[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[SCM] gawk branch, feature/minrx, updated. gawk-4.1.0-5899-g7fe49d23
From: |
Arnold Robbins |
Subject: |
[SCM] gawk branch, feature/minrx, updated. gawk-4.1.0-5899-g7fe49d23 |
Date: |
Mon, 13 Jan 2025 02:50:53 -0500 (EST) |
This is an automated email from the git hooks/post-receive script. It was
generated because a ref change was pushed to the repository containing
the project "gawk".
The branch, feature/minrx has been updated
via 7fe49d23c08b9a6ac71b0d3d02ba72741097d153 (commit)
from 5ae987ec8130975f38c9b487726a4ac6137b7a3c (commit)
Those revisions listed above that are new to this repository have
not appeared on any other notification email; so we list those
revisions in full, below.
- Log -----------------------------------------------------------------
http://git.sv.gnu.org/cgit/gawk.git/commit/?id=7fe49d23c08b9a6ac71b0d3d02ba72741097d153
commit 7fe49d23c08b9a6ac71b0d3d02ba72741097d153
Author: Arnold D. Robbins <arnold@skeeve.com>
Date: Mon Jan 13 09:50:22 2025 +0200
Add Roaring Bitmap files, update Makefile.am.
diff --git a/support/ChangeLog b/support/ChangeLog
index dac22a51..6b53c0ca 100644
--- a/support/ChangeLog
+++ b/support/ChangeLog
@@ -1,3 +1,8 @@
+2025-01-13 Arnold D. Robbins <arnold@skeeve.com>
+
+ * roaring.h, roaring.c: New files.
+ * Makefile.am (libsupport_a_SOURCES): Add roaring.h and roaring.c.
+
2024-12-24 Arnold D. Robbins <arnold@skeeve.com>
* minrx.h, minrx.cpp: Updated.
diff --git a/support/Makefile.am b/support/Makefile.am
index 4012cf3c..431391c6 100644
--- a/support/Makefile.am
+++ b/support/Makefile.am
@@ -70,6 +70,8 @@ libsupport_a_SOURCES = \
random.h \
regex.c \
regex.h \
+ roaring.c \
+ roaring.h \
verify.h \
xalloc.h \
malloc/dynarray.h \
diff --git a/support/Makefile.in b/support/Makefile.in
index 72e5a68a..66dc8870 100644
--- a/support/Makefile.in
+++ b/support/Makefile.in
@@ -150,17 +150,17 @@ am__libsupport_a_SOURCES_DIST = attribute.h cdefs.h
charset.c \
charset.h dfa.c dfa.h dynarray.h flexmember.h getopt.c \
getopt.h getopt1.c getopt_int.h idx.h intprops.h \
intprops-internal.h libc-config.h localeinfo.c localeinfo.h \
- minrx.cpp minrx.h random.c random.h regex.c regex.h verify.h \
- xalloc.h malloc/dynarray.h malloc/dynarray_at_failure.c \
- malloc/dynarray_emplace_enlarge.c malloc/dynarray_finalize.c \
- malloc/dynarray_resize.c malloc/dynarray_resize_clear.c pma.c \
- pma.h
+ minrx.cpp minrx.h random.c random.h regex.c regex.h roaring.c \
+ roaring.h verify.h xalloc.h malloc/dynarray.h \
+ malloc/dynarray_at_failure.c malloc/dynarray_emplace_enlarge.c \
+ malloc/dynarray_finalize.c malloc/dynarray_resize.c \
+ malloc/dynarray_resize_clear.c pma.c pma.h
am__dirstamp = $(am__leading_dot)dirstamp
@USE_PERSISTENT_MALLOC_TRUE@am__objects_1 = pma.$(OBJEXT)
am_libsupport_a_OBJECTS = charset.$(OBJEXT) dfa.$(OBJEXT) \
getopt.$(OBJEXT) getopt1.$(OBJEXT) localeinfo.$(OBJEXT) \
minrx.$(OBJEXT) random.$(OBJEXT) regex.$(OBJEXT) \
- malloc/dynarray_at_failure.$(OBJEXT) \
+ roaring.$(OBJEXT) malloc/dynarray_at_failure.$(OBJEXT) \
malloc/dynarray_emplace_enlarge.$(OBJEXT) \
malloc/dynarray_finalize.$(OBJEXT) \
malloc/dynarray_resize.$(OBJEXT) \
@@ -185,7 +185,7 @@ am__depfiles_remade = ./$(DEPDIR)/charset.Po
./$(DEPDIR)/dfa.Po \
./$(DEPDIR)/getopt.Po ./$(DEPDIR)/getopt1.Po \
./$(DEPDIR)/localeinfo.Po ./$(DEPDIR)/minrx.Po \
./$(DEPDIR)/pma.Po ./$(DEPDIR)/random.Po ./$(DEPDIR)/regex.Po \
- malloc/$(DEPDIR)/dynarray_at_failure.Po \
+ ./$(DEPDIR)/roaring.Po malloc/$(DEPDIR)/dynarray_at_failure.Po \
malloc/$(DEPDIR)/dynarray_emplace_enlarge.Po \
malloc/$(DEPDIR)/dynarray_finalize.Po \
malloc/$(DEPDIR)/dynarray_resize.Po \
@@ -402,8 +402,8 @@ libsupport_a_SOURCES = attribute.h cdefs.h charset.c
charset.h dfa.c \
dfa.h dynarray.h flexmember.h getopt.c getopt.h getopt1.c \
getopt_int.h idx.h intprops.h intprops-internal.h \
libc-config.h localeinfo.c localeinfo.h minrx.cpp minrx.h \
- random.c random.h regex.c regex.h verify.h xalloc.h \
- malloc/dynarray.h malloc/dynarray_at_failure.c \
+ random.c random.h regex.c regex.h roaring.c roaring.h verify.h \
+ xalloc.h malloc/dynarray.h malloc/dynarray_at_failure.c \
malloc/dynarray_emplace_enlarge.c malloc/dynarray_finalize.c \
malloc/dynarray_resize.c malloc/dynarray_resize_clear.c \
$(am__append_1)
@@ -487,6 +487,7 @@ distclean-compile:
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pma.Po@am__quote@ #
am--include-marker
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/random.Po@am__quote@ #
am--include-marker
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/regex.Po@am__quote@ #
am--include-marker
+@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/roaring.Po@am__quote@ #
am--include-marker
@AMDEP_TRUE@@am__include@
@am__quote@malloc/$(DEPDIR)/dynarray_at_failure.Po@am__quote@ #
am--include-marker
@AMDEP_TRUE@@am__include@
@am__quote@malloc/$(DEPDIR)/dynarray_emplace_enlarge.Po@am__quote@ #
am--include-marker
@AMDEP_TRUE@@am__include@
@am__quote@malloc/$(DEPDIR)/dynarray_finalize.Po@am__quote@ # am--include-marker
@@ -665,6 +666,7 @@ distclean: distclean-am
-rm -f ./$(DEPDIR)/pma.Po
-rm -f ./$(DEPDIR)/random.Po
-rm -f ./$(DEPDIR)/regex.Po
+ -rm -f ./$(DEPDIR)/roaring.Po
-rm -f malloc/$(DEPDIR)/dynarray_at_failure.Po
-rm -f malloc/$(DEPDIR)/dynarray_emplace_enlarge.Po
-rm -f malloc/$(DEPDIR)/dynarray_finalize.Po
@@ -724,6 +726,7 @@ maintainer-clean: maintainer-clean-am
-rm -f ./$(DEPDIR)/pma.Po
-rm -f ./$(DEPDIR)/random.Po
-rm -f ./$(DEPDIR)/regex.Po
+ -rm -f ./$(DEPDIR)/roaring.Po
-rm -f malloc/$(DEPDIR)/dynarray_at_failure.Po
-rm -f malloc/$(DEPDIR)/dynarray_emplace_enlarge.Po
-rm -f malloc/$(DEPDIR)/dynarray_finalize.Po
diff --git a/support/roaring.c b/support/roaring.c
new file mode 100644
index 00000000..1a44f2eb
--- /dev/null
+++ b/support/roaring.c
@@ -0,0 +1,26061 @@
+// !!! DO NOT EDIT - THIS IS AN AUTO-GENERATED FILE !!!
+// Created by amalgamation.sh on 2024-10-04T22:14:33Z
+
+/*
+ * The CRoaring project is under a dual license (Apache/MIT).
+ * Users of the library may choose one or the other license.
+ */
+/*
+ * Copyright 2016-2022 The CRoaring authors
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ */
+/*
+ * MIT License
+ *
+ * Copyright 2016-2022 The CRoaring authors
+ *
+ * Permission is hereby granted, free of charge, to any
+ * person obtaining a copy of this software and associated
+ * documentation files (the "Software"), to deal in the
+ * Software without restriction, including without
+ * limitation the rights to use, copy, modify, merge,
+ * publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software
+ * is furnished to do so, subject to the following
+ * conditions:
+ *
+ * The above copyright notice and this permission notice
+ * shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+ * ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+ * TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+ * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+ * SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+ * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+ * IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ *
+ * SPDX-License-Identifier: MIT
+ */
+
+#include "roaring.h"
+
+/* used for http://dmalloc.com/ Dmalloc - Debug Malloc Library */
+#ifdef DMALLOC
+#include "dmalloc.h"
+#endif
+
+#include "roaring.h" /* include public API definitions */
+/* begin file include/roaring/isadetection.h */
+#ifndef ROARING_ISADETECTION_H
+#define ROARING_ISADETECTION_H
+#if defined(__x86_64__) || defined(_M_AMD64) // x64
+
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#ifdef __has_include
+// We want to make sure that the AVX-512 functions are only built on compilers
+// fully supporting AVX-512.
+#if __has_include(<avx512vbmi2intrin.h>)
+#define CROARING_COMPILER_SUPPORTS_AVX512 1
+#endif // #if __has_include(<avx512vbmi2intrin.h>)
+#endif // #ifdef __has_include
+
+// Visual Studio 2019 and up support AVX-512
+#ifdef _MSC_VER
+#if _MSC_VER >= 1920
+#define CROARING_COMPILER_SUPPORTS_AVX512 1
+#endif // #if _MSC_VER >= 1920
+#endif // #ifdef _MSC_VER
+
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#define CROARING_COMPILER_SUPPORTS_AVX512 0
+#endif // #ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#endif // #ifndef CROARING_COMPILER_SUPPORTS_AVX512
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+enum {
+ ROARING_SUPPORTS_AVX2 = 1,
+ ROARING_SUPPORTS_AVX512 = 2,
+};
+int croaring_hardware_support(void);
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+#endif // x64
+#endif // ROARING_ISADETECTION_H
+/* end file include/roaring/isadetection.h */
+/* begin file include/roaring/containers/perfparameters.h */
+#ifndef PERFPARAMETERS_H_
+#define PERFPARAMETERS_H_
+
+#include <stdbool.h>
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/**
+During lazy computations, we can transform array containers into bitset
+containers as
+long as we can expect them to have ARRAY_LAZY_LOWERBOUND values.
+*/
+enum { ARRAY_LAZY_LOWERBOUND = 1024 };
+
+/* default initial size of a run container
+ setting it to zero delays the malloc.*/
+enum { RUN_DEFAULT_INIT_SIZE = 0 };
+
+/* default initial size of an array container
+ setting it to zero delays the malloc */
+enum { ARRAY_DEFAULT_INIT_SIZE = 0 };
+
+/* automatic bitset conversion during lazy or */
+#ifndef LAZY_OR_BITSET_CONVERSION
+#define LAZY_OR_BITSET_CONVERSION true
+#endif
+
+/* automatically attempt to convert a bitset to a full run during lazy
+ * evaluation */
+#ifndef LAZY_OR_BITSET_CONVERSION_TO_FULL
+#define LAZY_OR_BITSET_CONVERSION_TO_FULL true
+#endif
+
+/* automatically attempt to convert a bitset to a full run */
+#ifndef OR_BITSET_CONVERSION_TO_FULL
+#define OR_BITSET_CONVERSION_TO_FULL true
+#endif
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif
+/* end file include/roaring/containers/perfparameters.h */
+/* begin file include/roaring/containers/container_defs.h */
+/*
+ * container_defs.h
+ *
+ * Unlike containers.h (which is a file aggregating all the container includes,
+ * like array.h, bitset.h, and run.h) this is a file included BY those headers
+ * to do things like define the container base class `container_t`.
+ */
+
+#ifndef INCLUDE_CONTAINERS_CONTAINER_DEFS_H_
+#define INCLUDE_CONTAINERS_CONTAINER_DEFS_H_
+
+#ifdef __cplusplus
+#include <type_traits> // used by casting helper for compile-time check
+#endif
+
+// The preferences are a separate file to separate out tweakable parameters
+
+#ifdef __cplusplus
+namespace roaring {
+namespace internal { // No extern "C" (contains template)
+#endif
+
+/*
+ * Since roaring_array_t's definition is not opaque, the container type is
+ * part of the API. If it's not going to be `void*` then it needs a name, and
+ * expectations are to prefix C library-exported names with `roaring_` etc.
+ *
+ * Rather than force the whole codebase to use the name `roaring_container_t`,
+ * the few API appearances use the macro ROARING_CONTAINER_T. Those includes
+ * are prior to containers.h, so make a short private alias of `container_t`.
+ * Then undefine the awkward macro so it's not used any more than it has to be.
+ */
+typedef ROARING_CONTAINER_T container_t;
+#undef ROARING_CONTAINER_T
+
+/*
+ * See ROARING_CONTAINER_T for notes on using container_t as a base class.
+ * This macro helps make the following pattern look nicer:
+ *
+ * #ifdef __cplusplus
+ * struct roaring_array_s : public container_t {
+ * #else
+ * struct roaring_array_s {
+ * #endif
+ * int32_t cardinality;
+ * int32_t capacity;
+ * uint16_t *array;
+ * }
+ */
+#if defined(__cplusplus)
+#define STRUCT_CONTAINER(name) struct name : public container_t /* { ... } */
+#else
+#define STRUCT_CONTAINER(name) struct name /* { ... } */
+#endif
+
+/**
+ * Since container_t* is not void* in C++, "dangerous" casts are not needed to
+ * downcast; only a static_cast<> is needed. Define a macro for static casting
+ * which helps make casts more visible, and catches problems at compile-time
+ * when building the C sources in C++ mode:
+ *
+ * void some_func(container_t **c, ...) { // double pointer, not single
+ * array_container_t *ac1 = (array_container_t *)(c); // uncaught!!
+ *
+ * array_container_t *ac2 = CAST(array_container_t *, c) // C++ errors
+ * array_container_t *ac3 = CAST_array(c); // shorthand for #2, errors
+ * }
+ *
+ * Trickier to do is a cast from `container**` to `array_container_t**`. This
+ * needs a reinterpret_cast<>, which sacrifices safety...so a template is used
+ * leveraging <type_traits> to make sure it's legal in the C++ build.
+ */
+#ifdef __cplusplus
+#define CAST(type, value) static_cast<type>(value)
+#define movable_CAST(type, value) movable_CAST_HELPER<type>(value)
+
+template <typename PPDerived, typename Base>
+PPDerived movable_CAST_HELPER(Base **ptr_to_ptr) {
+ typedef typename std::remove_pointer<PPDerived>::type PDerived;
+ typedef typename std::remove_pointer<PDerived>::type Derived;
+ static_assert(std::is_base_of<Base, Derived>::value,
+ "use movable_CAST() for container_t** => xxx_container_t**");
+ return reinterpret_cast<Derived **>(ptr_to_ptr);
+}
+#else
+#define CAST(type, value) ((type)value)
+#define movable_CAST(type, value) ((type)value)
+#endif
+
+// Use for converting e.g. an `array_container_t**` to a `container_t**`
+//
+#define movable_CAST_base(c) movable_CAST(container_t **, c)
+
+#ifdef __cplusplus
+}
+} // namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_CONTAINER_DEFS_H_ */
+/* end file include/roaring/containers/container_defs.h */
+/* begin file include/roaring/array_util.h */
+#ifndef CROARING_ARRAY_UTIL_H
+#define CROARING_ARRAY_UTIL_H
+
+#include <stddef.h> // for size_t
+#include <stdint.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/*
+ * Good old binary search.
+ * Assumes that array is sorted, has logarithmic complexity.
+ * if the result is x, then:
+ * if ( x>0 ) you have array[x] = ikey
+ * if ( x<0 ) then inserting ikey at position -x-1 in array (insuring that
+ * array[-x-1]=ikey) keys the array sorted.
+ */
+inline int32_t binarySearch(const uint16_t *array, int32_t lenarray,
+ uint16_t ikey) {
+ int32_t low = 0;
+ int32_t high = lenarray - 1;
+ while (low <= high) {
+ int32_t middleIndex = (low + high) >> 1;
+ uint16_t middleValue = array[middleIndex];
+ if (middleValue < ikey) {
+ low = middleIndex + 1;
+ } else if (middleValue > ikey) {
+ high = middleIndex - 1;
+ } else {
+ return middleIndex;
+ }
+ }
+ return -(low + 1);
+}
+
+/**
+ * Galloping search
+ * Assumes that array is sorted, has logarithmic complexity.
+ * if the result is x, then if x = length, you have that all values in array
+ * between pos and length are smaller than min. otherwise returns the first
+ * index x such that array[x] >= min.
+ */
+static inline int32_t advanceUntil(const uint16_t *array, int32_t pos,
+ int32_t length, uint16_t min) {
+ int32_t lower = pos + 1;
+
+ if ((lower >= length) || (array[lower] >= min)) {
+ return lower;
+ }
+
+ int32_t spansize = 1;
+
+ while ((lower + spansize < length) && (array[lower + spansize] < min)) {
+ spansize <<= 1;
+ }
+ int32_t upper = (lower + spansize < length) ? lower + spansize : length -
1;
+
+ if (array[upper] == min) {
+ return upper;
+ }
+ if (array[upper] < min) {
+ // means
+ // array
+ // has no
+ // item
+ // >= min
+ // pos = array.length;
+ return length;
+ }
+
+ // we know that the next-smallest span was too small
+ lower += (spansize >> 1);
+
+ int32_t mid = 0;
+ while (lower + 1 != upper) {
+ mid = (lower + upper) >> 1;
+ if (array[mid] == min) {
+ return mid;
+ } else if (array[mid] < min) {
+ lower = mid;
+ } else {
+ upper = mid;
+ }
+ }
+ return upper;
+}
+
+/**
+ * Returns number of elements which are less than ikey.
+ * Array elements must be unique and sorted.
+ */
+static inline int32_t count_less(const uint16_t *array, int32_t lenarray,
+ uint16_t ikey) {
+ if (lenarray == 0) return 0;
+ int32_t pos = binarySearch(array, lenarray, ikey);
+ return pos >= 0 ? pos : -(pos + 1);
+}
+
+/**
+ * Returns number of elements which are greater than ikey.
+ * Array elements must be unique and sorted.
+ */
+static inline int32_t count_greater(const uint16_t *array, int32_t lenarray,
+ uint16_t ikey) {
+ if (lenarray == 0) return 0;
+ int32_t pos = binarySearch(array, lenarray, ikey);
+ if (pos >= 0) {
+ return lenarray - (pos + 1);
+ } else {
+ return lenarray - (-pos - 1);
+ }
+}
+
+/**
+ * From Schlegel et al., Fast Sorted-Set Intersection using SIMD Instructions
+ * Optimized by D. Lemire on May 3rd 2013
+ *
+ * C should have capacity greater than the minimum of s_1 and s_b + 8
+ * where 8 is sizeof(__m128i)/sizeof(uint16_t).
+ */
+int32_t intersect_vector16(const uint16_t *__restrict__ A, size_t s_a,
+ const uint16_t *__restrict__ B, size_t s_b,
+ uint16_t *C);
+
+int32_t intersect_vector16_inplace(uint16_t *__restrict__ A, size_t s_a,
+ const uint16_t *__restrict__ B, size_t s_b);
+
+/**
+ * Take an array container and write it out to a 32-bit array, using base
+ * as the offset.
+ */
+int array_container_to_uint32_array_vector16(void *vout, const uint16_t *array,
+ size_t cardinality, uint32_t
base);
+#if CROARING_COMPILER_SUPPORTS_AVX512
+int avx512_array_container_to_uint32_array(void *vout, const uint16_t *array,
+ size_t cardinality, uint32_t base);
+#endif
+/**
+ * Compute the cardinality of the intersection using SSE4 instructions
+ */
+int32_t intersect_vector16_cardinality(const uint16_t *__restrict__ A,
+ size_t s_a,
+ const uint16_t *__restrict__ B,
+ size_t s_b);
+
+/* Computes the intersection between one small and one large set of uint16_t.
+ * Stores the result into buffer and return the number of elements. */
+int32_t intersect_skewed_uint16(const uint16_t *smallarray, size_t size_s,
+ const uint16_t *largearray, size_t size_l,
+ uint16_t *buffer);
+
+/* Computes the size of the intersection between one small and one large set of
+ * uint16_t. */
+int32_t intersect_skewed_uint16_cardinality(const uint16_t *smallarray,
+ size_t size_s,
+ const uint16_t *largearray,
+ size_t size_l);
+
+/* Check whether the size of the intersection between one small and one large
+ * set of uint16_t is non-zero. */
+bool intersect_skewed_uint16_nonempty(const uint16_t *smallarray, size_t
size_s,
+ const uint16_t *largearray,
+ size_t size_l);
+/**
+ * Generic intersection function.
+ */
+int32_t intersect_uint16(const uint16_t *A, const size_t lenA,
+ const uint16_t *B, const size_t lenB, uint16_t *out);
+/**
+ * Compute the size of the intersection (generic).
+ */
+int32_t intersect_uint16_cardinality(const uint16_t *A, const size_t lenA,
+ const uint16_t *B, const size_t lenB);
+
+/**
+ * Checking whether the size of the intersection is non-zero.
+ */
+bool intersect_uint16_nonempty(const uint16_t *A, const size_t lenA,
+ const uint16_t *B, const size_t lenB);
+/**
+ * Generic union function.
+ */
+size_t union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t
*set_2,
+ size_t size_2, uint16_t *buffer);
+
+/**
+ * Generic XOR function.
+ */
+int32_t xor_uint16(const uint16_t *array_1, int32_t card_1,
+ const uint16_t *array_2, int32_t card_2, uint16_t *out);
+
+/**
+ * Generic difference function (ANDNOT).
+ */
+int difference_uint16(const uint16_t *a1, int length1, const uint16_t *a2,
+ int length2, uint16_t *a_out);
+
+/**
+ * Generic intersection function.
+ */
+size_t intersection_uint32(const uint32_t *A, const size_t lenA,
+ const uint32_t *B, const size_t lenB, uint32_t
*out);
+
+/**
+ * Generic intersection function, returns just the cardinality.
+ */
+size_t intersection_uint32_card(const uint32_t *A, const size_t lenA,
+ const uint32_t *B, const size_t lenB);
+
+/**
+ * Generic union function.
+ */
+size_t union_uint32(const uint32_t *set_1, size_t size_1, const uint32_t
*set_2,
+ size_t size_2, uint32_t *buffer);
+
+/**
+ * A fast SSE-based union function.
+ */
+uint32_t union_vector16(const uint16_t *__restrict__ set_1, uint32_t size_1,
+ const uint16_t *__restrict__ set_2, uint32_t size_2,
+ uint16_t *__restrict__ buffer);
+/**
+ * A fast SSE-based XOR function.
+ */
+uint32_t xor_vector16(const uint16_t *__restrict__ array1, uint32_t length1,
+ const uint16_t *__restrict__ array2, uint32_t length2,
+ uint16_t *__restrict__ output);
+
+/**
+ * A fast SSE-based difference function.
+ */
+int32_t difference_vector16(const uint16_t *__restrict__ A, size_t s_a,
+ const uint16_t *__restrict__ B, size_t s_b,
+ uint16_t *C);
+
+/**
+ * Generic union function, returns just the cardinality.
+ */
+size_t union_uint32_card(const uint32_t *set_1, size_t size_1,
+ const uint32_t *set_2, size_t size_2);
+
+/**
+ * combines union_uint16 and union_vector16 optimally
+ */
+size_t fast_union_uint16(const uint16_t *set_1, size_t size_1,
+ const uint16_t *set_2, size_t size_2,
+ uint16_t *buffer);
+
+bool memequals(const void *s1, const void *s2, size_t n);
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic pop
+#endif
+#endif
+/* end file include/roaring/array_util.h */
+/* begin file include/roaring/utilasm.h */
+/*
+ * utilasm.h
+ *
+ */
+
+#ifndef INCLUDE_UTILASM_H_
+#define INCLUDE_UTILASM_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+#endif
+
+#if defined(CROARING_INLINE_ASM)
+#define CROARING_ASMBITMANIPOPTIMIZATION // optimization flag
+
+#define ASM_SHIFT_RIGHT(srcReg, bitsReg, destReg) \
+ __asm volatile("shrx %1, %2, %0" \
+ : "=r"(destReg) \
+ : /* write */ \
+ "r"(bitsReg), /* read only */ \
+ "r"(srcReg) /* read only */ \
+ )
+
+#define ASM_INPLACESHIFT_RIGHT(srcReg, bitsReg) \
+ __asm volatile("shrx %1, %0, %0" \
+ : "+r"(srcReg) \
+ : /* read/write */ \
+ "r"(bitsReg) /* read only */ \
+ )
+
+#define ASM_SHIFT_LEFT(srcReg, bitsReg, destReg) \
+ __asm volatile("shlx %1, %2, %0" \
+ : "=r"(destReg) \
+ : /* write */ \
+ "r"(bitsReg), /* read only */ \
+ "r"(srcReg) /* read only */ \
+ )
+// set bit at position testBit within testByte to 1 and
+// copy cmovDst to cmovSrc if that bit was previously clear
+#define ASM_SET_BIT_INC_WAS_CLEAR(testByte, testBit, count) \
+ __asm volatile( \
+ "bts %2, %0\n" \
+ "sbb $-1, %1\n" \
+ : "+r"(testByte), /* read/write */ \
+ "+r"(count) \
+ : /* read/write */ \
+ "r"(testBit) /* read only */ \
+ )
+
+#define ASM_CLEAR_BIT_DEC_WAS_SET(testByte, testBit, count) \
+ __asm volatile( \
+ "btr %2, %0\n" \
+ "sbb $0, %1\n" \
+ : "+r"(testByte), /* read/write */ \
+ "+r"(count) \
+ : /* read/write */ \
+ "r"(testBit) /* read only */ \
+ )
+
+#define ASM_BT64(testByte, testBit, count) \
+ __asm volatile( \
+ "bt %2,%1\n" \
+ "sbb %0,%0" /*could use setb */ \
+ : "=r"(count) \
+ : /* write */ \
+ "r"(testByte), /* read only */ \
+ "r"(testBit) /* read only */ \
+ )
+
+#endif
+
+#ifdef __cplusplus
+}
+} // extern "C" { namespace roaring {
+#endif
+
+#endif /* INCLUDE_UTILASM_H_ */
+/* end file include/roaring/utilasm.h */
+/* begin file include/roaring/bitset_util.h */
+#ifndef CROARING_BITSET_UTIL_H
+#define CROARING_BITSET_UTIL_H
+
+#include <stdint.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/*
+ * Set all bits in indexes [begin,end) to true.
+ */
+static inline void bitset_set_range(uint64_t *words, uint32_t start,
+ uint32_t end) {
+ if (start == end) return;
+ uint32_t firstword = start / 64;
+ uint32_t endword = (end - 1) / 64;
+ if (firstword == endword) {
+ words[firstword] |= ((~UINT64_C(0)) << (start % 64)) &
+ ((~UINT64_C(0)) >> ((~end + 1) % 64));
+ return;
+ }
+ words[firstword] |= (~UINT64_C(0)) << (start % 64);
+ for (uint32_t i = firstword + 1; i < endword; i++) {
+ words[i] = ~UINT64_C(0);
+ }
+ words[endword] |= (~UINT64_C(0)) >> ((~end + 1) % 64);
+}
+
+/*
+ * Find the cardinality of the bitset in [begin,begin+lenminusone]
+ */
+static inline int bitset_lenrange_cardinality(const uint64_t *words,
+ uint32_t start,
+ uint32_t lenminusone) {
+ uint32_t firstword = start / 64;
+ uint32_t endword = (start + lenminusone) / 64;
+ if (firstword == endword) {
+ return roaring_hamming(words[firstword] &
+ ((~UINT64_C(0)) >> ((63 - lenminusone) % 64))
+ << (start % 64));
+ }
+ int answer =
+ roaring_hamming(words[firstword] & ((~UINT64_C(0)) << (start % 64)));
+ for (uint32_t i = firstword + 1; i < endword; i++) {
+ answer += roaring_hamming(words[i]);
+ }
+ answer += roaring_hamming(words[endword] &
+ (~UINT64_C(0)) >>
+ (((~start + 1) - lenminusone - 1) % 64));
+ return answer;
+}
+
+/*
+ * Check whether the cardinality of the bitset in [begin,begin+lenminusone] is 0
+ */
+static inline bool bitset_lenrange_empty(const uint64_t *words, uint32_t start,
+ uint32_t lenminusone) {
+ uint32_t firstword = start / 64;
+ uint32_t endword = (start + lenminusone) / 64;
+ if (firstword == endword) {
+ return (words[firstword] & ((~UINT64_C(0)) >> ((63 - lenminusone) %
64))
+ << (start % 64)) == 0;
+ }
+ if (((words[firstword] & ((~UINT64_C(0)) << (start % 64)))) != 0) {
+ return false;
+ }
+ for (uint32_t i = firstword + 1; i < endword; i++) {
+ if (words[i] != 0) {
+ return false;
+ }
+ }
+ if ((words[endword] &
+ (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64)) != 0) {
+ return false;
+ }
+ return true;
+}
+
+/*
+ * Set all bits in indexes [begin,begin+lenminusone] to true.
+ */
+static inline void bitset_set_lenrange(uint64_t *words, uint32_t start,
+ uint32_t lenminusone) {
+ uint32_t firstword = start / 64;
+ uint32_t endword = (start + lenminusone) / 64;
+ if (firstword == endword) {
+ words[firstword] |= ((~UINT64_C(0)) >> ((63 - lenminusone) % 64))
+ << (start % 64);
+ return;
+ }
+ uint64_t temp = words[endword];
+ words[firstword] |= (~UINT64_C(0)) << (start % 64);
+ for (uint32_t i = firstword + 1; i < endword; i += 2)
+ words[i] = words[i + 1] = ~UINT64_C(0);
+ words[endword] =
+ temp | (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64);
+}
+
+/*
+ * Flip all the bits in indexes [begin,end).
+ */
+static inline void bitset_flip_range(uint64_t *words, uint32_t start,
+ uint32_t end) {
+ if (start == end) return;
+ uint32_t firstword = start / 64;
+ uint32_t endword = (end - 1) / 64;
+ words[firstword] ^= ~((~UINT64_C(0)) << (start % 64));
+ for (uint32_t i = firstword; i < endword; i++) {
+ words[i] = ~words[i];
+ }
+ words[endword] ^= ((~UINT64_C(0)) >> ((~end + 1) % 64));
+}
+
+/*
+ * Set all bits in indexes [begin,end) to false.
+ */
+static inline void bitset_reset_range(uint64_t *words, uint32_t start,
+ uint32_t end) {
+ if (start == end) return;
+ uint32_t firstword = start / 64;
+ uint32_t endword = (end - 1) / 64;
+ if (firstword == endword) {
+ words[firstword] &= ~(((~UINT64_C(0)) << (start % 64)) &
+ ((~UINT64_C(0)) >> ((~end + 1) % 64)));
+ return;
+ }
+ words[firstword] &= ~((~UINT64_C(0)) << (start % 64));
+ for (uint32_t i = firstword + 1; i < endword; i++) {
+ words[i] = UINT64_C(0);
+ }
+ words[endword] &= ~((~UINT64_C(0)) >> ((~end + 1) % 64));
+}
+
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out", values start at "base".
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ * set.
+ *
+ * Returns how many values were actually decoded.
+ *
+ * This function should only be expected to be faster than
+ * bitset_extract_setbits
+ * when the density of the bitset is high.
+ *
+ * This function uses AVX2 decoding.
+ */
+size_t bitset_extract_setbits_avx2(const uint64_t *words, size_t length,
+ uint32_t *out, size_t outcapacity,
+ uint32_t base);
+
+size_t bitset_extract_setbits_avx512(const uint64_t *words, size_t length,
+ uint32_t *out, size_t outcapacity,
+ uint32_t base);
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out", values start at "base".
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ */
+size_t bitset_extract_setbits(const uint64_t *words, size_t length,
+ uint32_t *out, uint32_t base);
+
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out" as 16-bit integers, values start at "base" (can
+ *be set to zero)
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ *
+ * This function should only be expected to be faster than
+ *bitset_extract_setbits_uint16
+ * when the density of the bitset is high.
+ *
+ * This function uses SSE decoding.
+ */
+size_t bitset_extract_setbits_sse_uint16(const uint64_t *words, size_t length,
+ uint16_t *out, size_t outcapacity,
+ uint16_t base);
+
+size_t bitset_extract_setbits_avx512_uint16(const uint64_t *words,
+ size_t length, uint16_t *out,
+ size_t outcapacity, uint16_t base);
+
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out", values start at "base"
+ * (can be set to zero)
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ */
+size_t bitset_extract_setbits_uint16(const uint64_t *words, size_t length,
+ uint16_t *out, uint16_t base);
+
+/*
+ * Given two bitsets containing "length" 64-bit words, write out the position
+ * of all the common set bits to "out", values start at "base"
+ * (can be set to zero)
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ * set.
+ *
+ * Returns how many values were actually decoded.
+ */
+size_t bitset_extract_intersection_setbits_uint16(
+ const uint64_t *__restrict__ words1, const uint64_t *__restrict__ words2,
+ size_t length, uint16_t *out, uint16_t base);
+
+/*
+ * Given a bitset having cardinality card, set all bit values in the list
(there
+ * are length of them)
+ * and return the updated cardinality. This evidently assumes that the bitset
+ * already contained data.
+ */
+uint64_t bitset_set_list_withcard(uint64_t *words, uint64_t card,
+ const uint16_t *list, uint64_t length);
+/*
+ * Given a bitset, set all bit values in the list (there
+ * are length of them).
+ */
+void bitset_set_list(uint64_t *words, const uint16_t *list, uint64_t length);
+
+/*
+ * Given a bitset having cardinality card, unset all bit values in the list
+ * (there are length of them)
+ * and return the updated cardinality. This evidently assumes that the bitset
+ * already contained data.
+ */
+uint64_t bitset_clear_list(uint64_t *words, uint64_t card, const uint16_t
*list,
+ uint64_t length);
+
+/*
+ * Given a bitset having cardinality card, toggle all bit values in the list
+ * (there are length of them)
+ * and return the updated cardinality. This evidently assumes that the bitset
+ * already contained data.
+ */
+
+uint64_t bitset_flip_list_withcard(uint64_t *words, uint64_t card,
+ const uint16_t *list, uint64_t length);
+
+void bitset_flip_list(uint64_t *words, const uint16_t *list, uint64_t length);
+
+#if CROARING_IS_X64
+/***
+ * BEGIN Harley-Seal popcount functions.
+ */
+CROARING_TARGET_AVX2
+/**
+ * Compute the population count of a 256-bit word
+ * This is not especially fast, but it is convenient as part of other
functions.
+ */
+static inline __m256i popcount256(__m256i v) {
+ const __m256i lookuppos = _mm256_setr_epi8(
+ /* 0 */ 4 + 0, /* 1 */ 4 + 1, /* 2 */ 4 + 1, /* 3 */ 4 + 2,
+ /* 4 */ 4 + 1, /* 5 */ 4 + 2, /* 6 */ 4 + 2, /* 7 */ 4 + 3,
+ /* 8 */ 4 + 1, /* 9 */ 4 + 2, /* a */ 4 + 2, /* b */ 4 + 3,
+ /* c */ 4 + 2, /* d */ 4 + 3, /* e */ 4 + 3, /* f */ 4 + 4,
+
+ /* 0 */ 4 + 0, /* 1 */ 4 + 1, /* 2 */ 4 + 1, /* 3 */ 4 + 2,
+ /* 4 */ 4 + 1, /* 5 */ 4 + 2, /* 6 */ 4 + 2, /* 7 */ 4 + 3,
+ /* 8 */ 4 + 1, /* 9 */ 4 + 2, /* a */ 4 + 2, /* b */ 4 + 3,
+ /* c */ 4 + 2, /* d */ 4 + 3, /* e */ 4 + 3, /* f */ 4 + 4);
+ const __m256i lookupneg = _mm256_setr_epi8(
+ /* 0 */ 4 - 0, /* 1 */ 4 - 1, /* 2 */ 4 - 1, /* 3 */ 4 - 2,
+ /* 4 */ 4 - 1, /* 5 */ 4 - 2, /* 6 */ 4 - 2, /* 7 */ 4 - 3,
+ /* 8 */ 4 - 1, /* 9 */ 4 - 2, /* a */ 4 - 2, /* b */ 4 - 3,
+ /* c */ 4 - 2, /* d */ 4 - 3, /* e */ 4 - 3, /* f */ 4 - 4,
+
+ /* 0 */ 4 - 0, /* 1 */ 4 - 1, /* 2 */ 4 - 1, /* 3 */ 4 - 2,
+ /* 4 */ 4 - 1, /* 5 */ 4 - 2, /* 6 */ 4 - 2, /* 7 */ 4 - 3,
+ /* 8 */ 4 - 1, /* 9 */ 4 - 2, /* a */ 4 - 2, /* b */ 4 - 3,
+ /* c */ 4 - 2, /* d */ 4 - 3, /* e */ 4 - 3, /* f */ 4 - 4);
+ const __m256i low_mask = _mm256_set1_epi8(0x0f);
+
+ const __m256i lo = _mm256_and_si256(v, low_mask);
+ const __m256i hi = _mm256_and_si256(_mm256_srli_epi16(v, 4), low_mask);
+ const __m256i popcnt1 = _mm256_shuffle_epi8(lookuppos, lo);
+ const __m256i popcnt2 = _mm256_shuffle_epi8(lookupneg, hi);
+ return _mm256_sad_epu8(popcnt1, popcnt2);
+}
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+/**
+ * Simple CSA over 256 bits
+ */
+static inline void CSA(__m256i *h, __m256i *l, __m256i a, __m256i b,
+ __m256i c) {
+ const __m256i u = _mm256_xor_si256(a, b);
+ *h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c));
+ *l = _mm256_xor_si256(u, c);
+}
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+/**
+ * Fast Harley-Seal AVX population count function
+ */
+inline static uint64_t avx2_harley_seal_popcount256(const __m256i *data,
+ const uint64_t size) {
+ __m256i total = _mm256_setzero_si256();
+ __m256i ones = _mm256_setzero_si256();
+ __m256i twos = _mm256_setzero_si256();
+ __m256i fours = _mm256_setzero_si256();
+ __m256i eights = _mm256_setzero_si256();
+ __m256i sixteens = _mm256_setzero_si256();
+ __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
+
+ const uint64_t limit = size - size % 16;
+ uint64_t i = 0;
+
+ for (; i < limit; i += 16) {
+ CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i),
+ _mm256_lddqu_si256(data + i + 1));
+ CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 2),
+ _mm256_lddqu_si256(data + i + 3));
+ CSA(&foursA, &twos, twos, twosA, twosB);
+ CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 4),
+ _mm256_lddqu_si256(data + i + 5));
+ CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 6),
+ _mm256_lddqu_si256(data + i + 7));
+ CSA(&foursB, &twos, twos, twosA, twosB);
+ CSA(&eightsA, &fours, fours, foursA, foursB);
+ CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 8),
+ _mm256_lddqu_si256(data + i + 9));
+ CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 10),
+ _mm256_lddqu_si256(data + i + 11));
+ CSA(&foursA, &twos, twos, twosA, twosB);
+ CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 12),
+ _mm256_lddqu_si256(data + i + 13));
+ CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 14),
+ _mm256_lddqu_si256(data + i + 15));
+ CSA(&foursB, &twos, twos, twosA, twosB);
+ CSA(&eightsB, &fours, fours, foursA, foursB);
+ CSA(&sixteens, &eights, eights, eightsA, eightsB);
+
+ total = _mm256_add_epi64(total, popcount256(sixteens));
+ }
+
+ total = _mm256_slli_epi64(total, 4); // * 16
+ total = _mm256_add_epi64(
+ total, _mm256_slli_epi64(popcount256(eights), 3)); // += 8 * ...
