packages-to-unuse argument should be a list of packages or package
names, or possibly a single package or package name. These packages are
removed from the use-list of package. unuse-package returns t.

The package argument may be either a package object or a package name
(see section 11.2).
[Macro] defpackage defined-package-name {option}*

This creates a new package, or modifies an existing one, whose name
is defined-package-name. The defined-package-name may be a string or a
symbol; if it is a symbol, only its print name matters, and not what package,
if any, the symbol happens to be in. The newly created or modified package
is returned as the value of the defpackage form.

Each standard option is a list of a keyword (the name of the option) and
associated arguments. No part of a defpackage form is evaluated. Except
for the :size option, more than one option of the same kind may occur within
the same defpackage form.

The standard options for defpackage are as follows. In every case, any
option argument called package-name or symbol-name may be a string or a
symbol; if it is a symbol, only its print name matters, and not what package,
if any, the symbol happens to be in.

282 CHAPTER 11. PACKAGES

(:size integer) This specifies approximately the number of symbols ex-
pected to be in the package. This is purely an efficiency hint to the
storage allocator, so that implementations using hash tables as part
of the package data structure (the usual technique) will not have to
incrementally expand the package as new symbols are added to it (for
example, as a large file is read while “in” that package).

(:nicknames {}* package-name) The specified names become nicknames
of the package being defined. If any of the specified nicknames already
refers to an existing package, a continuable error is signaled exactly as
for the function make-package.

(:shadow {}* symbol-name) Symbols with the specified names are cre-
ated as shadows in the package being defined, just as with the function
shadow.

(:shadowing-import-from package-name {}* symbol-name)
Symbols with the specified names are located in the specified
package. These symbols are imported into the package being defined,
shadowing other symbols if necessary, just as with the function
shadowing-import. In no case will symbols be created in a package
other than the one being defined; a continuable error is signaled if for
any symbol-name there is no symbol of that name accessible in the
package named package-name.

(:use {}* package-name) The package being defined is made to “use” (in-
herit from) the packages specified by this option, just as with the func-
tion use-package. If no :use option is supplied, then option is un-
specified.

(:import-from package-name {}* symbol-name) Symbols with the
specified names are located in the specified package. These symbols
are imported into the package being defined, just as with the function
import. In no case will symbols be created in a package other than
the one being defined; a continuable error is signaled if for any symbol-
name there is no symbol of that name accessible in the package named
package-name.

(:intern {}* symbol-name) Symbols with the specified names are located
or created in the package being defined, just as with the function in-

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 283

tern. Note that the action of this option may be affected by a :use
option, because an inherited symbol will be used in preference to cre-
ating a new one.

(:export {}* symbol-name) Symbols with the specified names are lo-
cated or created in the package being defined and then exported, just
as with the function export. Note that the action of this option may
be affected by a :use, :import-from, or :shadowing-import-from
option, because an inherited or imported symbol will be used in pref-
erence to creating a new one.

The order in which options appear in a defpackage form does not matter;
part of the convenience of defpackage is that it sorts out the options into
the correct order for processing. Options are processed in the following order:

1. :shadow and :shadowing-import-from
2. :use
3. :import-from and :intern
4. :export

Shadows are established first in order to avoid spurious name conflicts when
use links are established. Use links must occur before importing and interning
so that those operations may refer to normally inherited symbols rather than
creating new ones. Exports are performed last so that symbols created by
any of the other options, in particular, shadows and imported symbols, may
be exported. Note that exporting an inherited symbol implicitly imports it
first (see section 11.4).

If no package named defined-package-name already exists, defpackage
creates it. If such a package does already exist, then no new package is
created. The existing package is modified, if possible, to reflect the new
definition. The results are undefined if the new definition is not consistent
with the current state of the package.

An error is signaled if more than one :size option appears. Если опция
:size указана более одного раза сигнализируется ошибка.

An error is signaled if the same symbol-name argument (in the sense of
comparing names with string=) appears more than once among the argu-
ments to all the :shadow, :shadowing-import-from, :import-from, and
:intern options.

284 CHAPTER 11. PACKAGES

An error is signaled if the same symbol-name argument (in the sense of
comparing names with string=) appears more than once among the argu-
ments to all the :intern and :export options.

Other kinds of name conflicts are handled in the same manner that the un-
derlying operations use-package, import, and export would handle them.

Implementations may support other defpackage options. Every imple-
mentation should signal an error on encountering a defpackage option it
does not support.

