/* Freemverb demo draft */ #include "fluid_rev.h" char freemverb = 1; // 1: use freemverb 0:use freeverb /*************************************************************** * * REVERB */ /* Denormalising: * * According to music-dsp thread 'Denormalise', Pentium processors * have a hardware 'feature', that is of interest here, related to * numeric underflow. We have a recursive filter. The output decays * exponentially, if the input stops. So the numbers get smaller and * smaller... At some point, they reach 'denormal' level. This will * lead to drastic spikes in the CPU load. The effect was reproduced * with the reverb - sometimes the average load over 10 s doubles!!. * * The 'undenormalise' macro fixes the problem: As soon as the number * is close enough to denormal level, the macro forces the number to * 0.0f. The original macro is: * * #define undenormalise(sample) if(((*(unsigned int*)&sample)&0x7f800000)==0) sample=0.0f * * This will zero out a number when it reaches the denormal level. * Advantage: Maximum dynamic range Disadvantage: We'll have to check * every sample, expensive. The alternative macro comes from a later * mail from Jon Watte. It will zap a number before it reaches * denormal level. Jon suggests to run it once per block instead of * every sample. */ # if defined(WITH_FLOATX) # define zap_almost_zero(sample) (((*(unsigned int*)&(sample))&0x7f800000) < 0x08000000)?0.0f:(sample) # else /* 1e-20 was chosen as an arbitrary (small) threshold. */ #define zap_almost_zero(sample) fabs(sample)<1e-10 ? 0 : sample; #endif /* Denormalising part II: * * Another method fixes the problem cheaper: Use a small DC-offset in * the filter calculations. Now the signals converge not against 0, * but against the offset. The constant offset is invisible from the * outside world (i.e. it does not appear at the output. There is a * very small turn-on transient response, which should not cause * problems. */ //#define DC_OFFSET 0.0f #define DC_OFFSET 1e-8 //#define DC_OFFSET 0.001f /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ /* */ int UpdateMemory(void** pMem, long newSize) { * pMem = FLUID_REALLOC (* pMem, sizeof(fluid_real_t) * newSize); if (newSize && * pMem == NULL) // Alloc or realloc { /* allocation or reallocation error */ FLUID_LOG(FLUID_INFO, "freemverb: Failed to alloc/realloc memory"); return FLUID_FAILED; } else return FLUID_OK; } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ struct lpf { fluid_real_t buffer; fluid_real_t b0, a1; }; typedef struct lpf fluid_lpf; /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ void CreateLpf(fluid_lpf * lpf) { lpf->b0 = lpf->a1 = 0; lpf->buffer = 0; } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ void SetCoeffsLpf(fluid_lpf * lpf , fluid_real_t in_b0, fluid_real_t in_a1) { lpf->b0 = in_b0; lpf->a1 = in_a1; } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ inline void ProcessLpf(fluid_lpf * lpf , fluid_real_t *in, fluid_real_t *out){ *out = *in * lpf->b0 - lpf->buffer * lpf->a1; lpf->buffer = * out; } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ struct _fluid_MdelayLine { // Buffer parameters fluid_real_t *pfBuffer, *pfBufferEnd; fluid_real_t *pfInPos, *pfOutPos; int lBufferSize; long lMaxDelay; /*-------------*/ int inPos; int outPos; /*-------------*/ fluid_lpf dampingLPF; }; typedef struct _fluid_MdelayLine fluid_MdelayLine; typedef fluid_MdelayLine MDelayLine; /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ void ClearMDelayLine(MDelayLine * dl) { int i; if(dl->pfBuffer) for (i=0; i < dl->lBufferSize;i++) dl->pfBuffer[i] = DC_OFFSET; // memset(dl->pfBuffer, DC_OFFSET, dl->lBufferSize * sizeof(fluid_real_t)); } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ void CreateMdelayLine(MDelayLine * dl) { dl->pfBuffer = dl->pfBufferEnd = NULL; dl->lBufferSize = 0; dl->pfInPos = dl->pfOutPos = NULL; dl->lMaxDelay = 0; ClearMDelayLine(dl); /*-------------------*/ dl->inPos = dl->outPos = 0; /*-------------------*/ CreateLpf(&dl->dampingLPF); } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ void DestroyMdelayLine(MDelayLine * dl) { if(dl->pfBuffer) UpdateMemory(&dl->pfBuffer,0); } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ int SetMaxDelayMDelayLine (MDelayLine * dl ,long delay) { dl->lMaxDelay = delay; dl->lBufferSize = dl->lMaxDelay + 10 + 1; if( UpdateMemory(&dl->pfBuffer,dl->lBufferSize)) return FLUID_FAILED; dl->pfBufferEnd = dl->pfBuffer + dl->lBufferSize; dl->pfInPos = dl->pfBuffer; dl->pfOutPos = dl->pfInPos - dl->lMaxDelay; if(dl->pfOutPos < dl->pfBuffer) { dl->pfOutPos += dl->lBufferSize; // if (dl->pfOutPos > dl->pfBuffer) printf("pfOutPos - pfBuffer =%d\n", dl->pfOutPos - dl->pfBuffer); } // else printf("SetMaxDelayMDelayLine: pfOutPos >= pfBuffer\n"); dl->outPos = dl->inPos - dl->lMaxDelay; if(dl->outPos < 0) dl->outPos += dl->lBufferSize; return FLUID_OK; } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ inline void PushMDelayLine (MDelayLine * dl , fluid_real_t * val) { * dl->pfInPos = * val; if(++dl->pfInPos >= dl->pfBufferEnd) dl->pfInPos -= dl->lBufferSize; } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ #if 0 inline fluid_real_t GetLastMDelayLine (MDelayLine * dl) { fluid_real_t *p = dl->pfOutPos; fluid_real_t out; Sleep(2000); //printf(" 1:pfOutPos=%p\n", dl->pfOutPos); out = * (dl->pfOutPos); //printf(" 2:pfOutPos, BufferEnd:%p\n",dl->pfBufferEnd); if(++dl->pfOutPos >= dl->pfBufferEnd) { dl->pfOutPos -= dl->lBufferSize; // printf(" 2.2:pfOutPos:%p, Buffersize=%d \n",dl->pfOutPos, dl->lBufferSize ); Sleep(2000); } // else printf(" 2.1:pfOutPos:%p, Inc_sample =%d , Buffersize=%d, pfBufferEnd:%p\n",dl->pfOutPos, // dl->pfOutPos - p, dl->lBufferSize, dl->pfBufferEnd); return