+ total = _mm256_add_epi64(
+ total, _mm256_slli_epi64(popcount256(fours), 2)); // += 4 * ...
+ total = _mm256_add_epi64(
+ total, _mm256_slli_epi64(popcount256(twos), 1)); // += 2 * ...
+ total = _mm256_add_epi64(total, popcount256(ones));
+ for (; i < size; i++)
+ total =
+ _mm256_add_epi64(total, popcount256(_mm256_lddqu_si256(data + i)));
+
+ return (uint64_t)(_mm256_extract_epi64(total, 0)) +
+ (uint64_t)(_mm256_extract_epi64(total, 1)) +
+ (uint64_t)(_mm256_extract_epi64(total, 2)) +
+ (uint64_t)(_mm256_extract_epi64(total, 3));
+}
+CROARING_UNTARGET_AVX2
+
+#define CROARING_AVXPOPCNTFNC(opname, avx_intrinsic)
\
+ static inline uint64_t avx2_harley_seal_popcount256_##opname(
\
+ const __m256i *data1, const __m256i *data2, const uint64_t size) {
\
+ __m256i total = _mm256_setzero_si256();
\
+ __m256i ones = _mm256_setzero_si256();
\
+ __m256i twos = _mm256_setzero_si256();
\
+ __m256i fours = _mm256_setzero_si256();
\
+ __m256i eights = _mm256_setzero_si256();
\
+ __m256i sixteens = _mm256_setzero_si256();
\
+ __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
\
+ __m256i A1, A2;
\
+ const uint64_t limit = size - size % 16;
\
+ uint64_t i = 0;
\
+ for (; i < limit; i += 16) {
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),
\
+ _mm256_lddqu_si256(data2 + i));
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 1),
\
+ _mm256_lddqu_si256(data2 + i + 1));
\
+ CSA(&twosA, &ones, ones, A1, A2);
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 2),
\
+ _mm256_lddqu_si256(data2 + i + 2));
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 3),
\
+ _mm256_lddqu_si256(data2 + i + 3));
\
+ CSA(&twosB, &ones, ones, A1, A2);
\
+ CSA(&foursA, &twos, twos, twosA, twosB);
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 4),
\
+ _mm256_lddqu_si256(data2 + i + 4));
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 5),
\
+ _mm256_lddqu_si256(data2 + i + 5));
\
+ CSA(&twosA, &ones, ones, A1, A2);
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 6),
\
+ _mm256_lddqu_si256(data2 + i + 6));
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 7),
\
+ _mm256_lddqu_si256(data2 + i + 7));
\
+ CSA(&twosB, &ones, ones, A1, A2);
\
+ CSA(&foursB, &twos, twos, twosA, twosB);
\
+ CSA(&eightsA, &fours, fours, foursA, foursB);
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 8),
\
+ _mm256_lddqu_si256(data2 + i + 8));
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 9),
\
+ _mm256_lddqu_si256(data2 + i + 9));
\
+ CSA(&twosA, &ones, ones, A1, A2);
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 10),
\
+ _mm256_lddqu_si256(data2 + i + 10));
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 11),
\
+ _mm256_lddqu_si256(data2 + i + 11));
\
+ CSA(&twosB, &ones, ones, A1, A2);
\
+ CSA(&foursA, &twos, twos, twosA, twosB);
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 12),
\
+ _mm256_lddqu_si256(data2 + i + 12));
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 13),
\
+ _mm256_lddqu_si256(data2 + i + 13));
\
+ CSA(&twosA, &ones, ones, A1, A2);
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 14),
\
+ _mm256_lddqu_si256(data2 + i + 14));
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 15),
\
+ _mm256_lddqu_si256(data2 + i + 15));
\
+ CSA(&twosB, &ones, ones, A1, A2);
\
+ CSA(&foursB, &twos, twos, twosA, twosB);
\
+ CSA(&eightsB, &fours, fours, foursA, foursB);
\
+ CSA(&sixteens, &eights, eights, eightsA, eightsB);
\
+ total = _mm256_add_epi64(total, popcount256(sixteens));
\
+ }
\
+ total = _mm256_slli_epi64(total, 4);
\
+ total = _mm256_add_epi64(total,
\
+ _mm256_slli_epi64(popcount256(eights), 3));
\
+ total =
\
+ _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(fours), 2));
\
+ total =
\
+ _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(twos), 1));
\
+ total = _mm256_add_epi64(total, popcount256(ones));
\
+ for (; i < size; i++) {
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),
\
+ _mm256_lddqu_si256(data2 + i));
\
+ total = _mm256_add_epi64(total, popcount256(A1));
\
+ }
\
+ return (uint64_t)(_mm256_extract_epi64(total, 0)) +
\
+ (uint64_t)(_mm256_extract_epi64(total, 1)) +
\
+ (uint64_t)(_mm256_extract_epi64(total, 2)) +
\
+ (uint64_t)(_mm256_extract_epi64(total, 3));
\
+ }
\
+ static inline uint64_t avx2_harley_seal_popcount256andstore_##opname(
\
+ const __m256i *__restrict__ data1, const __m256i *__restrict__ data2,
\
+ __m256i *__restrict__ out, const uint64_t size) {
\
+ __m256i total = _mm256_setzero_si256();
\
+ __m256i ones = _mm256_setzero_si256();
\
+ __m256i twos = _mm256_setzero_si256();
\
+ __m256i fours = _mm256_setzero_si256();
\
+ __m256i eights = _mm256_setzero_si256();
\
+ __m256i sixteens = _mm256_setzero_si256();
\
+ __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
\
+ __m256i A1, A2;
\
+ const uint64_t limit = size - size % 16;
\
+ uint64_t i = 0;
\
+ for (; i < limit; i += 16) {
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),
\
+ _mm256_lddqu_si256(data2 + i));
\
+ _mm256_storeu_si256(out + i, A1);
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 1),
\
+ _mm256_lddqu_si256(data2 + i + 1));
\
+ _mm256_storeu_si256(out + i + 1, A2);
\
+ CSA(&twosA, &ones, ones, A1, A2);
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 2),
\
+ _mm256_lddqu_si256(data2 + i + 2));
\
+ _mm256_storeu_si256(out + i + 2, A1);
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 3),
\
+ _mm256_lddqu_si256(data2 + i + 3));
\
+ _mm256_storeu_si256(out + i + 3, A2);
\
+ CSA(&twosB, &ones, ones, A1, A2);
\
+ CSA(&foursA, &twos, twos, twosA, twosB);
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 4),
\
+ _mm256_lddqu_si256(data2 + i + 4));
\
+ _mm256_storeu_si256(out + i + 4, A1);
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 5),
\
+ _mm256_lddqu_si256(data2 + i + 5));
\
+ _mm256_storeu_si256(out + i + 5, A2);
\
+ CSA(&twosA, &ones, ones, A1, A2);
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 6),
\
+ _mm256_lddqu_si256(data2 + i + 6));
\
+ _mm256_storeu_si256(out + i + 6, A1);
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 7),
\
+ _mm256_lddqu_si256(data2 + i + 7));
\
+ _mm256_storeu_si256(out + i + 7, A2);
\
+ CSA(&twosB, &ones, ones, A1, A2);
\
+ CSA(&foursB, &twos, twos, twosA, twosB);
\
+ CSA(&eightsA, &fours, fours, foursA, foursB);
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 8),
\
+ _mm256_lddqu_si256(data2 + i + 8));
\
+ _mm256_storeu_si256(out + i + 8, A1);
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 9),
\
+ _mm256_lddqu_si256(data2 + i + 9));
\
+ _mm256_storeu_si256(out + i + 9, A2);
\
+ CSA(&twosA, &ones, ones, A1, A2);
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 10),
\
+ _mm256_lddqu_si256(data2 + i + 10));
\
+ _mm256_storeu_si256(out + i + 10, A1);
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 11),
\
+ _mm256_lddqu_si256(data2 + i + 11));
\
+ _mm256_storeu_si256(out + i + 11, A2);
\
+ CSA(&twosB, &ones, ones, A1, A2);
\
+ CSA(&foursA, &twos, twos, twosA, twosB);
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 12),
\
+ _mm256_lddqu_si256(data2 + i + 12));
\
+ _mm256_storeu_si256(out + i + 12, A1);
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 13),
\
+ _mm256_lddqu_si256(data2 + i + 13));
\
+ _mm256_storeu_si256(out + i + 13, A2);
\
+ CSA(&twosA, &ones, ones, A1, A2);
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 14),
\
+ _mm256_lddqu_si256(data2 + i + 14));
\
+ _mm256_storeu_si256(out + i + 14, A1);
\
+ A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 15),
\
+ _mm256_lddqu_si256(data2 + i + 15));
\
+ _mm256_storeu_si256(out + i + 15, A2);
\
+ CSA(&twosB, &ones, ones, A1, A2);
\
+ CSA(&foursB, &twos, twos, twosA, twosB);
\
+ CSA(&eightsB, &fours, fours, foursA, foursB);
\
+ CSA(&sixteens, &eights, eights, eightsA, eightsB);
\
+ total = _mm256_add_epi64(total, popcount256(sixteens));
\
+ }
\
+ total = _mm256_slli_epi64(total, 4);
\
+ total = _mm256_add_epi64(total,
\
+ _mm256_slli_epi64(popcount256(eights), 3));
\
+ total =
\
+ _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(fours), 2));
\
+ total =
\
+ _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(twos), 1));
\
+ total = _mm256_add_epi64(total, popcount256(ones));
\
+ for (; i < size; i++) {
\
+ A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),
\
+ _mm256_lddqu_si256(data2 + i));
\
+ _mm256_storeu_si256(out + i, A1);
\
+ total = _mm256_add_epi64(total, popcount256(A1));
\
+ }
\
+ return (uint64_t)(_mm256_extract_epi64(total, 0)) +
\
+ (uint64_t)(_mm256_extract_epi64(total, 1)) +
\
+ (uint64_t)(_mm256_extract_epi64(total, 2)) +
\
+ (uint64_t)(_mm256_extract_epi64(total, 3));
\
+ }
+
+CROARING_TARGET_AVX2
+CROARING_AVXPOPCNTFNC(or, _mm256_or_si256)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVXPOPCNTFNC(union, _mm256_or_si256)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVXPOPCNTFNC(and, _mm256_and_si256)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVXPOPCNTFNC(intersection, _mm256_and_si256)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVXPOPCNTFNC(xor, _mm256_xor_si256)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVXPOPCNTFNC(andnot, _mm256_andnot_si256)
+CROARING_UNTARGET_AVX2
+
+#define VPOPCNT_AND_ADD(ptr, i, accu) \
+ const __m512i v##i = _mm512_loadu_si512((const __m512i *)ptr + i); \
+ const __m512i p##i = _mm512_popcnt_epi64(v##i); \
+ accu = _mm512_add_epi64(accu, p##i);
+
+#if CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX512
+static inline uint64_t sum_epu64_256(const __m256i v) {
+ return (uint64_t)(_mm256_extract_epi64(v, 0)) +
+ (uint64_t)(_mm256_extract_epi64(v, 1)) +
+ (uint64_t)(_mm256_extract_epi64(v, 2)) +
+ (uint64_t)(_mm256_extract_epi64(v, 3));
+}
+
+static inline uint64_t simd_sum_epu64(const __m512i v) {
+ __m256i lo = _mm512_extracti64x4_epi64(v, 0);
+ __m256i hi = _mm512_extracti64x4_epi64(v, 1);
+
+ return sum_epu64_256(lo) + sum_epu64_256(hi);
+}
+
+static inline uint64_t avx512_vpopcount(const __m512i *data,
+ const uint64_t size) {
+ const uint64_t limit = size - size % 4;
+ __m512i total = _mm512_setzero_si512();
+ uint64_t i = 0;
+
+ for (; i < limit; i += 4) {
+ VPOPCNT_AND_ADD(data + i, 0, total);
+ VPOPCNT_AND_ADD(data + i, 1, total);
+ VPOPCNT_AND_ADD(data + i, 2, total);
+ VPOPCNT_AND_ADD(data + i, 3, total);
+ }
+
+ for (; i < size; i++) {
+ total = _mm512_add_epi64(
+ total, _mm512_popcnt_epi64(_mm512_loadu_si512(data + i)));
+ }
+
+ return simd_sum_epu64(total);
+}
+CROARING_UNTARGET_AVX512
+#endif
+
+#define CROARING_AVXPOPCNTFNC512(opname, avx_intrinsic) \
+ static inline uint64_t avx512_harley_seal_popcount512_##opname( \
+ const __m512i *data1, const __m512i *data2, const uint64_t size) { \
+ __m512i total = _mm512_setzero_si512(); \
+ const uint64_t limit = size - size % 4; \
+ uint64_t i = 0; \
+ for (; i < limit; i += 4) { \
+ __m512i a1 = avx_intrinsic(_mm512_loadu_si512(data1 + i), \
+ _mm512_loadu_si512(data2 + i)); \
+ total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a1)); \
+ __m512i a2 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 1), \
+ _mm512_loadu_si512(data2 + i + 1)); \
+ total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a2)); \
+ __m512i a3 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 2), \
+ _mm512_loadu_si512(data2 + i + 2)); \
+ total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a3)); \
+ __m512i a4 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 3), \
+ _mm512_loadu_si512(data2 + i + 3)); \
+ total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a4)); \
+ } \
+ for (; i < size; i++) { \
+ __m512i a = avx_intrinsic(_mm512_loadu_si512(data1 + i), \
+ _mm512_loadu_si512(data2 + i)); \
+ total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a)); \
+ } \
+ return simd_sum_epu64(total); \
+ } \
+ static inline uint64_t avx512_harley_seal_popcount512andstore_##opname( \
+ const __m512i *__restrict__ data1, const __m512i *__restrict__ data2, \
+ __m512i *__restrict__ out, const uint64_t size) { \
+ __m512i total = _mm512_setzero_si512(); \
+ const uint64_t limit = size - size % 4; \
+ uint64_t i = 0; \
+ for (; i < limit; i += 4) { \
+ __m512i a1 = avx_intrinsic(_mm512_loadu_si512(data1 + i), \
+ _mm512_loadu_si512(data2 + i)); \
+ _mm512_storeu_si512(out + i, a1); \
+ total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a1)); \
+ __m512i a2 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 1), \
+ _mm512_loadu_si512(data2 + i + 1)); \
+ _mm512_storeu_si512(out + i + 1, a2); \
+ total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a2)); \
+ __m512i a3 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 2), \
+ _mm512_loadu_si512(data2 + i + 2)); \
+ _mm512_storeu_si512(out + i + 2, a3); \
+ total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a3)); \
+ __m512i a4 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 3), \
+ _mm512_loadu_si512(data2 + i + 3)); \
+ _mm512_storeu_si512(out + i + 3, a4); \
+ total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a4)); \
+ } \
+ for (; i < size; i++) { \
+ __m512i a = avx_intrinsic(_mm512_loadu_si512(data1 + i), \
+ _mm512_loadu_si512(data2 + i)); \
+ _mm512_storeu_si512(out + i, a); \
+ total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a)); \
+ } \
+ return simd_sum_epu64(total); \
+ }
+
+#if CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVXPOPCNTFNC512(or, _mm512_or_si512)
+CROARING_AVXPOPCNTFNC512(union, _mm512_or_si512)
+CROARING_AVXPOPCNTFNC512(and, _mm512_and_si512)
+CROARING_AVXPOPCNTFNC512(intersection, _mm512_and_si512)
+CROARING_AVXPOPCNTFNC512(xor, _mm512_xor_si512)
+CROARING_AVXPOPCNTFNC512(andnot, _mm512_andnot_si512)
+CROARING_UNTARGET_AVX512
+#endif
+/***
+ * END Harley-Seal popcount functions.
+ */
+
+#endif // CROARING_IS_X64
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic pop
+#endif
+#endif
+/* end file include/roaring/bitset_util.h */
+/* begin file include/roaring/containers/array.h */
+/*
+ * array.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_ARRAY_H_
+#define INCLUDE_CONTAINERS_ARRAY_H_
+
+#include <string.h>
+
+
+// Include other headers after roaring_types.h
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+
+// Note: in pure C++ code, you should avoid putting `using` in header files
+using api::roaring_iterator;
+using api::roaring_iterator64;
+
+namespace internal {
+#endif
+
+/* Containers with DEFAULT_MAX_SIZE or less integers should be arrays */
+enum { DEFAULT_MAX_SIZE = 4096 };
+
+/* struct array_container - sparse representation of a bitmap
+ *
+ * @cardinality: number of indices in `array` (and the bitmap)
+ * @capacity: allocated size of `array`
+ * @array: sorted list of integers
+ */
+STRUCT_CONTAINER(array_container_s) {
+ int32_t cardinality;
+ int32_t capacity;
+ uint16_t *array;
+};
+
+typedef struct array_container_s array_container_t;
+
+#define CAST_array(c) CAST(array_container_t *, c) // safer downcast
+#define const_CAST_array(c) CAST(const array_container_t *, c)
+#define movable_CAST_array(c) movable_CAST(array_container_t **, c)
+
+/* Create a new array with default. Return NULL in case of failure. See also
+ * array_container_create_given_capacity. */
+array_container_t *array_container_create(void);
+
+/* Create a new array with a specified capacity size. Return NULL in case of
+ * failure. */
+array_container_t *array_container_create_given_capacity(int32_t size);
+
+/* Create a new array containing all values in [min,max). */
+array_container_t *array_container_create_range(uint32_t min, uint32_t max);
+
+/*
+ * Shrink the capacity to the actual size, return the number of bytes saved.
+ */
+int array_container_shrink_to_fit(array_container_t *src);
+
+/* Free memory owned by `array'. */
+void array_container_free(array_container_t *array);
+
+/* Duplicate container */
+array_container_t *array_container_clone(const array_container_t *src);
+
+/* Get the cardinality of `array'. */
+ALLOW_UNALIGNED
+static inline int array_container_cardinality(const array_container_t *array) {
+ return array->cardinality;
+}
+
+static inline bool array_container_nonzero_cardinality(
+ const array_container_t *array) {
+ return array->cardinality > 0;
+}
+
+/* Copy one container into another. We assume that they are distinct. */
+void array_container_copy(const array_container_t *src, array_container_t
*dst);
+
+/* Add all the values in [min,max) (included) at a distance k*step from min.
+ The container must have a size less or equal to DEFAULT_MAX_SIZE after this
+ addition. */
+void array_container_add_from_range(array_container_t *arr, uint32_t min,
+ uint32_t max, uint16_t step);
+
+static inline bool array_container_empty(const array_container_t *array) {
+ return array->cardinality == 0;
+}
+
+/* check whether the cardinality is equal to the capacity (this does not mean
+ * that it contains 1<<16 elements) */
+static inline bool array_container_full(const array_container_t *array) {
+ return array->cardinality == array->capacity;
+}
+
+/* Compute the union of `src_1' and `src_2' and write the result to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void array_container_union(const array_container_t *src_1,
+ const array_container_t *src_2,
+ array_container_t *dst);
+
+/* symmetric difference, see array_container_union */
+void array_container_xor(const array_container_t *array_1,
+ const array_container_t *array_2,
+ array_container_t *out);
+
+/* Computes the intersection of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+void array_container_intersection(const array_container_t *src_1,
+ const array_container_t *src_2,
+ array_container_t *dst);
+
+/* Check whether src_1 and src_2 intersect. */
+bool array_container_intersect(const array_container_t *src_1,
+ const array_container_t *src_2);
+
+/* computers the size of the intersection between two arrays.
+ */
+int array_container_intersection_cardinality(const array_container_t *src_1,
+ const array_container_t *src_2);
+
+/* computes the intersection of array1 and array2 and write the result to
+ * array1.
+ * */
+void array_container_intersection_inplace(array_container_t *src_1,
+ const array_container_t *src_2);
+
+/*
+ * Write out the 16-bit integers contained in this container as a list of
32-bit
+ * integers using base
+ * as the starting value (it might be expected that base has zeros in its 16
+ * least significant bits).
+ * The function returns the number of values written.
+ * The caller is responsible for allocating enough memory in out.
+ */
+int array_container_to_uint32_array(void *vout, const array_container_t *cont,
+ uint32_t base);
+
+/* Compute the number of runs */
+int32_t array_container_number_of_runs(const array_container_t *ac);
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void array_container_printf(const array_container_t *v);
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit
+ * integers starting at base.
+ */
+void array_container_printf_as_uint32_array(const array_container_t *v,
+ uint32_t base);
+
+bool array_container_validate(const array_container_t *v, const char **reason);
+
+/**
+ * Return the serialized size in bytes of a container having cardinality
"card".
+ */
+static inline int32_t array_container_serialized_size_in_bytes(int32_t card) {
+ return card * 2 + 2;
+}
+
+/**
+ * Increase capacity to at least min.
+ * Whether the existing data needs to be copied over depends on the "preserve"
+ * parameter. If preserve is false, then the new content will be uninitialized,
+ * otherwise the old content is copied.
+ */
+void array_container_grow(array_container_t *container, int32_t min,
+ bool preserve);
+
+bool array_container_iterate(const array_container_t *cont, uint32_t base,
+ roaring_iterator iterator, void *ptr);
+bool array_container_iterate64(const array_container_t *cont, uint32_t base,
+ roaring_iterator64 iterator, uint64_t high_bits,
+ void *ptr);
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes written should be
+ * array_container_size_in_bytes(container).
+ *
+ */
+int32_t array_container_write(const array_container_t *container, char *buf);
+/**
+ * Reads the instance from buf, outputs how many bytes were read.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes read should be array_container_size_in_bytes(container).
+ * You need to provide the (known) cardinality.
+ */
+int32_t array_container_read(int32_t cardinality, array_container_t *container,
+ const char *buf);
+
+/**
+ * Return the serialized size in bytes of a container (see
+ * bitset_container_write)
+ * This is meant to be compatible with the Java and Go versions of Roaring and
+ * assumes
+ * that the cardinality of the container is already known.
+ *
+ */
+ALLOW_UNALIGNED
+static inline int32_t array_container_size_in_bytes(
+ const array_container_t *container) {
+ return container->cardinality * sizeof(uint16_t);
+}
+
+/**
+ * Return true if the two arrays have the same content.
+ */
+ALLOW_UNALIGNED
+static inline bool array_container_equals(const array_container_t *container1,
+ const array_container_t *container2)
{
+ if (container1->cardinality != container2->cardinality) {
+ return false;
+ }
+ return memequals(container1->array, container2->array,
+ container1->cardinality * 2);
+}
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool array_container_is_subset(const array_container_t *container1,
+ const array_container_t *container2);
+
+/**
+ * If the element of given rank is in this container, supposing that the first
+ * element has rank start_rank, then the function returns true and sets element
+ * accordingly.
+ * Otherwise, it returns false and update start_rank.
+ */
+static inline bool array_container_select(const array_container_t *container,
+ uint32_t *start_rank, uint32_t rank,
+ uint32_t *element) {
+ int card = array_container_cardinality(container);
+ if (*start_rank + card <= rank) {
+ *start_rank += card;
+ return false;
+ } else {
+ *element = container->array[rank - *start_rank];
+ return true;
+ }
+}
+
+/* Computes the difference of array1 and array2 and write the result
+ * to array out.
+ * Array out does not need to be distinct from array_1
+ */
+void array_container_andnot(const array_container_t *array_1,
+ const array_container_t *array_2,
+ array_container_t *out);
+
+/* Append x to the set. Assumes that the value is larger than any preceding
+ * values. */
+static inline void array_container_append(array_container_t *arr,
+ uint16_t pos) {
+ const int32_t capacity = arr->capacity;
+
+ if (array_container_full(arr)) {
+ array_container_grow(arr, capacity + 1, true);
+ }
+
+ arr->array[arr->cardinality++] = pos;
+}
+
+/**
+ * Add value to the set if final cardinality doesn't exceed max_cardinality.
+ * Return code:
+ * 1 -- value was added
+ * 0 -- value was already present
+ * -1 -- value was not added because cardinality would exceed max_cardinality
+ */
+static inline int array_container_try_add(array_container_t *arr,
+ uint16_t value,
+ int32_t max_cardinality) {
+ const int32_t cardinality = arr->cardinality;
+
+ // best case, we can append.
+ if ((array_container_empty(arr) || arr->array[cardinality - 1] < value) &&
+ cardinality < max_cardinality) {
+ array_container_append(arr, value);
+ return 1;
+ }
+
+ const int32_t loc = binarySearch(arr->array, cardinality, value);
+
+ if (loc >= 0) {
+ return 0;
+ } else if (cardinality < max_cardinality) {
+ if (array_container_full(arr)) {
+ array_container_grow(arr, arr->capacity + 1, true);
+ }
+ const int32_t insert_idx = -loc - 1;
+ memmove(arr->array + insert_idx + 1, arr->array + insert_idx,
+ (cardinality - insert_idx) * sizeof(uint16_t));
+ arr->array[insert_idx] = value;
+ arr->cardinality++;
+ return 1;
+ } else {
+ return -1;
+ }
+}
+
+/* Add value to the set. Returns true if x was not already present. */
+static inline bool array_container_add(array_container_t *arr, uint16_t value)
{
+ return array_container_try_add(arr, value, INT32_MAX) == 1;
+}
+
+/* Remove x from the set. Returns true if x was present. */
+static inline bool array_container_remove(array_container_t *arr,
+ uint16_t pos) {
+ const int32_t idx = binarySearch(arr->array, arr->cardinality, pos);
+ const bool is_present = idx >= 0;
+ if (is_present) {
+ memmove(arr->array + idx, arr->array + idx + 1,
+ (arr->cardinality - idx - 1) * sizeof(uint16_t));
+ arr->cardinality--;
+ }
+
+ return is_present;
+}
+
+/* Check whether x is present. */
+inline bool array_container_contains(const array_container_t *arr,
+ uint16_t pos) {
+ // return binarySearch(arr->array, arr->cardinality, pos) >= 0;
+ // binary search with fallback to linear search for short ranges
+ int32_t low = 0;
+ const uint16_t *carr = (const uint16_t *)arr->array;
+ int32_t high = arr->cardinality - 1;
+ // while (high - low >= 0) {
+ while (high >= low + 16) {
+ int32_t middleIndex = (low + high) >> 1;
+ uint16_t middleValue = carr[middleIndex];
+ if (middleValue < pos) {
+ low = middleIndex + 1;
+ } else if (middleValue > pos) {
+ high = middleIndex - 1;
+ } else {
+ return true;
+ }
+ }
+
+ for (int i = low; i <= high; i++) {
+ uint16_t v = carr[i];
+ if (v == pos) {
+ return true;
+ }
+ if (v > pos) return false;
+ }
+ return false;
+}
+
+void array_container_offset(const array_container_t *c, container_t **loc,
+ container_t **hic, uint16_t offset);
+
+//* Check whether a range of values from range_start (included) to range_end
+//(excluded) is present. */
+static inline bool array_container_contains_range(const array_container_t *arr,
+ uint32_t range_start,
+ uint32_t range_end) {
+ const int32_t range_count = range_end - range_start;
+ const uint16_t rs_included = (uint16_t)range_start;
+ const uint16_t re_included = (uint16_t)(range_end - 1);
+
+ // Empty range is always included
+ if (range_count <= 0) {
+ return true;
+ }
+ if (range_count > arr->cardinality) {
+ return false;
+ }
+
+ const int32_t start =
+ binarySearch(arr->array, arr->cardinality, rs_included);
+ // If this sorted array contains all items in the range:
+ // * the start item must be found
+ // * the last item in range range_count must exist, and be the expected end
+ // value
+ return (start >= 0) && (arr->cardinality >= start + range_count) &&
+ (arr->array[start + range_count - 1] == re_included);
+}
+
+/* Returns the smallest value (assumes not empty) */
+inline uint16_t array_container_minimum(const array_container_t *arr) {
+ if (arr->cardinality == 0) return 0;
+ return arr->array[0];
+}
+
+/* Returns the largest value (assumes not empty) */
+inline uint16_t array_container_maximum(const array_container_t *arr) {
+ if (arr->cardinality == 0) return 0;
+ return arr->array[arr->cardinality - 1];
+}
+
+/* Returns the number of values equal or smaller than x */
+inline int array_container_rank(const array_container_t *arr, uint16_t x) {
+ const int32_t idx = binarySearch(arr->array, arr->cardinality, x);
+ const bool is_present = idx >= 0;
+ if (is_present) {
+ return idx + 1;
+ } else {
+ return -idx - 1;
+ }
+}
+
+/* bulk version of array_container_rank(); return number of consumed elements
+ */
+inline uint32_t array_container_rank_many(const array_container_t *arr,
+ uint64_t start_rank,
+ const uint32_t *begin,
+ const uint32_t *end, uint64_t *ans) {
+ const uint16_t high = (uint16_t)((*begin) >> 16);
+ uint32_t pos = 0;
+ const uint32_t *iter = begin;
+ for (; iter != end; iter++) {
+ uint32_t x = *iter;
+ uint16_t xhigh = (uint16_t)(x >> 16);
+ if (xhigh != high) return iter - begin; // stop at next container
+
+ const int32_t idx =
+ binarySearch(arr->array + pos, arr->cardinality - pos,
(uint16_t)x);
+ const bool is_present = idx >= 0;
+ if (is_present) {
+ *(ans++) = start_rank + pos + (idx + 1);
+ pos = idx + 1;
+ } else {
+ *(ans++) = start_rank + pos + (-idx - 1);
+ }
+ }
+ return iter - begin;
+}
+
+/* Returns the index of x , if not exsist return -1 */
+inline int array_container_get_index(const array_container_t *arr, uint16_t x)
{
+ const int32_t idx = binarySearch(arr->array, arr->cardinality, x);
+ const bool is_present = idx >= 0;
+ if (is_present) {
+ return idx;
+ } else {
+ return -1;
+ }
+}
+
+/* Returns the index of the first value equal or larger than x, or -1 */
+inline int array_container_index_equalorlarger(const array_container_t *arr,
+ uint16_t x) {
+ const int32_t idx = binarySearch(arr->array, arr->cardinality, x);
+ const bool is_present = idx >= 0;
+ if (is_present) {
+ return idx;
+ } else {
+ int32_t candidate = -idx - 1;
+ if (candidate < arr->cardinality) return candidate;
+ return -1;
+ }
+}
+
+/*
+ * Adds all values in range [min,max] using hint:
+ * nvals_less is the number of array values less than $min
+ * nvals_greater is the number of array values greater than $max
+ */
+static inline void array_container_add_range_nvals(array_container_t *array,
+ uint32_t min, uint32_t max,
+ int32_t nvals_less,
+ int32_t nvals_greater) {
+ int32_t union_cardinality = nvals_less + (max - min + 1) + nvals_greater;
+ if (union_cardinality > array->capacity) {
+ array_container_grow(array, union_cardinality, true);
+ }
+ memmove(&(array->array[union_cardinality - nvals_greater]),
+ &(array->array[array->cardinality - nvals_greater]),
+ nvals_greater * sizeof(uint16_t));
+ for (uint32_t i = 0; i <= max - min; i++) {
+ array->array[nvals_less + i] = (uint16_t)(min + i);
+ }
+ array->cardinality = union_cardinality;
+}
+
+/**
+ * Adds all values in range [min,max]. This function is currently unused
+ * and left as a documentation.
+ */
+/*static inline void array_container_add_range(array_container_t *array,
+ uint32_t min, uint32_t max) {
+ int32_t nvals_greater = count_greater(array->array, array->cardinality,
+max); int32_t nvals_less = count_less(array->array, array->cardinality -
+nvals_greater, min); array_container_add_range_nvals(array, min, max,
+nvals_less, nvals_greater);
+}*/
+
+/*
+ * Removes all elements array[pos] .. array[pos+count-1]
+ */
+static inline void array_container_remove_range(array_container_t *array,
+ uint32_t pos, uint32_t count) {
+ if (count != 0) {
+ memmove(&(array->array[pos]), &(array->array[pos + count]),
+ (array->cardinality - pos - count) * sizeof(uint16_t));
+ array->cardinality -= count;
+ }
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_ARRAY_H_ */
+/* end file include/roaring/containers/array.h */
+/* begin file include/roaring/containers/bitset.h */
+/*
+ * bitset.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_BITSET_H_
+#define INCLUDE_CONTAINERS_BITSET_H_
+
+#include <stdbool.h>
+#include <stdint.h>
+
+
+// Include other headers after roaring_types.h
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+
+// Note: in pure C++ code, you should avoid putting `using` in header files
+using api::roaring_iterator;
+using api::roaring_iterator64;
+
+namespace internal {
+#endif
+
+enum {
+ BITSET_CONTAINER_SIZE_IN_WORDS = (1 << 16) / 64,
+ BITSET_UNKNOWN_CARDINALITY = -1
+};
+
+STRUCT_CONTAINER(bitset_container_s) {
+ int32_t cardinality;
+ uint64_t *words;
+};
+
+typedef struct bitset_container_s bitset_container_t;
+
+#define CAST_bitset(c) CAST(bitset_container_t *, c) // safer downcast
+#define const_CAST_bitset(c) CAST(const bitset_container_t *, c)
+#define movable_CAST_bitset(c) movable_CAST(bitset_container_t **, c)
+
+/* Create a new bitset. Return NULL in case of failure. */
+bitset_container_t *bitset_container_create(void);
+
+/* Free memory. */
+void bitset_container_free(bitset_container_t *bitset);
+
+/* Clear bitset (sets bits to 0). */
+void bitset_container_clear(bitset_container_t *bitset);
+
+/* Set all bits to 1. */
+void bitset_container_set_all(bitset_container_t *bitset);
+
+/* Duplicate bitset */
+bitset_container_t *bitset_container_clone(const bitset_container_t *src);
+
+/* Set the bit in [begin,end). WARNING: as of April 2016, this method is slow
+ * and
+ * should not be used in performance-sensitive code. Ever. */
+void bitset_container_set_range(bitset_container_t *bitset, uint32_t begin,
+ uint32_t end);
+
+#if defined(CROARING_ASMBITMANIPOPTIMIZATION) && defined(__AVX2__)
+/* Set the ith bit. */
+static inline void bitset_container_set(bitset_container_t *bitset,
+ uint16_t pos) {
+ uint64_t shift = 6;
+ uint64_t offset;
+ uint64_t p = pos;
+ ASM_SHIFT_RIGHT(p, shift, offset);
+ uint64_t load = bitset->words[offset];
+ ASM_SET_BIT_INC_WAS_CLEAR(load, p, bitset->cardinality);
+ bitset->words[offset] = load;
+}
+
+/* Unset the ith bit. Currently unused. Could be used for optimization. */
+/*static inline void bitset_container_unset(bitset_container_t *bitset,
+ uint16_t pos) {
+ uint64_t shift = 6;
+ uint64_t offset;
+ uint64_t p = pos;
+ ASM_SHIFT_RIGHT(p, shift, offset);
+ uint64_t load = bitset->words[offset];
+ ASM_CLEAR_BIT_DEC_WAS_SET(load, p, bitset->cardinality);
+ bitset->words[offset] = load;
+}*/
+
+/* Add `pos' to `bitset'. Returns true if `pos' was not present. Might be
slower
+ * than bitset_container_set. */
+static inline bool bitset_container_add(bitset_container_t *bitset,
+ uint16_t pos) {
+ uint64_t shift = 6;
+ uint64_t offset;
+ uint64_t p = pos;
+ ASM_SHIFT_RIGHT(p, shift, offset);
+ uint64_t load = bitset->words[offset];
+ // could be possibly slightly further optimized
+ const int32_t oldcard = bitset->cardinality;
+ ASM_SET_BIT_INC_WAS_CLEAR(load, p, bitset->cardinality);
+ bitset->words[offset] = load;
+ return bitset->cardinality - oldcard;
+}
+
+/* Remove `pos' from `bitset'. Returns true if `pos' was present. Might be
+ * slower than bitset_container_unset. */
+static inline bool bitset_container_remove(bitset_container_t *bitset,
+ uint16_t pos) {
+ uint64_t shift = 6;
+ uint64_t offset;
+ uint64_t p = pos;
+ ASM_SHIFT_RIGHT(p, shift, offset);
+ uint64_t load = bitset->words[offset];
+ // could be possibly slightly further optimized
+ const int32_t oldcard = bitset->cardinality;
+ ASM_CLEAR_BIT_DEC_WAS_SET(load, p, bitset->cardinality);
+ bitset->words[offset] = load;
+ return oldcard - bitset->cardinality;
+}
+
+/* Get the value of the ith bit. */
+inline bool bitset_container_get(const bitset_container_t *bitset,
+ uint16_t pos) {
+ uint64_t word = bitset->words[pos >> 6];
+ const uint64_t p = pos;
+ ASM_INPLACESHIFT_RIGHT(word, p);
+ return word & 1;
+}
+
+#else
+
+/* Set the ith bit. */
+static inline void bitset_container_set(bitset_container_t *bitset,
+ uint16_t pos) {
+ const uint64_t old_word = bitset->words[pos >> 6];
+ const int index = pos & 63;
+ const uint64_t new_word = old_word | (UINT64_C(1) << index);
+ bitset->cardinality += (uint32_t)((old_word ^ new_word) >> index);
+ bitset->words[pos >> 6] = new_word;
+}
+
+/* Unset the ith bit. Currently unused. */
+/*static inline void bitset_container_unset(bitset_container_t *bitset,
+ uint16_t pos) {
+ const uint64_t old_word = bitset->words[pos >> 6];
+ const int index = pos & 63;
+ const uint64_t new_word = old_word & (~(UINT64_C(1) << index));
+ bitset->cardinality -= (uint32_t)((old_word ^ new_word) >> index);
+ bitset->words[pos >> 6] = new_word;
+}*/
+
+/* Add `pos' to `bitset'. Returns true if `pos' was not present. Might be
slower
+ * than bitset_container_set. */
+static inline bool bitset_container_add(bitset_container_t *bitset,
+ uint16_t pos) {
+ const uint64_t old_word = bitset->words[pos >> 6];
+ const int index = pos & 63;
+ const uint64_t new_word = old_word | (UINT64_C(1) << index);
+ const uint64_t increment = (old_word ^ new_word) >> index;
+ bitset->cardinality += (uint32_t)increment;
+ bitset->words[pos >> 6] = new_word;
+ return increment > 0;
+}
+
+/* Remove `pos' from `bitset'. Returns true if `pos' was present. Might be
+ * slower than bitset_container_unset. */
+static inline bool bitset_container_remove(bitset_container_t *bitset,
+ uint16_t pos) {
+ const uint64_t old_word = bitset->words[pos >> 6];
+ const int index = pos & 63;
+ const uint64_t new_word = old_word & (~(UINT64_C(1) << index));
+ const uint64_t increment = (old_word ^ new_word) >> index;
+ bitset->cardinality -= (uint32_t)increment;
+ bitset->words[pos >> 6] = new_word;
+ return increment > 0;
+}
+
+/* Get the value of the ith bit. */
+inline bool bitset_container_get(const bitset_container_t *bitset,
+ uint16_t pos) {
+ const uint64_t word = bitset->words[pos >> 6];
+ return (word >> (pos & 63)) & 1;
+}
+
+#endif
+
+/*
+ * Check if all bits are set in a range of positions from pos_start (included)
+ * to pos_end (excluded).