The function compile-file should treat top-level defpackage forms in
the same way it would treat top-level calls to package-affecting functions (as
described at the beginning of section 11.7).

Here is an example of a call to defpackage that “plays it safe” by using
only strings as names.

(cl:defpackage "MY-VERY-OWN-PACKAGE"
(:size 496)
(:nicknames "MY-PKG" "MYPKG" "MVOP")
(:use "COMMON-LISP")
(:shadow "CAR" "CDR")
(:shadowing-import-from "BRAND-X-LISP" "CONS")
(:import-from "BRAND-X-LISP" "GC" "BLINK-FRONT-PANEL-LIGHTS")
(:export "EQ" "CONS" "MY-VERY-OWN-FUNCTION"))

The preceding defpackage example is designed to operate correctly even
if the package current when the form is read happens not to “use” the
common-lisp package. (Note the use in this example of the nickname cl
for the common-lisp package.) Moreover, neither reading in nor evaluating
this defpackage form will ever create any symbols in the current package.
Note too the use of uppercase letters in the strings.

Here, for the sake of contrast, is a rather similar use of defpackage that
“plays the whale” by using all sorts of permissible syntax.

(defpackage my-very-own-package
(:export :EQ common-lisp:cons my-very-own-function)
(:nicknames "MY-PKG" #:MyPkg)
(:use "COMMON-LISP")
(:shadow "CAR")
(:size 496)
(:nicknames mvop)

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 285

(:import-from "BRAND-X-LISP" "GC" Blink-Front-Panel-Lights)
(:shadow common-lisp::cdr)
(:shadowing-import-from "BRAND-X-LISP" CONS))

This example has exactly the same effect on the newly created package
but may create useless symbols in other packages. The use of explicit package
tags is particularly confusing; for example, this defpackage form will cause
the symbol cdr to be shadowed in the new package; it will not be shadowed
in the package common-lisp. The fact that the name “CDR” was specified
by a package-qualified reference to a symbol in the common-lisp package is
a red herring. The moral is that the syntactic flexibility of defpackage, as
in other parts of Common Lisp, yields considerable convenience when used
with commonsense competence, but unutterable confusion when used with
Malthusian profusion.

Implementation note: An implementation of defpackage might choose to
transform all the package-name and symbol-name arguments into strings at macro
expansion time, rather than at the time the resulting expansion is executed, so that
even if source code is expressed in terms of strange symbols in the defpackage

form, the binary file resulting from compiling the source code would contain only
strings. The purpose of this is simply to minimize the creation of useless symbols
in production code. This technique is permitted as an implementation strategy
but is not a behavior required by the specification of defpackage.

Note that defpackage is not capable by itself of defining mutually re-
cursive packages, for example two packages each of which uses the other.
However, nothing prevents one from using defpackage to perform much of
the initial setup and then using functions such as use-package, import,
and export to complete the links.

The purpose of defpackage is to encourage the user to put the entire
definition of a package and its relationships to other packages in a single
place. It may also encourage the designer of a large system to place the
definitions of all relevant packages into a single file (say) that can be loaded
before loading or compiling any code that depends on those packages. Such
a file, if carefully constructed, can simply be loaded into the common-lisp-
user package.

Implementations and programming environments may also be better able
to support the programming process (if only by providing better error check-
ing) through global knowledge of the intended package setup.

286 CHAPTER 11. PACKAGES

[Function] find-all-symbols string-or-symbol

find-all-symbols searches every package in the Lisp system to find every
symbol whose print name is the specified string. A list of all such symbols
found is returned. This search is case-sensitive. If the argument is a symbol,
its print name supplies the string to be searched for.

[Macro] do-symbols (var [package [result-form]])
{declaration}* {tag | statement}*

do-symbols provides straightforward iteration over the symbols of a
package. The body is performed once for each symbol accessible in the pack-
age, in no particular order, with the variable var bound to the symbol. Then
result-form (a single form, not an implicit progn) is evaluated, and the result
is the value of the do-symbols form. (When the result-form is evaluated, the
control variable var is still bound and has the value nil.) If the result-form
is omitted, the result is nil. return may be used to terminate the iteration
prematurely. If execution of the body affects which symbols are contained in
the package, other than possibly to remove the symbol currently the value of
var by using unintern, the effects are unpredictable.

The package argument may be either a package object or a package name
(see section 11.2).