out; } #else inline fluid_real_t GetLastMDelayLine (MDelayLine * dl) { fluid_real_t out = * (dl->pfOutPos); if(++dl->pfOutPos >= dl->pfBufferEnd) dl->pfOutPos -= dl->lBufferSize; return out; } #endif /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ inline fluid_real_t GetAtMDelayLine (MDelayLine * dl, long index) { fluid_real_t * pfRealIndex; if(index>=dl->lBufferSize) FLUID_LOG(FLUID_WARN, "GetAtMDelayLine, Invalid index %d", index); pfRealIndex = dl->pfInPos - index - 1; if(pfRealIndex < dl->pfBuffer) pfRealIndex += dl->lBufferSize; return * pfRealIndex; } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ //#define PI 3.1415926535897932384626433832795 #define TWOPI 6.28318530717958647692528676655901 #define PI_DIV_BY_2 1.57079632679489661923132169163975 //#define SCALING_FACTOR 0.0000000004656612874161594f // 2/(2^32-1) struct _MSinOsc { fluid_real_t fFreq; fluid_real_t a; fluid_real_t buffer1; fluid_real_t buffer2; fluid_real_t resetBuffer2; }; typedef struct _MSinOsc fluid_MSinOsc; typedef fluid_MSinOsc MSinOsc; /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ void CreateMSinOsc(MSinOsc * osc) { osc->fFreq = 0; osc->a = 0; osc->buffer1 = osc->buffer2 = osc->resetBuffer2 = 0; } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ void SetFreqOsc(MSinOsc * osc, float freq, float sampleRate, float phase) { fluid_real_t w ; osc->fFreq = freq; w = TWOPI* osc->fFreq/sampleRate; osc->a = 2*cos(w); osc->buffer2 = sin(TWOPI*phase/360 - w); osc->buffer1 = sin(TWOPI*phase/360); osc->resetBuffer2 = sin(PI_DIV_BY_2 - w); } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ inline fluid_real_t GetCurValueModOsc(MSinOsc * osc) { fluid_real_t out; out = osc->a * osc->buffer1 - osc->buffer2; if(out >= 1.0) { out = 1.0; osc->buffer2 = osc->resetBuffer2; } else if(out <= -1.0) { out = -1.0; osc->buffer2 = - osc->resetBuffer2; } else osc->buffer2 = osc->buffer1; osc->buffer1 = out; return out; } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ struct ModDelayLine { MDelayLine dl; /* delayed line */ fluid_real_t fModOutPos; long lNomDelay; long lModDepth; long index; long lModRate; fluid_real_t fOne_m_D; fluid_real_t buffer; MSinOsc mod; }; typedef struct ModDelayLine fluid_ModDelayLine; /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ void CreateModDelayLine (fluid_ModDelayLine * mdl) { CreateMdelayLine(&mdl->dl); mdl->fModOutPos = 0; mdl->lNomDelay = 0; mdl->lModDepth = 0; mdl->index =0; mdl->lModRate = 1; mdl->buffer = 0; mdl->fOne_m_D = 0; CreateMSinOsc(&mdl->mod); } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ void DestroyModDelayLine (fluid_ModDelayLine * mdl) { DestroyMdelayLine(&mdl->dl); } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ int SetNomDelay(fluid_ModDelayLine * mdl , long delay) { mdl->lNomDelay = delay; if (SetMaxDelayMDelayLine (&mdl->dl, mdl->lNomDelay+ mdl->lModDepth)) return FLUID_FAILED; // mdl->fModOutPos = (float)( mdl->dl.pfInPos - mdl->dl.pfBuffer - mdl->lNomDelay); mdl->fModOutPos = (fluid_real_t) (- mdl->lNomDelay); if(mdl->fModOutPos < 0) mdl->fModOutPos += mdl->dl.lBufferSize; return FLUID_OK; } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ int SetModDepth (fluid_ModDelayLine * mdl , long depth) { if(depth >= mdl->lNomDelay){ FLUID_LOG(FLUID_INFO, "Mfreeverb: modulation depth has been limited"); depth = mdl->lNomDelay-1; } mdl->lModDepth = depth; if (SetMaxDelayMDelayLine (&mdl->dl, mdl->lNomDelay+ mdl->lModDepth)) return FLUID_FAILED; // mdl->fModOutPos = (float)( mdl->dl.pfInPos - mdl->dl.pfBuffer - mdl->lNomDelay); mdl->fModOutPos = (fluid_real_t) (- mdl->lNomDelay); if(mdl->fModOutPos < 0) mdl->fModOutPos += mdl->dl.lBufferSize; return FLUID_OK; } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ void SetModRate(fluid_ModDelayLine * mdl , long rate) { if (rate > mdl->dl.lBufferSize) { FLUID_LOG(FLUID_INFO, "Mfreeverb: modulation rate is out of range"); return; } mdl->lModRate = rate; } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ #if 1 inline fluid_real_t GetCurValueModDelayLine (fluid_ModDelayLine * mdl) { fluid_real_t fOutIndex; long lIndex; fluid_real_t out; if(((mdl->index++)% mdl->lModRate) == 0){ fOutIndex = ( mdl->fModOutPos + GetCurValueModOsc(&mdl->mod) * mdl->lModDepth); if(fOutIndex >= 0.0f) lIndex = (long)(fOutIndex); else lIndex = (long)(fOutIndex-1); mdl->dl.pfOutPos = mdl->dl.pfBuffer + lIndex; if(mdl->dl.pfOutPos < mdl->dl.pfBuffer) mdl->dl.pfOutPos += mdl->dl.lBufferSize; if(mdl->dl.pfOutPos >= mdl->dl.pfBufferEnd) mdl->dl.pfOutPos -= mdl->dl.lBufferSize; mdl->fOne_m_D = fOutIndex - lIndex; mdl->fModOutPos += mdl->lModRate; if(mdl->fModOutPos >= mdl->dl.lBufferSize) mdl->fModOutPos -= mdl->dl.lBufferSize; } out = *( mdl->dl.pfOutPos++); if(mdl->dl.pfOutPos >= mdl->dl.pfBufferEnd) mdl->dl.pfOutPos -= mdl->dl.lBufferSize; out += mdl->fOne_m_D * (*(mdl->dl.pfOutPos) - mdl->buffer); mdl->buffer = out; return out; } #else #endif /*----------------------------------------------------------------------------- Early part -----------------------------------------------------------------------------*/ #define EARLY_REF_FIR_SIZE 0.60f #define NB_TAPS 4 struct _fluid_early { MDelayLine earlyRefFIR; long lPreDelay; long lTapTimeL[NB_TAPS]; long lTapTimeR[NB_TAPS]; fluid_real_t fTapGainL[NB_TAPS]; fluid_real_t fTapGainR[NB_TAPS]; }; typedef struct _fluid_early fluid_early; int CreateFluidEarly(fluid_early * early, fluid_real_t sample_rate) { int result; CreateMdelayLine(&early->earlyRefFIR); result = SetMaxDelayMDelayLine (&early->earlyRefFIR, (long)(EARLY_REF_FIR_SIZE * sample_rate)); if (result == FLUID_FAILED) { return FLUID_FAILED; } /*-----------------------------------------------------------------------*/ early->lPreDelay = 1102; // Pre delay (in samples) early->lTapTimeL[0] = early->lPreDelay + (long)(0.0090 * sample_rate); early->lTapTimeL[1] = early->lPreDelay + (long)(0.0118 * sample_rate); early->lTapTimeL[2] = early->lPreDelay + (long)(0.0213 * sample_rate); // early->lTapTimeL[3] = early->lPreDelay + (long)(0.0205 * sample_rate); early->lTapTimeL[3] = early->lPreDelay + (long)(0.3205 * sample_rate); early->lTapTimeR[0] = early->lPreDelay + (long)(0.0145 * sample_rate); early->lTapTimeR[1] = early->lPreDelay + (long)(0.0100 * sample_rate); early->lTapTimeR[2] = early->lPreDelay + (long)(0.0205 * sample_rate); // early->lTapTimeR[3] = early->lPreDelay + (long)(0.0230 * sample_rate); early->lTapTimeR[3] = early->lPreDelay + (long)(0.5230 * sample_rate); early->fTapGainL[0] = 1.35f; early->fTapGainL[1] = -1.15f; early->fTapGainL[2] = -1.14f; early->fTapGainL[3] = 1.15f; early->fTapGainR[0] = 1.35f; early->fTapGainR[1] = -1.16f; early->fTapGainR[2] = -1.00f; early->fTapGainR[3] = 1.14f; // printf("end of CreateFluidEarly\n"); return result; } /*----------------------------------------------------------------------------- fluid_early destructor -----------------------------------------------------------------------------*/ void DestroyFluidEarly(fluid_early * early) { DestroyMdelayLine(&early->earlyRefFIR); /* destruction */ } /*----------------------------------------------------------------------------- Late structure -----------------------------------------------------------------------------*/ #define minRT 1.0f //#define maxRT 50.50f #define maxRT 10.0f #define rangeRT (maxRT - minRT) //#define minAlpha 0.2f #define getDCRevTime(roomsize) (minRT + rangeRT * roomsize) #define getPIRevTime(dcRT,damp) (dcRT*(1 - damp * (1 - minAlpha))) #define DCRevTime 20.0f; #define PIRevTime 20.0f; #define ModDepth 6 #define ModRate 50 #define freqModOsc 1.0f #define NB_DELAYS 8 #define NB_MOD_DELAYS 8 #define Phase (360.0/(float) NB_MOD_DELAYS) #define NB_FIXED_DELAYS (NB_DELAYS - NB_MOD_DELAYS) #define USE_OSC_MODULATION #define USE_VARIABLE_RATES struct _fluid_late { fluid_real_t samplerate; fluid_real_t fDCRevTime; fluid_real_t fPIRevTime; fluid_real_t toneBuffer; fluid_real_t b1,b2; long lTau[NB_DELAYS]; #if (NB_MOD_DELAYS>0) fluid_ModDelayLine modDelayLine[NB_MOD_DELAYS]; long lModDepth[NB_MOD_DELAYS]; long lModRate[NB_MOD_DELAYS]; #ifdef USE_OSC_MODULATION MSinOsc mod[NB_MOD_DELAYS]; float fModFreq[NB_MOD_DELAYS]; float fModPhase[NB_MOD_DELAYS]; #endif #endif #if (NB_FIXED_DELAYS > 0) MDelayLine delayLine[NB_DELAYS]; #endif fluid_lpf dampingLPF[NB_DELAYS]; fluid_real_t fkp[NB_DELAYS]; fluid_real_t fbp[NB_DELAYS]; fluid_real_t fA[NB_DELAYS][NB_DELAYS]; fluid_real_t fFeedConstant; fluid_real_t fcL[NB_DELAYS]; fluid_real_t fcR[NB_DELAYS]; }; typedef struct _fluid_late fluid_late; void DestroyFluidLate(fluid_late * late); /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ void UpdateRevTimeDamping(fluid_late * late, fluid_real_t damp) { int i; fluid_real_t T = 1/late->samplerate; fluid_real_t alpha; fluid_real_t fkp; fluid_real_t fbp; fluid_real_t beta; fkp = (fluid_real_t )pow(10,-3 * late->lTau[NB_DELAYS-1] *T / late->fDCRevTime); fbp = damp * 0.9; alpha = sqrt( 1/ (1- fbp/(20*log10(fkp)*log(10)/80)) ); late->fPIRevTime = alpha * late->fDCRevTime; for(i=0;ilTau[i] *T / late->fDCRevTime); fbp = (fluid_real_t)(20*log10(fkp)*log(10)/80 * (1 - 1/pow(alpha,2))); SetCoeffsLpf(&late->dampingLPF[i],fkp * (1- fbp),(-1) * fbp); } beta = (1 - sqrt ((double) alpha)) / (1 + sqrt((double)alpha)); // beta = (1 - alpha) / (1 + alpha); late->b1 = 1/(1-beta); late->b2 = beta * late->b1; #if 1 #if (NB_MOD_DELAYS>0) for(i=0;ilTau[i] *T / late->fDCRevTime); fbp = (fluid_real_t)(20*log10(fkp)*log(10)/80 * (1 - 1/pow(alpha,2))); SetCoeffsLpf(&late->modDelayLine[i].dl.dampingLPF,fkp * (1- fbp),(-1) * fbp); // printf("line:%d fkp=%f, fbp=%f, alpha=%f, beta=%f, b1=%f, b2=%f\n",i,fkp,fbp, // alpha,beta, late->b1, late->b2); } #endif #if (NB_FIXED_DELAYS > 0) for(i=NB_MOD_DELAYS;ilTau[i] *T / late->fDCRevTime); fbp = (fluid_real_t)(20*log10(fkp)*log(10)/80 * (1 - 1/pow(alpha,2))); SetCoeffsLpf(&late->delayLine[i].dampingLPF,fkp * (1- fbp),(-1) * fbp); } #endif #endif } void UpdateStereoCoefficient(fluid_late * late, fluid_real_t wet1) { int i; for(i=0;ifcL[i] = wet1; if((i%2)!=0) late->fcL[i] *= -1 ; if((i==1)||(i==2)||(i==5)||(i==6)||(i==9)||(i==10)||(i==13)||(i==14)) late->fcR[i] = -1 * late->fcL[i]; else late->fcR[i] = late->fcL[i]; } } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ int CreateFluidLate(fluid_late * late, fluid_real_t sample_rate) { int result ; /* return value */ long i,j ; late->samplerate = sample_rate; // late->fDCRevTime = 3.00f; // late->fPIRevTime = 1.25f; late->fDCRevTime = DCRevTime; late->fPIRevTime = PIRevTime; late->toneBuffer = 0.0f; #if (NB_DELAYS == 1) late->lTau[0] = 1000; #elif (NB_DELAYS == 4) late->lTau[0] = 601; late->lTau[1] = 691; late->lTau[2] = 773; late->lTau[3] = 839; #elif (NB_DELAYS == 8) late->lTau[0] = 601; late->lTau[1] = 691; late->lTau[2] = 773; late->lTau[3] = 839; late->lTau[4] = 919; late->lTau[5] = 997; late->lTau[6] = 1061; late->lTau[7] = 1129; #elif (NB_DELAYS == 12) late->lTau[0] = 601; late->lTau[1] = 691; late->lTau[2] = 773; late->lTau[3] = 839; late->lTau[4] = 919; late->lTau[5] = 997; late->lTau[6] = 1061; late->lTau[7] = 1093; late->lTau[8] = 1129; late->lTau[9] = 1151; late->lTau[10] = 1171; late->lTau[11] = 1187; #elif (NB_DELAYS == 16) late->lTau[0] = 919; late->lTau[1] = 997; late->lTau[2] = 1061; late->lTau[3] = 1093; late->lTau[4] = 1129; late->lTau[5] = 1151; late->lTau[6] = 1171; late->lTau[7] = 1187; late->lTau[8] = 