+ */
+static inline bool bitset_container_get_range(const bitset_container_t *bitset,
+ uint32_t pos_start,
+ uint32_t pos_end) {
+ const uint32_t start = pos_start >> 6;
+ const uint32_t end = pos_end >> 6;
+
+ const uint64_t first = ~((1ULL << (pos_start & 0x3F)) - 1);
+ const uint64_t last = (1ULL << (pos_end & 0x3F)) - 1;
+
+ if (start == end)
+ return ((bitset->words[end] & first & last) == (first & last));
+ if ((bitset->words[start] & first) != first) return false;
+
+ if ((end < BITSET_CONTAINER_SIZE_IN_WORDS) &&
+ ((bitset->words[end] & last) != last)) {
+ return false;
+ }
+
+ for (uint32_t i = start + 1;
+ (i < BITSET_CONTAINER_SIZE_IN_WORDS) && (i < end); ++i) {
+ if (bitset->words[i] != UINT64_C(0xFFFFFFFFFFFFFFFF)) return false;
+ }
+
+ return true;
+}
+
+/* Check whether `bitset' is present in `array'. Calls bitset_container_get.
*/
+inline bool bitset_container_contains(const bitset_container_t *bitset,
+ uint16_t pos) {
+ return bitset_container_get(bitset, pos);
+}
+
+/*
+ * Check whether a range of bits from position `pos_start' (included) to
+ * `pos_end' (excluded) is present in `bitset'. Calls
bitset_container_get_all.
+ */
+static inline bool bitset_container_contains_range(
+ const bitset_container_t *bitset, uint32_t pos_start, uint32_t pos_end) {
+ return bitset_container_get_range(bitset, pos_start, pos_end);
+}
+
+/* Get the number of bits set */
+ALLOW_UNALIGNED
+static inline int bitset_container_cardinality(
+ const bitset_container_t *bitset) {
+ return bitset->cardinality;
+}
+
+/* Copy one container into another. We assume that they are distinct. */
+void bitset_container_copy(const bitset_container_t *source,
+ bitset_container_t *dest);
+
+/* Add all the values [min,max) at a distance k*step from min: min,
+ * min+step,.... */
+void bitset_container_add_from_range(bitset_container_t *bitset, uint32_t min,
+ uint32_t max, uint16_t step);
+
+/* Get the number of bits set (force computation). This does not modify bitset.
+ * To update the cardinality, you should do
+ * bitset->cardinality = bitset_container_compute_cardinality(bitset).*/
+int bitset_container_compute_cardinality(const bitset_container_t *bitset);
+
+/* Check whether this bitset is empty,
+ * it never modifies the bitset struct. */
+static inline bool bitset_container_empty(const bitset_container_t *bitset) {
+ if (bitset->cardinality == BITSET_UNKNOWN_CARDINALITY) {
+ for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) {
+ if ((bitset->words[i]) != 0) return false;
+ }
+ return true;
+ }
+ return bitset->cardinality == 0;
+}
+
+/* Get whether there is at least one bit set (see bitset_container_empty for
+ the reverse), the bitset is never modified */
+static inline bool bitset_container_const_nonzero_cardinality(
+ const bitset_container_t *bitset) {
+ return !bitset_container_empty(bitset);
+}
+
+/*
+ * Check whether the two bitsets intersect
+ */
+bool bitset_container_intersect(const bitset_container_t *src_1,
+ const bitset_container_t *src_2);
+
+/* Computes the union of bitsets `src_1' and `src_2' into `dst' and return the
+ * cardinality. */
+int bitset_container_or(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/* Computes the union of bitsets `src_1' and `src_2' and return the
cardinality.
+ */
+int bitset_container_or_justcard(const bitset_container_t *src_1,
+ const bitset_container_t *src_2);
+
+/* Computes the union of bitsets `src_1' and `src_2' into `dst' and return the
+ * cardinality. Same as bitset_container_or. */
+int bitset_container_union(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/* Computes the union of bitsets `src_1' and `src_2' and return the
+ * cardinality. Same as bitset_container_or_justcard. */
+int bitset_container_union_justcard(const bitset_container_t *src_1,
+ const bitset_container_t *src_2);
+
+/* Computes the union of bitsets `src_1' and `src_2' into `dst', but does
+ * not update the cardinality. Provided to optimize chained operations. */
+int bitset_container_union_nocard(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/* Computes the union of bitsets `src_1' and `src_2' into `dst', but does not
+ * update the cardinality. Provided to optimize chained operations. */
+int bitset_container_or_nocard(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' into `dst' and
+ * return the cardinality. */
+int bitset_container_and(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' and return the
+ * cardinality. */
+int bitset_container_and_justcard(const bitset_container_t *src_1,
+ const bitset_container_t *src_2);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' into `dst' and
+ * return the cardinality. Same as bitset_container_and. */
+int bitset_container_intersection(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' and return the
+ * cardinality. Same as bitset_container_and_justcard. */
+int bitset_container_intersection_justcard(const bitset_container_t *src_1,
+ const bitset_container_t *src_2);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' into `dst', but
does
+ * not update the cardinality. Provided to optimize chained operations. */
+int bitset_container_intersection_nocard(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' into `dst', but
does
+ * not update the cardinality. Provided to optimize chained operations. */
+int bitset_container_and_nocard(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/* Computes the exclusive or of bitsets `src_1' and `src_2' into `dst' and
+ * return the cardinality. */
+int bitset_container_xor(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/* Computes the exclusive or of bitsets `src_1' and `src_2' and return the
+ * cardinality. */
+int bitset_container_xor_justcard(const bitset_container_t *src_1,
+ const bitset_container_t *src_2);
+
+/* Computes the exclusive or of bitsets `src_1' and `src_2' into `dst', but
does
+ * not update the cardinality. Provided to optimize chained operations. */
+int bitset_container_xor_nocard(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/* Computes the and not of bitsets `src_1' and `src_2' into `dst' and return
the
+ * cardinality. */
+int bitset_container_andnot(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/* Computes the and not of bitsets `src_1' and `src_2' and return the
+ * cardinality. */
+int bitset_container_andnot_justcard(const bitset_container_t *src_1,
+ const bitset_container_t *src_2);
+
+/* Computes the and not or of bitsets `src_1' and `src_2' into `dst', but does
+ * not update the cardinality. Provided to optimize chained operations. */
+int bitset_container_andnot_nocard(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+void bitset_container_offset(const bitset_container_t *c, container_t **loc,
+ container_t **hic, uint16_t offset);
+/*
+ * Write out the 16-bit integers contained in this container as a list of
32-bit
+ * integers using base
+ * as the starting value (it might be expected that base has zeros in its 16
+ * least significant bits).
+ * The function returns the number of values written.
+ * The caller is responsible for allocating enough memory in out.
+ * The out pointer should point to enough memory (the cardinality times 32
+ * bits).
+ */
+int bitset_container_to_uint32_array(uint32_t *out,
+ const bitset_container_t *bc,
+ uint32_t base);
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void bitset_container_printf(const bitset_container_t *v);
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit
+ * integers starting at base.
+ */
+void bitset_container_printf_as_uint32_array(const bitset_container_t *v,
+ uint32_t base);
+
+bool bitset_container_validate(const bitset_container_t *v,
+ const char **reason);
+
+/**
+ * Return the serialized size in bytes of a container.
+ */
+static inline int32_t bitset_container_serialized_size_in_bytes(void) {
+ return BITSET_CONTAINER_SIZE_IN_WORDS * 8;
+}
+
+/**
+ * Return the the number of runs.
+ */
+int bitset_container_number_of_runs(bitset_container_t *bc);
+
+bool bitset_container_iterate(const bitset_container_t *cont, uint32_t base,
+ roaring_iterator iterator, void *ptr);
+bool bitset_container_iterate64(const bitset_container_t *cont, uint32_t base,
+ roaring_iterator64 iterator, uint64_t
high_bits,
+ void *ptr);
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes written should be
+ * bitset_container_size_in_bytes(container).
+ */
+int32_t bitset_container_write(const bitset_container_t *container, char *buf);
+
+/**
+ * Reads the instance from buf, outputs how many bytes were read.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes read should be
bitset_container_size_in_bytes(container).
+ * You need to provide the (known) cardinality.
+ */
+int32_t bitset_container_read(int32_t cardinality,
+ bitset_container_t *container, const char *buf);
+/**
+ * Return the serialized size in bytes of a container (see
+ * bitset_container_write).
+ * This is meant to be compatible with the Java and Go versions of Roaring and
+ * assumes
+ * that the cardinality of the container is already known or can be computed.
+ */
+static inline int32_t bitset_container_size_in_bytes(
+ const bitset_container_t *container) {
+ (void)container;
+ return BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+}
+
+/**
+ * Return true if the two containers have the same content.
+ */
+bool bitset_container_equals(const bitset_container_t *container1,
+ const bitset_container_t *container2);
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool bitset_container_is_subset(const bitset_container_t *container1,
+ const bitset_container_t *container2);
+
+/**
+ * If the element of given rank is in this container, supposing that the first
+ * element has rank start_rank, then the function returns true and sets element
+ * accordingly.
+ * Otherwise, it returns false and update start_rank.
+ */
+bool bitset_container_select(const bitset_container_t *container,
+ uint32_t *start_rank, uint32_t rank,
+ uint32_t *element);
+
+/* Returns the smallest value (assumes not empty) */
+uint16_t bitset_container_minimum(const bitset_container_t *container);
+
+/* Returns the largest value (assumes not empty) */
+uint16_t bitset_container_maximum(const bitset_container_t *container);
+
+/* Returns the number of values equal or smaller than x */
+int bitset_container_rank(const bitset_container_t *container, uint16_t x);
+
+/* bulk version of bitset_container_rank(); return number of consumed elements
+ */
+uint32_t bitset_container_rank_many(const bitset_container_t *container,
+ uint64_t start_rank, const uint32_t *begin,
+ const uint32_t *end, uint64_t *ans);
+
+/* Returns the index of x , if not exsist return -1 */
+int bitset_container_get_index(const bitset_container_t *container, uint16_t
x);
+
+/* Returns the index of the first value equal or larger than x, or -1 */
+int bitset_container_index_equalorlarger(const bitset_container_t *container,
+ uint16_t x);
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_BITSET_H_ */
+/* end file include/roaring/containers/bitset.h */
+/* begin file include/roaring/containers/run.h */
+/*
+ * run.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_RUN_H_
+#define INCLUDE_CONTAINERS_RUN_H_
+
+
+// Include other headers after roaring_types.h
+#include <assert.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <string.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+
+// Note: in pure C++ code, you should avoid putting `using` in header files
+using api::roaring_iterator;
+using api::roaring_iterator64;
+
+namespace internal {
+#endif
+
+/* struct rle16_s - run length pair
+ *
+ * @value: start position of the run
+ * @length: length of the run is `length + 1`
+ *
+ * An RLE pair {v, l} would represent the integers between the interval
+ * [v, v+l+1], e.g. {3, 2} = [3, 4, 5].
+ */
+struct rle16_s {
+ uint16_t value;
+ uint16_t length;
+};
+
+typedef struct rle16_s rle16_t;
+
+#ifdef __cplusplus
+#define CROARING_MAKE_RLE16(val, len) \
+ { (uint16_t)(val), (uint16_t)(len) } // no tagged structs until c++20
+#else
+#define CROARING_MAKE_RLE16(val, len) \
+ (rle16_t) { .value = (uint16_t)(val), .length = (uint16_t)(len) }
+#endif
+
+/* struct run_container_s - run container bitmap
+ *
+ * @n_runs: number of rle_t pairs in `runs`.
+ * @capacity: capacity in rle_t pairs `runs` can hold.
+ * @runs: pairs of rle_t.
+ */
+STRUCT_CONTAINER(run_container_s) {
+ int32_t n_runs;
+ int32_t capacity;
+ rle16_t *runs;
+};
+
+typedef struct run_container_s run_container_t;
+
+#define CAST_run(c) CAST(run_container_t *, c) // safer downcast
+#define const_CAST_run(c) CAST(const run_container_t *, c)
+#define movable_CAST_run(c) movable_CAST(run_container_t **, c)
+
+/* Create a new run container. Return NULL in case of failure. */
+run_container_t *run_container_create(void);
+
+/* Create a new run container with given capacity. Return NULL in case of
+ * failure. */
+run_container_t *run_container_create_given_capacity(int32_t size);
+
+/*
+ * Shrink the capacity to the actual size, return the number of bytes saved.
+ */
+int run_container_shrink_to_fit(run_container_t *src);
+
+/* Free memory owned by `run'. */
+void run_container_free(run_container_t *run);
+
+/* Duplicate container */
+run_container_t *run_container_clone(const run_container_t *src);
+
+/*
+ * Effectively deletes the value at index index, repacking data.
+ */
+static inline void recoverRoomAtIndex(run_container_t *run, uint16_t index) {
+ memmove(run->runs + index, run->runs + (1 + index),
+ (run->n_runs - index - 1) * sizeof(rle16_t));
+ run->n_runs--;
+}
+
+/**
+ * Good old binary search through rle data
+ */
+inline int32_t interleavedBinarySearch(const rle16_t *array, int32_t lenarray,
+ uint16_t ikey) {
+ int32_t low = 0;
+ int32_t high = lenarray - 1;
+ while (low <= high) {
+ int32_t middleIndex = (low + high) >> 1;
+ uint16_t middleValue = array[middleIndex].value;
+ if (middleValue < ikey) {
+ low = middleIndex + 1;
+ } else if (middleValue > ikey) {
+ high = middleIndex - 1;
+ } else {
+ return middleIndex;
+ }
+ }
+ return -(low + 1);
+}
+
+/*
+ * Returns index of the run which contains $ikey
+ */
+static inline int32_t rle16_find_run(const rle16_t *array, int32_t lenarray,
+ uint16_t ikey) {
+ int32_t low = 0;
+ int32_t high = lenarray - 1;
+ while (low <= high) {
+ int32_t middleIndex = (low + high) >> 1;
+ uint16_t min = array[middleIndex].value;
+ uint16_t max = array[middleIndex].value + array[middleIndex].length;
+ if (ikey > max) {
+ low = middleIndex + 1;
+ } else if (ikey < min) {
+ high = middleIndex - 1;
+ } else {
+ return middleIndex;
+ }
+ }
+ return -(low + 1);
+}
+
+/**
+ * Returns number of runs which can'be be merged with the key because they
+ * are less than the key.
+ * Note that [5,6,7,8] can be merged with the key 9 and won't be counted.
+ */
+static inline int32_t rle16_count_less(const rle16_t *array, int32_t lenarray,
+ uint16_t key) {
+ if (lenarray == 0) return 0;
+ int32_t low = 0;
+ int32_t high = lenarray - 1;
+ while (low <= high) {
+ int32_t middleIndex = (low + high) >> 1;
+ uint16_t min_value = array[middleIndex].value;
+ uint16_t max_value =
+ array[middleIndex].value + array[middleIndex].length;
+ if (max_value + UINT32_C(1) < key) { // uint32 arithmetic
+ low = middleIndex + 1;
+ } else if (key < min_value) {
+ high = middleIndex - 1;
+ } else {
+ return middleIndex;
+ }
+ }
+ return low;
+}
+
+static inline int32_t rle16_count_greater(const rle16_t *array,
+ int32_t lenarray, uint16_t key) {
+ if (lenarray == 0) return 0;
+ int32_t low = 0;
+ int32_t high = lenarray - 1;
+ while (low <= high) {
+ int32_t middleIndex = (low + high) >> 1;
+ uint16_t min_value = array[middleIndex].value;
+ uint16_t max_value =
+ array[middleIndex].value + array[middleIndex].length;
+ if (max_value < key) {
+ low = middleIndex + 1;
+ } else if (key + UINT32_C(1) < min_value) { // uint32 arithmetic
+ high = middleIndex - 1;
+ } else {
+ return lenarray - (middleIndex + 1);
+ }
+ }
+ return lenarray - low;
+}
+
+/**
+ * increase capacity to at least min. Whether the
+ * existing data needs to be copied over depends on copy. If "copy" is false,
+ * then the new content will be uninitialized, otherwise a copy is made.
+ */
+void run_container_grow(run_container_t *run, int32_t min, bool copy);
+
+/**
+ * Moves the data so that we can write data at index
+ */
+static inline void makeRoomAtIndex(run_container_t *run, uint16_t index) {
+ /* This function calls realloc + memmove sequentially to move by one index.
+ * Potentially copying twice the array.
+ */
+ if (run->n_runs + 1 > run->capacity)
+ run_container_grow(run, run->n_runs + 1, true);
+ memmove(run->runs + 1 + index, run->runs + index,
+ (run->n_runs - index) * sizeof(rle16_t));
+ run->n_runs++;
+}
+
+/* Add `pos' to `run'. Returns true if `pos' was not present. */
+bool run_container_add(run_container_t *run, uint16_t pos);
+
+/* Remove `pos' from `run'. Returns true if `pos' was present. */
+static inline bool run_container_remove(run_container_t *run, uint16_t pos) {
+ int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
+ if (index >= 0) {
+ int32_t le = run->runs[index].length;
+ if (le == 0) {
+ recoverRoomAtIndex(run, (uint16_t)index);
+ } else {
+ run->runs[index].value++;
+ run->runs[index].length--;
+ }
+ return true;
+ }
+ index = -index - 2; // points to preceding value, possibly -1
+ if (index >= 0) { // possible match
+ int32_t offset = pos - run->runs[index].value;
+ int32_t le = run->runs[index].length;
+ if (offset < le) {
+ // need to break in two
+ run->runs[index].length = (uint16_t)(offset - 1);
+ // need to insert
+ uint16_t newvalue = pos + 1;
+ int32_t newlength = le - offset - 1;
+ makeRoomAtIndex(run, (uint16_t)(index + 1));
+ run->runs[index + 1].value = newvalue;
+ run->runs[index + 1].length = (uint16_t)newlength;
+ return true;
+
+ } else if (offset == le) {
+ run->runs[index].length--;
+ return true;
+ }
+ }
+ // no match
+ return false;
+}
+
+/* Check whether `pos' is present in `run'. */
+inline bool run_container_contains(const run_container_t *run, uint16_t pos) {
+ int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
+ if (index >= 0) return true;
+ index = -index - 2; // points to preceding value, possibly -1
+ if (index != -1) { // possible match
+ int32_t offset = pos - run->runs[index].value;
+ int32_t le = run->runs[index].length;
+ if (offset <= le) return true;
+ }
+ return false;
+}
+
+/*
+ * Check whether all positions in a range of positions from pos_start
(included)
+ * to pos_end (excluded) is present in `run'.
+ */
+static inline bool run_container_contains_range(const run_container_t *run,
+ uint32_t pos_start,
+ uint32_t pos_end) {
+ uint32_t count = 0;
+ int32_t index =
+ interleavedBinarySearch(run->runs, run->n_runs, (uint16_t)pos_start);
+ if (index < 0) {
+ index = -index - 2;
+ if ((index == -1) ||
+ ((pos_start - run->runs[index].value) > run->runs[index].length)) {
+ return false;
+ }
+ }
+ for (int32_t i = index; i < run->n_runs; ++i) {
+ const uint32_t stop = run->runs[i].value + run->runs[i].length;
+ if (run->runs[i].value >= pos_end) break;
+ if (stop >= pos_end) {
+ count += (((pos_end - run->runs[i].value) > 0)
+ ? (pos_end - run->runs[i].value)
+ : 0);
+ break;
+ }
+ const uint32_t min = (stop - pos_start) > 0 ? (stop - pos_start) : 0;
+ count += (min < run->runs[i].length) ? min : run->runs[i].length;
+ }
+ return count >= (pos_end - pos_start - 1);
+}
+
+/* Get the cardinality of `run'. Requires an actual computation. */
+int run_container_cardinality(const run_container_t *run);
+
+/* Card > 0?, see run_container_empty for the reverse */
+static inline bool run_container_nonzero_cardinality(
+ const run_container_t *run) {
+ return run->n_runs > 0; // runs never empty
+}
+
+/* Card == 0?, see run_container_nonzero_cardinality for the reverse */
+static inline bool run_container_empty(const run_container_t *run) {
+ return run->n_runs == 0; // runs never empty
+}
+
+/* Copy one container into another. We assume that they are distinct. */
+void run_container_copy(const run_container_t *src, run_container_t *dst);
+
+/**
+ * Append run described by vl to the run container, possibly merging.
+ * It is assumed that the run would be inserted at the end of the container, no
+ * check is made.
+ * It is assumed that the run container has the necessary capacity: caller is
+ * responsible for checking memory capacity.
+ *
+ *
+ * This is not a safe function, it is meant for performance: use with care.
+ */
+static inline void run_container_append(run_container_t *run, rle16_t vl,
+ rle16_t *previousrl) {
+ const uint32_t previousend = previousrl->value + previousrl->length;
+ if (vl.value > previousend + 1) { // we add a new one
+ run->runs[run->n_runs] = vl;
+ run->n_runs++;
+ *previousrl = vl;
+ } else {
+ uint32_t newend = vl.value + vl.length + UINT32_C(1);
+ if (newend > previousend) { // we merge
+ previousrl->length = (uint16_t)(newend - 1 - previousrl->value);
+ run->runs[run->n_runs - 1] = *previousrl;
+ }
+ }
+}
+
+/**
+ * Like run_container_append but it is assumed that the content of run is
empty.
+ */
+static inline rle16_t run_container_append_first(run_container_t *run,
+ rle16_t vl) {
+ run->runs[run->n_runs] = vl;
+ run->n_runs++;
+ return vl;
+}
+
+/**
+ * append a single value given by val to the run container, possibly merging.
+ * It is assumed that the value would be inserted at the end of the container,
+ * no check is made.
+ * It is assumed that the run container has the necessary capacity: caller is
+ * responsible for checking memory capacity.
+ *
+ * This is not a safe function, it is meant for performance: use with care.
+ */
+static inline void run_container_append_value(run_container_t *run,
+ uint16_t val,
+ rle16_t *previousrl) {
+ const uint32_t previousend = previousrl->value + previousrl->length;
+ if (val > previousend + 1) { // we add a new one
+ *previousrl = CROARING_MAKE_RLE16(val, 0);
+ run->runs[run->n_runs] = *previousrl;
+ run->n_runs++;
+ } else if (val == previousend + 1) { // we merge
+ previousrl->length++;
+ run->runs[run->n_runs - 1] = *previousrl;
+ }
+}
+
+/**
+ * Like run_container_append_value but it is assumed that the content of run is
+ * empty.
+ */
+static inline rle16_t run_container_append_value_first(run_container_t *run,
+ uint16_t val) {
+ rle16_t newrle = CROARING_MAKE_RLE16(val, 0);
+ run->runs[run->n_runs] = newrle;
+ run->n_runs++;
+ return newrle;
+}
+
+/* Check whether the container spans the whole chunk (cardinality = 1<<16).
+ * This check can be done in constant time (inexpensive). */
+static inline bool run_container_is_full(const run_container_t *run) {
+ rle16_t vl = run->runs[0];
+ return (run->n_runs == 1) && (vl.value == 0) && (vl.length == 0xFFFF);
+}
+
+/* Compute the union of `src_1' and `src_2' and write the result to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void run_container_union(const run_container_t *src_1,
+ const run_container_t *src_2, run_container_t *dst);
+
+/* Compute the union of `src_1' and `src_2' and write the result to `src_1' */
+void run_container_union_inplace(run_container_t *src_1,
+ const run_container_t *src_2);
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+void run_container_intersection(const run_container_t *src_1,
+ const run_container_t *src_2,
+ run_container_t *dst);
+
+/* Compute the size of the intersection of src_1 and src_2 . */
+int run_container_intersection_cardinality(const run_container_t *src_1,
+ const run_container_t *src_2);
+
+/* Check whether src_1 and src_2 intersect. */
+bool run_container_intersect(const run_container_t *src_1,
+ const run_container_t *src_2);
+
+/* Compute the symmetric difference of `src_1' and `src_2' and write the result
+ * to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void run_container_xor(const run_container_t *src_1,
+ const run_container_t *src_2, run_container_t *dst);
+
+/*
+ * Write out the 16-bit integers contained in this container as a list of
32-bit
+ * integers using base
+ * as the starting value (it might be expected that base has zeros in its 16
+ * least significant bits).
+ * The function returns the number of values written.
+ * The caller is responsible for allocating enough memory in out.
+ */
+int run_container_to_uint32_array(void *vout, const run_container_t *cont,
+ uint32_t base);
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void run_container_printf(const run_container_t *v);
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit
+ * integers starting at base.
+ */
+void run_container_printf_as_uint32_array(const run_container_t *v,
+ uint32_t base);
+
+bool run_container_validate(const run_container_t *run, const char **reason);
+
+/**
+ * Return the serialized size in bytes of a container having "num_runs" runs.
+ */
+static inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs)
{
+ return sizeof(uint16_t) +
+ sizeof(rle16_t) * num_runs; // each run requires 2 2-byte entries.
+}
+
+bool run_container_iterate(const run_container_t *cont, uint32_t base,
+ roaring_iterator iterator, void *ptr);
+bool run_container_iterate64(const run_container_t *cont, uint32_t base,
+ roaring_iterator64 iterator, uint64_t high_bits,
+ void *ptr);
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes written should be
run_container_size_in_bytes(container).
+ */
+int32_t run_container_write(const run_container_t *container, char *buf);
+
+/**
+ * Reads the instance from buf, outputs how many bytes were read.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes read should be
bitset_container_size_in_bytes(container).
+ * The cardinality parameter is provided for consistency with other containers,
+ * but
+ * it might be effectively ignored..
+ */
+int32_t run_container_read(int32_t cardinality, run_container_t *container,
+ const char *buf);
+
+/**
+ * Return the serialized size in bytes of a container (see
run_container_write).
+ * This is meant to be compatible with the Java and Go versions of Roaring.
+ */
+ALLOW_UNALIGNED
+static inline int32_t run_container_size_in_bytes(
+ const run_container_t *container) {
+ return run_container_serialized_size_in_bytes(container->n_runs);
+}
+
+/**
+ * Return true if the two containers have the same content.
+ */
+ALLOW_UNALIGNED
+static inline bool run_container_equals(const run_container_t *container1,
+ const run_container_t *container2) {
+ if (container1->n_runs != container2->n_runs) {
+ return false;
+ }
+ return memequals(container1->runs, container2->runs,
+ container1->n_runs * sizeof(rle16_t));
+}
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool run_container_is_subset(const run_container_t *container1,
+ const run_container_t *container2);
+
+/**
+ * Used in a start-finish scan that appends segments, for XOR and NOT
+ */
+
+void run_container_smart_append_exclusive(run_container_t *src,
+ const uint16_t start,
+ const uint16_t length);
+
+/**
+ * The new container consists of a single run [start,stop).
+ * It is required that stop>start, the caller is responsability for this check.
+ * It is required that stop <= (1<<16), the caller is responsability for this
+ * check. The cardinality of the created container is stop - start. Returns
NULL
+ * on failure
+ */
+static inline run_container_t *run_container_create_range(uint32_t start,
+ uint32_t stop) {
+ run_container_t *rc = run_container_create_given_capacity(1);
+ if (rc) {
+ rle16_t r;
+ r.value = (uint16_t)start;
+ r.length = (uint16_t)(stop - start - 1);
+ run_container_append_first(rc, r);
+ }
+ return rc;
+}
+
+/**
+ * If the element of given rank is in this container, supposing that the first
+ * element has rank start_rank, then the function returns true and sets element
+ * accordingly.
+ * Otherwise, it returns false and update start_rank.
+ */
+bool run_container_select(const run_container_t *container,
+ uint32_t *start_rank, uint32_t rank,
+ uint32_t *element);
+
+/* Compute the difference of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+
+void run_container_andnot(const run_container_t *src_1,
+ const run_container_t *src_2, run_container_t *dst);
+
+void run_container_offset(const run_container_t *c, container_t **loc,
+ container_t **hic, uint16_t offset);
+
+/* Returns the smallest value (assumes not empty) */
+inline uint16_t run_container_minimum(const run_container_t *run) {
+ if (run->n_runs == 0) return 0;
+ return run->runs[0].value;
+}
+
+/* Returns the largest value (assumes not empty) */
+inline uint16_t run_container_maximum(const run_container_t *run) {
+ if (run->n_runs == 0) return 0;
+ return run->runs[run->n_runs - 1].value + run->runs[run->n_runs -
1].length;
+}
+
+/* Returns the number of values equal or smaller than x */
+int run_container_rank(const run_container_t *arr, uint16_t x);
+
+/* bulk version of run_container_rank(); return number of consumed elements */
+uint32_t run_container_rank_many(const run_container_t *arr,
+ uint64_t start_rank, const uint32_t *begin,
+ const uint32_t *end, uint64_t *ans);
+
+/* Returns the index of x, if not exsist return -1 */
+int run_container_get_index(const run_container_t *arr, uint16_t x);
+
+/* Returns the index of the first run containing a value at least as large as
x,
+ * or -1 */
+inline int run_container_index_equalorlarger(const run_container_t *arr,
+ uint16_t x) {
+ int32_t index = interleavedBinarySearch(arr->runs, arr->n_runs, x);
+ if (index >= 0) return index;
+ index = -index - 2; // points to preceding run, possibly -1
+ if (index != -1) { // possible match
+ int32_t offset = x - arr->runs[index].value;
+ int32_t le = arr->runs[index].length;
+ if (offset <= le) return index;
+ }
+ index += 1;
+ if (index < arr->n_runs) {
+ return index;
+ }
+ return -1;
+}
+
+/*
+ * Add all values in range [min, max] using hint.
+ */
+static inline void run_container_add_range_nruns(run_container_t *run,
+ uint32_t min, uint32_t max,
+ int32_t nruns_less,
+ int32_t nruns_greater) {
+ int32_t nruns_common = run->n_runs - nruns_less - nruns_greater;
+ if (nruns_common == 0) {
+ makeRoomAtIndex(run, (uint16_t)nruns_less);
+ run->runs[nruns_less].value = (uint16_t)min;
+ run->runs[nruns_less].length = (uint16_t)(max - min);
+ } else {
+ uint32_t common_min = run->runs[nruns_less].value;
+ uint32_t common_max = run->runs[nruns_less + nruns_common - 1].value +
+ run->runs[nruns_less + nruns_common - 1].length;
+ uint32_t result_min = (common_min < min) ? common_min : min;
+ uint32_t result_max = (common_max > max) ? common_max : max;
+
+ run->runs[nruns_less].value = (uint16_t)result_min;
+ run->runs[nruns_less].length = (uint16_t)(result_max - result_min);
+
+ memmove(&(run->runs[nruns_less + 1]),
+ &(run->runs[run->n_runs - nruns_greater]),
+ nruns_greater * sizeof(rle16_t));
+ run->n_runs = nruns_less + 1 + nruns_greater;
+ }
+}
+
+/**
+ * Add all values in range [min, max]. This function is currently unused
+ * and left as documentation.
+ */
+/*static inline void run_container_add_range(run_container_t* run,
+ uint32_t min, uint32_t max) {
+ int32_t nruns_greater = rle16_count_greater(run->runs, run->n_runs, max);
+ int32_t nruns_less = rle16_count_less(run->runs, run->n_runs -
+nruns_greater, min); run_container_add_range_nruns(run, min, max, nruns_less,
+nruns_greater);
+}*/
+
+/**
+ * Shifts last $count elements either left (distance < 0) or right (distance >
+ * 0)
+ */
+static inline void run_container_shift_tail(run_container_t *run, int32_t
count,
+ int32_t distance) {
+ if (distance > 0) {
+ if (run->capacity < count + distance) {
+ run_container_grow(run, count + distance, true);
+ }
+ }
+ int32_t srcpos = run->n_runs - count;
+ int32_t dstpos = srcpos + distance;
+ memmove(&(run->runs[dstpos]), &(run->runs[srcpos]),
+ sizeof(rle16_t) * count);
+ run->n_runs += distance;
+}
+
+/**
+ * Remove all elements in range [min, max]
+ */
+static inline void run_container_remove_range(run_container_t *run,
+ uint32_t min, uint32_t max) {
+ int32_t first = rle16_find_run(run->runs, run->n_runs, (uint16_t)min);
+ int32_t last = rle16_find_run(run->runs, run->n_runs, (uint16_t)max);
+
+ if (first >= 0 && min > run->runs[first].value &&
+ max < ((uint32_t)run->runs[first].value +
+ (uint32_t)run->runs[first].length)) {
+ // split this run into two adjacent runs
+
+ // right subinterval
+ makeRoomAtIndex(run, (uint16_t)(first + 1));
+ run->runs[first + 1].value = (uint16_t)(max + 1);
+ run->runs[first + 1].length =
+ (uint16_t)((run->runs[first].value + run->runs[first].length) -
+ (max + 1));
+
+ // left subinterval
+ run->runs[first].length =
+ (uint16_t)((min - 1) - run->runs[first].value);
+
+ return;
+ }
+
+ // update left-most partial run
+ if (first >= 0) {
+ if (min > run->runs[first].value) {
+ run->runs[first].length =
+ (uint16_t)((min - 1) - run->runs[first].value);
+ first++;
+ }
+ } else {
+ first = -first - 1;
+ }
+
+ // update right-most run
+ if (last >= 0) {
+ uint16_t run_max = run->runs[last].value + run->runs[last].length;
+ if (run_max > max) {
+ run->runs[last].value = (uint16_t)(max + 1);
+ run->runs[last].length = (uint16_t)(run_max - (max + 1));
+ last--;
+ }
+ } else {
+ last = (-last - 1) - 1;
+ }
+
+ // remove intermediate runs
+ if (first <= last) {
+ run_container_shift_tail(run, run->n_runs - (last + 1),
+ -(last - first + 1));
+ }
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_RUN_H_ */
+/* end file include/roaring/containers/run.h */
+/* begin file include/roaring/containers/convert.h */
+/*
+ * convert.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_CONVERT_H_
+#define INCLUDE_CONTAINERS_CONVERT_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Convert an array into a bitset. The input container is not freed or
modified.
+ */
+bitset_container_t *bitset_container_from_array(const array_container_t *arr);
+
+/* Convert a run into a bitset. The input container is not freed or modified.
*/
+bitset_container_t *bitset_container_from_run(const run_container_t *arr);
+
+/* Convert a run into an array. The input container is not freed or modified.
*/
+array_container_t *array_container_from_run(const run_container_t *arr);
+
+/* Convert a bitset into an array. The input container is not freed or
modified.
+ */
+array_container_t *array_container_from_bitset(const bitset_container_t *bits);
+
+/* Convert an array into a run. The input container is not freed or modified.