X3J13 voted in March 1988 to specify that the body of a do-symbols
form may be executed more than once for the same accessible symbol, and
users should take care to allow for this possibility.

The point is that the same symbol might be accessible via more than one
chain of inheritance, and it is implementationally costly to eliminate such
duplicates. Here is an example:

(setq *a* (make-package ’a)) ;Implicitly uses package common-lisp
(setq *b* (make-package ’b)) ;Implicitly uses package common-lisp
(setq *c* (make-package ’c :use ’(a b)))

(do-symbols (x *c*) (print x)) ;Symbols in package common-lisp
; might be printed once or twice here

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.
Note that the loop construct provides a kind of for clause that can iterate

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 287

over the symbols of a package (see chapter 26).
[Macro] do-external-symbols (var [package [result]])
{declaration}* {tag | statement}*
do-external-symbols is just like do-symbols, except that only the ex-

ternal symbols of the specified package are scanned.
The clarification voted by X3J13 in March 1988 for do-symbols , re-

garding redundant executions of the body for the same symbol, applies also
to do-external-symbols.

The package argument may be either a package object or a package name
(see section 11.2).

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.
[Macro] do-all-symbols (var [result-form])
{declaration}* {tag | statement}*
This is similar to do-symbols but executes the body once for every sym-

bol contained in every package. (This will not process every symbol whatso-
ever, because a symbol not accessible in any package will not be processed.
Normally, uninterned symbols are not accessible in any package.) It is not in
general the case that each symbol is processed only once, because a symbol
may appear in many packages.

The clarification voted by X3J13 in March 1988 for do-symbols , re-
garding redundant executions of the body for the same symbol, applies also
to do-all-symbols.

The package argument may be either a package object or a package name
(see section 11.2).

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.
[Macro] with-package-iterator (mname package-list {symbol-type}+)
{form}*
The name mname is bound and defined as if by macrolet, with the

body forms as its lexical scope, to be a “generator macro” such that each
invocation of (mname) will return a symbol and that successive invocations
will eventually deliver, one by one, all the symbols from the packages that
are elements of the list that is the value of the expression package-list (which
is evaluated exactly once).

Each element of the package-list value may be either a package or the
name of a package. As a further convenience, if the package-list value is
itself a package or the name of a package, it is treated as if a singleton list

288 CHAPTER 11. PACKAGES

containing that value had been provided. If the package-list value is nil, it
is considered to be an empty list of packages.

At each invocation of the generator macro, there are two possibilities. If
there is yet another unprocessed symbol, then four values are returned: t,
the symbol, a keyword indicating the accessibility of the symbol within the
package (see below), and the package from which the symbol was accessed.
If there are no more unprocessed symbols in the list of packages, then one
value is returned: nil.

When the generator macro returns a symbol as its second value, the
fourth value is always one of the packages present or named in the package-
list value, and the third value is a keyword indicating accessibility: :internal
means present in the package and not exported; :external means present
and exported; and :inherited means not present (thus not shadowed) but
inherited from some package used by the package that is the fourth value.

Each symbol-type in an invocation of with-package-iterator is not eval-
uated. More than one may be present; their order does not matter. They
indicate the accessibility types of interest. A symbol is not returned by the
generator macro unless its actual accessibility matches one of the symbol-
type indicators. The standard symbol-type indicators are :internal, :ex-
ternal, and :inherited, but implementations are permitted to extend the
syntax of with-package-iterator by recognizing additional symbol acces-
sibility types. An error is signaled if no symbol-type is supplied, or if any
supplied symbol-type is not recognized by the implementation.

The order in which symbols are produced by successive invocations of the
generator macro is not necessarily correlated in any way with the order of the
packages in the package-list. When more than one package is in the package-
list, symbols accessible from more than one package may be produced once or
more than once. Even when only one package is specified, symbols inherited
in multiple ways via used packages may be produced once or more than once.

The implicit interior state of the iteration over the list of packages and
the symbols within them has dynamic extent. It is an error to invoke the
generator macro once the with-package-iterator form has been exited.

Any number of invocations of with-package-iterator and related
macros may be nested, and the generator macro of an outer invocation may
be called from within an inner invocation (provided, of course, that its name
is visible or otherwise made available).

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 289

Rationale: This facility is a bit more flexible in some ways than do-symbols and
friends. In particular, it makes it possible to implement loop clauses for iterating
over packages in a way that is both portable and efficient (see chapter 26).

290 CHAPTER 11. PACKAGES