1213; late->lTau[9] = 1237; late->lTau[10] = 1259; late->lTau[11] = 1283; late->lTau[12] = 1303; late->lTau[13] = 1319; late->lTau[14] = 1327; late->lTau[15] = 1361; #endif //-------------------------------------------------------------------------- #if (NB_MOD_DELAYS>0) for(i=0;ilModDepth[i] = 6; late->lModDepth[i] = ModDepth; } for(i=0;ilModRate[i] = 50; late->lModRate[i] = ModRate; } for(i=0;imodDelayLine[i]); result = SetNomDelay(&late->modDelayLine[i],late->lTau[i]); if (result == FLUID_FAILED) { DestroyFluidLate(late); return FLUID_FAILED; } SetModDepth(&late->modDelayLine[i],late->lModDepth[i]); #ifdef USE_VARIABLE_RATES SetModRate(&late->modDelayLine[i], late->lModRate[i]); #endif } #ifdef USE_OSC_MODULATION for(i=0;ifModFreq[i] = (float)(2); late->fModFreq[i] = freqModOsc; } for(i=0;ifModPhase[i] = (float)(Phase *i); // 45 degree } for(i=0;imodDelayLine[i].mod, late->fModFreq[i]* late->lModRate[i], sample_rate,late->fModPhase[i]); #else SetFreqOsc(&late->modDelayLine[i].mod,late->fModFreq[i], sample_rate,late->fModPhase[i]); #endif } #endif #endif #if (NB_FIXED_DELAYS > 0) for(i=NB_MOD_DELAYS;idelayLine[i]); result = SetMaxDelayMDelayLine (&late->delayLine[i], late->lTau[i]); if (result == FLUID_FAILED) { DestroyFluidLate(late); return FLUID_FAILED; } } #endif { fluid_real_t T = 1/sample_rate; fluid_real_t alpha = late->fPIRevTime/late->fDCRevTime; for(i=0;idampingLPF[i]); late->fkp[i] = (fluid_real_t )pow(10,-3 * late->lTau[i] *T / late->fDCRevTime); late->fbp[i] = (fluid_real_t)(20*log10(late->fkp[i])*log(10)/80 * (1 - 1/pow(alpha,2))); SetCoeffsLpf(&late->dampingLPF[i],late->fkp[i] * (1- late->fbp[i]), (-1) * late->fbp[i]); } } { fluid_real_t fTwoDivByNbDelays = (fluid_real_t)(2.0/NB_DELAYS); for(i=0;ifA[i][j] = 1; else late->fA[i][j] = 0; late->fA[i][j] -= fTwoDivByNbDelays; } } late->fFeedConstant = (fluid_real_t)(-2.0)/NB_DELAYS; // late->fFeedConstant = (fluid_real_t)(2.0)/NB_DELAYS; } UpdateStereoCoefficient(late, 1.0f); return FLUID_OK; } /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ void DestroyFluidLate(fluid_late * late) { long i; #if (NB_MOD_DELAYS>0) for(i=0;imodDelayLine[i]); } #endif #if (NB_FIXED_DELAYS > 0) for(i=NB_MOD_DELAYS;idelayLine[i]); } #endif } typedef struct _fluid_allpass fluid_allpass; typedef struct _fluid_comb fluid_comb; struct _fluid_allpass { fluid_real_t feedback; fluid_real_t *buffer; int bufsize; int bufidx; }; void fluid_allpass_init(fluid_allpass* allpass); void fluid_allpass_setfeedback(fluid_allpass* allpass, fluid_real_t val); fluid_real_t fluid_allpass_getfeedback(fluid_allpass* allpass); void fluid_allpass_setbuffer(fluid_allpass* allpass, int size) { allpass->bufidx = 0; allpass->buffer = FLUID_ARRAY(fluid_real_t,size); allpass->bufsize = size; } void fluid_allpass_release(fluid_allpass* allpass) { FLUID_FREE(allpass->buffer); } void fluid_allpass_init(fluid_allpass* allpass) { int i; int len = allpass->bufsize; fluid_real_t* buf = allpass->buffer; for (i = 0; i < len; i++) { buf[i] = DC_OFFSET; /* this is not 100 % correct. */ } } void fluid_allpass_setfeedback(fluid_allpass* allpass, fluid_real_t val) { allpass->feedback = val; } fluid_real_t fluid_allpass_getfeedback(fluid_allpass* allpass) { return allpass->feedback; } #define fluid_allpass_process(_allpass, _input) \ { \ fluid_real_t output; \ fluid_real_t bufout; \ bufout = _allpass.buffer[_allpass.bufidx]; \ output = bufout-_input; \ _allpass.buffer[_allpass.bufidx] = _input + (bufout * _allpass.feedback); \ if (++_allpass.bufidx >= _allpass.bufsize) { \ _allpass.bufidx = 0; \ } \ _input = output; \ } struct _fluid_comb { fluid_real_t feedback; fluid_real_t filterstore; fluid_real_t damp1; fluid_real_t damp2; fluid_real_t *buffer; int bufsize; int bufidx; }; void fluid_comb_setbuffer(fluid_comb* comb, int size); void fluid_comb_release(fluid_comb* comb); void fluid_comb_init(fluid_comb* comb); void fluid_comb_setdamp(fluid_comb* comb, fluid_real_t val); fluid_real_t fluid_comb_getdamp(fluid_comb* comb); void fluid_comb_setfeedback(fluid_comb* comb, fluid_real_t val); fluid_real_t fluid_comb_getfeedback(fluid_comb* comb); void fluid_comb_setbuffer(fluid_comb* comb, int size) { comb->filterstore = 0; comb->bufidx = 0; comb->buffer = FLUID_ARRAY(fluid_real_t,size); comb->bufsize = size; } void fluid_comb_release(fluid_comb* comb) { FLUID_FREE(comb->buffer); } void fluid_comb_init(fluid_comb* comb) { int i; fluid_real_t* buf = comb->buffer; int len = comb->bufsize; for (i = 0; i < len; i++) { buf[i] = DC_OFFSET; /* This is not 100 % correct. */ } } void fluid_comb_setdamp(fluid_comb* comb, fluid_real_t val) { comb->damp1 = val; comb->damp2 = 1 - val; } fluid_real_t fluid_comb_getdamp(fluid_comb* comb) { return comb->damp1; } void fluid_comb_setfeedback(fluid_comb* comb, fluid_real_t val) { comb->feedback = val; } fluid_real_t fluid_comb_getfeedback(fluid_comb* comb) { return comb->feedback; } #define fluid_comb_process(_comb, _input, _output) \ { \ fluid_real_t _tmp = _comb.buffer[_comb.bufidx]; \ _comb.filterstore = (_tmp * _comb.damp2) + (_comb.filterstore * _comb.damp1); \ _comb.buffer[_comb.bufidx] = _input + (_comb.filterstore * _comb.feedback); \ if (++_comb.bufidx >= _comb.bufsize) { \ _comb.bufidx = 0; \ } \ _output += _tmp; \ } #define numcombs 8 #define numallpasses 4 #define fixedgain 0.015f #define scalewet 3.0f #define scaledamp 1.0f #define scaleroom 0.28f #define offsetroom 0.7f #define initialroom 0.5f #define initialdamp 0.2f #define initialwet 1 #define initialdry 0 #define initialwidth 1 #define stereospread 23 /* These values assume 44.1KHz sample rate they will probably be OK for 48KHz sample rate but would need scaling for 96KHz (or other) sample