+ */
+run_container_t *run_container_from_array(const array_container_t *c);
+
+/* convert a run into either an array or a bitset
+ * might free the container. This does not free the input run container. */
+container_t *convert_to_bitset_or_array_container(run_container_t *rc,
+ int32_t card,
+ uint8_t *resulttype);
+
+/* convert containers to and from runcontainers, as is most space efficient.
+ * The container might be freed. */
+container_t *convert_run_optimize(container_t *c, uint8_t typecode_original,
+ uint8_t *typecode_after);
+
+/* converts a run container to either an array or a bitset, IF it saves space.
+ */
+/* If a conversion occurs, the caller is responsible to free the original
+ * container and
+ * he becomes reponsible to free the new one. */
+container_t *convert_run_to_efficient_container(run_container_t *c,
+ uint8_t *typecode_after);
+
+// like convert_run_to_efficient_container but frees the old result if needed
+container_t *convert_run_to_efficient_container_and_free(
+ run_container_t *c, uint8_t *typecode_after);
+
+/**
+ * Create new container which is a union of run container and
+ * range [min, max]. Caller is responsible for freeing run container.
+ */
+container_t *container_from_run_range(const run_container_t *run, uint32_t min,
+ uint32_t max, uint8_t *typecode_after);
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_CONVERT_H_ */
+/* end file include/roaring/containers/convert.h */
+/* begin file include/roaring/containers/mixed_equal.h */
+/*
+ * mixed_equal.h
+ *
+ */
+
+#ifndef CONTAINERS_MIXED_EQUAL_H_
+#define CONTAINERS_MIXED_EQUAL_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/**
+ * Return true if the two containers have the same content.
+ */
+bool array_container_equal_bitset(const array_container_t* container1,
+ const bitset_container_t* container2);
+
+/**
+ * Return true if the two containers have the same content.
+ */
+bool run_container_equals_array(const run_container_t* container1,
+ const array_container_t* container2);
+/**
+ * Return true if the two containers have the same content.
+ */
+bool run_container_equals_bitset(const run_container_t* container1,
+ const bitset_container_t* container2);
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* CONTAINERS_MIXED_EQUAL_H_ */
+/* end file include/roaring/containers/mixed_equal.h */
+/* begin file include/roaring/containers/mixed_subset.h */
+/*
+ * mixed_subset.h
+ *
+ */
+
+#ifndef CONTAINERS_MIXED_SUBSET_H_
+#define CONTAINERS_MIXED_SUBSET_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool array_container_is_subset_bitset(const array_container_t* container1,
+ const bitset_container_t* container2);
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool run_container_is_subset_array(const run_container_t* container1,
+ const array_container_t* container2);
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool array_container_is_subset_run(const array_container_t* container1,
+ const run_container_t* container2);
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool run_container_is_subset_bitset(const run_container_t* container1,
+ const bitset_container_t* container2);
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool bitset_container_is_subset_run(const bitset_container_t* container1,
+ const run_container_t* container2);
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* CONTAINERS_MIXED_SUBSET_H_ */
+/* end file include/roaring/containers/mixed_subset.h */
+/* begin file include/roaring/containers/mixed_andnot.h */
+/*
+ * mixed_andnot.h
+ */
+#ifndef INCLUDE_CONTAINERS_MIXED_ANDNOT_H_
+#define INCLUDE_CONTAINERS_MIXED_ANDNOT_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst, a valid array container that could be the same as dst.*/
+void array_bitset_container_andnot(const array_container_t *src_1,
+ const bitset_container_t *src_2,
+ array_container_t *dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * src_1 */
+
+void array_bitset_container_iandnot(array_container_t *src_1,
+ const bitset_container_t *src_2);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst, which does not initially have a valid container.
+ * Return true for a bitset result; false for array
+ */
+
+bool bitset_array_container_andnot(const bitset_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). It will modify src_1
+ * to be dst if the result is a bitset. Otherwise, it will
+ * free src_1 and dst will be a new array container. In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset */
+
+bool bitset_array_container_iandnot(bitset_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_andnot(const run_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_iandnot(run_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool bitset_run_container_andnot(const bitset_container_t *src_1,
+ const run_container_t *src_2,
+ container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). It will modify src_1
+ * to be dst if the result is a bitset. Otherwise, it will
+ * free src_1 and dst will be a new array container. In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset */
+
+bool bitset_run_container_iandnot(bitset_container_t *src_1,
+ const run_container_t *src_2,
+ container_t **dst);
+
+/* dst does not indicate a valid container initially. Eventually it
+ * can become any type of container.
+ */
+
+int run_array_container_andnot(const run_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). It will modify src_1
+ * to be dst if the result is a bitset. Otherwise, it will
+ * free src_1 and dst will be a new array container. In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset */
+
+int run_array_container_iandnot(run_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst);
+
+/* dst must be a valid array container, allowed to be src_1 */
+
+void array_run_container_andnot(const array_container_t *src_1,
+ const run_container_t *src_2,
+ array_container_t *dst);
+
+/* dst does not indicate a valid container initially. Eventually it
+ * can become any kind of container.
+ */
+
+void array_run_container_iandnot(array_container_t *src_1,
+ const run_container_t *src_2);
+
+/* dst does not indicate a valid container initially. Eventually it
+ * can become any kind of container.
+ */
+
+int run_run_container_andnot(const run_container_t *src_1,
+ const run_container_t *src_2, container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). It will modify src_1
+ * to be dst if the result is a bitset. Otherwise, it will
+ * free src_1 and dst will be a new array container. In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset */
+
+int run_run_container_iandnot(run_container_t *src_1,
+ const run_container_t *src_2, container_t **dst);
+
+/*
+ * dst is a valid array container and may be the same as src_1
+ */
+
+void array_array_container_andnot(const array_container_t *src_1,
+ const array_container_t *src_2,
+ array_container_t *dst);
+
+/* inplace array-array andnot will always be able to reuse the space of
+ * src_1 */
+void array_array_container_iandnot(array_container_t *src_1,
+ const array_container_t *src_2);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). Return value is
+ * "dst is a bitset"
+ */
+
+bool bitset_bitset_container_andnot(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). It will modify src_1
+ * to be dst if the result is a bitset. Otherwise, it will
+ * free src_1 and dst will be a new array container. In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset */
+
+bool bitset_bitset_container_iandnot(bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst);
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif
+/* end file include/roaring/containers/mixed_andnot.h */
+/* begin file include/roaring/containers/mixed_intersection.h */
+/*
+ * mixed_intersection.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_
+#define INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_
+
+/* These functions appear to exclude cases where the
+ * inputs have the same type and the output is guaranteed
+ * to have the same type as the inputs. Eg, array intersection
+ */
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be equal to src_1. We assume that dst is a
+ * valid container. */
+void array_bitset_container_intersection(const array_container_t *src_1,
+ const bitset_container_t *src_2,
+ array_container_t *dst);
+
+/* Compute the size of the intersection of src_1 and src_2. */
+int array_bitset_container_intersection_cardinality(
+ const array_container_t *src_1, const bitset_container_t *src_2);
+
+/* Checking whether src_1 and src_2 intersect. */
+bool array_bitset_container_intersect(const array_container_t *src_1,
+ const bitset_container_t *src_2);
+
+/*
+ * Compute the intersection between src_1 and src_2 and write the result
+ * to *dst. If the return function is true, the result is a bitset_container_t
+ * otherwise is a array_container_t. We assume that dst is not pre-allocated.
In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_bitset_container_intersection(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst);
+
+/* Compute the intersection between src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be equal to src_1. We assume that dst is a
+ * valid container. */
+void array_run_container_intersection(const array_container_t *src_1,
+ const run_container_t *src_2,
+ array_container_t *dst);
+
+/* Compute the intersection between src_1 and src_2 and write the result to
+ * *dst. If the result is true then the result is a bitset_container_t
+ * otherwise is a array_container_t.
+ * If *dst == src_2, then an in-place intersection is attempted
+ **/
+bool run_bitset_container_intersection(const run_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst);
+
+/* Compute the size of the intersection between src_1 and src_2 . */
+int array_run_container_intersection_cardinality(const array_container_t
*src_1,
+ const run_container_t *src_2);
+
+/* Compute the size of the intersection between src_1 and src_2
+ **/
+int run_bitset_container_intersection_cardinality(
+ const run_container_t *src_1, const bitset_container_t *src_2);
+
+/* Check that src_1 and src_2 intersect. */
+bool array_run_container_intersect(const array_container_t *src_1,
+ const run_container_t *src_2);
+
+/* Check that src_1 and src_2 intersect.
+ **/
+bool run_bitset_container_intersect(const run_container_t *src_1,
+ const bitset_container_t *src_2);
+
+/*
+ * Same as bitset_bitset_container_intersection except that if the output is to
+ * be a
+ * bitset_container_t, then src_1 is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_bitset_container_intersection_inplace(
+ bitset_container_t *src_1, const bitset_container_t *src_2,
+ container_t **dst);
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_ */
+/* end file include/roaring/containers/mixed_intersection.h */
+/* begin file include/roaring/containers/mixed_negation.h */
+/*
+ * mixed_negation.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_MIXED_NEGATION_H_
+#define INCLUDE_CONTAINERS_MIXED_NEGATION_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Negation across the entire range of the container.
+ * Compute the negation of src and write the result
+ * to *dst. The complement of a
+ * sufficiently sparse set will always be dense and a hence a bitmap
+ * We assume that dst is pre-allocated and a valid bitset container
+ * There can be no in-place version.
+ */
+void array_container_negation(const array_container_t *src,
+ bitset_container_t *dst);
+
+/* Negation across the entire range of the container
+ * Compute the negation of src and write the result
+ * to *dst. A true return value indicates a bitset result,
+ * otherwise the result is an array container.
+ * We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_container_negation(const bitset_container_t *src,
+ container_t **dst);
+
+/* inplace version */
+/*
+ * Same as bitset_container_negation except that if the output is to
+ * be a
+ * bitset_container_t, then src is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_container_negation_inplace(bitset_container_t *src,
+ container_t **dst);
+
+/* Negation across the entire range of container
+ * Compute the negation of src and write the result
+ * to *dst.
+ * Return values are the *_TYPECODES as defined * in containers.h
+ * We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+int run_container_negation(const run_container_t *src, container_t **dst);
+
+/*
+ * Same as run_container_negation except that if the output is to
+ * be a
+ * run_container_t, and has the capacity to hold the result,
+ * then src is modified and no allocation is made.
+ * In all cases, the result is in *dst.
+ */
+int run_container_negation_inplace(run_container_t *src, container_t **dst);
+
+/* Negation across a range of the container.
+ * Compute the negation of src and write the result
+ * to *dst. Returns true if the result is a bitset container
+ * and false for an array container. *dst is not preallocated.
+ */
+bool array_container_negation_range(const array_container_t *src,
+ const int range_start, const int range_end,
+ container_t **dst);
+
+/* Even when the result would fit, it is unclear how to make an
+ * inplace version without inefficient copying. Thus this routine
+ * may be a wrapper for the non-in-place version
+ */
+bool array_container_negation_range_inplace(array_container_t *src,
+ const int range_start,
+ const int range_end,
+ container_t **dst);
+
+/* Negation across a range of the container
+ * Compute the negation of src and write the result
+ * to *dst. A true return value indicates a bitset result,
+ * otherwise the result is an array container.
+ * We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_container_negation_range(const bitset_container_t *src,
+ const int range_start, const int
range_end,
+ container_t **dst);
+
+/* inplace version */
+/*
+ * Same as bitset_container_negation except that if the output is to
+ * be a
+ * bitset_container_t, then src is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_container_negation_range_inplace(bitset_container_t *src,
+ const int range_start,
+ const int range_end,
+ container_t **dst);
+
+/* Negation across a range of container
+ * Compute the negation of src and write the result
+ * to *dst. Return values are the *_TYPECODES as defined * in containers.h
+ * We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+int run_container_negation_range(const run_container_t *src,
+ const int range_start, const int range_end,
+ container_t **dst);
+
+/*
+ * Same as run_container_negation except that if the output is to
+ * be a
+ * run_container_t, and has the capacity to hold the result,
+ * then src is modified and no allocation is made.
+ * In all cases, the result is in *dst.
+ */
+int run_container_negation_range_inplace(run_container_t *src,
+ const int range_start,
+ const int range_end,
+ container_t **dst);
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_MIXED_NEGATION_H_ */
+/* end file include/roaring/containers/mixed_negation.h */
+/* begin file include/roaring/containers/mixed_union.h */
+/*
+ * mixed_intersection.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_MIXED_UNION_H_
+#define INCLUDE_CONTAINERS_MIXED_UNION_H_
+
+/* These functions appear to exclude cases where the
+ * inputs have the same type and the output is guaranteed
+ * to have the same type as the inputs. Eg, bitset unions
+ */
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst. */
+void array_bitset_container_union(const array_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst. This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */
+void array_bitset_container_lazy_union(const array_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/*
+ * Compute the union between src_1 and src_2 and write the result
+ * to *dst. If the return function is true, the result is a bitset_container_t
+ * otherwise is a array_container_t. We assume that dst is not pre-allocated.
In
+ * case of failure, *dst will be NULL.
+ */
+bool array_array_container_union(const array_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst);
+
+/*
+ * Compute the union between src_1 and src_2 and write the result
+ * to *dst if it cannot be written to src_1. If the return function is true,
+ * the result is a bitset_container_t
+ * otherwise is a array_container_t. When the result is an array_container_t,
it
+ * it either written to src_1 (if *dst is null) or to *dst.
+ * If the result is a bitset_container_t and *dst is null, then there was a
+ * failure.
+ */
+bool array_array_container_inplace_union(array_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst);
+
+/*
+ * Same as array_array_container_union except that it will more eagerly produce
+ * a bitset.
+ */
+bool array_array_container_lazy_union(const array_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst);
+
+/*
+ * Same as array_array_container_inplace_union except that it will more eagerly
+ * produce a bitset.
+ */
+bool array_array_container_lazy_inplace_union(array_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. We assume that dst is a
+ * valid container. The result might need to be further converted to array or
+ * bitset container,
+ * the caller is responsible for the eventual conversion. */
+void array_run_container_union(const array_container_t *src_1,
+ const run_container_t *src_2,
+ run_container_t *dst);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * src2. The result might need to be further converted to array or
+ * bitset container,
+ * the caller is responsible for the eventual conversion. */
+void array_run_container_inplace_union(const array_container_t *src_1,
+ run_container_t *src_2);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be src_2.
+ * If run_container_is_full(src_1) is true, you must not be calling this
+ *function.
+ **/
+void run_bitset_container_union(const run_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be src_2. This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY).
+ * If run_container_is_full(src_1) is true, you must not be calling this
+ * function.
+ * */
+void run_bitset_container_lazy_union(const run_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_MIXED_UNION_H_ */
+/* end file include/roaring/containers/mixed_union.h */
+/* begin file include/roaring/containers/mixed_xor.h */
+/*
+ * mixed_xor.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_MIXED_XOR_H_
+#define INCLUDE_CONTAINERS_MIXED_XOR_H_
+
+/* These functions appear to exclude cases where the
+ * inputs have the same type and the output is guaranteed
+ * to have the same type as the inputs. Eg, bitset unions
+ */
+
+/*
+ * Java implementation (as of May 2016) for array_run, run_run
+ * and bitset_run don't do anything different for inplace.
+ * (They are not truly in place.)
+ */
+
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially).
+ * Result is true iff dst is a bitset */
+bool array_bitset_container_xor(const array_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst);
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst. This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY).
+ */
+
+void array_bitset_container_lazy_xor(const array_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially). Return value is
+ * "dst is a bitset"
+ */
+
+bool bitset_bitset_container_xor(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst);
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_xor(const run_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst);
+
+/* lazy xor. Dst is initialized and may be equal to src_2.
+ * Result is left as a bitset container, even if actual
+ * cardinality would dictate an array container.
+ */
+
+void run_bitset_container_lazy_xor(const run_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst);
+
+/* dst does not indicate a valid container initially. Eventually it
+ * can become any kind of container.
+ */
+
+int array_run_container_xor(const array_container_t *src_1,
+ const run_container_t *src_2, container_t **dst);
+
+/* dst does not initially have a valid container. Creates either
+ * an array or a bitset container, indicated by return code
+ */
+
+bool array_array_container_xor(const array_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst);
+
+/* dst does not initially have a valid container. Creates either
+ * an array or a bitset container, indicated by return code.
+ * A bitset container will not have a valid cardinality and the
+ * container type might not be correct for the actual cardinality
+ */
+
+bool array_array_container_lazy_xor(const array_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst);
+
+/* Dst is a valid run container. (Can it be src_2? Let's say not.)
+ * Leaves result as run container, even if other options are
+ * smaller.
+ */
+
+void array_run_container_lazy_xor(const array_container_t *src_1,
+ const run_container_t *src_2,
+ run_container_t *dst);
+
+/* dst does not indicate a valid container initially. Eventually it
+ * can become any kind of container.
+ */
+
+int run_run_container_xor(const run_container_t *src_1,
+ const run_container_t *src_2, container_t **dst);
+
+/* INPLACE versions (initial implementation may not exploit all inplace
+ * opportunities (if any...)
+ */
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially). It will modify src_1
+ * to be dst if the result is a bitset. Otherwise, it will
+ * free src_1 and dst will be a new array container. In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset */
+
+bool bitset_array_container_ixor(bitset_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst);
+
+bool bitset_bitset_container_ixor(bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst);
+
+bool array_bitset_container_ixor(array_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst);
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_ixor(run_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst);
+
+bool bitset_run_container_ixor(bitset_container_t *src_1,
+ const run_container_t *src_2, container_t
**dst);
+
+/* dst does not indicate a valid container initially. Eventually it
+ * can become any kind of container.
+ */
+
+int array_run_container_ixor(array_container_t *src_1,
+ const run_container_t *src_2, container_t **dst);
+
+int run_array_container_ixor(run_container_t *src_1,
+ const array_container_t *src_2, container_t
**dst);
+
+bool array_array_container_ixor(array_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst);
+
+int run_run_container_ixor(run_container_t *src_1, const run_container_t
*src_2,
+ container_t **dst);
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif
+/* end file include/roaring/containers/mixed_xor.h */
+/* begin file include/roaring/containers/containers.h */
+#ifndef CONTAINERS_CONTAINERS_H
+#define CONTAINERS_CONTAINERS_H
+
+#include <assert.h>
+#include <stdbool.h>
+#include <stdio.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+// would enum be possible or better?
+
+/**
+ * The switch case statements follow
+ * BITSET_CONTAINER_TYPE -- ARRAY_CONTAINER_TYPE -- RUN_CONTAINER_TYPE
+ * so it makes more sense to number them 1, 2, 3 (in the vague hope that the
+ * compiler might exploit this ordering).
+ */
+
+#define BITSET_CONTAINER_TYPE 1
+#define ARRAY_CONTAINER_TYPE 2
+#define RUN_CONTAINER_TYPE 3
+#define SHARED_CONTAINER_TYPE 4
+
+/**
+ * Macros for pairing container type codes, suitable for switch statements.
+ * Use PAIR_CONTAINER_TYPES() for the switch, CONTAINER_PAIR() for the cases:
+ *
+ * switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ * case CONTAINER_PAIR(BITSET,ARRAY):
+ * ...
+ * }
+ */
+#define PAIR_CONTAINER_TYPES(type1, type2) (4 * (type1) + (type2))
+
+#define CONTAINER_PAIR(name1, name2) \
+ (4 * (name1##_CONTAINER_TYPE) + (name2##_CONTAINER_TYPE))
+
+/**
+ * A shared container is a wrapper around a container
+ * with reference counting.
+ */
+STRUCT_CONTAINER(shared_container_s) {
+ container_t *container;
+ uint8_t typecode;
+ croaring_refcount_t counter; // to be managed atomically
+};
+
+typedef struct shared_container_s shared_container_t;
+
+#define CAST_shared(c) CAST(shared_container_t *, c) // safer downcast
+#define const_CAST_shared(c) CAST(const shared_container_t *, c)
+#define movable_CAST_shared(c) movable_CAST(shared_container_t **, c)
+
+/*
+ * With copy_on_write = true
+ * Create a new shared container if the typecode is not SHARED_CONTAINER_TYPE,
+ * otherwise, increase the count
+ * If copy_on_write = false, then clone.
+ * Return NULL in case of failure.
+ **/
+container_t *get_copy_of_container(container_t *container, uint8_t *typecode,
+ bool copy_on_write);
+
+/* Frees a shared container (actually decrement its counter and only frees when
+ * the counter falls to zero). */
+void shared_container_free(shared_container_t *container);
+
+/* extract a copy from the shared container, freeing the shared container if
+there is just one instance left,
+clone instances when the counter is higher than one
+*/
+container_t *shared_container_extract_copy(shared_container_t *container,
+ uint8_t *typecode);
+
+/* access to container underneath */
+static inline const container_t *container_unwrap_shared(
+ const container_t *candidate_shared_container, uint8_t *type) {
+ if (*type == SHARED_CONTAINER_TYPE) {
+ *type = const_CAST_shared(candidate_shared_container)->typecode;
+ assert(*type != SHARED_CONTAINER_TYPE);
+ return const_CAST_shared(candidate_shared_container)->container;
+ } else {
+ return candidate_shared_container;
+ }
+}
+
+/* access to container underneath */
+static inline container_t *container_mutable_unwrap_shared(container_t *c,
+ uint8_t *type) {
+ if (*type == SHARED_CONTAINER_TYPE) { // the passed in container is shared
+ *type = CAST_shared(c)->typecode;
+ assert(*type != SHARED_CONTAINER_TYPE);
+ return CAST_shared(c)->container; // return the enclosed container
+ } else {
+ return c; // wasn't shared, so return as-is
+ }
+}
+
+/* access to container underneath and queries its type */
+static inline uint8_t get_container_type(const container_t *c, uint8_t type) {
+ if (type == SHARED_CONTAINER_TYPE) {
+ return const_CAST_shared(c)->typecode;
+ } else {
+ return type;
+ }
+}
+
+/**
+ * Copies a container, requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation. If the container is not shared, then it is
+ * physically cloned. Sharable containers are not cloneable.
+ */
+container_t *container_clone(const container_t *container, uint8_t typecode);
+
+/* access to container underneath, cloning it if needed */
+static inline container_t *get_writable_copy_if_shared(container_t *c,
+ uint8_t *type) {
+ if (*type == SHARED_CONTAINER_TYPE) { // shared, return enclosed container
+ return shared_container_extract_copy(CAST_shared(c), type);
+ } else {
+ return c; // not shared, so return as-is
+ }
+}
+
+/**
+ * End of shared container code
+ */
+
+static const char *container_names[] = {"bitset", "array", "run", "shared"};
+static const char *shared_container_names[] = {
+ "bitset (shared)", "array (shared)", "run (shared)"};
+
+// no matter what the initial container was, convert it to a bitset
+// if a new container is produced, caller responsible for freeing the previous
+// one
+// container should not be a shared container
+static inline bitset_container_t *container_to_bitset(container_t *c,
+ uint8_t typecode) {
+ bitset_container_t *result = NULL;
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ return CAST_bitset(c); // nothing to do
+ case ARRAY_CONTAINER_TYPE:
+ result = bitset_container_from_array(CAST_array(c));
+ return result;
+ case RUN_CONTAINER_TYPE:
+ result = bitset_container_from_run(CAST_run(c));
+ return result;
+ case SHARED_CONTAINER_TYPE:
+ assert(false);
+ roaring_unreachable;
+ }
+ assert(false);
+ roaring_unreachable;
+ return 0; // unreached
+}
+
+/**
+ * Get the container name from the typecode
+ * (unused at time of writing)
+ */
+/*static inline const char *get_container_name(uint8_t typecode) {
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ return container_names[0];
+ case ARRAY_CONTAINER_TYPE:
+ return container_names[1];
+ case RUN_CONTAINER_TYPE:
+ return container_names[2];
+ case SHARED_CONTAINER_TYPE:
+ return container_names[3];
+ default:
+ assert(false);
+ roaring_unreachable;
+ return "unknown";
+ }
+}*/
+
+static inline const char *get_full_container_name(const container_t *c,
+ uint8_t typecode) {
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ return container_names[0];
+ case ARRAY_CONTAINER_TYPE:
+ return container_names[1];
+ case RUN_CONTAINER_TYPE:
+ return container_names[2];
+ case SHARED_CONTAINER_TYPE:
+ switch (const_CAST_shared(c)->typecode) {
+ case BITSET_CONTAINER_TYPE:
+ return shared_container_names[0];
+ case ARRAY_CONTAINER_TYPE:
+ return shared_container_names[1];
+ case RUN_CONTAINER_TYPE:
+ return shared_container_names[2];
+ default:
+ assert(false);
+ roaring_unreachable;
+ return "unknown";
+ }
+ break;
+ default:
+ assert(false);
+ roaring_unreachable;
+ return "unknown";
+ }
+ roaring_unreachable;
+ return NULL;
+}
+
+/**
+ * Get the container cardinality (number of elements), requires a typecode
+ */
+static inline int container_get_cardinality(const container_t *c,
+ uint8_t typecode) {
+ c = container_unwrap_shared(c, &typecode);
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_cardinality(const_CAST_bitset(c));
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_cardinality(const_CAST_array(c));
+ case RUN_CONTAINER_TYPE:
+ return run_container_cardinality(const_CAST_run(c));
+ }
+ assert(false);
+ roaring_unreachable;
+ return 0; // unreached
+}
+
+// returns true if a container is known to be full. Note that a lazy bitset
+// container
+// might be full without us knowing
+static inline bool container_is_full(const container_t *c, uint8_t typecode) {
+ c = container_unwrap_shared(c, &typecode);
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_cardinality(const_CAST_bitset(c)) ==
+ (1 << 16);
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_cardinality(const_CAST_array(c)) ==
+ (1 << 16);
+ case RUN_CONTAINER_TYPE:
+ return run_container_is_full(const_CAST_run(c));
+ }
+ assert(false);
+ roaring_unreachable;
+ return 0; // unreached
+}
+
+static inline int container_shrink_to_fit(container_t *c, uint8_t type) {
+ c = container_mutable_unwrap_shared(c, &type);
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ return 0; // no shrinking possible
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_shrink_to_fit(CAST_array(c));
+ case RUN_CONTAINER_TYPE:
+ return run_container_shrink_to_fit(CAST_run(c));
+ }
+ assert(false);
+ roaring_unreachable;
+ return 0; // unreached
+}
+
+/**
+ * make a container with a run of ones
+ */
+/* initially always use a run container, even if an array might be
+ * marginally
+ * smaller */
+static inline container_t *container_range_of_ones(uint32_t range_start,
+ uint32_t range_end,
+ uint8_t *result_type) {
+ assert(range_end >= range_start);
+ uint64_t cardinality = range_end - range_start + 1;
+ if (cardinality <= 2) {
+ *result_type = ARRAY_CONTAINER_TYPE;
+ return array_container_create_range(range_start, range_end);
+ } else {
+ *result_type = RUN_CONTAINER_TYPE;
+ return run_container_create_range(range_start, range_end);
+ }
+}
+
+/* Create a container with all the values between in [min,max) at a
+ distance k*step from min. */
+static inline container_t *container_from_range(uint8_t *type, uint32_t min,
+ uint32_t max, uint16_t step) {
+ if (step == 0) return NULL; // being paranoid
+ if (step == 1) {
+ return container_range_of_ones(min, max, type);
+ // Note: the result is not always a run (need to check the cardinality)
+ //*type = RUN_CONTAINER_TYPE;
+ // return run_container_create_range(min, max);
+ }
+ int size = (max - min + step - 1) / step;
+ if (size <= DEFAULT_MAX_SIZE) { // array container
+ *type = ARRAY_CONTAINER_TYPE;
+ array_container_t *array = array_container_create_given_capacity(size);
+ array_container_add_from_range(array, min, max, step);
+ assert(array->cardinality == size);
+ return array;
+ } else { // bitset container
+ *type = BITSET_CONTAINER_TYPE;
+ bitset_container_t *bitset = bitset_container_create();
+ bitset_container_add_from_range(bitset, min, max, step);
+ assert(bitset->cardinality == size);
+ return bitset;
+ }
+}
+
+/**
+ * "repair" the container after lazy operations.
+ */
+static inline container_t *container_repair_after_lazy(container_t *c,
+ uint8_t *type) {
+ c = get_writable_copy_if_shared(c, type); // !!! unnecessary cloning
+ container_t *result = NULL;
+ switch (*type) {
+ case BITSET_CONTAINER_TYPE: {
+ bitset_container_t *bc = CAST_bitset(c);
+ bc->cardinality = bitset_container_compute_cardinality(bc);
+ if (bc->cardinality <= DEFAULT_MAX_SIZE) {
+ result = array_container_from_bitset(bc);
+ bitset_container_free(bc);
+ *type = ARRAY_CONTAINER_TYPE;
+ return result;
+ }
+ return c;
+ }
+ case ARRAY_CONTAINER_TYPE:
+ return c; // nothing to do
+ case RUN_CONTAINER_TYPE:
+ return convert_run_to_efficient_container_and_free(CAST_run(c),
+ type);
+ case SHARED_CONTAINER_TYPE:
+ assert(false);
+ }
+ assert(false);
+ roaring_unreachable;
+ return 0; // unreached
+}
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes written should be
+ * container_write(container, buf).
+ *
+ */
+static inline int32_t container_write(const container_t *c, uint8_t typecode,
+ char *buf) {
+ c = container_unwrap_shared(c, &typecode);
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_write(const_CAST_bitset(c), buf);
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_write(const_CAST_array(c), buf);
+ case RUN_CONTAINER_TYPE:
+ return run_container_write(const_CAST_run(c), buf);
+ }
+ assert(false);
+ roaring_unreachable;
+ return 0; // unreached
+}
+
+/**
+ * Get the container size in bytes under portable serialization (see
+ * container_write), requires a
+ * typecode
+ */
+static inline int32_t container_size_in_bytes(const container_t *c,
+ uint8_t typecode) {
+ c = container_unwrap_shared(c, &typecode);
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_size_in_bytes(const_CAST_bitset(c));
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_size_in_bytes(const_CAST_array(c));
+ case RUN_CONTAINER_TYPE:
+ return run_container_size_in_bytes(const_CAST_run(c));
+ }
+ assert(false);
+ roaring_unreachable;
+ return 0; // unreached
+}
+
+/**
+ * print the container (useful for debugging), requires a typecode
+ */
+void container_printf(const container_t *container, uint8_t typecode);
+
+/**
+ * print the content of the container as a comma-separated list of 32-bit
values
+ * starting at base, requires a typecode
+ */
+void container_printf_as_uint32_array(const container_t *container,
+ uint8_t typecode, uint32_t base);
+
+bool container_internal_validate(const container_t *container, uint8_t
typecode,
+ const char **reason);
+
+/**
+ * Checks whether a container is not empty, requires a typecode
+ */
+static inline bool container_nonzero_cardinality(const container_t *c,
+ uint8_t typecode) {
+ c = container_unwrap_shared(c, &typecode);
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_const_nonzero_cardinality(
+ const_CAST_bitset(c));
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_nonzero_cardinality(const_CAST_array(c));
+ case RUN_CONTAINER_TYPE:
+ return run_container_nonzero_cardinality(const_CAST_run(c));
+ }
+ assert(false);
+ roaring_unreachable;
+ return 0; // unreached
+}
+
+/**
+ * Recover memory from a container, requires a typecode
+ */
+void container_free(container_t *container, uint8_t typecode);
+
+/**
+ * Convert a container to an array of values, requires a typecode as well as a
+ * "base" (most significant values)
+ * Returns number of ints added.
+ */
+static inline int container_to_uint32_array(uint32_t *output,
+ const container_t *c,
+ uint8_t typecode, uint32_t base) {
+ c = container_unwrap_shared(c, &typecode);
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_to_uint32_array(output,
+ const_CAST_bitset(c),
base);
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_to_uint32_array(output, const_CAST_array(c),
+ base);
+ case RUN_CONTAINER_TYPE:
+ return run_container_to_uint32_array(output, const_CAST_run(c),
+ base);
+ }
+ assert(false);
+ roaring_unreachable;
+ return 0; // unreached
+}
+
+/**
+ * Add a value to a container, requires a typecode, fills in new_typecode and
+ * return (possibly different) container.
+ * This function may allocate a new container, and caller is responsible for
+ * memory deallocation
+ */
+static inline container_t *container_add(
+ container_t *c, uint16_t val,
+ uint8_t typecode, // !!! should be second argument?
+ uint8_t *new_typecode) {
+ c = get_writable_copy_if_shared(c, &typecode);
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ bitset_container_set(CAST_bitset(c), val);
+ *new_typecode = BITSET_CONTAINER_TYPE;
+ return c;
+ case ARRAY_CONTAINER_TYPE: {
+ array_container_t *ac = CAST_array(c);
+ if (array_container_try_add(ac, val, DEFAULT_MAX_SIZE) != -1) {
+ *new_typecode = ARRAY_CONTAINER_TYPE;
+ return ac;
+ } else {
+ bitset_container_t *bitset = bitset_container_from_array(ac);
+ bitset_container_add(bitset, val);
+ *new_typecode = BITSET_CONTAINER_TYPE;
+ return bitset;
+ }
+ } break;
+ case RUN_CONTAINER_TYPE:
+ // per Java, no container type adjustments are done (revisit?)
+ run_container_add(CAST_run(c), val);
+ *new_typecode = RUN_CONTAINER_TYPE;
+ return c;
+ default:
+ assert(false);
+ roaring_unreachable;
+ return NULL;
+ }
+}
+
+/**
+ * Remove a value from a container, requires a typecode, fills in new_typecode
+ * and
+ * return (possibly different) container.
+ * This function may allocate a new container, and caller is responsible for
+ * memory deallocation
+ */
+static inline container_t *container_remove(
+ container_t *c, uint16_t val,
+ uint8_t typecode, // !!! should be second argument?
+ uint8_t *new_typecode) {
+ c = get_writable_copy_if_shared(c, &typecode);
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ if (bitset_container_remove(CAST_bitset(c), val)) {
+ int card = bitset_container_cardinality(CAST_bitset(c));
+ if (card <= DEFAULT_MAX_SIZE) {
+ *new_typecode = ARRAY_CONTAINER_TYPE;
+ return array_container_from_bitset(CAST_bitset(c));
+ }
+ }
+ *new_typecode = typecode;
+ return c;
+ case ARRAY_CONTAINER_TYPE:
+ *new_typecode = typecode;
+ array_container_remove(CAST_array(c), val);
+ return c;
+ case RUN_CONTAINER_TYPE:
+ // per Java, no container type adjustments are done (revisit?)
+ run_container_remove(CAST_run(c), val);
+ *new_typecode = RUN_CONTAINER_TYPE;
+ return c;
+ default:
+ assert(false);
+ roaring_unreachable;
+ return NULL;
+ }
+}
+
+/**
+ * Check whether a value is in a container, requires a typecode
+ */
+static inline bool container_contains(
+ const container_t *c, uint16_t val,
+ uint8_t typecode // !!! should be second argument?
+) {
+ c = container_unwrap_shared(c, &typecode);
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_get(const_CAST_bitset(c), val);
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_contains(const_CAST_array(c), val);
+ case RUN_CONTAINER_TYPE:
+ return run_container_contains(const_CAST_run(c), val);
+ default:
+ assert(false);
+ roaring_unreachable;
+ return false;
+ }
+}
+
+/**
+ * Check whether a range of values from range_start (included) to range_end
+ * (excluded) is in a container, requires a typecode
+ */
+static inline bool container_contains_range(
+ const container_t *c, uint32_t range_start, uint32_t range_end,
+ uint8_t typecode // !!! should be second argument?
+) {
+ c = container_unwrap_shared(c, &typecode);
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_get_range(const_CAST_bitset(c),
range_start,
+ range_end);
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_contains_range(const_CAST_array(c),
+ range_start, range_end);
+ case RUN_CONTAINER_TYPE:
+ return run_container_contains_range(const_CAST_run(c), range_start,
+ range_end);
+ default:
+ assert(false);
+ roaring_unreachable;
+ return false;
+ }
+}
+
+/**
+ * Returns true if the two containers have the same content. Note that
+ * two containers having different types can be "equal" in this sense.
+ */
+static inline bool container_equals(const container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2) {
+ c1 = container_unwrap_shared(c1, &type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ return bitset_container_equals(const_CAST_bitset(c1),
+ const_CAST_bitset(c2));
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ return run_container_equals_bitset(const_CAST_run(c2),
+ const_CAST_bitset(c1));
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ return run_container_equals_bitset(const_CAST_run(c1),
+ const_CAST_bitset(c2));
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ // java would always return false?
+ return array_container_equal_bitset(const_CAST_array(c2),
+ const_CAST_bitset(c1));
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ // java would always return false?
+ return array_container_equal_bitset(const_CAST_array(c1),
+ const_CAST_bitset(c2));
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ return run_container_equals_array(const_CAST_run(c2),
+ const_CAST_array(c1));
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ return run_container_equals_array(const_CAST_run(c1),
+ const_CAST_array(c2));
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ return array_container_equals(const_CAST_array(c1),
+ const_CAST_array(c2));
+
+ case CONTAINER_PAIR(RUN, RUN):
+ return run_container_equals(const_CAST_run(c1),
const_CAST_run(c2));
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return false;
+ }
+}
+
+/**
+ * Returns true if the container c1 is a subset of the container c2. Note that
+ * c1 can be a subset of c2 even if they have a different type.