rates. The values were obtained by listening tests. */ #define combtuningL1 1116 #define combtuningR1 (1116 + stereospread) #define combtuningL2 1188 #define combtuningR2 (1188 + stereospread) #define combtuningL3 1277 #define combtuningR3 (1277 + stereospread) #define combtuningL4 1356 #define combtuningR4 (1356 + stereospread) #define combtuningL5 1422 #define combtuningR5 (1422 + stereospread) #define combtuningL6 1491 #define combtuningR6 (1491 + stereospread) #define combtuningL7 1557 #define combtuningR7 (1557 + stereospread) #define combtuningL8 1617 #define combtuningR8 (1617 + stereospread) #define allpasstuningL1 556 #define allpasstuningR1 (556 + stereospread) #define allpasstuningL2 441 #define allpasstuningR2 (441 + stereospread) #define allpasstuningL3 341 #define allpasstuningR3 (341 + stereospread) #define allpasstuningL4 225 #define allpasstuningR4 (225 + stereospread) #if 0 struct _fluid_revmodel_t { fluid_real_t roomsize; fluid_real_t damp; fluid_real_t wet, wet1, wet2; fluid_real_t width; fluid_real_t gain; /* The following are all declared inline to remove the need for dynamic allocation with its subsequent error-checking messiness */ /* Comb filters */ fluid_comb combL[numcombs]; fluid_comb combR[numcombs]; /* Allpass filters */ fluid_allpass allpassL[numallpasses]; fluid_allpass allpassR[numallpasses]; }; #else struct _fluid_revmodel_t { fluid_real_t roomsize; fluid_real_t damp; fluid_real_t wet, wet1, wet2; fluid_real_t width; fluid_real_t gain; /* The following are all declared inline to remove the need for dynamic allocation with its subsequent error-checking messiness */ /* Comb filters */ fluid_comb combL[numcombs]; fluid_comb combR[numcombs]; /* Allpass filters */ fluid_allpass allpassL[numallpasses]; fluid_allpass allpassR[numallpasses]; //-------------------------------------- // freemverb fluid_early early; fluid_late late; }; #endif /*----------------------------------------------------------------------------- freemverb process replace -----------------------------------------------------------------------------*/ void fluid_revmodel_m_processreplace(fluid_revmodel_t* rev, fluid_real_t *in, fluid_real_t *left_out, fluid_real_t *right_out) { int p, k = 0; // fluid_real_t outL, outR, input; fluid_real_t xn; // input mono x(n) fluid_real_t yn1, yn2; // output stereo Left (yn1) and Right (yn2) fluid_real_t factor; fluid_real_t fQ[NB_DELAYS]; // Line output/LPF Output fluid_real_t fS[NB_DELAYS]; // Matrix Output for (k = 0; k < FLUID_BUFSIZE; k++) { // outL = outR = 0; xn = (2.0f * in[k] + DC_OFFSET) * rev->gain; // yn1 = yn2 = xn; yn1 = yn2 = 0; #if (NB_MOD_DELAYS>0) for(p=0;plate.modDelayLine[p]); ProcessLpf(&rev->late.dampingLPF[p],&fQ[p],&fQ[p]); yn1 += rev->late.fcL[p]*fQ[p]; // stereo left = left + fCL * fQ yn2 += rev->late.fcR[p]*fQ[p]; // stereo right= right+ fCR * fQ } #endif #if (NB_FIXED_DELAYS > 0) for(p=NB_MOD_DELAYS;plate.delayLine[p]); ProcessLpf(&rev->late.dampingLPF[p],&fQ[p],&fQ[p]); yn1 += rev->late.fcL[p]*fQ[p]; // stereo left = left + fCL * fQ yn2 += rev->late.fcR[p]*fQ[p]; // stereo right= right+ fCR * fQ } #endif factor = 0; for(p=0;plate.fFeedConstant; //factor = output sum * (-2.0)/NB_DELAYS; for(p=1;p0) for(p=0;plate.modDelayLine[p].dl,&fS[p]); } #endif #if (NB_FIXED_DELAYS > 0) for(p=NB_MOD_DELAYS;plate.delayLine[p],&fS[p]); } #endif //------------------------------------------------------------- yn1 -= DC_OFFSET; yn2 -= DC_OFFSET; left_out[k] = yn1 * rev->wet1 + yn2 * rev->wet2; right_out[k] = yn2 * rev->wet1 + yn1 * rev->wet2; } } #if 0 long c=0; #endif /*----------------------------------------------------------------------------- -----------------------------------------------------------------------------*/ #if 0 void fluid_revmodel_m_processmix(fluid_revmodel_t* rev, fluid_real_t *in, fluid_real_t *left_out, fluid_real_t *right_out) { int p, k = 0; // fluid_real_t outL, outR, input; fluid_real_t xn; fluid_real_t yn1, yn2; fluid_real_t factor; fluid_real_t fQ[NB_DELAYS]; fluid_real_t fS[NB_DELAYS]; for (k = 0; k < FLUID_BUFSIZE; k++) { // outL = outR = 0; xn = (2.0f * in[k] + DC_OFFSET) * rev->gain; //----------------------------------------------------------- // yn1 = yn2 = xn; yn1 = yn2 = 0; #if (NB_MOD_DELAYS>0) for(p=0;plate.modDelayLine[p]); // printf("m: c=%d\n", c++); ProcessLpf(&rev->late.dampingLPF[p],&fQ[p],&fQ[p]); yn1 += rev->late.fcL[p]*fQ[p]; // stereo left = left + fCL * fQ yn2 += rev->late.fcR[p]*fQ[p]; // stereo right= right+ fCR * fQ } #endif #if (NB_FIXED_DELAYS > 0) for(p=NB_MOD_DELAYS;plate.delayLine[p]); // printf("f2: c=%d\n", c++); ProcessLpf(&rev->late.dampingLPF[p],&fQ[p],&fQ[p]); yn1 += rev->late.fcL[p]*fQ[p]; // stereo left = left + fCL * fQ yn2 += rev->late.fcR[p]*fQ[p]; // stereo right= right+ fCR * fQ } #endif factor = 0; for(p=0;plate.fFeedConstant; //factor = output sum * (-2.0)/NB_DELAYS; for(p=1;p0) for(p=0;plate.modDelayLine[p].dl,&fS[p]); } #endif #if (NB_FIXED_DELAYS > 0) for(p=NB_MOD_DELAYS;plate.delayLine[p],&fS[p]); } #endif //------------------------------------------------------------- yn1 -= DC_OFFSET; yn2 -= DC_OFFSET; left_out[k] += yn1 * rev->wet1 + yn2 * rev->wet2; right_out[k] += yn2 * rev->wet1 + yn1 * rev->wet2; } } #else #define EARLY_PART 0 #define LATE_PART 1 void fluid_revmodel_m_processmix(fluid_revmodel_t* rev, fluid_real_t *in, fluid_real_t *left_out, fluid_real_t *right_out) { int p , k = 0; // fluid_real_t outL, outR, input; MDelayLine * dlEarly; fluid_real_t xn,xnt; fluid_real_t yn1, yn2; fluid_real_t factor,t; fluid_real_t fQ[NB_DELAYS]; fluid_real_t fS[NB_DELAYS]; for (k = 0; k < FLUID_BUFSIZE; k++) { // outL = outR = 0; yn1 = yn2 = 0; #if EARLY_PART dlEarly = &rev->early.earlyRefFIR; // xn = 2.0 * in[k] ; xn = in[k] ; //----------------------------------------------------------- // yn1 = yn2 = xn; //----------------------------------------------------------------------- //----------------------------------------------------------------------- #if 0 PushMDelayLine (&rev->early.earlyRefFIR,&xn); #else * dlEarly->pfInPos = xn; if(++dlEarly->pfInPos >= dlEarly->pfBufferEnd) dlEarly->pfInPos -= dlEarly->lBufferSize; #endif for( p=0;pearly.fTapGainL[p] * GetAtMDelayLine (&rev->early.earlyRefFIR,rev->early.lTapTimeL[p] ); // right: yn2 = xn + GainRi] * tap[i] yn2 += rev->early.fTapGainR[p] * GetAtMDelayLine (&rev->early.earlyRefFIR,rev->early.lTapTimeR[p] ); #else // MDelayLine * dl = &rev->early.earlyRefFIR; fluid_real_t * pAt; pAt = dlEarly->pfInPos - rev->early.lTapTimeL[p] - 1; if(pAt < dlEarly->pfBuffer) pAt += dlEarly->lBufferSize; yn1 += rev->early.fTapGainL[p] * (* pAt); pAt = dlEarly->pfInPos - rev->early.lTapTimeR[p] - 1; if(pAt < dlEarly->pfBuffer) pAt += dlEarly->lBufferSize; yn2 += rev->early.fTapGainR[p] * (* pAt); #endif } #endif /*=======================================================================*/ #if LATE_PART #if EARLY_PART //#define pre_early 25000 // 566 ms //#define pre_early 20800 // 470 ms //#define pre_early 10400 // 280 ms //#define pre_early 6615 // 150 ms #define pre_early 4410 // 100 ms //#define pre_early 3306 // 60 ms //#define pre_early 0 // 10 ms #if 0 // xn = GetAtMDelayLine (&rev->early.earlyRefFIR,rev->early.lPreDelay ); xn = GetAtMDelayLine (&rev->early.earlyRefFIR,pre_early ); #else { // MDelayLine * dl = &rev->early.earlyRefFIR; fluid_real_t * pAt; pAt = dlEarly->pfInPos - pre_early - 1; /* circular motion if necessary */ if(pAt < dlEarly->pfBuffer) pAt += dlEarly->lBufferSize; xn = * pAt; } #endif #else xn = in[k]; #endif // EARLY_PART xn = (2.0f * xn + DC_OFFSET) * rev->gain; //---------------------------------------------------------- #if 1 // yn1 = xn - rev->late.beta * rev->late.toneBuffer; xnt = xn * rev->late.b1 - rev->late.b2 * rev->late.toneBuffer; rev->late.toneBuffer = xn; xn = xnt; #endif //----------------------------------------------------------------------- //----------------------------------------------------------------------- factor = 0; #if (NB_MOD_DELAYS>0) for(p=0;plate.modDelayLine[p]); // printf("m: c=%d\n", c++); ProcessLpf(&rev->late.dampingLPF[p],&fQ[p],&fQ[p]); factor += fQ[p]; yn1 += rev->late.fcL[p]*fQ[p]; // stereo left = left + fCL * fQ yn2 += rev->late.fcR[p]*fQ[p]; // stereo right= right+ fCR * fQ #else // optimisation 4: 1.34 % --> 1.2 % #if 0 t = GetCurValueModDelayLine(&rev->late.modDelayLine[p]); t = t * rev->late.dampingLPF[p].b0 - rev->late.dampingLPF[p].buffer * rev->late.dampingLPF[p].a1; rev->late.dampingLPF[p].buffer = t; #else fluid_ModDelayLine * mdl = &rev->late.modDelayLine[p]; t = GetCurValueModDelayLine(mdl); t = t * mdl->dl.dampingLPF.b0 - mdl->dl.dampingLPF.buffer * mdl->dl.dampingLPF.a1; mdl->dl.dampingLPF.buffer = t; #endif fQ[p] = t; factor += t; yn1 += rev->late.fcL[p]* t; yn2 += rev->late.fcR[p]* t; #endif } #endif // NB_MOD_DELAYS #if (NB_FIXED_DELAYS > 0) // We end with the fixed delay line #if 0 for(p=NB_MOD_DELAYS;plate.delayLine[p]); t = GetLastMDelayLine(&rev->late.delayLine[p]); #else // fQ[p] = * (rev->late.delayLine[p].pfOutPos); t = * (rev->late.delayLine[p].pfOutPos); if(++rev->late.delayLine[p].pfOutPos >= rev->late.delayLine[p].pfBufferEnd) rev->late.delayLine[p].pfOutPos -= rev->late.delayLine[p].lBufferSize; #endif // printf("f2: c=%d\n", c++); //process LPF (input:fQ, output:fQ) #if 0 ProcessLpf(&rev->late.dampingLPF[p],&fQ[p],&fQ[p]); factor += fQ[p]; #else // fQ[p] = fQ[p] * rev->late.dampingLPF[p].b0 - rev->late.dampingLPF[p].buffer * // fQ[p] = t * rev->late.dampingLPF[p].b0 - rev->late.dampingLPF[p].buffer * // t = t * rev->late.dampingLPF[p].b0 - rev->late.dampingLPF[p].buffer * // rev->late.dampingLPF[p].a1; // rev->late.dampingLPF[p].buffer = t; t = t * rev->late.delayLine[p].dampingLPF.b0 - rev->late.delayLine[p].dampingLPF.buffer * rev->late.delayLine[p].dampingLPF.a1; rev->late.delayLine[p].dampingLPF.buffer = t; fQ[p] = t; factor += t; #endif // Process stereo output yn1 += rev->late.fcL[p] * t; // stereo left = left + fCL * fQ yn2 += rev->late.fcR[p] * t; // stereo right= right+ fCR * fQ } #else for(p=NB_MOD_DELAYS;plate.delayLine[p]; t = * (dl->pfOutPos); if(++dl->pfOutPos >= dl->pfBufferEnd) dl->pfOutPos -= dl->lBufferSize; // t = t * rev->late.dampingLPF[p].b0 - rev->late.dampingLPF[p].buffer * // rev->late.dampingLPF[p].a1; // rev->late.dampingLPF[p].buffer = t; t = t * dl->dampingLPF.b0 - dl->dampingLPF.buffer * dl->dampingLPF.a1; dl->dampingLPF.buffer = t; fQ[p] = t; factor += t; yn1 += rev->late.fcL[p] * t; yn2 += rev->late.fcR[p] * t; } #endif #endif // factor = 0; // for(p=0;plate.fFeedConstant; factor += xn; #if 1 for(p=1;plate.delayLine[p-1]; MDelayLine * dl = &rev->late.modDelayLine[p-1].dl; // fS[p-1] = fQ[p] + factor; { #if 0 * rev->late.delayLine[p-1].pfInPos = fQ[p] + factor; if(++rev->late.delayLine[p-1].pfInPos >= rev->late.delayLine[p-1].pfBufferEnd) rev->late.delayLine[p-1].pfInPos -= rev->late.delayLine[p-1].lBufferSize; #else * dl->pfInPos = fQ[p] + factor; if(++dl->pfInPos >= dl->pfBufferEnd) dl->pfInPos -= dl->lBufferSize; // dl->pfBuffer[dl->inPos] = fQ[p] + factor; // if(++dl->inPos >= dl->lBufferSize) // dl->inPos -= dl->lBufferSize; #endif } } // fS[NB_DELAYS-1] = fQ[0] + factor; { #if 0 * rev->late.delayLine[NB_DELAYS-1].pfInPos = fQ[0] + factor; if(++rev->late.delayLine[NB_DELAYS-1].pfInPos >= rev->late.delayLine[NB_DELAYS-1].pfBufferEnd) rev->late.delayLine[NB_DELAYS-1].pfInPos -= rev->late.delayLine[NB_DELAYS-1].lBufferSize; #else // MDelayLine * dl = &rev->late.modDelayLine[NB_DELAYS-1].dl; // dl->pfBuffer[dl->inPos] = fQ[0] + factor; // if(++dl->inPos >= dl->lBufferSize) // dl->inPos -= dl->lBufferSize; { #if 0 * rev->late.modDelayLine[NB_DELAYS-1].dl.pfInPos = fQ[0] + factor; if(++rev->late.modDelayLine[NB_DELAYS-1].dl.pfInPos >= rev->late.modDelayLine[NB_DELAYS-1].dl.pfBufferEnd) rev->late.modDelayLine[NB_DELAYS-1].dl.pfInPos -= rev->late.modDelayLine[NB_DELAYS-1].dl.lBufferSize; #else MDelayLine * dl = &rev->late.modDelayLine[NB_DELAYS-1].dl; // entrée ligne modulées * dl->pfInPos = fQ[0] + factor; if(++dl->pfInPos >= dl->pfBufferEnd) dl->pfInPos -= dl->lBufferSize; #endif } // rev->late.modDelayLine[NB_DELAYS-1].dl.pfBuffer[rev->late.modDelayLine[NB_DELAYS-1].dl.inPos] = // fQ[0] + factor; // if(++rev->late.modDelayLine[NB_DELAYS-1].dl.inPos > rev->late.modDelayLine[NB_DELAYS-1].dl.lBufferSize) // rev->late.modDelayLine[NB_DELAYS-1].dl.inPos -= rev->late.modDelayLine[NB_DELAYS-1].dl.lBufferSize; #endif } #else for(p=1;p0) for(p=0;plate.modDelayLine[p].dl,&fS[p]); { * rev->late.modDelayLine[p].dl.pfInPos = fS[p]; if(++rev->late.modDelayLine[p].dl.pfInPos >= rev->late.modDelayLine[p].dl.pfBufferEnd) rev->late.modDelayLine[p].dl.pfInPos -= rev->late.modDelayLine[p].dl.lBufferSize; } } #endif #if (NB_FIXED_DELAYS > 0) for(p=NB_MOD_DELAYS;plate.delayLine[p],&fS[p]); #else { * rev->late.delayLine[p].pfInPos = fS[p]; if(++rev->late.delayLine[p].pfInPos >= rev->late.delayLine[p].pfBufferEnd) rev->late.delayLine[p].pfInPos -= rev->late.delayLine[p].lBufferSize; } #endif } #endif #endif //------------------------------------------------------------- yn1 -= DC_OFFSET; yn2 -= DC_OFFSET; #endif //LATE_PART #if 1 left_out[k] += yn1 * rev->wet1 + yn2 * rev->wet2; right_out[k] += yn2 * rev->wet1 + yn1 * rev->wet2; #else left_out[k] += yn1 + yn2 * rev->wet2; right_out[k] += yn2 + yn1 * rev->wet2; #endif } } #endif static void fluid_revmodel_update(fluid_revmodel_t* rev); static void fluid_revmodel_init(fluid_revmodel_t* rev); void fluid_set_revmodel_buffers(fluid_revmodel_t* rev, fluid_real_t sample_rate); fluid_revmodel_t* new_fluid_revmodel(void ) { fluid_revmodel_t* rev; rev = FLUID_NEW(fluid_revmodel_t); if (rev == NULL) { return NULL; } // if (freemverb) { if( CreateFluidEarly(&rev->early,44100) == FLUID_OK && CreateFluidLate(&rev->late,44100) == FLUID_OK) { // rev->gain = fixedgain; rev->gain = 0.05f; fluid_revmodel_set(rev,FLUID_REVMODEL_SET_ALL,initialroom,initialdamp,initialwidth,initialwet); printf("Fluidsynth: using freemverb-demo (in process mixing only !)\n\n"); } else return NULL; } else { fluid_set_revmodel_buffers(rev, 44100); /* Set default values */ fluid_allpass_setfeedback(&rev->allpassL[0], 0.5f); fluid_allpass_setfeedback(&rev->allpassR[0], 0.5f); fluid_allpass_setfeedback(&rev->allpassL[1], 0.5f); fluid_allpass_setfeedback(&rev->allpassR[1], 0.5f); fluid_allpass_setfeedback(&rev->allpassL[2], 0.5f); fluid_allpass_setfeedback(&rev->allpassR[2], 0.5f); fluid_allpass_setfeedback(&rev->allpassL[3], 0.5f); fluid_allpass_setfeedback(&rev->allpassR[3], 0.5f); rev->gain = fixedgain; fluid_revmodel_set(rev,FLUID_REVMODEL_SET_ALL,initialroom,initialdamp,initialwidth,initialwet); printf("Fluidsynth: using freeverb\n\n"); } return rev; } void delete_fluid_revmodel(fluid_revmodel_t* rev) { int i; if (freemverb) { DestroyFluidEarly(&rev->early); DestroyFluidLate(&rev->late); } else { for (i = 0; i < numcombs;i++) { fluid_comb_release(&rev->combL[i]); fluid_comb_release(&rev->combR[i]); } for (i = 0; i < numallpasses; i++) { fluid_allpass_release(&rev->allpassL[i]); fluid_allpass_release(&rev->allpassR[i]); } } FLUID_FREE(rev); } void fluid_set_revmodel_buffers(fluid_revmodel_t* rev, fluid_real_t sample_rate) { float srfactor = sample_rate/44100.0f; fluid_comb_setbuffer(&rev->combL[0], combtuningL1*srfactor); fluid_comb_setbuffer(&rev->combR[0], combtuningR1*srfactor); fluid_comb_setbuffer(&rev->combL[1], combtuningL2*srfactor); fluid_comb_setbuffer(&rev->combR[1], combtuningR2*srfactor); fluid_comb_setbuffer(&rev->combL[2], combtuningL3*srfactor); fluid_comb_setbuffer(&rev->combR[2], combtuningR3*srfactor); fluid_comb_setbuffer(&rev->combL[3], combtuningL4*srfactor); fluid_comb_setbuffer(&rev->combR[3], combtuningR4*srfactor); fluid_comb_setbuffer(&rev->combL[4], combtuningL5*srfactor); fluid_comb_setbuffer(&rev->combR[4], combtuningR5*srfactor); fluid_comb_setbuffer(&rev->combL[5], combtuningL6*srfactor); fluid_comb_setbuffer(&rev->combR[5], combtuningR6*srfactor); fluid_comb_setbuffer(&rev->combL[6], combtuningL7*srfactor); fluid_comb_setbuffer(&rev->combR[6], combtuningR7*srfactor); fluid_comb_setbuffer(&rev->combL[7], combtuningL8*srfactor); fluid_comb_setbuffer(&rev->combR[7], combtuningR8*srfactor); fluid_allpass_setbuffer(&rev->allpassL[0], allpasstuningL1*srfactor); fluid_allpass_setbuffer(&rev->allpassR[0], allpasstuningR1*srfactor); fluid_allpass_setbuffer(&rev->allpassL[1], allpasstuningL2*srfactor); fluid_allpass_setbuffer(&rev->allpassR[1], allpasstuningR2*srfactor); fluid_allpass_setbuffer(&rev->allpassL[2], allpasstuningL3*srfactor); fluid_allpass_setbuffer(&rev->allpassR[2], allpasstuningR3*srfactor); fluid_allpass_setbuffer(&rev->allpassL[3], allpasstuningL4*srfactor); fluid_allpass_setbuffer(&rev->allpassR[3], allpasstuningR4*srfactor); fluid_revmodel_init(rev); } static void fluid_revmodel_init(fluid_revmodel_t* rev) { int i; if (freemverb) { } else { for (i = 0; i < numcombs;i++) { fluid_comb_init(&rev->combL[i]); fluid_comb_init(&rev->combR[i]); } for (i = 0; i < numallpasses; i++) { fluid_allpass_init(&rev->allpassL[i]); fluid_allpass_init(&rev->allpassR[i]); } } } void