+ */
+static inline bool container_is_subset(const container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2) {
+ c1 = container_unwrap_shared(c1, &type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ return bitset_container_is_subset(const_CAST_bitset(c1),
+ const_CAST_bitset(c2));
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ return bitset_container_is_subset_run(const_CAST_bitset(c1),
+ const_CAST_run(c2));
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ return run_container_is_subset_bitset(const_CAST_run(c1),
+ const_CAST_bitset(c2));
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ return false; // by construction, size(c1) > size(c2)
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ return array_container_is_subset_bitset(const_CAST_array(c1),
+ const_CAST_bitset(c2));
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ return array_container_is_subset_run(const_CAST_array(c1),
+ const_CAST_run(c2));
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ return run_container_is_subset_array(const_CAST_run(c1),
+ const_CAST_array(c2));
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ return array_container_is_subset(const_CAST_array(c1),
+ const_CAST_array(c2));
+
+ case CONTAINER_PAIR(RUN, RUN):
+ return run_container_is_subset(const_CAST_run(c1),
+ const_CAST_run(c2));
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return false;
+ }
+}
+
+// macro-izations possibilities for generic non-inplace binary-op dispatch
+
+/**
+ * Compute intersection between two containers, generate a new container
(having
+ * type result_type), requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ */
+static inline container_t *container_and(const container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2,
+ uint8_t *result_type) {
+ c1 = container_unwrap_shared(c1, &type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ container_t *result = NULL;
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ *result_type =
+ bitset_bitset_container_intersection(
+ const_CAST_bitset(c1), const_CAST_bitset(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ result = array_container_create();
+ array_container_intersection(
+ const_CAST_array(c1), const_CAST_array(c2),
CAST_array(result));
+ *result_type = ARRAY_CONTAINER_TYPE; // never bitset
+ return result;
+
+ case CONTAINER_PAIR(RUN, RUN):
+ result = run_container_create();
+ run_container_intersection(const_CAST_run(c1), const_CAST_run(c2),
+ CAST_run(result));
+ return
convert_run_to_efficient_container_and_free(CAST_run(result),
+ result_type);
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ result = array_container_create();
+ array_bitset_container_intersection(const_CAST_array(c2),
+ const_CAST_bitset(c1),
+ CAST_array(result));
+ *result_type = ARRAY_CONTAINER_TYPE; // never bitset
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ result = array_container_create();
+ *result_type = ARRAY_CONTAINER_TYPE; // never bitset
+ array_bitset_container_intersection(const_CAST_array(c1),
+ const_CAST_bitset(c2),
+ CAST_array(result));
+ return result;
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ *result_type =
+ run_bitset_container_intersection(
+ const_CAST_run(c2), const_CAST_bitset(c1), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ *result_type =
+ run_bitset_container_intersection(
+ const_CAST_run(c1), const_CAST_bitset(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ result = array_container_create();
+ *result_type = ARRAY_CONTAINER_TYPE; // never bitset
+ array_run_container_intersection(
+ const_CAST_array(c1), const_CAST_run(c2), CAST_array(result));
+ return result;
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ result = array_container_create();
+ *result_type = ARRAY_CONTAINER_TYPE; // never bitset
+ array_run_container_intersection(
+ const_CAST_array(c2), const_CAST_run(c1), CAST_array(result));
+ return result;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return NULL;
+ }
+}
+
+/**
+ * Compute the size of the intersection between two containers.
+ */
+static inline int container_and_cardinality(const container_t *c1,
+ uint8_t type1,
+ const container_t *c2,
+ uint8_t type2) {
+ c1 = container_unwrap_shared(c1, &type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ return bitset_container_and_justcard(const_CAST_bitset(c1),
+ const_CAST_bitset(c2));
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ return array_container_intersection_cardinality(
+ const_CAST_array(c1), const_CAST_array(c2));
+
+ case CONTAINER_PAIR(RUN, RUN):
+ return run_container_intersection_cardinality(const_CAST_run(c1),
+ const_CAST_run(c2));
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ return array_bitset_container_intersection_cardinality(
+ const_CAST_array(c2), const_CAST_bitset(c1));
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ return array_bitset_container_intersection_cardinality(
+ const_CAST_array(c1), const_CAST_bitset(c2));
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ return run_bitset_container_intersection_cardinality(
+ const_CAST_run(c2), const_CAST_bitset(c1));
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ return run_bitset_container_intersection_cardinality(
+ const_CAST_run(c1), const_CAST_bitset(c2));
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ return array_run_container_intersection_cardinality(
+ const_CAST_array(c1), const_CAST_run(c2));
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ return array_run_container_intersection_cardinality(
+ const_CAST_array(c2), const_CAST_run(c1));
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return 0;
+ }
+}
+
+/**
+ * Check whether two containers intersect.
+ */
+static inline bool container_intersect(const container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2) {
+ c1 = container_unwrap_shared(c1, &type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ return bitset_container_intersect(const_CAST_bitset(c1),
+ const_CAST_bitset(c2));
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ return array_container_intersect(const_CAST_array(c1),
+ const_CAST_array(c2));
+
+ case CONTAINER_PAIR(RUN, RUN):
+ return run_container_intersect(const_CAST_run(c1),
+ const_CAST_run(c2));
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ return array_bitset_container_intersect(const_CAST_array(c2),
+ const_CAST_bitset(c1));
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ return array_bitset_container_intersect(const_CAST_array(c1),
+ const_CAST_bitset(c2));
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ return run_bitset_container_intersect(const_CAST_run(c2),
+ const_CAST_bitset(c1));
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ return run_bitset_container_intersect(const_CAST_run(c1),
+ const_CAST_bitset(c2));
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ return array_run_container_intersect(const_CAST_array(c1),
+ const_CAST_run(c2));
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ return array_run_container_intersect(const_CAST_array(c2),
+ const_CAST_run(c1));
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return 0;
+ }
+}
+
+/**
+ * Compute intersection between two containers, with result in the first
+ container if possible. If the returned pointer is identical to c1,
+ then the container has been modified. If the returned pointer is different
+ from c1, then a new container has been created and the caller is responsible
+ for freeing it.
+ The type of the first container may change. Returns the modified
+ (and possibly new) container.
+*/
+static inline container_t *container_iand(container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2,
+ uint8_t *result_type) {
+ c1 = get_writable_copy_if_shared(c1, &type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ container_t *result = NULL;
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ *result_type = bitset_bitset_container_intersection_inplace(
+ CAST_bitset(c1), const_CAST_bitset(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ array_container_intersection_inplace(CAST_array(c1),
+ const_CAST_array(c2));
+ *result_type = ARRAY_CONTAINER_TYPE;
+ return c1;
+
+ case CONTAINER_PAIR(RUN, RUN):
+ result = run_container_create();
+ run_container_intersection(const_CAST_run(c1), const_CAST_run(c2),
+ CAST_run(result));
+ // as of January 2016, Java code used non-in-place intersection for
+ // two runcontainers
+ return
convert_run_to_efficient_container_and_free(CAST_run(result),
+ result_type);
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ // c1 is a bitmap so no inplace possible
+ result = array_container_create();
+ array_bitset_container_intersection(const_CAST_array(c2),
+ const_CAST_bitset(c1),
+ CAST_array(result));
+ *result_type = ARRAY_CONTAINER_TYPE; // never bitset
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ *result_type = ARRAY_CONTAINER_TYPE; // never bitset
+ array_bitset_container_intersection(
+ const_CAST_array(c1), const_CAST_bitset(c2),
+ CAST_array(c1)); // result is allowed to be same as c1
+ return c1;
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ // will attempt in-place computation
+ *result_type = run_bitset_container_intersection(
+ const_CAST_run(c2), const_CAST_bitset(c1), &c1)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return c1;
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ *result_type =
+ run_bitset_container_intersection(
+ const_CAST_run(c1), const_CAST_bitset(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ result = array_container_create();
+ *result_type = ARRAY_CONTAINER_TYPE; // never bitset
+ array_run_container_intersection(
+ const_CAST_array(c1), const_CAST_run(c2), CAST_array(result));
+ return result;
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ result = array_container_create();
+ *result_type = ARRAY_CONTAINER_TYPE; // never bitset
+ array_run_container_intersection(
+ const_CAST_array(c2), const_CAST_run(c1), CAST_array(result));
+ return result;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return NULL;
+ }
+}
+
+/**
+ * Compute union between two containers, generate a new container (having type
+ * result_type), requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ */
+static inline container_t *container_or(const container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2,
+ uint8_t *result_type) {
+ c1 = container_unwrap_shared(c1, &type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ container_t *result = NULL;
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ result = bitset_container_create();
+ bitset_container_or(const_CAST_bitset(c1), const_CAST_bitset(c2),
+ CAST_bitset(result));
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ *result_type =
+ array_array_container_union(const_CAST_array(c1),
+ const_CAST_array(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(RUN, RUN):
+ result = run_container_create();
+ run_container_union(const_CAST_run(c1), const_CAST_run(c2),
+ CAST_run(result));
+ *result_type = RUN_CONTAINER_TYPE;
+ // todo: could be optimized since will never convert to array
+ result = convert_run_to_efficient_container_and_free(
+ CAST_run(result), result_type);
+ return result;
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ result = bitset_container_create();
+ array_bitset_container_union(const_CAST_array(c2),
+ const_CAST_bitset(c1),
+ CAST_bitset(result));
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ result = bitset_container_create();
+ array_bitset_container_union(const_CAST_array(c1),
+ const_CAST_bitset(c2),
+ CAST_bitset(result));
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ if (run_container_is_full(const_CAST_run(c2))) {
+ result = run_container_create();
+ *result_type = RUN_CONTAINER_TYPE;
+ run_container_copy(const_CAST_run(c2), CAST_run(result));
+ return result;
+ }
+ result = bitset_container_create();
+ run_bitset_container_union(
+ const_CAST_run(c2), const_CAST_bitset(c1),
CAST_bitset(result));
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ if (run_container_is_full(const_CAST_run(c1))) {
+ result = run_container_create();
+ *result_type = RUN_CONTAINER_TYPE;
+ run_container_copy(const_CAST_run(c1), CAST_run(result));
+ return result;
+ }
+ result = bitset_container_create();
+ run_bitset_container_union(
+ const_CAST_run(c1), const_CAST_bitset(c2),
CAST_bitset(result));
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ result = run_container_create();
+ array_run_container_union(const_CAST_array(c1), const_CAST_run(c2),
+ CAST_run(result));
+ result = convert_run_to_efficient_container_and_free(
+ CAST_run(result), result_type);
+ return result;
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ result = run_container_create();
+ array_run_container_union(const_CAST_array(c2), const_CAST_run(c1),
+ CAST_run(result));
+ result = convert_run_to_efficient_container_and_free(
+ CAST_run(result), result_type);
+ return result;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return NULL; // unreached
+ }
+}
+
+/**
+ * Compute union between two containers, generate a new container (having type
+ * result_type), requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ *
+ * This lazy version delays some operations such as the maintenance of the
+ * cardinality. It requires repair later on the generated containers.
+ */
+static inline container_t *container_lazy_or(const container_t *c1,
+ uint8_t type1,
+ const container_t *c2,
+ uint8_t type2,
+ uint8_t *result_type) {
+ c1 = container_unwrap_shared(c1, &type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ container_t *result = NULL;
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ result = bitset_container_create();
+ bitset_container_or_nocard(const_CAST_bitset(c1),
+ const_CAST_bitset(c2),
+ CAST_bitset(result)); // is lazy
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ *result_type =
+ array_array_container_lazy_union(const_CAST_array(c1),
+ const_CAST_array(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(RUN, RUN):
+ result = run_container_create();
+ run_container_union(const_CAST_run(c1), const_CAST_run(c2),
+ CAST_run(result));
+ *result_type = RUN_CONTAINER_TYPE;
+ // we are being lazy
+ result = convert_run_to_efficient_container_and_free(
+ CAST_run(result), result_type);
+ return result;
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ result = bitset_container_create();
+ array_bitset_container_lazy_union(const_CAST_array(c2),
+ const_CAST_bitset(c1),
+ CAST_bitset(result)); // is lazy
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ result = bitset_container_create();
+ array_bitset_container_lazy_union(const_CAST_array(c1),
+ const_CAST_bitset(c2),
+ CAST_bitset(result)); // is lazy
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ if (run_container_is_full(const_CAST_run(c2))) {
+ result = run_container_create();
+ *result_type = RUN_CONTAINER_TYPE;
+ run_container_copy(const_CAST_run(c2), CAST_run(result));
+ return result;
+ }
+ result = bitset_container_create();
+ run_bitset_container_lazy_union(const_CAST_run(c2),
+ const_CAST_bitset(c1),
+ CAST_bitset(result)); // is lazy
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ if (run_container_is_full(const_CAST_run(c1))) {
+ result = run_container_create();
+ *result_type = RUN_CONTAINER_TYPE;
+ run_container_copy(const_CAST_run(c1), CAST_run(result));
+ return result;
+ }
+ result = bitset_container_create();
+ run_bitset_container_lazy_union(const_CAST_run(c1),
+ const_CAST_bitset(c2),
+ CAST_bitset(result)); // is lazy
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ result = run_container_create();
+ array_run_container_union(const_CAST_array(c1), const_CAST_run(c2),
+ CAST_run(result));
+ *result_type = RUN_CONTAINER_TYPE;
+ // next line skipped since we are lazy
+ // result = convert_run_to_efficient_container(result,
result_type);
+ return result;
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ result = run_container_create();
+ array_run_container_union(const_CAST_array(c2), const_CAST_run(c1),
+ CAST_run(result)); // TODO make lazy
+ *result_type = RUN_CONTAINER_TYPE;
+ // next line skipped since we are lazy
+ // result = convert_run_to_efficient_container(result,
result_type);
+ return result;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return NULL; // unreached
+ }
+}
+
+/**
+ * Compute the union between two containers, with result in the first
container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created and the caller is responsible for freeing it.
+ * The type of the first container may change. Returns the modified
+ * (and possibly new) container
+ */
+static inline container_t *container_ior(container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2,
+ uint8_t *result_type) {
+ c1 = get_writable_copy_if_shared(c1, &type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ container_t *result = NULL;
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ bitset_container_or(const_CAST_bitset(c1), const_CAST_bitset(c2),
+ CAST_bitset(c1));
+#ifdef OR_BITSET_CONVERSION_TO_FULL
+ if (CAST_bitset(c1)->cardinality == (1 << 16)) { // we convert
+ result = run_container_create_range(0, (1 << 16));
+ *result_type = RUN_CONTAINER_TYPE;
+ return result;
+ }
+#endif
+ *result_type = BITSET_CONTAINER_TYPE;
+ return c1;
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ *result_type = array_array_container_inplace_union(
+ CAST_array(c1), const_CAST_array(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ if ((result == NULL) && (*result_type == ARRAY_CONTAINER_TYPE)) {
+ return c1; // the computation was done in-place!
+ }
+ return result;
+
+ case CONTAINER_PAIR(RUN, RUN):
+ run_container_union_inplace(CAST_run(c1), const_CAST_run(c2));
+ return convert_run_to_efficient_container(CAST_run(c1),
+ result_type);
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ array_bitset_container_union(
+ const_CAST_array(c2), const_CAST_bitset(c1), CAST_bitset(c1));
+ *result_type = BITSET_CONTAINER_TYPE; // never array
+ return c1;
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ // c1 is an array, so no in-place possible
+ result = bitset_container_create();
+ *result_type = BITSET_CONTAINER_TYPE;
+ array_bitset_container_union(const_CAST_array(c1),
+ const_CAST_bitset(c2),
+ CAST_bitset(result));
+ return result;
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ if (run_container_is_full(const_CAST_run(c2))) {
+ result = run_container_create();
+ *result_type = RUN_CONTAINER_TYPE;
+ run_container_copy(const_CAST_run(c2), CAST_run(result));
+ return result;
+ }
+ run_bitset_container_union(const_CAST_run(c2),
+ const_CAST_bitset(c1),
+ CAST_bitset(c1)); // allowed
+ *result_type = BITSET_CONTAINER_TYPE;
+ return c1;
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ if (run_container_is_full(const_CAST_run(c1))) {
+ *result_type = RUN_CONTAINER_TYPE;
+ return c1;
+ }
+ result = bitset_container_create();
+ run_bitset_container_union(
+ const_CAST_run(c1), const_CAST_bitset(c2),
CAST_bitset(result));
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ result = run_container_create();
+ array_run_container_union(const_CAST_array(c1), const_CAST_run(c2),
+ CAST_run(result));
+ result = convert_run_to_efficient_container_and_free(
+ CAST_run(result), result_type);
+ return result;
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ array_run_container_inplace_union(const_CAST_array(c2),
+ CAST_run(c1));
+ c1 = convert_run_to_efficient_container(CAST_run(c1), result_type);
+ return c1;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return NULL;
+ }
+}
+
+/**
+ * Compute the union between two containers, with result in the first
container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created and the caller is responsible for freeing it.
+ * The type of the first container may change. Returns the modified
+ * (and possibly new) container
+ *
+ * This lazy version delays some operations such as the maintenance of the
+ * cardinality. It requires repair later on the generated containers.
+ */
+static inline container_t *container_lazy_ior(container_t *c1, uint8_t type1,
+ const container_t *c2,
+ uint8_t type2,
+ uint8_t *result_type) {
+ assert(type1 != SHARED_CONTAINER_TYPE);
+ // c1 = get_writable_copy_if_shared(c1,&type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ container_t *result = NULL;
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+#ifdef LAZY_OR_BITSET_CONVERSION_TO_FULL
+ // if we have two bitsets, we might as well compute the cardinality
+ bitset_container_or(const_CAST_bitset(c1), const_CAST_bitset(c2),
+ CAST_bitset(c1));
+ // it is possible that two bitsets can lead to a full container
+ if (CAST_bitset(c1)->cardinality == (1 << 16)) { // we convert
+ result = run_container_create_range(0, (1 << 16));
+ *result_type = RUN_CONTAINER_TYPE;
+ return result;
+ }
+#else
+ bitset_container_or_nocard(const_CAST_bitset(c1),
+ const_CAST_bitset(c2), CAST_bitset(c1));
+
+#endif
+ *result_type = BITSET_CONTAINER_TYPE;
+ return c1;
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ *result_type = array_array_container_lazy_inplace_union(
+ CAST_array(c1), const_CAST_array(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ if ((result == NULL) && (*result_type == ARRAY_CONTAINER_TYPE)) {
+ return c1; // the computation was done in-place!
+ }
+ return result;
+
+ case CONTAINER_PAIR(RUN, RUN):
+ run_container_union_inplace(CAST_run(c1), const_CAST_run(c2));
+ *result_type = RUN_CONTAINER_TYPE;
+ return convert_run_to_efficient_container(CAST_run(c1),
+ result_type);
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ array_bitset_container_lazy_union(const_CAST_array(c2),
+ const_CAST_bitset(c1),
+ CAST_bitset(c1)); // is lazy
+ *result_type = BITSET_CONTAINER_TYPE; // never array
+ return c1;
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ // c1 is an array, so no in-place possible
+ result = bitset_container_create();
+ *result_type = BITSET_CONTAINER_TYPE;
+ array_bitset_container_lazy_union(const_CAST_array(c1),
+ const_CAST_bitset(c2),
+ CAST_bitset(result)); // is lazy
+ return result;
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ if (run_container_is_full(const_CAST_run(c2))) {
+ result = run_container_create();
+ *result_type = RUN_CONTAINER_TYPE;
+ run_container_copy(const_CAST_run(c2), CAST_run(result));
+ return result;
+ }
+ run_bitset_container_lazy_union(
+ const_CAST_run(c2), const_CAST_bitset(c1),
+ CAST_bitset(c1)); // allowed // lazy
+ *result_type = BITSET_CONTAINER_TYPE;
+ return c1;
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ if (run_container_is_full(const_CAST_run(c1))) {
+ *result_type = RUN_CONTAINER_TYPE;
+ return c1;
+ }
+ result = bitset_container_create();
+ run_bitset_container_lazy_union(const_CAST_run(c1),
+ const_CAST_bitset(c2),
+ CAST_bitset(result)); // lazy
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ result = run_container_create();
+ array_run_container_union(const_CAST_array(c1), const_CAST_run(c2),
+ CAST_run(result));
+ *result_type = RUN_CONTAINER_TYPE;
+ // next line skipped since we are lazy
+ // result = convert_run_to_efficient_container_and_free(result,
+ // result_type);
+ return result;
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ array_run_container_inplace_union(const_CAST_array(c2),
+ CAST_run(c1));
+ *result_type = RUN_CONTAINER_TYPE;
+ // next line skipped since we are lazy
+ // result = convert_run_to_efficient_container_and_free(result,
+ // result_type);
+ return c1;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return NULL;
+ }
+}
+
+/**
+ * Compute symmetric difference (xor) between two containers, generate a new
+ * container (having type result_type), requires a typecode. This allocates new
+ * memory, caller is responsible for deallocation.
+ */
+static inline container_t *container_xor(const container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2,
+ uint8_t *result_type) {
+ c1 = container_unwrap_shared(c1, &type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ container_t *result = NULL;
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ *result_type =
+ bitset_bitset_container_xor(const_CAST_bitset(c1),
+ const_CAST_bitset(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ *result_type =
+ array_array_container_xor(const_CAST_array(c1),
+ const_CAST_array(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(RUN, RUN):
+ *result_type = (uint8_t)run_run_container_xor(
+ const_CAST_run(c1), const_CAST_run(c2), &result);
+ return result;
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ *result_type =
+ array_bitset_container_xor(const_CAST_array(c2),
+ const_CAST_bitset(c1), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ *result_type =
+ array_bitset_container_xor(const_CAST_array(c1),
+ const_CAST_bitset(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ *result_type =
+ run_bitset_container_xor(const_CAST_run(c2),
+ const_CAST_bitset(c1), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ *result_type =
+ run_bitset_container_xor(const_CAST_run(c1),
+ const_CAST_bitset(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ *result_type = (uint8_t)array_run_container_xor(
+ const_CAST_array(c1), const_CAST_run(c2), &result);
+ return result;
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ *result_type = (uint8_t)array_run_container_xor(
+ const_CAST_array(c2), const_CAST_run(c1), &result);
+ return result;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return NULL; // unreached
+ }
+}
+
+/* Applies an offset to the non-empty container 'c'.
+ * The results are stored in new containers returned via 'lo' and 'hi', for the
+ * low and high halves of the result (where the low half matches the original
+ * key and the high one corresponds to values for the following key). Either
one
+ * of 'lo' and 'hi' are allowed to be 'NULL', but not both. Whenever one of
them
+ * is not 'NULL', it should point to a 'NULL' container. Whenever one of them
is
+ * 'NULL' the shifted elements for that part will not be computed. If either of
+ * the resulting containers turns out to be empty, the pointed container will
+ * remain 'NULL'.
+ */
+static inline void container_add_offset(const container_t *c, uint8_t type,
+ container_t **lo, container_t **hi,
+ uint16_t offset) {
+ assert(offset != 0);
+ assert(container_nonzero_cardinality(c, type));
+ assert(lo != NULL || hi != NULL);
+ assert(lo == NULL || *lo == NULL);
+ assert(hi == NULL || *hi == NULL);
+
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ bitset_container_offset(const_CAST_bitset(c), lo, hi, offset);
+ break;
+ case ARRAY_CONTAINER_TYPE:
+ array_container_offset(const_CAST_array(c), lo, hi, offset);
+ break;
+ case RUN_CONTAINER_TYPE:
+ run_container_offset(const_CAST_run(c), lo, hi, offset);
+ break;
+ default:
+ assert(false);
+ roaring_unreachable;
+ break;
+ }
+}
+
+/**
+ * Compute xor between two containers, generate a new container (having type
+ * result_type), requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ *
+ * This lazy version delays some operations such as the maintenance of the
+ * cardinality. It requires repair later on the generated containers.
+ */
+static inline container_t *container_lazy_xor(const container_t *c1,
+ uint8_t type1,
+ const container_t *c2,
+ uint8_t type2,
+ uint8_t *result_type) {
+ c1 = container_unwrap_shared(c1, &type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ container_t *result = NULL;
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ result = bitset_container_create();
+ bitset_container_xor_nocard(const_CAST_bitset(c1),
+ const_CAST_bitset(c2),
+ CAST_bitset(result)); // is lazy
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ *result_type =
+ array_array_container_lazy_xor(const_CAST_array(c1),
+ const_CAST_array(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(RUN, RUN):
+ // nothing special done yet.
+ *result_type = (uint8_t)run_run_container_xor(
+ const_CAST_run(c1), const_CAST_run(c2), &result);
+ return result;
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ result = bitset_container_create();
+ *result_type = BITSET_CONTAINER_TYPE;
+ array_bitset_container_lazy_xor(const_CAST_array(c2),
+ const_CAST_bitset(c1),
+ CAST_bitset(result));
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ result = bitset_container_create();
+ *result_type = BITSET_CONTAINER_TYPE;
+ array_bitset_container_lazy_xor(const_CAST_array(c1),
+ const_CAST_bitset(c2),
+ CAST_bitset(result));
+ return result;
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ result = bitset_container_create();
+ run_bitset_container_lazy_xor(
+ const_CAST_run(c2), const_CAST_bitset(c1),
CAST_bitset(result));
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ result = bitset_container_create();
+ run_bitset_container_lazy_xor(
+ const_CAST_run(c1), const_CAST_bitset(c2),
CAST_bitset(result));
+ *result_type = BITSET_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ result = run_container_create();
+ array_run_container_lazy_xor(const_CAST_array(c1),
+ const_CAST_run(c2), CAST_run(result));
+ *result_type = RUN_CONTAINER_TYPE;
+ // next line skipped since we are lazy
+ // result = convert_run_to_efficient_container(result,
result_type);
+ return result;
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ result = run_container_create();
+ array_run_container_lazy_xor(const_CAST_array(c2),
+ const_CAST_run(c1), CAST_run(result));
+ *result_type = RUN_CONTAINER_TYPE;
+ // next line skipped since we are lazy
+ // result = convert_run_to_efficient_container(result,
result_type);
+ return result;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return NULL; // unreached
+ }
+}
+
+/**
+ * Compute the xor between two containers, with result in the first container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created. The original container is freed by container_ixor.
+ * The type of the first container may change. Returns the modified (and
+ * possibly new) container.
+ */
+static inline container_t *container_ixor(container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2,
+ uint8_t *result_type) {
+ c1 = get_writable_copy_if_shared(c1, &type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ container_t *result = NULL;
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ *result_type = bitset_bitset_container_ixor(
+ CAST_bitset(c1), const_CAST_bitset(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ *result_type = array_array_container_ixor(
+ CAST_array(c1), const_CAST_array(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(RUN, RUN):
+ *result_type = (uint8_t)run_run_container_ixor(
+ CAST_run(c1), const_CAST_run(c2), &result);
+ return result;
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ *result_type = bitset_array_container_ixor(
+ CAST_bitset(c1), const_CAST_array(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ *result_type = array_bitset_container_ixor(
+ CAST_array(c1), const_CAST_bitset(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ *result_type = bitset_run_container_ixor(
+ CAST_bitset(c1), const_CAST_run(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+
+ return result;
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ *result_type = run_bitset_container_ixor(
+ CAST_run(c1), const_CAST_bitset(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ *result_type = (uint8_t)array_run_container_ixor(
+ CAST_array(c1), const_CAST_run(c2), &result);
+ return result;
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ *result_type = (uint8_t)run_array_container_ixor(
+ CAST_run(c1), const_CAST_array(c2), &result);
+ return result;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return NULL;
+ }
+}
+
+/**
+ * Compute the xor between two containers, with result in the first container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created and the caller is responsible for freeing it.
+ * The type of the first container may change. Returns the modified
+ * (and possibly new) container
+ *
+ * This lazy version delays some operations such as the maintenance of the
+ * cardinality. It requires repair later on the generated containers.
+ */
+static inline container_t *container_lazy_ixor(container_t *c1, uint8_t type1,
+ const container_t *c2,
+ uint8_t type2,
+ uint8_t *result_type) {
+ assert(type1 != SHARED_CONTAINER_TYPE);
+ // c1 = get_writable_copy_if_shared(c1,&type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ bitset_container_xor_nocard(CAST_bitset(c1), const_CAST_bitset(c2),
+ CAST_bitset(c1)); // is lazy
+ *result_type = BITSET_CONTAINER_TYPE;
+ return c1;
+
+ // TODO: other cases being lazy, esp. when we know inplace not likely
+ // could see the corresponding code for union
+ default:
+ // we may have a dirty bitset (without a precomputed cardinality)
+ // and calling container_ixor on it might be unsafe.
+ if (type1 == BITSET_CONTAINER_TYPE) {
+ bitset_container_t *bc = CAST_bitset(c1);
+ if (bc->cardinality == BITSET_UNKNOWN_CARDINALITY) {
+ bc->cardinality = bitset_container_compute_cardinality(bc);
+ }
+ }
+ return container_ixor(c1, type1, c2, type2, result_type);
+ }
+}
+
+/**
+ * Compute difference (andnot) between two containers, generate a new
+ * container (having type result_type), requires a typecode. This allocates new
+ * memory, caller is responsible for deallocation.
+ */
+static inline container_t *container_andnot(const container_t *c1,
+ uint8_t type1,
+ const container_t *c2,
+ uint8_t type2,
+ uint8_t *result_type) {
+ c1 = container_unwrap_shared(c1, &type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ container_t *result = NULL;
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ *result_type =
+ bitset_bitset_container_andnot(const_CAST_bitset(c1),
+ const_CAST_bitset(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ result = array_container_create();
+ array_array_container_andnot(
+ const_CAST_array(c1), const_CAST_array(c2),
CAST_array(result));
+ *result_type = ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(RUN, RUN):
+ if (run_container_is_full(const_CAST_run(c2))) {
+ result = array_container_create();
+ *result_type = ARRAY_CONTAINER_TYPE;
+ return result;
+ }
+ *result_type = (uint8_t)run_run_container_andnot(
+ const_CAST_run(c1), const_CAST_run(c2), &result);
+ return result;
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ *result_type =
+ bitset_array_container_andnot(const_CAST_bitset(c1),
+ const_CAST_array(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ result = array_container_create();
+ array_bitset_container_andnot(const_CAST_array(c1),
+ const_CAST_bitset(c2),
+ CAST_array(result));
+ *result_type = ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ if (run_container_is_full(const_CAST_run(c2))) {
+ result = array_container_create();
+ *result_type = ARRAY_CONTAINER_TYPE;
+ return result;
+ }
+ *result_type =
+ bitset_run_container_andnot(const_CAST_bitset(c1),
+ const_CAST_run(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ *result_type =
+ run_bitset_container_andnot(const_CAST_run(c1),
+ const_CAST_bitset(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ if (run_container_is_full(const_CAST_run(c2))) {
+ result = array_container_create();
+ *result_type = ARRAY_CONTAINER_TYPE;
+ return result;
+ }
+ result = array_container_create();
+ array_run_container_andnot(const_CAST_array(c1),
const_CAST_run(c2),
+ CAST_array(result));
+ *result_type = ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ *result_type = (uint8_t)run_array_container_andnot(
+ const_CAST_run(c1), const_CAST_array(c2), &result);
+ return result;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return NULL; // unreached
+ }
+}
+
+/**
+ * Compute the andnot between two containers, with result in the first
+ * container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created. The original container is freed by container_iandnot.
+ * The type of the first container may change. Returns the modified (and
+ * possibly new) container.
+ */
+static inline container_t *container_iandnot(container_t *c1, uint8_t type1,
+ const container_t *c2,
+ uint8_t type2,
+ uint8_t *result_type) {
+ c1 = get_writable_copy_if_shared(c1, &type1);
+ c2 = container_unwrap_shared(c2, &type2);
+ container_t *result = NULL;
+ switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ case CONTAINER_PAIR(BITSET, BITSET):
+ *result_type = bitset_bitset_container_iandnot(
+ CAST_bitset(c1), const_CAST_bitset(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, ARRAY):
+ array_array_container_iandnot(CAST_array(c1),
const_CAST_array(c2));
+ *result_type = ARRAY_CONTAINER_TYPE;
+ return c1;
+
+ case CONTAINER_PAIR(RUN, RUN):
+ *result_type = (uint8_t)run_run_container_iandnot(
+ CAST_run(c1), const_CAST_run(c2), &result);
+ return result;
+
+ case CONTAINER_PAIR(BITSET, ARRAY):
+ *result_type = bitset_array_container_iandnot(
+ CAST_bitset(c1), const_CAST_array(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, BITSET):
+ *result_type = ARRAY_CONTAINER_TYPE;
+ array_bitset_container_iandnot(CAST_array(c1),
+ const_CAST_bitset(c2));
+ return c1;
+
+ case CONTAINER_PAIR(BITSET, RUN):
+ *result_type = bitset_run_container_iandnot(
+ CAST_bitset(c1), const_CAST_run(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(RUN, BITSET):
+ *result_type = run_bitset_container_iandnot(
+ CAST_run(c1), const_CAST_bitset(c2), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+
+ case CONTAINER_PAIR(ARRAY, RUN):
+ *result_type = ARRAY_CONTAINER_TYPE;
+ array_run_container_iandnot(CAST_array(c1), const_CAST_run(c2));
+ return c1;
+
+ case CONTAINER_PAIR(RUN, ARRAY):
+ *result_type = (uint8_t)run_array_container_iandnot(
+ CAST_run(c1), const_CAST_array(c2), &result);
+ return result;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ return NULL;
+ }
+}
+
+/**
+ * Visit all values x of the container once, passing (base+x,ptr)
+ * to iterator. You need to specify a container and its type.
+ * Returns true if the iteration should continue.
+ */
+static inline bool container_iterate(const container_t *c, uint8_t type,
+ uint32_t base, roaring_iterator iterator,
+ void *ptr) {
+ c = container_unwrap_shared(c, &type);
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_iterate(const_CAST_bitset(c), base,
+ iterator, ptr);
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_iterate(const_CAST_array(c), base, iterator,
+ ptr);
+ case RUN_CONTAINER_TYPE:
+ return run_container_iterate(const_CAST_run(c), base, iterator,
+ ptr);
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+ assert(false);
+ roaring_unreachable;
+ return false;
+}
+
+static inline bool container_iterate64(const container_t *c, uint8_t type,
+ uint32_t base,
+ roaring_iterator64 iterator,
+ uint64_t high_bits, void *ptr) {
+ c = container_unwrap_shared(c, &type);
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_iterate64(const_CAST_bitset(c), base,
+ iterator, high_bits, ptr);
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_iterate64(const_CAST_array(c), base,
+ iterator, high_bits, ptr);
+ case RUN_CONTAINER_TYPE:
+ return run_container_iterate64(const_CAST_run(c), base, iterator,
+ high_bits, ptr);
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+ assert(false);
+ roaring_unreachable;
+ return false;
+}
+
+static inline container_t *container_not(const container_t *c, uint8_t type,
+ uint8_t *result_type) {
+ c = container_unwrap_shared(c, &type);
+ container_t *result = NULL;
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ *result_type =
+ bitset_container_negation(const_CAST_bitset(c), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+ case ARRAY_CONTAINER_TYPE:
+ result = bitset_container_create();
+ *result_type = BITSET_CONTAINER_TYPE;
+ array_container_negation(const_CAST_array(c), CAST_bitset(result));
+ return result;
+ case RUN_CONTAINER_TYPE:
+ *result_type =
+ (uint8_t)run_container_negation(const_CAST_run(c), &result);
+ return result;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+ assert(false);
+ roaring_unreachable;
+ return NULL;
+}
+
+static inline container_t *container_not_range(const container_t *c,
+ uint8_t type,
+ uint32_t range_start,
+ uint32_t range_end,
+ uint8_t *result_type) {
+ c = container_unwrap_shared(c, &type);
+ container_t *result = NULL;
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ *result_type =
+ bitset_container_negation_range(const_CAST_bitset(c),
+ range_start, range_end,
&result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+ case ARRAY_CONTAINER_TYPE:
+ *result_type =
+ array_container_negation_range(const_CAST_array(c),
range_start,
+ range_end, &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+ case RUN_CONTAINER_TYPE:
+ *result_type = (uint8_t)run_container_negation_range(
+ const_CAST_run(c), range_start, range_end, &result);
+ return result;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+ assert(false);
+ roaring_unreachable;
+ return NULL;
+}
+
+static inline container_t *container_inot(container_t *c, uint8_t type,
+ uint8_t *result_type) {
+ c = get_writable_copy_if_shared(c, &type);
+ container_t *result = NULL;
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ *result_type =
+ bitset_container_negation_inplace(CAST_bitset(c), &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+ case ARRAY_CONTAINER_TYPE:
+ // will never be inplace
+ result = bitset_container_create();
+ *result_type = BITSET_CONTAINER_TYPE;
+ array_container_negation(CAST_array(c), CAST_bitset(result));
+ array_container_free(CAST_array(c));
+ return result;
+ case RUN_CONTAINER_TYPE:
+ *result_type =
+ (uint8_t)run_container_negation_inplace(CAST_run(c), &result);
+ return result;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+ assert(false);
+ roaring_unreachable;
+ return NULL;
+}
+
+static inline container_t *container_inot_range(container_t *c, uint8_t type,
+ uint32_t range_start,
+ uint32_t range_end,
+ uint8_t *result_type) {
+ c = get_writable_copy_if_shared(c, &type);
+ container_t *result = NULL;
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ *result_type = bitset_container_negation_range_inplace(
+ CAST_bitset(c), range_start, range_end, &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+ case ARRAY_CONTAINER_TYPE:
+ *result_type = array_container_negation_range_inplace(
+ CAST_array(c), range_start, range_end, &result)
+ ? BITSET_CONTAINER_TYPE
+ : ARRAY_CONTAINER_TYPE;
+ return result;
+ case RUN_CONTAINER_TYPE:
+ *result_type = (uint8_t)run_container_negation_range_inplace(
+ CAST_run(c), range_start, range_end, &result);
+ return result;
+
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+ assert(false);
+ roaring_unreachable;
+ return NULL;
+}
+
+/**
+ * If the element of given rank is in this container, supposing that
+ * the first
+ * element has rank start_rank, then the function returns true and
+ * sets element
+ * accordingly.
+ * Otherwise, it returns false and update start_rank.
+ */
+static inline bool container_select(const container_t *c, uint8_t type,
+ uint32_t *start_rank, uint32_t rank,
+ uint32_t *element) {
+ c = container_unwrap_shared(c, &type);
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_select(const_CAST_bitset(c), start_rank,
+ rank, element);
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_select(const_CAST_array(c), start_rank,
rank,
+ element);
+ case RUN_CONTAINER_TYPE:
+ return run_container_select(const_CAST_run(c), start_rank, rank,
+ element);
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+ assert(false);
+ roaring_unreachable;
+ return false;
+}
+
+static inline uint16_t container_maximum(const container_t *c, uint8_t type) {
+ c = container_unwrap_shared(c, &type);
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_maximum(const_CAST_bitset(c));
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_maximum(const_CAST_array(c));
+ case RUN_CONTAINER_TYPE:
+ return run_container_maximum(const_CAST_run(c));
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+ assert(false);
+ roaring_unreachable;
+ return false;
+}
+
+static inline uint16_t container_minimum(const container_t *c, uint8_t type) {
+ c = container_unwrap_shared(c, &type);
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_minimum(const_CAST_bitset(c));
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_minimum(const_CAST_array(c));
+ case RUN_CONTAINER_TYPE:
+ return run_container_minimum(const_CAST_run(c));
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+ assert(false);
+ roaring_unreachable;
+ return false;
+}
+
+// number of values smaller or equal to x
+static inline int container_rank(const container_t *c, uint8_t type,
+ uint16_t x) {
+ c = container_unwrap_shared(c, &type);
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_rank(const_CAST_bitset(c), x);
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_rank(const_CAST_array(c), x);
+ case RUN_CONTAINER_TYPE:
+ return run_container_rank(const_CAST_run(c), x);
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+ assert(false);
+ roaring_unreachable;
+ return false;
+}
+
+// bulk version of container_rank(); return number of consumed elements
+static inline uint32_t container_rank_many(const container_t *c, uint8_t type,
+ uint64_t start_rank,
+ const uint32_t *begin,
+ const uint32_t *end, uint64_t *ans)
{
+ c = container_unwrap_shared(c, &type);
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_rank_many(const_CAST_bitset(c), start_rank,
+ begin, end, ans);
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_rank_many(const_CAST_array(c), start_rank,
+ begin, end, ans);
+ case RUN_CONTAINER_TYPE:
+ return run_container_rank_many(const_CAST_run(c), start_rank,
begin,
+ end, ans);
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+ assert(false);
+ roaring_unreachable;
+ return 0;
+}
+
+// return the index of x, if not exsist return -1
+static inline int container_get_index(const container_t *c, uint8_t type,
+ uint16_t x) {
+ c = container_unwrap_shared(c, &type);
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_get_index(const_CAST_bitset(c), x);
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_get_index(const_CAST_array(c), x);
+ case RUN_CONTAINER_TYPE:
+ return run_container_get_index(const_CAST_run(c), x);
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+ assert(false);
+ roaring_unreachable;
+ return false;
+}
+
+/**
+ * Add all values in range [min, max] to a given container.
+ *
+ * If the returned pointer is different from $container, then a new container
+ * has been created and the caller is responsible for freeing it.
+ * The type of the first container may change. Returns the modified
+ * (and possibly new) container.
+ */
+static inline container_t *container_add_range(container_t *c, uint8_t type,
+ uint32_t min, uint32_t max,
+ uint8_t *result_type) {
+ // NB: when selecting new container type, we perform only inexpensive
checks
+ switch (type) {
+ case BITSET_CONTAINER_TYPE: {
+ bitset_container_t *bitset = CAST_bitset(c);
+
+ int32_t union_cardinality = 0;
+ union_cardinality += bitset->cardinality;
+ union_cardinality += max - min + 1;
+ union_cardinality -=
+ bitset_lenrange_cardinality(bitset->words, min, max - min);
+
+ if (union_cardinality == INT32_C(0x10000)) {
+ *result_type = RUN_CONTAINER_TYPE;
+ return run_container_create_range(0, INT32_C(0x10000));
+ } else {
+ *result_type = BITSET_CONTAINER_TYPE;
+ bitset_set_lenrange(bitset->words, min, max - min);
+ bitset->cardinality = union_cardinality;
+ return bitset;
+ }
+ }
+ case ARRAY_CONTAINER_TYPE: {
+ array_container_t *array = CAST_array(c);
+
+ int32_t nvals_greater =
+ count_greater(array->array, array->cardinality, (uint16_t)max);
+ int32_t nvals_less =
+ count_less(array->array, array->cardinality - nvals_greater,
+ (uint16_t)min);
+ int32_t union_cardinality =
+ nvals_less + (max - min + 1) + nvals_greater;
+
+ if (union_cardinality == INT32_C(0x10000)) {
+ *result_type = RUN_CONTAINER_TYPE;
+ return run_container_create_range(0, INT32_C(0x10000));
+ } else if (union_cardinality <= DEFAULT_MAX_SIZE) {
+ *result_type = ARRAY_CONTAINER_TYPE;
+ array_container_add_range_nvals(array, min, max, nvals_less,
+ nvals_greater);
+ return array;
+ } else {
+ *result_type = BITSET_CONTAINER_TYPE;
+ bitset_container_t *bitset =
bitset_container_from_array(array);
+ bitset_set_lenrange(bitset->words, min, max - min);
+ bitset->cardinality = union_cardinality;
+ return bitset;
+ }
+ }
+ case RUN_CONTAINER_TYPE: {
+ run_container_t *run = CAST_run(c);
+
+ int32_t nruns_greater =
+ rle16_count_greater(run->runs, run->n_runs, (uint16_t)max);
+ int32_t nruns_less = rle16_count_less(
+ run->runs, run->n_runs - nruns_greater, (uint16_t)min);
+
+ int32_t run_size_bytes =
+ (nruns_less + 1 + nruns_greater) * sizeof(rle16_t);
+ int32_t bitset_size_bytes =
+ BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+
+ if (run_size_bytes <= bitset_size_bytes) {
+ run_container_add_range_nruns(run, min, max, nruns_less,
+ nruns_greater);
+ *result_type = RUN_CONTAINER_TYPE;
+ return run;
+ } else {
+ return container_from_run_range(run, min, max, result_type);
+ }
+ }
+ default:
+ roaring_unreachable;
+ }
+}
+
+/*
+ * Removes all elements in range [min, max].
+ * Returns one of:
+ * - NULL if no elements left
+ * - pointer to the original container
+ * - pointer to a newly-allocated container (if it is more efficient)
+ *
+ * If the returned pointer is different from $container, then a new container
+ * has been created and the caller is responsible for freeing the original
+ * container.
+ */
+static inline container_t *container_remove_range(container_t *c, uint8_t type,
+ uint32_t min, uint32_t max,
+ uint8_t *result_type) {
+ switch (type) {
+ case BITSET_CONTAINER_TYPE: {
+ bitset_container_t *bitset = CAST_bitset(c);
+
+ int32_t result_cardinality =
+ bitset->cardinality -
+ bitset_lenrange_cardinality(bitset->words, min, max - min);
+
+ if (result_cardinality == 0) {
+ return NULL;
+ } else if (result_cardinality <= DEFAULT_MAX_SIZE) {
+ *result_type = ARRAY_CONTAINER_TYPE;
+ bitset_reset_range(bitset->words, min, max + 1);
+ bitset->cardinality = result_cardinality;
+ return array_container_from_bitset(bitset);
+ } else {
+ *result_type = BITSET_CONTAINER_TYPE;
+ bitset_reset_range(bitset->words, min, max + 1);
+ bitset->cardinality = result_cardinality;
+ return bitset;
+ }
+ }
+ case ARRAY_CONTAINER_TYPE: {
+ array_container_t *array = CAST_array(c);
+
+ int32_t nvals_greater =
+ count_greater(array->array, array->cardinality, (uint16_t)max);
+ int32_t nvals_less =
+ count_less(array->array, array->cardinality - nvals_greater,
+ (uint16_t)min);
+ int32_t result_cardinality = nvals_less + nvals_greater;
+
+ if (result_cardinality == 0) {
+ return NULL;
+ } else {
+ *result_type = ARRAY_CONTAINER_TYPE;
+ array_container_remove_range(
+ array, nvals_less, array->cardinality -
result_cardinality);
+ return array;
+ }
+ }
+ case RUN_CONTAINER_TYPE: {
+ run_container_t *run = CAST_run(c);
+
+ if (run->n_runs == 0) {
+ return NULL;
+ }
+ if (min <= run_container_minimum(run) &&
+ max >= run_container_maximum(run)) {
+ return NULL;
+ }
+
+ run_container_remove_range(run, min, max);
+ return convert_run_to_efficient_container(run, result_type);
+ }
+ default:
+ roaring_unreachable;
+ }
+}
+
+#ifdef __cplusplus
+using api::roaring_container_iterator_t;
+#endif
+
+/**
+ * Initializes the iterator at the first entry in the container.
+ */
+roaring_container_iterator_t container_init_iterator(const container_t *c,
+ uint8_t typecode,
+ uint16_t *value);
+
+/**
+ * Initializes the iterator at the last entry in the container.
+ */
+roaring_container_iterator_t container_init_iterator_last(const container_t *c,
+ uint8_t typecode,
+ uint16_t *value);
+
+/**
+ * Moves the iterator to the next entry. Returns true and sets `value` if a
+ * value is present.
+ */
+bool container_iterator_next(const container_t *c, uint8_t typecode,
+ roaring_container_iterator_t *it, uint16_t
*value);
+
+/**
+ * Moves the iterator to the previous entry. Returns true and sets `value` if a
+ * value is present.
+ */
+bool container_iterator_prev(const container_t *c, uint8_t typecode,
+ roaring_container_iterator_t *it, uint16_t
*value);
+
+/**
+ * Moves the iterator to the smallest entry that is greater than or equal to
+ * `val`. Returns true and sets `value_out` if a value is present. `value_out`
+ * should be initialized to a value.
+ */
+bool container_iterator_lower_bound(const container_t *c, uint8_t typecode,
+ roaring_container_iterator_t *it,
+ uint16_t *value_out, uint16_t val);
+
+/**
+ * Reads up to `count` entries from the container, and writes them into `buf`
+ * as `high16 | entry`. Returns true and sets `value_out` if a value is present
+ * after reading the entries. Sets `consumed` to the number of values read.
+ * `count` should be greater than zero.
+ */
+bool container_iterator_read_into_uint32(const container_t *c, uint8_t
typecode,
+ roaring_container_iterator_t *it,
+ uint32_t high16, uint32_t *buf,
+ uint32_t count, uint32_t *consumed,
+ uint16_t *value_out);
+
+/**
+ * Reads up to `count` entries from the container, and writes them into `buf`
+ * as `high48 | entry`. Returns true and sets `value_out` if a value is present
+ * after reading the entries. Sets `consumed` to the number of values read.
+ * `count` should be greater than zero.
+ */
+bool container_iterator_read_into_uint64(const container_t *c, uint8_t
typecode,
+ roaring_container_iterator_t *it,
+ uint64_t high48, uint64_t *buf,
+ uint32_t count, uint32_t *consumed,
+ uint16_t *value_out);
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif
+/* end file include/roaring/containers/containers.h */
+/* begin file include/roaring/roaring_array.h */
+#ifndef INCLUDE_ROARING_ARRAY_H
+#define INCLUDE_ROARING_ARRAY_H
+
+#include <assert.h>
+#include <stdbool.h>
+#include <stdint.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+
+// Note: in pure C++ code, you should avoid putting `using` in header files
+using api::roaring_array_t;
+
+namespace internal {
+#endif
+
+enum {
+ SERIAL_COOKIE_NO_RUNCONTAINER = 12346,
+ SERIAL_COOKIE = 12347,
+ FROZEN_COOKIE = 13766,
+ NO_OFFSET_THRESHOLD = 4
+};
+
+/**
+ * Create a new roaring array
+ */
+roaring_array_t *ra_create(void);
+
+/**
+ * Initialize an existing roaring array with the specified capacity (in number
+ * of containers)
+ */
+bool ra_init_with_capacity(roaring_array_t *new_ra, uint32_t cap);
+
+/**
+ * Initialize with zero capacity
+ */
+void ra_init(roaring_array_t *t);
+
+/**
+ * Copies this roaring array, we assume that dest is not initialized
+ */
+bool ra_copy(const roaring_array_t *source, roaring_array_t *dest,
+ bool copy_on_write);
+
+/*
+ * Shrinks the capacity, returns the number of bytes saved.
+ */
+int ra_shrink_to_fit(roaring_array_t *ra);
+
+/**
+ * Copies this roaring array, we assume that dest is initialized
+ */
+bool ra_overwrite(const roaring_array_t *source, roaring_array_t *dest,
+ bool copy_on_write);
+
+/**
+ * Frees the memory used by a roaring array
+ */
+void ra_clear(roaring_array_t *r);
+
+/**
+ * Frees the memory used by a roaring array, but does not free the containers
+ */
+void ra_clear_without_containers(roaring_array_t *r);
+
+/**
+ * Frees just the containers
+ */
+void ra_clear_containers(roaring_array_t *ra);
+
+/**
+ * Get the index corresponding to a 16-bit key
+ */
+inline int32_t ra_get_index(const roaring_array_t *ra, uint16_t x) {
+ if ((ra->size == 0) || ra->keys[ra->size - 1] == x) return ra->size - 1;
+ return binarySearch(ra->keys, (int32_t)ra->size, x);
+}
+
+/**
+ * Retrieves the container at index i, filling in the typecode
+ */
+inline container_t *ra_get_container_at_index(const roaring_array_t *ra,
+ uint16_t i, uint8_t *typecode) {
+ *typecode = ra->typecodes[i];
+ return ra->containers[i];
+}
+
+/**
+ * Retrieves the key at index i
+ */
+inline uint16_t ra_get_key_at_index(const roaring_array_t *ra, uint16_t i) {
+ return ra->keys[i];
+}
+
+/**
+ * Add a new key-value pair at index i
+ */
+void ra_insert_new_key_value_at(roaring_array_t *ra, int32_t i, uint16_t key,
+ container_t *c, uint8_t typecode);
+
+/**
+ * Append a new key-value pair
+ */
+void ra_append(roaring_array_t *ra, uint16_t key, container_t *c,
+ uint8_t typecode);
+
+/**
+ * Append a new key-value pair to ra, cloning (in COW sense) a value from sa
+ * at index index
+ */
+void ra_append_copy(roaring_array_t *ra, const roaring_array_t *sa,
+ uint16_t index, bool copy_on_write);
+
+/**
+ * Append new key-value pairs to ra, cloning (in COW sense) values from sa
+ * at indexes
+ * [start_index, end_index)
+ */
+void ra_append_copy_range(roaring_array_t *ra, const roaring_array_t *sa,
+ int32_t start_index, int32_t end_index,
+ bool copy_on_write);
+
+/** appends from sa to ra, ending with the greatest key that is
+ * is less or equal stopping_key
+ */
+void ra_append_copies_until(roaring_array_t *ra, const roaring_array_t *sa,
+ uint16_t stopping_key, bool copy_on_write);
+
+/** appends from sa to ra, starting with the smallest key that is
+ * is strictly greater than before_start
+ */
+
+void ra_append_copies_after(roaring_array_t *ra, const roaring_array_t *sa,
+ uint16_t before_start, bool copy_on_write);
+
+/**
+ * Move the key-value pairs to ra from sa at indexes
+ * [start_index, end_index), old array should not be freed
+ * (use ra_clear_without_containers)
+ **/
+void ra_append_move_range(roaring_array_t *ra, roaring_array_t *sa,
+ int32_t start_index, int32_t end_index);
+/**
+ * Append new key-value pairs to ra, from sa at indexes
+ * [start_index, end_index)
+ */
+void ra_append_range(roaring_array_t *ra, roaring_array_t *sa,
+ int32_t start_index, int32_t end_index,
+ bool copy_on_write);
+
+/**
+ * Set the container at the corresponding index using the specified
+ * typecode.
+ */
+inline void ra_set_container_at_index(const roaring_array_t *ra, int32_t i,
+ container_t *c, uint8_t typecode) {
+ assert(i < ra->size);
+ ra->containers[i] = c;
+ ra->typecodes[i] = typecode;
+}
+
+container_t *ra_get_container(roaring_array_t *ra, uint16_t x,
+ uint8_t *typecode);
+
+/**
+ * If needed, increase the capacity of the array so that it can fit k values
+ * (at
+ * least);
+ */
+bool extend_array(roaring_array_t *ra, int32_t k);
+
+inline int32_t ra_get_size(const roaring_array_t *ra) { return ra->size; }
+
+static inline int32_t ra_advance_until(const roaring_array_t *ra, uint16_t x,
+ int32_t pos) {
+ return advanceUntil(ra->keys, pos, ra->size, x);
+}
+
+int32_t ra_advance_until_freeing(roaring_array_t *ra, uint16_t x, int32_t pos);
+
+void ra_downsize(roaring_array_t *ra, int32_t new_length);
+
+inline void ra_replace_key_and_container_at_index(roaring_array_t *ra,
+ int32_t i, uint16_t key,
+ container_t *c,
+ uint8_t typecode) {
+ assert(i < ra->size);
+
+ ra->keys[i] = key;
+ ra->containers[i] = c;
+ ra->typecodes[i] = typecode;
+}
+
+// write set bits to an array
+void ra_to_uint32_array(const roaring_array_t *ra, uint32_t *ans);
+
+bool ra_range_uint32_array(const roaring_array_t *ra, size_t offset,
+ size_t limit, uint32_t *ans);
+
+/**
+ * write a bitmap to a buffer. This is meant to be compatible with
+ * the
+ * Java and Go versions. Return the size in bytes of the serialized
+ * output (which should be ra_portable_size_in_bytes(ra)).
+ */
+size_t ra_portable_serialize(const roaring_array_t *ra, char *buf);
+
+/**
+ * read a bitmap from a serialized version. This is meant to be compatible
+ * with the Java and Go versions.
+ * maxbytes indicates how many bytes available from buf.
+ * When the function returns true, roaring_array_t is populated with the data
+ * and *readbytes indicates how many bytes were read. In all cases, if the
+ * function returns true, then maxbytes >= *readbytes.
+ */
+bool ra_portable_deserialize(roaring_array_t *ra, const char *buf,
+ const size_t maxbytes, size_t *readbytes);
+
+/**
+ * Quickly checks whether there is a serialized bitmap at the pointer,
+ * not exceeding size "maxbytes" in bytes. This function does not allocate
+ * memory dynamically.
+ *
+ * This function returns 0 if and only if no valid bitmap is found.
+ * Otherwise, it returns how many bytes are occupied by the bitmap data.
+ */
+size_t ra_portable_deserialize_size(const char *buf, const size_t maxbytes);
+
+/**
+ * How many bytes are required to serialize this bitmap (meant to be
+ * compatible
+ * with Java and Go versions)
+ */
+size_t ra_portable_size_in_bytes(const roaring_array_t *ra);
+
+/**
+ * return true if it contains at least one run container.
+ */
+bool ra_has_run_container(const roaring_array_t *ra);
+
+/**
+ * Size of the header when serializing (meant to be compatible
+ * with Java and Go versions)
+ */
+uint32_t ra_portable_header_size(const roaring_array_t *ra);
+
+/**
+ * If the container at the index i is share, unshare it (creating a local
+ * copy if needed).
+ */
+static inline void ra_unshare_container_at_index(roaring_array_t *ra,
+ uint16_t i) {
+ assert(i < ra->size);
+ ra->containers[i] =
+ get_writable_copy_if_shared(ra->containers[i], &ra->typecodes[i]);
+}
+
+/**
+ * remove at index i, sliding over all entries after i
+ */
+void ra_remove_at_index(roaring_array_t *ra, int32_t i);
+
+/**
+ * clears all containers, sets the size at 0 and shrinks the memory usage.
+ */
+void ra_reset(roaring_array_t *ra);
+
+/**
+ * remove at index i, sliding over all entries after i. Free removed container.
+ */
+void ra_remove_at_index_and_free(roaring_array_t *ra, int32_t i);
+
+/**
+ * remove a chunk of indices, sliding over entries after it
+ */
+// void ra_remove_index_range(roaring_array_t *ra, int32_t begin, int32_t end);
+
+// used in inplace andNot only, to slide left the containers from
+// the mutated RoaringBitmap that are after the largest container of
+// the argument RoaringBitmap. It is followed by a call to resize.
+//
+void ra_copy_range(roaring_array_t *ra, uint32_t begin, uint32_t end,
+ uint32_t new_begin);
+
+/**
+ * Shifts rightmost $count containers to the left (distance < 0) or
+ * to the right (distance > 0).
+ * Allocates memory if necessary.
+ * This function doesn't free or create new containers.
+ * Caller is responsible for that.
+ */
+void ra_shift_tail(roaring_array_t *ra, int32_t count, int32_t distance);
+
+#ifdef __cplusplus
+} // namespace internal
+}
+} // extern "C" { namespace roaring {
+#endif
+
+#endif
+/* end file include/roaring/roaring_array.h */
+/* begin file include/roaring/art/art.h */
+#ifndef ART_ART_H
+#define ART_ART_H
+
+#include <stdbool.h>
+#include <stddef.h>
+#include <stdint.h>
+
+/*
+ * This file contains an implementation of an Adaptive Radix Tree as described
+ * in https://db.in.tum.de/~leis/papers/ART.pdf.
+ *
+ * The ART contains the keys in _byte lexographical_ order.
+ *
+ * Other features:
+ * * Fixed 48 bit key length: all keys are assumed to be be 48 bits in size.
+ * This allows us to put the key and key prefixes directly in nodes,
reducing
+ * indirection at no additional memory overhead.
+ * * Key compression: the only inner nodes created are at points where key
+ * chunks _differ_. This means that if there are two entries with different
+ * high 48 bits, then there is only one inner node containing the common key
+ * prefix, and two leaves.
+ * * Intrusive leaves: the leaf struct is included in user values. This
removes
+ * a layer of indirection.
+ */
+
+// Fixed length of keys in the ART. All keys are assumed to be of this length.
+#define ART_KEY_BYTES 6
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+typedef uint8_t art_key_chunk_t;
+typedef struct art_node_s art_node_t;
+
+/**
+ * Wrapper to allow an empty tree.
+ */
+typedef struct art_s {
+ art_node_t *root;
+} art_t;
+
+/**
+ * Values inserted into the tree have to be cast-able to art_val_t. This
+ * improves performance by reducing indirection.
+ *
+ * NOTE: Value pointers must be unique! This is because each value struct
+ * contains the key corresponding to the value.
+ */
+typedef struct art_val_s {
+ art_key_chunk_t key[ART_KEY_BYTES];
+} art_val_t;
+
+/**
+ * Compares two keys, returns their relative order:
+ * * Key 1 < key 2: returns a negative value
+ * * Key 1 == key 2: returns 0
+ * * Key 1 > key 2: returns a positive value
+ */
+int art_compare_keys(const art_key_chunk_t key1[],
+ const art_key_chunk_t key2[]);
+
+/**
+ * Inserts the given key and value.
+ */
+void art_insert(art_t *art, const art_key_chunk_t *key, art_val_t *val);
+
+/**
+ * Returns the value erased, NULL if not found.
+ */
+art_val_t *art_erase(art_t *art, const art_key_chunk_t *key);
+
+/**
+ * Returns the value associated with the given key, NULL if not found.
+ */
+art_val_t *art_find(const art_t *art, const art_key_chunk_t *key);
+
+/**
+ * Returns true if the ART is empty.
+ */
+bool art_is_empty(const art_t *art);
+
+/**
+ * Frees the nodes of the ART except the values, which the user is expected to
+ * free.
+ */
+void art_free(art_t *art);
+
+/**
+ * Returns the size in bytes of the ART. Includes size of pointers to values,
+ * but not the values themselves.
+ */
+size_t art_size_in_bytes(const art_t *art);
+
+/**
+ * Prints the ART using printf, useful for debugging.
+ */
+void art_printf(const art_t *art);
+
+/**
+ * Callback for validating the value stored in a leaf.
+ *
+ * Should return true if the value is valid, false otherwise
+ * If false is returned, `*reason` should be set to a static string describing
+ * the reason for the failure.
+ */
+typedef bool (*art_validate_cb_t)(const art_val_t *val, const char **reason);
+
+/**
+ * Validate the ART tree, ensuring it is internally consistent.
+ */
+bool art_internal_validate(const art_t *art, const char **reason,
+ art_validate_cb_t validate_cb);
+
+/**
+ * ART-internal iterator bookkeeping. Users should treat this as an opaque
type.
+ */
+typedef struct art_iterator_frame_s {
+ art_node_t *node;
+ uint8_t index_in_node;
+} art_iterator_frame_t;
+
+/**
+ * Users should only access `key` and `value` in iterators. The iterator is
+ * valid when `value != NULL`.
+ */
+typedef struct art_iterator_s {
+ art_key_chunk_t key[ART_KEY_BYTES];
+ art_val_t *value;
+
+ uint8_t depth; // Key depth
+ uint8_t frame; // Node depth
+
+ // State for each node in the ART the iterator has travelled from the root.
+ // This is `ART_KEY_BYTES + 1` because it includes state for the leaf too.
+ art_iterator_frame_t frames[ART_KEY_BYTES + 1];
+} art_iterator_t;
+
+/**
+ * Creates an iterator initialzed to the first or last entry in the ART,
+ * depending on `first`. The iterator is not valid if there are no entries in
+ * the ART.
+ */
+art_iterator_t art_init_iterator(const art_t *art, bool first);
+
+/**
+ * Returns an initialized iterator positioned at a key equal to or greater than
+ * the given key, if it exists.
+ */
+art_iterator_t art_lower_bound(const art_t *art, const art_key_chunk_t *key);
+
+/**
+ * Returns an initialized iterator positioned at a key greater than the given
+ * key, if it exists.
+ */
+art_iterator_t art_upper_bound(const art_t *art, const art_key_chunk_t *key);
+
+/**
+ * The following iterator movement functions return true if a new entry was
+ * encountered.
+ */
+bool art_iterator_move(art_iterator_t *iterator, bool forward);
+bool art_iterator_next(art_iterator_t *iterator);
+bool art_iterator_prev(art_iterator_t *iterator);
+
+/**
+ * Moves the iterator forward to a key equal to or greater than the given key.
+ */
+bool art_iterator_lower_bound(art_iterator_t *iterator,
+ const art_key_chunk_t *key);
+
+/**
+ * Insert the value and positions the iterator at the key.
+ */
+void art_iterator_insert(art_t *art, art_iterator_t *iterator,
+ const art_key_chunk_t *key, art_val_t *val);
+
+/**
+ * Erase the value pointed at by the iterator. Moves the iterator to the next
+ * leaf. Returns the value erased or NULL if nothing was erased.
+ */
+art_val_t *art_iterator_erase(art_t *art, art_iterator_t *iterator);
+
+#ifdef __cplusplus
+} // extern "C"
+} // namespace roaring
+} // namespace internal
+#endif
+
+#endif
+/* end file include/roaring/art/art.h */
+/* begin file src/array_util.c */
+#include <assert.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#ifdef __cplusplus
+using namespace ::roaring::internal;
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+extern inline int32_t binarySearch(const uint16_t *array, int32_t lenarray,
+ uint16_t ikey);
+
+#if CROARING_IS_X64
+// used by intersect_vector16
+ALIGNED(0x1000)
+static const uint8_t shuffle_mask16[] = {
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 4, 5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 4, 5, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
+ 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 4, 5, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 4, 5, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 4, 5, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
+ 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
+ 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 4, 5, 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 10, 11, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 4, 5, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 10, 11, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
+ 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 4, 5, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
+ 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 10, 11,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
+ 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 4, 5, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 10, 11,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 4, 5, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 10, 11, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9,
+ 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 10, 11, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
+ 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 4, 5, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9,
+ 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9,
+ 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 10, 11,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 4, 5, 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9,
+ 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
+ 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
+ 0xFF, 0xFF, 0xFF, 0xFF, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 12, 13,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 12, 13, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 12, 13,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 4, 5, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 12, 13, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 4, 5, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 12, 13, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
+ 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 12, 13, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
+ 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 4, 5, 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
+ 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 12, 13,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, 12, 13, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 4, 5, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 8, 9, 12, 13,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
+ 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 4, 5, 8, 9, 12, 13, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
+ 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 8, 9,
+ 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
+ 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 4, 5, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 8, 9,
+ 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 4, 5, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
+ 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 10, 11, 12, 13, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11,
+ 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 10, 11, 12, 13, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
+ 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 4, 5, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 10, 11,
+ 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11,
+ 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 10, 11, 12, 13,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 4, 5, 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 10, 11,
+ 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
+ 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13,
+ 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9,
+ 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 10, 11,
+ 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9,
+ 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 4, 5, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 10, 11,
+ 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 4, 5, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
+ 6, 7, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 10, 11,
+ 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
+ 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13,
+ 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 10, 11,
+ 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
+ 6, 7, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 14, 15, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 4, 5, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 14, 15, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 4, 5, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 4, 5, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 4, 5, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 14, 15, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 14, 15, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
+ 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 4, 5, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 4, 5, 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
+ 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 10, 11,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 10, 11, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 10, 11,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 4, 5, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 10, 11, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 4, 5, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 6, 7, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 10, 11, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
+ 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 6, 7, 10, 11, 14, 15, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 10, 11, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
+ 6, 7, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
+ 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 10, 11,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, 10, 11, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 4, 5, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 8, 9, 10, 11,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
+ 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9, 10, 11, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
+ 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 6, 7, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 8, 9,
+ 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
+ 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF,
+ 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 12, 13, 14, 15, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 12, 13,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 12, 13, 14, 15, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
+ 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 4, 5, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 12, 13,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 12, 13,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 12, 13, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 4, 5, 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 12, 13,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
+ 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9,
+ 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 12, 13,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9,
+ 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 4, 5, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 12, 13,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 4, 5, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 6, 7, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 12, 13,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
+ 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 12, 13,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
+ 6, 7, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 10, 11, 12, 13,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11, 12, 13, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 4, 5, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 10, 11, 12, 13,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
+ 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11, 12, 13, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
+ 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 10, 11,
+ 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
+ 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 10, 11,
+ 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 10, 11, 12, 13,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9,
+ 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 10, 11, 12, 13,
+ 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
+ 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9,
+ 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 10, 11,
+ 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
+ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF,
+ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 2, 3, 4, 5,
+ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
+ 12, 13, 14, 15};
+
+/**
+ * From Schlegel et al., Fast Sorted-Set Intersection using SIMD Instructions
+ * Optimized by D. Lemire on May 3rd 2013
+ */
+CROARING_TARGET_AVX2
+int32_t intersect_vector16(const uint16_t *__restrict__ A, size_t s_a,
+ const uint16_t *__restrict__ B, size_t s_b,
+ uint16_t *C) {
+ size_t count = 0;
+ size_t i_a = 0, i_b = 0;
+ const int vectorlength = sizeof(__m128i) / sizeof(uint16_t);
+ const size_t st_a = (s_a / vectorlength) * vectorlength;
+ const size_t st_b = (s_b / vectorlength) * vectorlength;
+ __m128i v_a, v_b;
+ if ((i_a < st_a) && (i_b < st_b)) {
+ v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+ v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+ while ((A[i_a] == 0) || (B[i_b] == 0)) {
+ const __m128i res_v = _mm_cmpestrm(
+ v_b, vectorlength, v_a, vectorlength,
+ _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+ const int r = _mm_extract_epi32(res_v, 0);
+ __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16 +
r);
+ __m128i p = _mm_shuffle_epi8(v_a, sm16);
+ _mm_storeu_si128((__m128i *)&C[count], p); // can overflow
+ count += _mm_popcnt_u32(r);
+ const uint16_t a_max = A[i_a + vectorlength - 1];
+ const uint16_t b_max = B[i_b + vectorlength - 1];
+ if (a_max <= b_max) {
+ i_a += vectorlength;
+ if (i_a == st_a) break;
+ v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+ }
+ if (b_max <= a_max) {
+ i_b += vectorlength;
+ if (i_b == st_b) break;
+ v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+ }
+ }
+ if ((i_a < st_a) && (i_b < st_b))
+ while (true) {
+ const __m128i res_v = _mm_cmpistrm(
+ v_b, v_a,
+ _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+ const int r = _mm_extract_epi32(res_v, 0);
+ __m128i sm16 =
+ _mm_loadu_si128((const __m128i *)shuffle_mask16 + r);
+ __m128i p = _mm_shuffle_epi8(v_a, sm16);
+ _mm_storeu_si128((__m128i *)&C[count], p); // can overflow
+ count += _mm_popcnt_u32(r);
+ const uint16_t a_max = A[i_a + vectorlength - 1];
+ const uint16_t b_max = B[i_b + vectorlength - 1];
+ if (a_max <= b_max) {
+ i_a += vectorlength;
+ if (i_a == st_a) break;
+ v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+ }
+ if (b_max <= a_max) {
+ i_b += vectorlength;
+ if (i_b == st_b) break;
+ v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+ }
+ }
+ }
+ // intersect the tail using scalar intersection
+ while (i_a < s_a && i_b < s_b) {
+ uint16_t a = A[i_a];
+ uint16_t b = B[i_b];
+ if (a < b) {
+ i_a++;
+ } else if (b < a) {
+ i_b++;
+ } else {
+ C[count] = a; //==b;
+ count++;
+ i_a++;
+ i_b++;
+ }
+ }
+ return (int32_t)count;
+}
+
+ALLOW_UNALIGNED
+int array_container_to_uint32_array_vector16(void *vout, const uint16_t *array,
+ size_t cardinality,
+ uint32_t base) {
+ int outpos = 0;
+ uint32_t *out = (uint32_t *)vout;
+ size_t i = 0;
+ for (; i + sizeof(__m128i) / sizeof(uint16_t) <= cardinality;
+ i += sizeof(__m128i) / sizeof(uint16_t)) {
+ __m128i vinput = _mm_loadu_si128((const __m128i *)(array + i));
+ __m256i voutput = _mm256_add_epi32(_mm256_cvtepu16_epi32(vinput),
+ _mm256_set1_epi32(base));
+ _mm256_storeu_si256((__m256i *)(out + outpos), voutput);
+ outpos += sizeof(__m256i) / sizeof(uint32_t);
+ }
+ for (; i < cardinality; ++i) {
+ const uint32_t val = base + array[i];
+ memcpy(out + outpos, &val,
+ sizeof(uint32_t)); // should be compiled as a MOV on x64
+ outpos++;
+ }
+ return outpos;
+}
+
+int32_t intersect_vector16_inplace(uint16_t *__restrict__ A, size_t s_a,
+ const uint16_t *__restrict__ B, size_t s_b)
{
+ size_t count = 0;
+ size_t i_a = 0, i_b = 0;
+ const int vectorlength = sizeof(__m128i) / sizeof(uint16_t);
+ const size_t st_a = (s_a / vectorlength) * vectorlength;
+ const size_t st_b = (s_b / vectorlength) * vectorlength;
+ __m128i v_a, v_b;
+ if ((i_a < st_a) && (i_b < st_b)) {
+ v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+ v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+ __m128i tmp[2] = {_mm_setzero_si128()};
+ size_t tmp_count = 0;
+ while ((A[i_a] == 0) || (B[i_b] == 0)) {
+ const __m128i res_v = _mm_cmpestrm(
+ v_b, vectorlength, v_a, vectorlength,
+ _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+ const int r = _mm_extract_epi32(res_v, 0);
+ __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16 +
r);
+ __m128i p = _mm_shuffle_epi8(v_a, sm16);
+ _mm_storeu_si128((__m128i *)&((uint16_t *)tmp)[tmp_count], p);
+ tmp_count += _mm_popcnt_u32(r);
+ const uint16_t a_max = A[i_a + vectorlength - 1];
+ const uint16_t b_max = B[i_b + vectorlength - 1];
+ if (a_max <= b_max) {
+ _mm_storeu_si128((__m128i *)&A[count], tmp[0]);
+ _mm_storeu_si128(tmp, _mm_setzero_si128());
+ count += tmp_count;
+ tmp_count = 0;
+ i_a += vectorlength;
+ if (i_a == st_a) break;
+ v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+ }
+ if (b_max <= a_max) {
+ i_b += vectorlength;
+ if (i_b == st_b) break;
+ v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+ }
+ }
+ if ((i_a < st_a) && (i_b < st_b)) {
+ while (true) {
+ const __m128i res_v = _mm_cmpistrm(
+ v_b, v_a,
+ _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+ const int r = _mm_extract_epi32(res_v, 0);
+ __m128i sm16 =
+ _mm_loadu_si128((const __m128i *)shuffle_mask16 + r);
+ __m128i p = _mm_shuffle_epi8(v_a, sm16);
+ _mm_storeu_si128((__m128i *)&((uint16_t *)tmp)[tmp_count], p);
+ tmp_count += _mm_popcnt_u32(r);
+ const uint16_t a_max = A[i_a + vectorlength - 1];
+ const uint16_t b_max = B[i_b + vectorlength - 1];
+ if (a_max <= b_max) {
+ _mm_storeu_si128((__m128i *)&A[count], tmp[0]);
+ _mm_storeu_si128(tmp, _mm_setzero_si128());
+ count += tmp_count;
+ tmp_count = 0;
+ i_a += vectorlength;
+ if (i_a == st_a) break;
+ v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+ }
+ if (b_max <= a_max) {
+ i_b += vectorlength;
+ if (i_b == st_b) break;
+ v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+ }
+ }
+ }
+ // tmp_count <= 8, so this does not affect efficiency so much
+ for (size_t i = 0; i < tmp_count; i++) {
+ A[count] = ((uint16_t *)tmp)[i];
+ count++;
+ }
+ i_a += tmp_count; // We can at least jump pass $tmp_count elements in
A
+ }
+ // intersect the tail using scalar intersection
+ while (i_a < s_a && i_b < s_b) {
+ uint16_t a = A[i_a];
+ uint16_t b = B[i_b];
+ if (a < b) {
+ i_a++;
+ } else if (b < a) {
+ i_b++;
+ } else {
+ A[count] = a; //==b;
+ count++;
+ i_a++;
+ i_b++;
+ }
+ }
+ return (int32_t)count;
+}
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+int32_t intersect_vector16_cardinality(const uint16_t *__restrict__ A,
+ size_t s_a,
+ const uint16_t *__restrict__ B,
+ size_t s_b) {
+ size_t count = 0;
+ size_t i_a = 0, i_b = 0;
+ const int vectorlength = sizeof(__m128i) / sizeof(uint16_t);
+ const size_t st_a = (s_a / vectorlength) * vectorlength;
+ const size_t st_b = (s_b / vectorlength) * vectorlength;
+ __m128i v_a, v_b;
+ if ((i_a < st_a) && (i_b < st_b)) {
+ v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+ v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+ while ((A[i_a] == 0) || (B[i_b] == 0)) {
+ const __m128i res_v = _mm_cmpestrm(
+ v_b, vectorlength, v_a, vectorlength,
+ _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+ const int r = _mm_extract_epi32(res_v, 0);
+ count += _mm_popcnt_u32(r);
+ const uint16_t a_max = A[i_a + vectorlength - 1];
+ const uint16_t b_max = B[i_b + vectorlength - 1];
+ if (a_max <= b_max) {
+ i_a += vectorlength;
+ if (i_a == st_a) break;
+ v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+ }
+ if (b_max <= a_max) {
+ i_b += vectorlength;
+ if (i_b == st_b) break;
+ v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+ }
+ }
+ if ((i_a < st_a) && (i_b < st_b))
+ while (true) {
+ const __m128i res_v = _mm_cmpistrm(
+ v_b, v_a,
+ _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+ const int r = _mm_extract_epi32(res_v, 0);
+ count += _mm_popcnt_u32(r);
+ const uint16_t a_max = A[i_a + vectorlength - 1];
+ const uint16_t b_max = B[i_b + vectorlength - 1];
+ if (a_max <= b_max) {
+ i_a += vectorlength;
+ if (i_a == st_a) break;
+ v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+ }
+ if (b_max <= a_max) {
+ i_b += vectorlength;
+ if (i_b == st_b) break;
+ v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+ }
+ }
+ }
+ // intersect the tail using scalar intersection
+ while (i_a < s_a && i_b < s_b) {
+ uint16_t a = A[i_a];
+ uint16_t b = B[i_b];
+ if (a < b) {
+ i_a++;
+ } else if (b < a) {
+ i_b++;
+ } else {
+ count++;
+ i_a++;
+ i_b++;
+ }
+ }
+ return (int32_t)count;
+}
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+/////////
+// Warning:
+// This function may not be safe if A == C or B == C.