fluid_revmodel_reset(fluid_revmodel_t* rev) { fluid_revmodel_init(rev); } void fluid_revmodel_f_processreplace(fluid_revmodel_t* rev, fluid_real_t *in, fluid_real_t *left_out, fluid_real_t *right_out) { int i, k = 0; fluid_real_t outL, outR, input; for (k = 0; k < FLUID_BUFSIZE; k++) { outL = outR = 0; /* The original Freeverb code expects a stereo signal and 'input' * is set to the sum of the left and right input sample. Since * this code works on a mono signal, 'input' is set to twice the * input sample. */ input = (2.0f * in[k] + DC_OFFSET) * rev->gain; /* Accumulate comb filters in parallel */ for (i = 0; i < numcombs; i++) { fluid_comb_process(rev->combL[i], input, outL); fluid_comb_process(rev->combR[i], input, outR); } /* Feed through allpasses in series */ for (i = 0; i < numallpasses; i++) { fluid_allpass_process(rev->allpassL[i], outL); fluid_allpass_process(rev->allpassR[i], outR); } /* Remove the DC offset */ outL -= DC_OFFSET; outR -= DC_OFFSET; /* Calculate output REPLACING anything already there */ left_out[k] = outL * rev->wet1 + outR * rev->wet2; right_out[k] = outR * rev->wet1 + outL * rev->wet2; } } void fluid_revmodel_processreplace(fluid_revmodel_t* rev, fluid_real_t *in, fluid_real_t *left_out, fluid_real_t *right_out) { if (freemverb) { printf("1:m_r\n"); // fluid_revmodel_m_processreplace(rev, in, left_out, right_out); // printf("2:m_r\n"); } else fluid_revmodel_f_processreplace(rev, in, left_out, right_out); } void fluid_revmodel_f_processmix(fluid_revmodel_t* rev, fluid_real_t *in, fluid_real_t *left_out, fluid_real_t *right_out) { int i, k = 0; fluid_real_t outL, outR, input; for (k = 0; k < FLUID_BUFSIZE; k++) { outL = outR = 0; /* The original Freeverb code expects a stereo signal and 'input' * is set to the sum of the left and right input sample. Since * this code works on a mono signal, 'input' is set to twice the * input sample. */ input = (2.0f * in[k] + DC_OFFSET) * rev->gain; /* Accumulate comb filters in parallel */ for (i = 0; i < numcombs; i++) { fluid_comb_process(rev->combL[i], input, outL); fluid_comb_process(rev->combR[i], input, outR); } /* Feed through allpasses in series */ for (i = 0; i < numallpasses; i++) { fluid_allpass_process(rev->allpassL[i], outL); fluid_allpass_process(rev->allpassR[i], outR); } /* Remove the DC offset */ outL -= DC_OFFSET; outR -= DC_OFFSET; /* Calculate output MIXING with anything already there */ left_out[k] += outL * rev->wet1 + outR * rev->wet2; right_out[k] += outR * rev->wet1 + outL * rev->wet2; } } void fluid_revmodel_processmix(fluid_revmodel_t* rev, fluid_real_t *in, fluid_real_t *left_out, fluid_real_t *right_out) { if (freemverb) { #if 1 // printf("1:m_m\n"); fluid_revmodel_m_processmix(rev, in, left_out, right_out); // printf("2:m_m\n"); #endif } else fluid_revmodel_f_processmix(rev, in, left_out, right_out); } static void fluid_revmodel_update(fluid_revmodel_t* rev) { int i; if (freemverb) { rev->late.fDCRevTime = getDCRevTime(rev->roomsize) ; // rev->late.fPIRevTime = getPIRevTime(rev->late.fDCRevTime, rev->damp); UpdateRevTimeDamping(&rev->late, rev->damp); rev->wet1 = rev->wet * (rev->width / 2.0f + 0.5f); // UpdateStereoCoefficient(&rev->late,rev->wet1); rev->wet2 = rev->wet * ((1.0f - rev->width) / 2.0f); // if(rev->wet1 >0) rev->wet2 /= rev->wet1; // printf("freemverb: roomsize=%f, damp=%f, dcRT=%f, piRT=%f\n", // rev->roomsize, rev->damp, // rev->late.fDCRevTime, rev->late.fPIRevTime); // printf("freemverb: wet = %f, input gain=%f, width:%f\n", rev->wet, rev->gain, // rev->width ); } else { /* freeverb */ rev->wet1 = rev->wet * (rev->width / 2.0f + 0.5f); rev->wet2 = rev->wet * ((1.0f - rev->width) / 2.0f); for (i = 0; i < numcombs; i++) { fluid_comb_setfeedback(&rev->combL[i], rev->roomsize); fluid_comb_setfeedback(&rev->combR[i], rev->roomsize); } for (i = 0; i < numcombs; i++) { fluid_comb_setdamp(&rev->combL[i], rev->damp); fluid_comb_setdamp(&rev->combR[i], rev->damp); } } } /** * Set one or more reverb parameters. * @param rev Reverb instance * @param set One or more flags from #fluid_revmodel_set_t indicating what * parameters to set (#FLUID_REVMODEL_SET_ALL to set all parameters) * @param roomsize Reverb room size * @param damping Reverb damping * @param width Reverb width * @param level Reverb level */ void fluid_revmodel_set(fluid_revmodel_t* rev, int set, float roomsize, float damping, float width, float level) { /*-----------------------------------*/ if (set & FLUID_REVMODEL_SET_ROOMSIZE) if (freemverb) { fluid_clip(roomsize, 0.0f, 1.0f); rev->roomsize = roomsize; } /* freeverb */ else rev->roomsize = (roomsize * scaleroom) + offsetroom; /*-----------------------------------*/ if (set & FLUID_REVMODEL_SET_DAMPING) if (freemverb) { fluid_clip(damping, 0.0f, 1.0f); rev->damp = damping; } /* freeverb */ else rev->damp = damping * scaledamp; /*-----------------------------------*/ if (set & FLUID_REVMODEL_SET_WIDTH) { fluid_clip(width, 0.0f, 1.0f); rev->width = width; } /*-----------------------------------*/ if (set & FLUID_REVMODEL_SET_LEVEL) { fluid_clip(level, 0.0f, 1.0f); rev->wet = level * scalewet; } /* update internal parameters */ fluid_revmodel_update (rev); // printf("End of fluid_revmodel_set\n"); } void fluid_revmodel_samplerate_change(fluid_revmodel_t* rev, fluid_real_t sample_rate) { int i; if (freemverb) { // printf("End of fluid_revmodel_samplerate_change\n"); } else { /* freeverb */ for (i = 0; i < numcombs;i++) { fluid_comb_release(&rev->combL[i]); fluid_comb_release(&rev->combR[i]); } for (i = 0; i < numallpasses; i++) { fluid_allpass_release(&rev->allpassL[i]); fluid_allpass_release(&rev->allpassR[i]); } fluid_set_revmodel_buffers(rev, sample_rate); } }