+/////////
+int32_t difference_vector16(const uint16_t *__restrict__ A, size_t s_a,
+ const uint16_t *__restrict__ B, size_t s_b,
+ uint16_t *C) {
+ // we handle the degenerate case
+ if (s_a == 0) return 0;
+ if (s_b == 0) {
+ if (A != C) memcpy(C, A, sizeof(uint16_t) * s_a);
+ return (int32_t)s_a;
+ }
+ // handle the leading zeroes, it is messy but it allows us to use the fast
+ // _mm_cmpistrm instrinsic safely
+ int32_t count = 0;
+ if ((A[0] == 0) || (B[0] == 0)) {
+ if ((A[0] == 0) && (B[0] == 0)) {
+ A++;
+ s_a--;
+ B++;
+ s_b--;
+ } else if (A[0] == 0) {
+ C[count++] = 0;
+ A++;
+ s_a--;
+ } else {
+ B++;
+ s_b--;
+ }
+ }
+ // at this point, we have two non-empty arrays, made of non-zero
+ // increasing values.
+ size_t i_a = 0, i_b = 0;
+ const size_t vectorlength = sizeof(__m128i) / sizeof(uint16_t);
+ const size_t st_a = (s_a / vectorlength) * vectorlength;
+ const size_t st_b = (s_b / vectorlength) * vectorlength;
+ if ((i_a < st_a) && (i_b < st_b)) { // this is the vectorized code path
+ __m128i v_a, v_b; //, v_bmax;
+ // we load a vector from A and a vector from B
+ v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+ v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+ // we have a runningmask which indicates which values from A have been
+ // spotted in B, these don't get written out.
+ __m128i runningmask_a_found_in_b = _mm_setzero_si128();
+ /****
+ * start of the main vectorized loop
+ *****/
+ while (true) {
+ // afoundinb will contain a mask indicate for each entry in A
+ // whether it is seen
+ // in B
+ const __m128i a_found_in_b = _mm_cmpistrm(
+ v_b, v_a,
+ _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+ runningmask_a_found_in_b =
+ _mm_or_si128(runningmask_a_found_in_b, a_found_in_b);
+ // we always compare the last values of A and B
+ const uint16_t a_max = A[i_a + vectorlength - 1];
+ const uint16_t b_max = B[i_b + vectorlength - 1];
+ if (a_max <= b_max) {
+ // Ok. In this code path, we are ready to write our v_a
+ // because there is no need to read more from B, they will
+ // all be large values.
+ const int bitmask_belongs_to_difference =
+ _mm_extract_epi32(runningmask_a_found_in_b, 0) ^ 0xFF;
+ /*** next few lines are probably expensive *****/
+ __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16
+
+ bitmask_belongs_to_difference);
+ __m128i p = _mm_shuffle_epi8(v_a, sm16);
+ _mm_storeu_si128((__m128i *)&C[count], p); // can overflow
+ count += _mm_popcnt_u32(bitmask_belongs_to_difference);
+ // we advance a
+ i_a += vectorlength;
+ if (i_a == st_a) // no more
+ break;
+ runningmask_a_found_in_b = _mm_setzero_si128();
+ v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+ }
+ if (b_max <= a_max) {
+ // in this code path, the current v_b has become useless
+ i_b += vectorlength;
+ if (i_b == st_b) break;
+ v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+ }
+ }
+ // at this point, either we have i_a == st_a, which is the end of the
+ // vectorized processing,
+ // or we have i_b == st_b, and we are not done processing the
vector...
+ // so we need to finish it off.
+ if (i_a < st_a) { // we have unfinished business...
+ uint16_t buffer[8]; // buffer to do a masked load
+ memset(buffer, 0, 8 * sizeof(uint16_t));
+ memcpy(buffer, B + i_b, (s_b - i_b) * sizeof(uint16_t));
+ v_b = _mm_lddqu_si128((__m128i *)buffer);
+ const __m128i a_found_in_b = _mm_cmpistrm(
+ v_b, v_a,
+ _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+ runningmask_a_found_in_b =
+ _mm_or_si128(runningmask_a_found_in_b, a_found_in_b);
+ const int bitmask_belongs_to_difference =
+ _mm_extract_epi32(runningmask_a_found_in_b, 0) ^ 0xFF;
+ __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16 +
+ bitmask_belongs_to_difference);
+ __m128i p = _mm_shuffle_epi8(v_a, sm16);
+ _mm_storeu_si128((__m128i *)&C[count], p); // can overflow
+ count += _mm_popcnt_u32(bitmask_belongs_to_difference);
+ i_a += vectorlength;
+ }
+ // at this point we should have i_a == st_a and i_b == st_b
+ }
+ // do the tail using scalar code
+ while (i_a < s_a && i_b < s_b) {
+ uint16_t a = A[i_a];
+ uint16_t b = B[i_b];
+ if (b < a) {
+ i_b++;
+ } else if (a < b) {
+ C[count] = a;
+ count++;
+ i_a++;
+ } else { //==
+ i_a++;
+ i_b++;
+ }
+ }
+ if (i_a < s_a) {
+ if (C == A) {
+ assert((size_t)count <= i_a);
+ if ((size_t)count < i_a) {
+ memmove(C + count, A + i_a, sizeof(uint16_t) * (s_a - i_a));
+ }
+ } else {
+ for (size_t i = 0; i < (s_a - i_a); i++) {
+ C[count + i] = A[i + i_a];
+ }
+ }
+ count += (int32_t)(s_a - i_a);
+ }
+ return count;
+}
+CROARING_UNTARGET_AVX2
+#endif // CROARING_IS_X64
+
+/**
+ * Branchless binary search going after 4 values at once.
+ * Assumes that array is sorted.
+ * You have that array[*index1] >= target1, array[*index12] >= target2, ...
+ * except when *index1 = n, in which case you know that all values in array are
+ * smaller than target1, and so forth.
+ * It has logarithmic complexity.
+ */
+static void binarySearch4(const uint16_t *array, int32_t n, uint16_t target1,
+ uint16_t target2, uint16_t target3, uint16_t target4,
+ int32_t *index1, int32_t *index2, int32_t *index3,
+ int32_t *index4) {
+ const uint16_t *base1 = array;
+ const uint16_t *base2 = array;
+ const uint16_t *base3 = array;
+ const uint16_t *base4 = array;
+ if (n == 0) return;
+ while (n > 1) {
+ int32_t half = n >> 1;
+ base1 = (base1[half] < target1) ? &base1[half] : base1;
+ base2 = (base2[half] < target2) ? &base2[half] : base2;
+ base3 = (base3[half] < target3) ? &base3[half] : base3;
+ base4 = (base4[half] < target4) ? &base4[half] : base4;
+ n -= half;
+ }
+ *index1 = (int32_t)((*base1 < target1) + base1 - array);
+ *index2 = (int32_t)((*base2 < target2) + base2 - array);
+ *index3 = (int32_t)((*base3 < target3) + base3 - array);
+ *index4 = (int32_t)((*base4 < target4) + base4 - array);
+}
+
+/**
+ * Branchless binary search going after 2 values at once.
+ * Assumes that array is sorted.
+ * You have that array[*index1] >= target1, array[*index12] >= target2.
+ * except when *index1 = n, in which case you know that all values in array are
+ * smaller than target1, and so forth.
+ * It has logarithmic complexity.
+ */
+static void binarySearch2(const uint16_t *array, int32_t n, uint16_t target1,
+ uint16_t target2, int32_t *index1, int32_t *index2) {
+ const uint16_t *base1 = array;
+ const uint16_t *base2 = array;
+ if (n == 0) return;
+ while (n > 1) {
+ int32_t half = n >> 1;
+ base1 = (base1[half] < target1) ? &base1[half] : base1;
+ base2 = (base2[half] < target2) ? &base2[half] : base2;
+ n -= half;
+ }
+ *index1 = (int32_t)((*base1 < target1) + base1 - array);
+ *index2 = (int32_t)((*base2 < target2) + base2 - array);
+}
+
+/* Computes the intersection between one small and one large set of uint16_t.
+ * Stores the result into buffer and return the number of elements.
+ * Processes the small set in blocks of 4 values calling binarySearch4
+ * and binarySearch2. This approach can be slightly superior to a conventional
+ * galloping search in some instances.
+ */
+int32_t intersect_skewed_uint16(const uint16_t *small, size_t size_s,
+ const uint16_t *large, size_t size_l,
+ uint16_t *buffer) {
+ size_t pos = 0, idx_l = 0, idx_s = 0;
+
+ if (0 == size_s) {
+ return 0;
+ }
+ int32_t index1 = 0, index2 = 0, index3 = 0, index4 = 0;
+ while ((idx_s + 4 <= size_s) && (idx_l < size_l)) {
+ uint16_t target1 = small[idx_s];
+ uint16_t target2 = small[idx_s + 1];
+ uint16_t target3 = small[idx_s + 2];
+ uint16_t target4 = small[idx_s + 3];
+ binarySearch4(large + idx_l, (int32_t)(size_l - idx_l), target1,
+ target2, target3, target4, &index1, &index2, &index3,
+ &index4);
+ if ((index1 + idx_l < size_l) && (large[idx_l + index1] == target1)) {
+ buffer[pos++] = target1;
+ }
+ if ((index2 + idx_l < size_l) && (large[idx_l + index2] == target2)) {
+ buffer[pos++] = target2;
+ }
+ if ((index3 + idx_l < size_l) && (large[idx_l + index3] == target3)) {
+ buffer[pos++] = target3;
+ }
+ if ((index4 + idx_l < size_l) && (large[idx_l + index4] == target4)) {
+ buffer[pos++] = target4;
+ }
+ idx_s += 4;
+ idx_l += index4;
+ }
+ if ((idx_s + 2 <= size_s) && (idx_l < size_l)) {
+ uint16_t target1 = small[idx_s];
+ uint16_t target2 = small[idx_s + 1];
+ binarySearch2(large + idx_l, (int32_t)(size_l - idx_l), target1,
+ target2, &index1, &index2);
+ if ((index1 + idx_l < size_l) && (large[idx_l + index1] == target1)) {
+ buffer[pos++] = target1;
+ }
+ if ((index2 + idx_l < size_l) && (large[idx_l + index2] == target2)) {
+ buffer[pos++] = target2;
+ }
+ idx_s += 2;
+ idx_l += index2;
+ }
+ if ((idx_s < size_s) && (idx_l < size_l)) {
+ uint16_t val_s = small[idx_s];
+ int32_t index =
+ binarySearch(large + idx_l, (int32_t)(size_l - idx_l), val_s);
+ if (index >= 0) buffer[pos++] = val_s;
+ }
+ return (int32_t)pos;
+}
+
+// TODO: this could be accelerated, possibly, by using binarySearch4 as above.
+int32_t intersect_skewed_uint16_cardinality(const uint16_t *small,
+ size_t size_s,
+ const uint16_t *large,
+ size_t size_l) {
+ size_t pos = 0, idx_l = 0, idx_s = 0;
+
+ if (0 == size_s) {
+ return 0;
+ }
+
+ uint16_t val_l = large[idx_l], val_s = small[idx_s];
+
+ while (true) {
+ if (val_l < val_s) {
+ idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l,
val_s);
+ if (idx_l == size_l) break;
+ val_l = large[idx_l];
+ } else if (val_s < val_l) {
+ idx_s++;
+ if (idx_s == size_s) break;
+ val_s = small[idx_s];
+ } else {
+ pos++;
+ idx_s++;
+ if (idx_s == size_s) break;
+ val_s = small[idx_s];
+ idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l,
val_s);
+ if (idx_l == size_l) break;
+ val_l = large[idx_l];
+ }
+ }
+
+ return (int32_t)pos;
+}
+
+bool intersect_skewed_uint16_nonempty(const uint16_t *small, size_t size_s,
+ const uint16_t *large, size_t size_l) {
+ size_t idx_l = 0, idx_s = 0;
+
+ if (0 == size_s) {
+ return false;
+ }
+
+ uint16_t val_l = large[idx_l], val_s = small[idx_s];
+
+ while (true) {
+ if (val_l < val_s) {
+ idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l,
val_s);
+ if (idx_l == size_l) break;
+ val_l = large[idx_l];
+ } else if (val_s < val_l) {
+ idx_s++;
+ if (idx_s == size_s) break;
+ val_s = small[idx_s];
+ } else {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/**
+ * Generic intersection function.
+ */
+int32_t intersect_uint16(const uint16_t *A, const size_t lenA,
+ const uint16_t *B, const size_t lenB, uint16_t *out) {
+ const uint16_t *initout = out;
+ if (lenA == 0 || lenB == 0) return 0;
+ const uint16_t *endA = A + lenA;
+ const uint16_t *endB = B + lenB;
+
+ while (1) {
+ while (*A < *B) {
+ SKIP_FIRST_COMPARE:
+ if (++A == endA) return (int32_t)(out - initout);
+ }
+ while (*A > *B) {
+ if (++B == endB) return (int32_t)(out - initout);
+ }
+ if (*A == *B) {
+ *out++ = *A;
+ if (++A == endA || ++B == endB) return (int32_t)(out - initout);
+ } else {
+ goto SKIP_FIRST_COMPARE;
+ }
+ }
+ // return (int32_t)(out - initout); // NOTREACHED
+}
+
+int32_t intersect_uint16_cardinality(const uint16_t *A, const size_t lenA,
+ const uint16_t *B, const size_t lenB) {
+ int32_t answer = 0;
+ if (lenA == 0 || lenB == 0) return 0;
+ const uint16_t *endA = A + lenA;
+ const uint16_t *endB = B + lenB;
+
+ while (1) {
+ while (*A < *B) {
+ SKIP_FIRST_COMPARE:
+ if (++A == endA) return answer;
+ }
+ while (*A > *B) {
+ if (++B == endB) return answer;
+ }
+ if (*A == *B) {
+ ++answer;
+ if (++A == endA || ++B == endB) return answer;
+ } else {
+ goto SKIP_FIRST_COMPARE;
+ }
+ }
+ // return answer; // NOTREACHED
+}
+
+bool intersect_uint16_nonempty(const uint16_t *A, const size_t lenA,
+ const uint16_t *B, const size_t lenB) {
+ if (lenA == 0 || lenB == 0) return 0;
+ const uint16_t *endA = A + lenA;
+ const uint16_t *endB = B + lenB;
+
+ while (1) {
+ while (*A < *B) {
+ SKIP_FIRST_COMPARE:
+ if (++A == endA) return false;
+ }
+ while (*A > *B) {
+ if (++B == endB) return false;
+ }
+ if (*A == *B) {
+ return true;
+ } else {
+ goto SKIP_FIRST_COMPARE;
+ }
+ }
+ return false; // NOTREACHED
+}
+
+/**
+ * Generic intersection function.
+ */
+size_t intersection_uint32(const uint32_t *A, const size_t lenA,
+ const uint32_t *B, const size_t lenB,
+ uint32_t *out) {
+ const uint32_t *initout = out;
+ if (lenA == 0 || lenB == 0) return 0;
+ const uint32_t *endA = A + lenA;
+ const uint32_t *endB = B + lenB;
+
+ while (1) {
+ while (*A < *B) {
+ SKIP_FIRST_COMPARE:
+ if (++A == endA) return (out - initout);
+ }
+ while (*A > *B) {
+ if (++B == endB) return (out - initout);
+ }
+ if (*A == *B) {
+ *out++ = *A;
+ if (++A == endA || ++B == endB) return (out - initout);
+ } else {
+ goto SKIP_FIRST_COMPARE;
+ }
+ }
+ // return (out - initout); // NOTREACHED
+}
+
+size_t intersection_uint32_card(const uint32_t *A, const size_t lenA,
+ const uint32_t *B, const size_t lenB) {
+ if (lenA == 0 || lenB == 0) return 0;
+ size_t card = 0;
+ const uint32_t *endA = A + lenA;
+ const uint32_t *endB = B + lenB;
+
+ while (1) {
+ while (*A < *B) {
+ SKIP_FIRST_COMPARE:
+ if (++A == endA) return card;
+ }
+ while (*A > *B) {
+ if (++B == endB) return card;
+ }
+ if (*A == *B) {
+ card++;
+ if (++A == endA || ++B == endB) return card;
+ } else {
+ goto SKIP_FIRST_COMPARE;
+ }
+ }
+ // return card; // NOTREACHED
+}
+
+// can one vectorize the computation of the union? (Update: Yes! See
+// union_vector16).
+
+size_t union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t
*set_2,
+ size_t size_2, uint16_t *buffer) {
+ size_t pos = 0, idx_1 = 0, idx_2 = 0;
+
+ if (0 == size_2) {
+ memmove(buffer, set_1, size_1 * sizeof(uint16_t));
+ return size_1;
+ }
+ if (0 == size_1) {
+ memmove(buffer, set_2, size_2 * sizeof(uint16_t));
+ return size_2;
+ }
+
+ uint16_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
+
+ while (true) {
+ if (val_1 < val_2) {
+ buffer[pos++] = val_1;
+ ++idx_1;
+ if (idx_1 >= size_1) break;
+ val_1 = set_1[idx_1];
+ } else if (val_2 < val_1) {
+ buffer[pos++] = val_2;
+ ++idx_2;
+ if (idx_2 >= size_2) break;
+ val_2 = set_2[idx_2];
+ } else {
+ buffer[pos++] = val_1;
+ ++idx_1;
+ ++idx_2;
+ if (idx_1 >= size_1 || idx_2 >= size_2) break;
+ val_1 = set_1[idx_1];
+ val_2 = set_2[idx_2];
+ }
+ }
+
+ if (idx_1 < size_1) {
+ const size_t n_elems = size_1 - idx_1;
+ memmove(buffer + pos, set_1 + idx_1, n_elems * sizeof(uint16_t));
+ pos += n_elems;
+ } else if (idx_2 < size_2) {
+ const size_t n_elems = size_2 - idx_2;
+ memmove(buffer + pos, set_2 + idx_2, n_elems * sizeof(uint16_t));
+ pos += n_elems;
+ }
+
+ return pos;
+}
+
+int difference_uint16(const uint16_t *a1, int length1, const uint16_t *a2,
+ int length2, uint16_t *a_out) {
+ int out_card = 0;
+ int k1 = 0, k2 = 0;
+ if (length1 == 0) return 0;
+ if (length2 == 0) {
+ if (a1 != a_out) memcpy(a_out, a1, sizeof(uint16_t) * length1);
+ return length1;
+ }
+ uint16_t s1 = a1[k1];
+ uint16_t s2 = a2[k2];
+ while (true) {
+ if (s1 < s2) {
+ a_out[out_card++] = s1;
+ ++k1;
+ if (k1 >= length1) {
+ break;
+ }
+ s1 = a1[k1];
+ } else if (s1 == s2) {
+ ++k1;
+ ++k2;
+ if (k1 >= length1) {
+ break;
+ }
+ if (k2 >= length2) {
+ memmove(a_out + out_card, a1 + k1,
+ sizeof(uint16_t) * (length1 - k1));
+ return out_card + length1 - k1;
+ }
+ s1 = a1[k1];
+ s2 = a2[k2];
+ } else { // if (val1>val2)
+ ++k2;
+ if (k2 >= length2) {
+ memmove(a_out + out_card, a1 + k1,
+ sizeof(uint16_t) * (length1 - k1));
+ return out_card + length1 - k1;
+ }
+ s2 = a2[k2];
+ }
+ }
+ return out_card;
+}
+
+int32_t xor_uint16(const uint16_t *array_1, int32_t card_1,
+ const uint16_t *array_2, int32_t card_2, uint16_t *out) {
+ int32_t pos1 = 0, pos2 = 0, pos_out = 0;
+ while (pos1 < card_1 && pos2 < card_2) {
+ const uint16_t v1 = array_1[pos1];
+ const uint16_t v2 = array_2[pos2];
+ if (v1 == v2) {
+ ++pos1;
+ ++pos2;
+ continue;
+ }
+ if (v1 < v2) {
+ out[pos_out++] = v1;
+ ++pos1;
+ } else {
+ out[pos_out++] = v2;
+ ++pos2;
+ }
+ }
+ if (pos1 < card_1) {
+ const size_t n_elems = card_1 - pos1;
+ memcpy(out + pos_out, array_1 + pos1, n_elems * sizeof(uint16_t));
+ pos_out += (int32_t)n_elems;
+ } else if (pos2 < card_2) {
+ const size_t n_elems = card_2 - pos2;
+ memcpy(out + pos_out, array_2 + pos2, n_elems * sizeof(uint16_t));
+ pos_out += (int32_t)n_elems;
+ }
+ return pos_out;
+}
+
+#if CROARING_IS_X64
+
+/***
+ * start of the SIMD 16-bit union code
+ *
+ */
+CROARING_TARGET_AVX2
+
+// Assuming that vInput1 and vInput2 are sorted, produces a sorted output going
+// from vecMin all the way to vecMax
+// developed originally for merge sort using SIMD instructions.
+// Standard merge. See, e.g., Inoue and Taura, SIMD- and Cache-Friendly
+// Algorithm for Sorting an Array of Structures
+static inline void sse_merge(const __m128i *vInput1,
+ const __m128i *vInput2, // input 1 &
2
+ __m128i *vecMin, __m128i *vecMax) { // output
+ __m128i vecTmp;
+ vecTmp = _mm_min_epu16(*vInput1, *vInput2);
+ *vecMax = _mm_max_epu16(*vInput1, *vInput2);
+ vecTmp = _mm_alignr_epi8(vecTmp, vecTmp, 2);
+ *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+ *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+ vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+ *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+ *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+ vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+ *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+ *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+ vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+ *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+ *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+ vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+ *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+ *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+ vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+ *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+ *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+ vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+ *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+ *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+ *vecMin = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+}
+CROARING_UNTARGET_AVX2
+// used by store_unique, generated by simdunion.py
+static uint8_t uniqshuf[] = {
+ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
+ 0xc, 0xd, 0xe, 0xf, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
+ 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
+ 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
+ 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9,
+ 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
+ 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
+ 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb,
+ 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9,
+ 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9,
+ 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
+ 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
+ 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb,
+ 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
+ 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb,
+ 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
+ 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
+ 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
+ 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
+ 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9,
+ 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
+ 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xc, 0xd,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
+ 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
+ 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x4, 0x5, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x4, 0x5, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xc, 0xd, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xc, 0xd,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xc, 0xd,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
+ 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
+ 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9,
+ 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
+ 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9,
+ 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
+ 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
+ 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
+ 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x4, 0x5, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
+ 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
+ 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x4, 0x5, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
+ 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
+ 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xe, 0xf, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xe, 0xf,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF,
+ 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
+ 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
+ 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
+ 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
+ 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9,
+ 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
+ 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xa, 0xb,
+ 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb,
+ 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
+ 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb,
+ 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
+ 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xa, 0xb,
+ 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xa, 0xb,
+ 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
+ 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
+ 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9,
+ 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
+ 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xc, 0xd,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9,
+ 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
+ 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
+ 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xc, 0xd,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
+ 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x4, 0x5, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xc, 0xd, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
+ 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
+ 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9,
+ 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
+ 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9,
+ 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9,
+ 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
+ 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
+ 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
+ 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
+ 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
+ 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
+ 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
+ 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
+ 0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x2, 0x3, 0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x0, 0x1, 0x2, 0x3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF};
+CROARING_TARGET_AVX2
+// write vector new, while omitting repeated values assuming that previously
+// written vector was "old"
+static inline int store_unique(__m128i old, __m128i newval, uint16_t *output) {
+ __m128i vecTmp = _mm_alignr_epi8(newval, old, 16 - 2);
+ // lots of high latency instructions follow (optimize?)
+ int M = _mm_movemask_epi8(
+ _mm_packs_epi16(_mm_cmpeq_epi16(vecTmp, newval), _mm_setzero_si128()));
+ int numberofnewvalues = 8 - _mm_popcnt_u32(M);
+ __m128i key = _mm_lddqu_si128((const __m128i *)uniqshuf + M);
+ __m128i val = _mm_shuffle_epi8(newval, key);
+ _mm_storeu_si128((__m128i *)output, val);
+ return numberofnewvalues;
+}
+CROARING_UNTARGET_AVX2
+
+// working in-place, this function overwrites the repeated values
+// could be avoided?
+static inline uint32_t unique(uint16_t *out, uint32_t len) {
+ uint32_t pos = 1;
+ for (uint32_t i = 1; i < len; ++i) {
+ if (out[i] != out[i - 1]) {
+ out[pos++] = out[i];
+ }
+ }
+ return pos;
+}
+
+// use with qsort, could be avoided
+static int uint16_compare(const void *a, const void *b) {
+ return (*(uint16_t *)a - *(uint16_t *)b);
+}
+
+CROARING_TARGET_AVX2
+// a one-pass SSE union algorithm
+// This function may not be safe if array1 == output or array2 == output.
+uint32_t union_vector16(const uint16_t *__restrict__ array1, uint32_t length1,
+ const uint16_t *__restrict__ array2, uint32_t length2,
+ uint16_t *__restrict__ output) {
+ if ((length1 < 8) || (length2 < 8)) {
+ return (uint32_t)union_uint16(array1, length1, array2, length2,
output);
+ }
+ __m128i vA, vB, V, vecMin, vecMax;
+ __m128i laststore;
+ uint16_t *initoutput = output;
+ uint32_t len1 = length1 / 8;
+ uint32_t len2 = length2 / 8;
+ uint32_t pos1 = 0;
+ uint32_t pos2 = 0;
+ // we start the machine
+ vA = _mm_lddqu_si128((const __m128i *)array1 + pos1);
+ pos1++;
+ vB = _mm_lddqu_si128((const __m128i *)array2 + pos2);
+ pos2++;
+ sse_merge(&vA, &vB, &vecMin, &vecMax);
+ laststore = _mm_set1_epi16(-1);
+ output += store_unique(laststore, vecMin, output);
+ laststore = vecMin;
+ if ((pos1 < len1) && (pos2 < len2)) {
+ uint16_t curA, curB;
+ curA = array1[8 * pos1];
+ curB = array2[8 * pos2];
+ while (true) {
+ if (curA <= curB) {
+ V = _mm_lddqu_si128((const __m128i *)array1 + pos1);
+ pos1++;
+ if (pos1 < len1) {
+ curA = array1[8 * pos1];
+ } else {
+ break;
+ }
+ } else {
+ V = _mm_lddqu_si128((const __m128i *)array2 + pos2);
+ pos2++;
+ if (pos2 < len2) {
+ curB = array2[8 * pos2];
+ } else {
+ break;
+ }
+ }
+ sse_merge(&V, &vecMax, &vecMin, &vecMax);
+ output += store_unique(laststore, vecMin, output);
+ laststore = vecMin;
+ }
+ sse_merge(&V, &vecMax, &vecMin, &vecMax);
+ output += store_unique(laststore, vecMin, output);
+ laststore = vecMin;
+ }
+ // we finish the rest off using a scalar algorithm
+ // could be improved?
+ //
+ // copy the small end on a tmp buffer
+ uint32_t len = (uint32_t)(output - initoutput);
+ uint16_t buffer[16];
+ uint32_t leftoversize = store_unique(laststore, vecMax, buffer);
+ if (pos1 == len1) {
+ memcpy(buffer + leftoversize, array1 + 8 * pos1,
+ (length1 - 8 * len1) * sizeof(uint16_t));
+ leftoversize += length1 - 8 * len1;
+ qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
+
+ leftoversize = unique(buffer, leftoversize);
+ len += (uint32_t)union_uint16(buffer, leftoversize, array2 + 8 * pos2,
+ length2 - 8 * pos2, output);
+ } else {
+ memcpy(buffer + leftoversize, array2 + 8 * pos2,
+ (length2 - 8 * len2) * sizeof(uint16_t));
+ leftoversize += length2 - 8 * len2;
+ qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
+ leftoversize = unique(buffer, leftoversize);
+ len += (uint32_t)union_uint16(buffer, leftoversize, array1 + 8 * pos1,
+ length1 - 8 * pos1, output);
+ }
+ return len;
+}
+CROARING_UNTARGET_AVX2
+
+/**
+ * End of the SIMD 16-bit union code
+ *
+ */
+
+/**
+ * Start of SIMD 16-bit XOR code
+ */
+
+CROARING_TARGET_AVX2
+// write vector new, while omitting repeated values assuming that previously
+// written vector was "old"
+static inline int store_unique_xor(__m128i old, __m128i newval,
+ uint16_t *output) {
+ __m128i vecTmp1 = _mm_alignr_epi8(newval, old, 16 - 4);
+ __m128i vecTmp2 = _mm_alignr_epi8(newval, old, 16 - 2);
+ __m128i equalleft = _mm_cmpeq_epi16(vecTmp2, vecTmp1);
+ __m128i equalright = _mm_cmpeq_epi16(vecTmp2, newval);
+ __m128i equalleftoright = _mm_or_si128(equalleft, equalright);
+ int M = _mm_movemask_epi8(
+ _mm_packs_epi16(equalleftoright, _mm_setzero_si128()));
+ int numberofnewvalues = 8 - _mm_popcnt_u32(M);
+ __m128i key = _mm_lddqu_si128((const __m128i *)uniqshuf + M);
+ __m128i val = _mm_shuffle_epi8(vecTmp2, key);
+ _mm_storeu_si128((__m128i *)output, val);
+ return numberofnewvalues;
+}
+CROARING_UNTARGET_AVX2
+
+// working in-place, this function overwrites the repeated values
+// could be avoided? Warning: assumes len > 0
+static inline uint32_t unique_xor(uint16_t *out, uint32_t len) {
+ uint32_t pos = 1;
+ for (uint32_t i = 1; i < len; ++i) {
+ if (out[i] != out[i - 1]) {
+ out[pos++] = out[i];
+ } else
+ pos--; // if it is identical to previous, delete it
+ }
+ return pos;
+}
+CROARING_TARGET_AVX2
+// a one-pass SSE xor algorithm
+uint32_t xor_vector16(const uint16_t *__restrict__ array1, uint32_t length1,
+ const uint16_t *__restrict__ array2, uint32_t length2,
+ uint16_t *__restrict__ output) {
+ if ((length1 < 8) || (length2 < 8)) {
+ return xor_uint16(array1, length1, array2, length2, output);
+ }
+ __m128i vA, vB, V, vecMin, vecMax;
+ __m128i laststore;
+ uint16_t *initoutput = output;
+ uint32_t len1 = length1 / 8;
+ uint32_t len2 = length2 / 8;
+ uint32_t pos1 = 0;
+ uint32_t pos2 = 0;
+ // we start the machine
+ vA = _mm_lddqu_si128((const __m128i *)array1 + pos1);
+ pos1++;
+ vB = _mm_lddqu_si128((const __m128i *)array2 + pos2);
+ pos2++;
+ sse_merge(&vA, &vB, &vecMin, &vecMax);
+ laststore = _mm_set1_epi16(-1);
+ uint16_t buffer[17];
+ output += store_unique_xor(laststore, vecMin, output);
+
+ laststore = vecMin;
+ if ((pos1 < len1) && (pos2 < len2)) {
+ uint16_t curA, curB;
+ curA = array1[8 * pos1];
+ curB = array2[8 * pos2];
+ while (true) {
+ if (curA <= curB) {
+ V = _mm_lddqu_si128((const __m128i *)array1 + pos1);
+ pos1++;
+ if (pos1 < len1) {
+ curA = array1[8 * pos1];
+ } else {
+ break;
+ }
+ } else {
+ V = _mm_lddqu_si128((const __m128i *)array2 + pos2);
+ pos2++;
+ if (pos2 < len2) {
+ curB = array2[8 * pos2];
+ } else {
+ break;
+ }
+ }
+ sse_merge(&V, &vecMax, &vecMin, &vecMax);
+ // conditionally stores the last value of laststore as well as all
+ // but the
+ // last value of vecMin
+ output += store_unique_xor(laststore, vecMin, output);
+ laststore = vecMin;
+ }
+ sse_merge(&V, &vecMax, &vecMin, &vecMax);
+ // conditionally stores the last value of laststore as well as all but
+ // the
+ // last value of vecMin
+ output += store_unique_xor(laststore, vecMin, output);
+ laststore = vecMin;
+ }
+ uint32_t len = (uint32_t)(output - initoutput);
+
+ // we finish the rest off using a scalar algorithm
+ // could be improved?
+ // conditionally stores the last value of laststore as well as all but the
+ // last value of vecMax,
+ // we store to "buffer"
+ int leftoversize = store_unique_xor(laststore, vecMax, buffer);
+ uint16_t vec7 = (uint16_t)_mm_extract_epi16(vecMax, 7);
+ uint16_t vec6 = (uint16_t)_mm_extract_epi16(vecMax, 6);
+ if (vec7 != vec6) buffer[leftoversize++] = vec7;
+ if (pos1 == len1) {
+ memcpy(buffer + leftoversize, array1 + 8 * pos1,
+ (length1 - 8 * len1) * sizeof(uint16_t));
+ leftoversize += length1 - 8 * len1;
+ if (leftoversize == 0) { // trivial case
+ memcpy(output, array2 + 8 * pos2,
+ (length2 - 8 * pos2) * sizeof(uint16_t));
+ len += (length2 - 8 * pos2);
+ } else {
+ qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
+ leftoversize = unique_xor(buffer, leftoversize);
+ len += xor_uint16(buffer, leftoversize, array2 + 8 * pos2,
+ length2 - 8 * pos2, output);
+ }
+ } else {
+ memcpy(buffer + leftoversize, array2 + 8 * pos2,
+ (length2 - 8 * len2) * sizeof(uint16_t));
+ leftoversize += length2 - 8 * len2;
+ if (leftoversize == 0) { // trivial case
+ memcpy(output, array1 + 8 * pos1,
+ (length1 - 8 * pos1) * sizeof(uint16_t));
+ len += (length1 - 8 * pos1);
+ } else {
+ qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
+ leftoversize = unique_xor(buffer, leftoversize);
+ len += xor_uint16(buffer, leftoversize, array1 + 8 * pos1,
+ length1 - 8 * pos1, output);
+ }
+ }
+ return len;
+}
+CROARING_UNTARGET_AVX2
+/**
+ * End of SIMD 16-bit XOR code
+ */
+
+#endif // CROARING_IS_X64
+
+size_t union_uint32(const uint32_t *set_1, size_t size_1, const uint32_t
*set_2,
+ size_t size_2, uint32_t *buffer) {
+ size_t pos = 0, idx_1 = 0, idx_2 = 0;
+
+ if (0 == size_2) {
+ memmove(buffer, set_1, size_1 * sizeof(uint32_t));
+ return size_1;
+ }
+ if (0 == size_1) {
+ memmove(buffer, set_2, size_2 * sizeof(uint32_t));
+ return size_2;
+ }
+
+ uint32_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
+
+ while (true) {
+ if (val_1 < val_2) {
+ buffer[pos++] = val_1;
+ ++idx_1;
+ if (idx_1 >= size_1) break;
+ val_1 = set_1[idx_1];
+ } else if (val_2 < val_1) {
+ buffer[pos++] = val_2;
+ ++idx_2;
+ if (idx_2 >= size_2) break;
+ val_2 = set_2[idx_2];
+ } else {
+ buffer[pos++] = val_1;
+ ++idx_1;
+ ++idx_2;
+ if (idx_1 >= size_1 || idx_2 >= size_2) break;
+ val_1 = set_1[idx_1];
+ val_2 = set_2[idx_2];
+ }
+ }
+
+ if (idx_1 < size_1) {
+ const size_t n_elems = size_1 - idx_1;
+ memmove(buffer + pos, set_1 + idx_1, n_elems * sizeof(uint32_t));
+ pos += n_elems;
+ } else if (idx_2 < size_2) {
+ const size_t n_elems = size_2 - idx_2;
+ memmove(buffer + pos, set_2 + idx_2, n_elems * sizeof(uint32_t));
+ pos += n_elems;
+ }
+
+ return pos;
+}
+
+size_t union_uint32_card(const uint32_t *set_1, size_t size_1,
+ const uint32_t *set_2, size_t size_2) {
+ size_t pos = 0, idx_1 = 0, idx_2 = 0;
+
+ if (0 == size_2) {
+ return size_1;
+ }
+ if (0 == size_1) {
+ return size_2;
+ }
+
+ uint32_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
+
+ while (true) {
+ if (val_1 < val_2) {
+ ++idx_1;
+ ++pos;
+ if (idx_1 >= size_1) break;
+ val_1 = set_1[idx_1];
+ } else if (val_2 < val_1) {
+ ++idx_2;
+ ++pos;
+ if (idx_2 >= size_2) break;
+ val_2 = set_2[idx_2];
+ } else {
+ ++idx_1;
+ ++idx_2;
+ ++pos;
+ if (idx_1 >= size_1 || idx_2 >= size_2) break;
+ val_1 = set_1[idx_1];
+ val_2 = set_2[idx_2];
+ }
+ }
+
+ if (idx_1 < size_1) {
+ const size_t n_elems = size_1 - idx_1;
+ pos += n_elems;
+ } else if (idx_2 < size_2) {
+ const size_t n_elems = size_2 - idx_2;
+ pos += n_elems;
+ }
+ return pos;
+}
+
+size_t fast_union_uint16(const uint16_t *set_1, size_t size_1,
+ const uint16_t *set_2, size_t size_2,
+ uint16_t *buffer) {
+#if CROARING_IS_X64
+ if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+ // compute union with smallest array first
+ if (size_1 < size_2) {
+ return union_vector16(set_1, (uint32_t)size_1, set_2,
+ (uint32_t)size_2, buffer);
+ } else {
+ return union_vector16(set_2, (uint32_t)size_2, set_1,
+ (uint32_t)size_1, buffer);
+ }
+ } else {
+ // compute union with smallest array first
+ if (size_1 < size_2) {
+ return union_uint16(set_1, size_1, set_2, size_2, buffer);
+ } else {
+ return union_uint16(set_2, size_2, set_1, size_1, buffer);
+ }
+ }
+#else
+ // compute union with smallest array first
+ if (size_1 < size_2) {
+ return union_uint16(set_1, size_1, set_2, size_2, buffer);
+ } else {
+ return union_uint16(set_2, size_2, set_1, size_1, buffer);
+ }
+#endif
+}
+#if CROARING_IS_X64
+#if CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX512
+static inline bool _avx512_memequals(const void *s1, const void *s2, size_t n)
{
+ const uint8_t *ptr1 = (const uint8_t *)s1;
+ const uint8_t *ptr2 = (const uint8_t *)s2;
+ const uint8_t *end1 = ptr1 + n;
+ const uint8_t *end8 = ptr1 + ((n >> 3) << 3);
+ const uint8_t *end32 = ptr1 + ((n >> 5) << 5);
+ const uint8_t *end64 = ptr1 + ((n >> 6) << 6);
+
+ while (ptr1 < end64) {
+ __m512i r1 = _mm512_loadu_si512((const __m512i *)ptr1);
+ __m512i r2 = _mm512_loadu_si512((const __m512i *)ptr2);
+
+ uint64_t mask = _mm512_cmpeq_epi8_mask(r1, r2);
+
+ if (mask != UINT64_MAX) {
+ return false;
+ }
+
+ ptr1 += 64;
+ ptr2 += 64;
+ }
+
+ while (ptr1 < end32) {
+ __m256i r1 = _mm256_loadu_si256((const __m256i *)ptr1);
+ __m256i r2 = _mm256_loadu_si256((const __m256i *)ptr2);
+ int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2));
+ if ((uint32_t)mask != UINT32_MAX) {
+ return false;
+ }
+ ptr1 += 32;
+ ptr2 += 32;
+ }
+
+ while (ptr1 < end8) {
+ uint64_t v1, v2;
+ memcpy(&v1, ptr1, sizeof(uint64_t));
+ memcpy(&v2, ptr2, sizeof(uint64_t));
+ if (v1 != v2) {
+ return false;
+ }
+ ptr1 += 8;
+ ptr2 += 8;
+ }
+
+ while (ptr1 < end1) {
+ if (*ptr1 != *ptr2) {
+ return false;
+ }
+ ptr1++;
+ ptr2++;
+ }
+
+ return true;
+}
+CROARING_UNTARGET_AVX512
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+
+CROARING_TARGET_AVX2
+static inline bool _avx2_memequals(const void *s1, const void *s2, size_t n) {
+ const uint8_t *ptr1 = (const uint8_t *)s1;
+ const uint8_t *ptr2 = (const uint8_t *)s2;
+ const uint8_t *end1 = ptr1 + n;
+ const uint8_t *end8 = ptr1 + n / 8 * 8;
+ const uint8_t *end32 = ptr1 + n / 32 * 32;
+
+ while (ptr1 < end32) {
+ __m256i r1 = _mm256_loadu_si256((const __m256i *)ptr1);
+ __m256i r2 = _mm256_loadu_si256((const __m256i *)ptr2);
+ int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2));
+ if ((uint32_t)mask != UINT32_MAX) {
+ return false;
+ }
+ ptr1 += 32;
+ ptr2 += 32;
+ }
+
+ while (ptr1 < end8) {
+ uint64_t v1, v2;
+ memcpy(&v1, ptr1, sizeof(uint64_t));
+ memcpy(&v2, ptr2, sizeof(uint64_t));
+ if (v1 != v2) {
+ return false;
+ }
+ ptr1 += 8;
+ ptr2 += 8;
+ }
+
+ while (ptr1 < end1) {
+ if (*ptr1 != *ptr2) {
+ return false;
+ }
+ ptr1++;
+ ptr2++;
+ }
+
+ return true;
+}
+CROARING_UNTARGET_AVX2
+#endif
+
+bool memequals(const void *s1, const void *s2, size_t n) {
+ if (n == 0) {
+ return true;
+ }
+#if CROARING_IS_X64
+ int support = croaring_hardware_support();
+#if CROARING_COMPILER_SUPPORTS_AVX512
+ if (support & ROARING_SUPPORTS_AVX512) {
+ return _avx512_memequals(s1, s2, n);
+ } else
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+ if (support & ROARING_SUPPORTS_AVX2) {
+ return _avx2_memequals(s1, s2, n);
+ } else {
+ return memcmp(s1, s2, n) == 0;
+ }
+#else
+ return memcmp(s1, s2, n) == 0;
+#endif
+}
+
+#if CROARING_IS_X64
+#if CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX512
+ALLOW_UNALIGNED
+int avx512_array_container_to_uint32_array(void *vout, const uint16_t *array,
+ size_t cardinality, uint32_t base) {
+ int outpos = 0;
+ uint32_t *out = (uint32_t *)vout;
+ size_t i = 0;
+ for (; i + sizeof(__m256i) / sizeof(uint16_t) <= cardinality;
+ i += sizeof(__m256i) / sizeof(uint16_t)) {
+ __m256i vinput = _mm256_loadu_si256((const __m256i *)(array + i));
+ __m512i voutput = _mm512_add_epi32(_mm512_cvtepu16_epi32(vinput),
+ _mm512_set1_epi32(base));
+ _mm512_storeu_si512((__m512i *)(out + outpos), voutput);
+ outpos += sizeof(__m512i) / sizeof(uint32_t);
+ }
+ for (; i < cardinality; ++i) {
+ const uint32_t val = base + array[i];
+ memcpy(out + outpos, &val,
+ sizeof(uint32_t)); // should be compiled as a MOV on x64
+ outpos++;
+ }
+ return outpos;
+}
+CROARING_UNTARGET_AVX512
+#endif // #if CROARING_COMPILER_SUPPORTS_AVX512
+#endif // #if CROARING_IS_X64
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic pop
+#endif/* end file src/array_util.c */
+/* begin file src/art/art.c */
+#include <assert.h>
+#include <stdio.h>
+#include <string.h>
+
+
+#define CROARING_ART_NODE4_TYPE 0
+#define CROARING_ART_NODE16_TYPE 1
+#define CROARING_ART_NODE48_TYPE 2
+#define CROARING_ART_NODE256_TYPE 3
+#define CROARING_ART_NUM_TYPES 4
+
+// Node48 placeholder value to indicate no child is present at this key index.
+#define CROARING_ART_NODE48_EMPTY_VAL 48
+
+// We use the least significant bit of node pointers to indicate whether a node
+// is a leaf or an inner node. This is never surfaced to the user.
+//
+// Using pointer tagging to indicate leaves not only saves a bit of memory by
+// sparing the typecode, but also allows us to use an intrusive leaf struct.
+// Using an intrusive leaf struct leaves leaf allocation up to the user. Upon
+// deallocation of the ART, we know not to free the leaves without having to
+// dereference the leaf pointers.
+//
+// All internal operations on leaves should use CROARING_CAST_LEAF before using
+// the leaf. The only places that use CROARING_SET_LEAF are locations where a
+// field is directly assigned to a leaf pointer. After using CROARING_SET_LEAF,
+// the leaf should be treated as a node of unknown type.
+#define CROARING_IS_LEAF(p) (((uintptr_t)(p) & 1))
+#define CROARING_SET_LEAF(p) ((art_node_t *)((uintptr_t)(p) | 1))
+#define CROARING_CAST_LEAF(p) ((art_leaf_t *)((void *)((uintptr_t)(p) & ~1)))
+
+#define CROARING_NODE48_AVAILABLE_CHILDREN_MASK ((UINT64_C(1) << 48) - 1)
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+typedef uint8_t art_typecode_t;
+
+// Aliasing with a "leaf" naming so that its purpose is clearer in the context
+// of the trie internals.
+typedef art_val_t art_leaf_t;
+
+typedef struct art_internal_validate_s {
+ const char **reason;
+ art_validate_cb_t validate_cb;
+
+ int depth;
+ art_key_chunk_t current_key[ART_KEY_BYTES];
+} art_internal_validate_t;
+
+// Set the reason message, and return false for convenience.
+static inline bool art_validate_fail(const art_internal_validate_t *validate,
+ const char *msg) {
+ *validate->reason = msg;
+ return false;
+}
+
+// Inner node, with prefix.
+//
+// We use a fixed-length array as a pointer would be larger than the array.
+typedef struct art_inner_node_s {
+ art_typecode_t typecode;
+ uint8_t prefix_size;
+ uint8_t prefix[ART_KEY_BYTES - 1];
+} art_inner_node_t;
+
+// Inner node types.
+
+// Node4: key[i] corresponds with children[i]. Keys are sorted.
+typedef struct art_node4_s {
+ art_inner_node_t base;
+ uint8_t count;
+ uint8_t keys[4];
+ art_node_t *children[4];
+} art_node4_t;
+
+// Node16: key[i] corresponds with children[i]. Keys are sorted.
+typedef struct art_node16_s {
+ art_inner_node_t base;
+ uint8_t count;
+ uint8_t keys[16];
+ art_node_t *children[16];
+} art_node16_t;
+
+// Node48: key[i] corresponds with children[key[i]] if key[i] !=
+// CROARING_ART_NODE48_EMPTY_VAL. Keys are naturally sorted due to direct
+// indexing.
+typedef struct art_node48_s {
+ art_inner_node_t base;
+ uint8_t count;
+ // Bitset where the ith bit is set if children[i] is available
+ // Because there are at most 48 children, only the bottom 48 bits are used.
+ uint64_t available_children;
+ uint8_t keys[256];
+ art_node_t *children[48];
+} art_node48_t;
+
+// Node256: children[i] is directly indexed by key chunk. A child is present if
+// children[i] != NULL.
+typedef struct art_node256_s {
+ art_inner_node_t base;
+ uint16_t count;
+ art_node_t *children[256];
+} art_node256_t;
+
+// Helper struct to refer to a child within a node at a specific index.
+typedef struct art_indexed_child_s {
+ art_node_t *child;
+ uint8_t index;
+ art_key_chunk_t key_chunk;
+} art_indexed_child_t;
+
+static inline bool art_is_leaf(const art_node_t *node) {
+ return CROARING_IS_LEAF(node);
+}
+
+static void art_leaf_populate(art_leaf_t *leaf, const art_key_chunk_t key[]) {
+ memcpy(leaf->key, key, ART_KEY_BYTES);
+}
+
+static inline uint8_t art_get_type(const art_inner_node_t *node) {
+ return node->typecode;
+}
+
+static inline void art_init_inner_node(art_inner_node_t *node,
+ art_typecode_t typecode,
+ const art_key_chunk_t prefix[],
+ uint8_t prefix_size) {
+ node->typecode = typecode;
+ node->prefix_size = prefix_size;
+ memcpy(node->prefix, prefix, prefix_size * sizeof(art_key_chunk_t));
+}
+
+static void art_free_node(art_node_t *node);
+
+// ===================== Start of node-specific functions
======================
+
+static art_node4_t *art_node4_create(const art_key_chunk_t prefix[],
+ uint8_t prefix_size);
+static art_node16_t *art_node16_create(const art_key_chunk_t prefix[],
+ uint8_t prefix_size);
+static art_node48_t *art_node48_create(const art_key_chunk_t prefix[],
+ uint8_t prefix_size);
+static art_node256_t *art_node256_create(const art_key_chunk_t prefix[],
+ uint8_t prefix_size);
+
+static art_node_t *art_node4_insert(art_node4_t *node, art_node_t *child,
+ uint8_t key);
+static art_node_t *art_node16_insert(art_node16_t *node, art_node_t *child,
+ uint8_t key);
+static art_node_t *art_node48_insert(art_node48_t *node, art_node_t *child,
+ uint8_t key);
+static art_node_t *art_node256_insert(art_node256_t *node, art_node_t *child,
+ uint8_t key);
+
+static art_node4_t *art_node4_create(const art_key_chunk_t prefix[],
+ uint8_t prefix_size) {
+ art_node4_t *node = (art_node4_t *)roaring_malloc(sizeof(art_node4_t));
+ art_init_inner_node(&node->base, CROARING_ART_NODE4_TYPE, prefix,
+ prefix_size);
+ node->count = 0;
+ return node;
+}
+
+static void art_free_node4(art_node4_t *node) {
+ for (size_t i = 0; i < node->count; ++i) {
+ art_free_node(node->children[i]);
+ }
+ roaring_free(node);
+}
+
+static inline art_node_t *art_node4_find_child(const art_node4_t *node,
+ art_key_chunk_t key) {
+ for (size_t i = 0; i < node->count; ++i) {
+ if (node->keys[i] == key) {
+ return node->children[i];
+ }
+ }
+ return NULL;
+}
+
+static art_node_t *art_node4_insert(art_node4_t *node, art_node_t *child,
+ uint8_t key) {
+ if (node->count < 4) {
+ size_t idx = 0;
+ for (; idx < node->count; ++idx) {
+ if (node->keys[idx] > key) {
+ break;
+ }
+ }
+ size_t after = node->count - idx;
+ // Shift other keys to maintain sorted order.
+ memmove(node->keys + idx + 1, node->keys + idx,
+ after * sizeof(art_key_chunk_t));
+ memmove(node->children + idx + 1, node->children + idx,
+ after * sizeof(art_node_t *));
+
+ node->children[idx] = child;
+ node->keys[idx] = key;
+ node->count++;
+ return (art_node_t *)node;
+ }
+ art_node16_t *new_node =
+ art_node16_create(node->base.prefix, node->base.prefix_size);
+ // Instead of calling insert, this could be specialized to 2x memcpy and
+ // setting the count.
+ for (size_t i = 0; i < 4; ++i) {
+ art_node16_insert(new_node, node->children[i], node->keys[i]);
+ }
+ roaring_free(node);
+ return art_node16_insert(new_node, child, key);
+}
+
+static inline art_node_t *art_node4_erase(art_node4_t *node,
+ art_key_chunk_t key_chunk) {
+ int idx = -1;
+ for (size_t i = 0; i < node->count; ++i) {
+ if (node->keys[i] == key_chunk) {
+ idx = i;
+ }
+ }
+ if (idx == -1) {
+ return (art_node_t *)node;
+ }
+ if (node->count == 2) {
+ // Only one child remains after erasing, so compress the path by
+ // removing this node.
+ uint8_t other_idx = idx ^ 1;
+ art_node_t *remaining_child = node->children[other_idx];
+ art_key_chunk_t remaining_child_key = node->keys[other_idx];
+ if (!art_is_leaf(remaining_child)) {
+ // Correct the prefix of the child node.
+ art_inner_node_t *inner_node = (art_inner_node_t *)remaining_child;
+ memmove(inner_node->prefix + node->base.prefix_size + 1,
+ inner_node->prefix, inner_node->prefix_size);
+ memcpy(inner_node->prefix, node->base.prefix,
+ node->base.prefix_size);
+ inner_node->prefix[node->base.prefix_size] = remaining_child_key;
+ inner_node->prefix_size += node->base.prefix_size + 1;
+ }
+ roaring_free(node);
+ return remaining_child;
+ }
+ // Shift other keys to maintain sorted order.
+ size_t after_next = node->count - idx - 1;
+ memmove(node->keys + idx, node->keys + idx + 1,
+ after_next * sizeof(art_key_chunk_t));
+ memmove(node->children + idx, node->children + idx + 1,
+ after_next * sizeof(art_node_t *));
+ node->count--;
+ return (art_node_t *)node;
+}
+
+static inline void art_node4_replace(art_node4_t *node,
+ art_key_chunk_t key_chunk,
+ art_node_t *new_child) {
+ for (size_t i = 0; i < node->count; ++i) {
+ if (node->keys[i] == key_chunk) {
+ node->children[i] = new_child;
+ return;
+ }
+ }
+}
+
+static inline art_indexed_child_t art_node4_next_child(const art_node4_t *node,
+ int index) {
+ art_indexed_child_t indexed_child;
+ index++;
+ if (index >= node->count) {
+ indexed_child.child = NULL;
+ return indexed_child;
+ }
+ indexed_child.index = index;
+ indexed_child.child = node->children[index];
+ indexed_child.key_chunk = node->keys[index];
+ return indexed_child;
+}
+
+static inline art_indexed_child_t art_node4_prev_child(const art_node4_t *node,
+ int index) {
+ if (index > node->count) {
+ index = node->count;
+ }
+ index--;
+ art_indexed_child_t indexed_child;
+ if (index < 0) {
+ indexed_child.child = NULL;
+ return indexed_child;
+ }
+ indexed_child.index = index;
+ indexed_child.child = node->children[index];
+ indexed_child.key_chunk = node->keys[index];
+ return indexed_child;
+}
+
+static inline art_indexed_child_t art_node4_child_at(const art_node4_t *node,
+ int index) {
+ art_indexed_child_t indexed_child;
+ if (index < 0 || index >= node->count) {
+ indexed_child.child = NULL;
+ return indexed_child;
+ }
+ indexed_child.index = index;
+ indexed_child.child = node->children[index];
+ indexed_child.key_chunk = node->keys[index];
+ return indexed_child;
+}
+
+static inline art_indexed_child_t art_node4_lower_bound(
+ art_node4_t *node, art_key_chunk_t key_chunk) {
+ art_indexed_child_t indexed_child;
+ for (size_t i = 0; i < node->count; ++i) {
+ if (node->keys[i] >= key_chunk) {
+ indexed_child.index = i;
+ indexed_child.child = node->children[i];
+ indexed_child.key_chunk = node->keys[i];
+ return indexed_child;
+ }
+ }
+ indexed_child.child = NULL;
+ return indexed_child;
+}
+
+static bool art_internal_validate_at(const art_node_t *node,
+ art_internal_validate_t validator);
+
+static bool art_node4_internal_validate(const art_node4_t *node,
+ art_internal_validate_t validator) {
+ if (node->count == 0) {
+ return art_validate_fail(&validator, "Node4 has no children");
+ }
+ if (node->count > 4) {
+ return art_validate_fail(&validator, "Node4 has too many children");
+ }
+ if (node->count == 1) {
+ return art_validate_fail(
+ &validator, "Node4 and child node should have been combined");
+ }
+ validator.depth++;
+ for (int i = 0; i < node->count; ++i) {
+ if (i > 0) {
+ if (node->keys[i - 1] >= node->keys[i]) {
+ return art_validate_fail(
+ &validator, "Node4 keys are not strictly increasing");
+ }
+ }
+ for (int j = i + 1; j < node->count; ++j) {
+ if (node->children[i] == node->children[j]) {
+ return art_validate_fail(&validator,
+ "Node4 has duplicate children");
+ }
+ }
+ validator.current_key[validator.depth - 1] = node->keys[i];
+ if (!art_internal_validate_at(node->children[i], validator)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+static art_node16_t *art_node16_create(const art_key_chunk_t prefix[],
+ uint8_t prefix_size) {
+ art_node16_t *node = (art_node16_t *)roaring_malloc(sizeof(art_node16_t));
+ art_init_inner_node(&node->base, CROARING_ART_NODE16_TYPE, prefix,
+ prefix_size);
+ node->count = 0;
+ return node;
+}
+
+static void art_free_node16(art_node16_t *node) {
+ for (size_t i = 0; i < node->count; ++i) {
+ art_free_node(node->children[i]);
+ }
+ roaring_free(node);
+}
+
+static inline art_node_t *art_node16_find_child(const art_node16_t *node,
+ art_key_chunk_t key) {
+ for (size_t i = 0; i < node->count; ++i) {
+ if (node->keys[i] == key) {
+ return node->children[i];
+ }
+ }
+ return NULL;
+}
+
+static art_node_t *art_node16_insert(art_node16_t *node, art_node_t *child,
+ uint8_t key) {
+ if (node->count < 16) {
+ size_t idx = 0;
+ for (; idx < node->count; ++idx) {
+ if (node->keys[idx] > key) {
+ break;
+ }
+ }
+ size_t after = node->count - idx;
+ // Shift other keys to maintain sorted order.
+ memmove(node->keys + idx + 1, node->keys + idx,
+ after * sizeof(art_key_chunk_t));
+ memmove(node->children + idx + 1, node->children + idx,
+ after * sizeof(art_node_t *));
+
+ node->children[idx] = child;
+ node->keys[idx] = key;
+ node->count++;
+ return (art_node_t *)node;
+ }
+ art_node48_t *new_node =
+ art_node48_create(node->base.prefix, node->base.prefix_size);
+ for (size_t i = 0; i < 16; ++i) {
+ art_node48_insert(new_node, node->children[i], node->keys[i]);
+ }
+ roaring_free(node);
+ return art_node48_insert(new_node, child, key);
+}
+
+static inline art_node_t *art_node16_erase(art_node16_t *node,
+ uint8_t key_chunk) {
+ for (size_t i = 0; i < node->count; ++i) {
+ if (node->keys[i] == key_chunk) {
+ // Shift other keys to maintain sorted order.
+ size_t after_next = node->count - i - 1;
+ memmove(node->keys + i, node->keys + i + 1,
+ after_next * sizeof(key_chunk));
+ memmove(node->children + i, node->children + i + 1,
+ after_next * sizeof(art_node_t *));
+ node->count--;
+ break;
+ }
+ }
+ if (node->count > 4) {
+ return (art_node_t *)node;
+ }
+ art_node4_t *new_node =
+ art_node4_create(node->base.prefix, node->base.prefix_size);
+ // Instead of calling insert, this could be specialized to 2x memcpy and
+ // setting the count.
+ for (size_t i = 0; i < 4; ++i) {
+ art_node4_insert(new_node, node->children[i], node->keys[i]);
+ }
+ roaring_free(node);
+ return (art_node_t *)new_node;
+}
+
+static inline void art_node16_replace(art_node16_t *node,
+ art_key_chunk_t key_chunk,
+ art_node_t *new_child) {
+ for (uint8_t i = 0; i < node->count; ++i) {
+ if (node->keys[i] == key_chunk) {
+ node->children[i] = new_child;
+ return;
+ }
+ }
+}
+
+static inline art_indexed_child_t art_node16_next_child(
+ const art_node16_t *node, int index) {
+ art_indexed_child_t indexed_child;
+ index++;
+ if (index >= node->count) {
+ indexed_child.child = NULL;
+ return indexed_child;
+ }
+ indexed_child.index = index;
+ indexed_child.child = node->children[index];
+ indexed_child.key_chunk = node->keys[index];
+ return indexed_child;
+}
+
+static inline art_indexed_child_t art_node16_prev_child(
+ const art_node16_t *node, int index) {
+ if (index > node->count) {
+ index = node->count;
+ }
+ index--;
+ art_indexed_child_t indexed_child;
+ if (index < 0) {
+ indexed_child.child = NULL;
+ return indexed_child;
+ }
+ indexed_child.index = index;
+ indexed_child.child = node->children[index];
+ indexed_child.key_chunk = node->keys[index];
+ return indexed_child;
+}
+
+static inline art_indexed_child_t art_node16_child_at(const art_node16_t *node,
+ int index) {
+ art_indexed_child_t indexed_child;
+ if (index < 0 || index >= node->count) {
+ indexed_child.child = NULL;
+ return indexed_child;
+ }
+ indexed_child.index = index;
+ indexed_child.child = node->children[index];
+ indexed_child.key_chunk = node->keys[index];
+ return indexed_child;
+}
+
+static inline art_indexed_child_t art_node16_lower_bound(
+ art_node16_t *node, art_key_chunk_t key_chunk) {
+ art_indexed_child_t indexed_child;
+ for (size_t i = 0; i < node->count; ++i) {
+ if (node->keys[i] >= key_chunk) {
+ indexed_child.index = i;
+ indexed_child.child = node->children[i];
+ indexed_child.key_chunk = node->keys[i];
+ return indexed_child;
+ }
+ }
+ indexed_child.child = NULL;
+ return indexed_child;
+}
+
+static bool art_node16_internal_validate(const art_node16_t *node,
+ art_internal_validate_t validator) {
+ if (node->count <= 4) {
+ return art_validate_fail(&validator, "Node16 has too few children");
+ }
+ if (node->count > 16) {
+ return art_validate_fail(&validator, "Node16 has too many children");
+ }
+ validator.depth++;
+ for (int i = 0; i < node->count; ++i) {
+ if (i > 0) {
+ if (node->keys[i - 1] >= node->keys[i]) {
+ return art_validate_fail(
+ &validator, "Node16 keys are not strictly increasing");
+ }
+ }
+ for (int j = i + 1; j < node->count; ++j) {
+ if (node->children[i] == node->children[j]) {
+ return art_validate_fail(&validator,
+ "Node16 has duplicate children");
+ }
+ }
+ validator.current_key[validator.depth - 1] = node->keys[i];
+ if (!art_internal_validate_at(node->children[i], validator)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+static art_node48_t *art_node48_create(const art_key_chunk_t prefix[],
+ uint8_t prefix_size) {
+ art_node48_t *node = (art_node48_t *)roaring_malloc(sizeof(art_node48_t));
+ art_init_inner_node(&node->base, CROARING_ART_NODE48_TYPE, prefix,
+ prefix_size);
+ node->count = 0;
+ node->available_children = CROARING_NODE48_AVAILABLE_CHILDREN_MASK;
+ for (size_t i = 0; i < 256; ++i) {
+ node->keys[i] = CROARING_ART_NODE48_EMPTY_VAL;
+ }
+ return node;
+}
+
+static void art_free_node48(art_node48_t *node) {
+ uint64_t used_children =
+ (node->available_children) ^ CROARING_NODE48_AVAILABLE_CHILDREN_MASK;
+ while (used_children != 0) {
+ // We checked above that used_children is not zero
+ uint8_t child_idx = roaring_trailing_zeroes(used_children);
+ art_free_node(node->children[child_idx]);
+ used_children &= ~(UINT64_C(1) << child_idx);
+ }
+ roaring_free(node);
+}
+
+static inline art_node_t *art_node48_find_child(const art_node48_t *node,
+ art_key_chunk_t key) {
+ uint8_t val_idx = node->keys[key];
+ if (val_idx != CROARING_ART_NODE48_EMPTY_VAL) {
+ return node->children[val_idx];
+ }
+ return NULL;
+}
+
+static art_node_t *art_node48_insert(art_node48_t *node, art_node_t *child,
+ uint8_t key) {
+ if (node->count < 48) {
+ // node->available_children is only zero when the node is full (count
==
+ // 48), we just checked count < 48
+ uint8_t val_idx = roaring_trailing_zeroes(node->available_children);
+ node->keys[key] = val_idx;
+ node->children[val_idx] = child;
+ node->count++;
+ node->available_children &= ~(UINT64_C(1) << val_idx);
+ return (art_node_t *)node;
+ }
+ art_node256_t *new_node =
+ art_node256_create(node->base.prefix, node->base.prefix_size);
+ for (size_t i = 0; i < 256; ++i) {
+ uint8_t val_idx = node->keys[i];
+ if (val_idx != CROARING_ART_NODE48_EMPTY_VAL) {
+ art_node256_insert(new_node, node->children[val_idx], i);
+ }
+ }
+ roaring_free(node);
+ return art_node256_insert(new_node, child, key);
+}
+
+static inline art_node_t *art_node48_erase(art_node48_t *node,
+ uint8_t key_chunk) {
+ uint8_t val_idx = node->keys[key_chunk];
+ if (val_idx == CROARING_ART_NODE48_EMPTY_VAL) {
+ return (art_node_t *)node;
+ }
+ node->keys[key_chunk] = CROARING_ART_NODE48_EMPTY_VAL;
+ node->available_children |= UINT64_C(1) << val_idx;
+ node->count--;
+ if (node->count > 16) {
+ return (art_node_t *)node;
+ }
+
+ art_node16_t *new_node =
+ art_node16_create(node->base.prefix, node->base.prefix_size);
+ for (size_t i = 0; i < 256; ++i) {
+ val_idx = node->keys[i];
+ if (val_idx != CROARING_ART_NODE48_EMPTY_VAL) {
+ art_node16_insert(new_node, node->children[val_idx], i);
+ }
+ }
+ roaring_free(node);
+ return (art_node_t *)new_node;
+}
+
+static inline void art_node48_replace(art_node48_t *node,
+ art_key_chunk_t key_chunk,
+ art_node_t *new_child) {
+ uint8_t val_idx = node->keys[key_chunk];
+ assert(val_idx != CROARING_ART_NODE48_EMPTY_VAL);
+ node->children[val_idx] = new_child;
+}
+
+static inline art_indexed_child_t art_node48_next_child(
+ const art_node48_t *node, int index) {
+ art_indexed_child_t indexed_child;
+ index++;
+ for (size_t i = index; i < 256; ++i) {
+ if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
+ indexed_child.index = i;
+ indexed_child.child = node->children[node->keys[i]];
+ indexed_child.key_chunk = i;
+ return indexed_child;
+ }
+ }
+ indexed_child.child = NULL;
+ return indexed_child;
+}
+
+static inline art_indexed_child_t art_node48_prev_child(
+ const art_node48_t *node, int index) {
+ if (index > 256) {
+ index = 256;
+ }
+ index--;
+ art_indexed_child_t indexed_child;
+ for (int i = index; i >= 0; --i) {
+ if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
+ indexed_child.index = i;
+ indexed_child.child = node->children[node->keys[i]];
+ indexed_child.key_chunk = i;
+ return indexed_child;
+ }
+ }
+ indexed_child.child = NULL;
+ return indexed_child;
+}
+
+static inline art_indexed_child_t art_node48_child_at(const art_node48_t *node,
+ int index) {
+ art_indexed_child_t indexed_child;
+ if (index < 0 || index >= 256) {
+ indexed_child.child = NULL;
+ return indexed_child;
+ }
+ indexed_child.index = index;
+ indexed_child.child = node->children[node->keys[index]];
+ indexed_child.key_chunk = index;
+ return indexed_child;
+}
+
+static inline art_indexed_child_t art_node48_lower_bound(
+ art_node48_t *node, art_key_chunk_t key_chunk) {
+ art_indexed_child_t indexed_child;
+ for (size_t i = key_chunk; i < 256; ++i) {
+ if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
+ indexed_child.index = i;
+ indexed_child.child = node->children[node->keys[i]];
+ indexed_child.key_chunk = i;
+ return indexed_child;
+ }
+ }
+ indexed_child.child = NULL;
+ return indexed_child;
+}
+
+static bool art_node48_internal_validate(const art_node48_t *node,
+ art_internal_validate_t validator) {
+ if (node->count <= 16) {
+ return art_validate_fail(&validator, "Node48 has too few children");
+ }
+ if (node->count > 48) {
+ return art_validate_fail(&validator, "Node48 has too many children");
+ }
+ uint64_t used_children = 0;
+ for (int i = 0; i < 256; ++i) {
+ uint8_t child_idx = node->keys[i];
+ if (child_idx != CROARING_ART_NODE48_EMPTY_VAL) {
+ if (used_children & (UINT64_C(1) << child_idx)) {
+ return art_validate_fail(
+ &validator, "Node48 keys point to the same child index");
+ }
+
+ art_node_t *child = node->children[child_idx];
+ if (child == NULL) {
+ return art_validate_fail(&validator, "Node48 has a NULL
child");
+ }
+ used_children |= UINT64_C(1) << child_idx;
+ }
+ }
+ uint64_t expected_used_children =
+ (node->available_children) ^ CROARING_NODE48_AVAILABLE_CHILDREN_MASK;
+ if (used_children != expected_used_children) {
+ return art_validate_fail(
+ &validator,
+ "Node48 available_children does not match actual children");
+ }
+ while (used_children != 0) {
+ uint8_t child_idx = roaring_trailing_zeroes(used_children);
+ used_children &= used_children - 1;
+
+ uint64_t other_children = used_children;
+ while (other_children != 0) {
+ uint8_t other_child_idx = roaring_trailing_zeroes(other_children);
+ if (node->children[child_idx] == node->children[other_child_idx]) {
+ return art_validate_fail(&validator,
+ "Node48 has duplicate children");
+ }
+ other_children &= other_children - 1;
+ }
+ }
+
+ validator.depth++;
+ for (int i = 0; i < 256; ++i) {
+ if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
+ validator.current_key[validator.depth - 1] = i;
+ if (!art_internal_validate_at(node->children[node->keys[i]],
+ validator)) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+static art_node256_t *art_node256_create(const art_key_chunk_t prefix[],
+ uint8_t prefix_size) {
+ art_node256_t *node =
+ (art_node256_t *)roaring_malloc(sizeof(art_node256_t));
+ art_init_inner_node(&node->base, CROARING_ART_NODE256_TYPE, prefix,
+ prefix_size);
+ node->count = 0;
+ for (size_t i = 0; i < 256; ++i) {
+ node->children[i] = NULL;
+ }
+ return node;
+}
+
+static void art_free_node256(art_node256_t *node) {
+ for (size_t i = 0; i < 256; ++i) {
+ if (node->children[i] != NULL) {
+ art_free_node(node->children[i]);
+ }
+ }
+ roaring_free(node);
+}
+
+static inline art_node_t *art_node256_find_child(const art_node256_t *node,
+ art_key_chunk_t key) {
+ return node->children[key];
+}
+
+static art_node_t *art_node256_insert(art_node256_t *node, art_node_t *child,
+ uint8_t key) {
+ node->children[key] = child;
+ node->count++;
+ return (art_node_t *)node;
+}
+
+static inline art_node_t *art_node256_erase(art_node256_t *node,
+ uint8_t key_chunk) {
+ node->children[key_chunk] = NULL;
+ node->count--;
+ if (node->count > 48) {
+ return (art_node_t *)node;
+ }
+
+ art_node48_t *new_node =
+ art_node48_create(node->base.prefix, node->base.prefix_size);
+ for (size_t i = 0; i < 256; ++i) {
+ if (node->children[i] != NULL) {
+ art_node48_insert(new_node, node->children[i], i);
+ }
+ }
+ roaring_free(node);
+ return (art_node_t *)new_node;
+}
+
+static inline void art_node256_replace(art_node256_t *node,
+ art_key_chunk_t key_chunk,
+ art_node_t *new_child) {
+ node->children[key_chunk] = new_child;
+}
+
+static inline art_indexed_child_t art_node256_next_child(
+ const art_node256_t *node, int index) {
+ art_indexed_child_t indexed_child;
+ index++;
+ for (size_t i = index; i < 256; ++i) {
+ if (node->children[i] != NULL) {
+ indexed_child.index = i;
+ indexed_child.child = node->children[i];
+ indexed_child.key_chunk = i;
+ return indexed_child;
+ }
+ }
+ indexed_child.child = NULL;
+ return indexed_child;
+}
+
+static inline art_indexed_child_t art_node256_prev_child(
+ const art_node256_t *node, int index) {
+ if (index > 256) {
+ index = 256;
+ }
+ index--;
+ art_indexed_child_t indexed_child;
+ for (int i = index; i >= 0; --i) {
+ if (node->children[i] != NULL) {
+ indexed_child.index = i;
+ indexed_child.child = node->children[i];
+ indexed_child.key_chunk = i;
+ return indexed_child;
+ }
+ }
+ indexed_child.child = NULL;
+ return indexed_child;
+}
+
+static inline art_indexed_child_t art_node256_child_at(
+ const art_node256_t *node, int index) {
+ art_indexed_child_t indexed_child;
+ if (index < 0 || index >= 256) {
+ indexed_child.child = NULL;
+ return indexed_child;
+ }
+ indexed_child.index = index;
+ indexed_child.child = node->children[index];
+ indexed_child.key_chunk = index;
+ return indexed_child;
+}
+
+static inline art_indexed_child_t art_node256_lower_bound(
+ art_node256_t *node, art_key_chunk_t key_chunk) {
+ art_indexed_child_t indexed_child;
+ for (size_t i = key_chunk; i < 256; ++i) {
+ if (node->children[i] != NULL) {
+ indexed_child.index = i;
+ indexed_child.child = node->children[i];
+ indexed_child.key_chunk = i;
+ return indexed_child;
+ }
+ }
+ indexed_child.child = NULL;
+ return indexed_child;
+}
+
+static bool art_node256_internal_validate(const art_node256_t *node,
+ art_internal_validate_t validator) {
+ if (node->count <= 48) {
+ return art_validate_fail(&validator, "Node256 has too few children");
+ }
+ if (node->count > 256) {
+ return art_validate_fail(&validator, "Node256 has too many children");
+ }
+ validator.depth++;
+ int actual_count = 0;
+ for (int i = 0; i < 256; ++i) {
+ if (node->children[i] != NULL) {
+ actual_count++;
+
+ for (int j = i + 1; j < 256; ++j) {
+ if (node->children[i] == node->children[j]) {
+ return art_validate_fail(&validator,
+ "Node256 has duplicate children");
+ }
+ }
+
+ validator.current_key[validator.depth - 1] = i;
+ if (!art_internal_validate_at(node->children[i], validator)) {
+ return false;
+ }
+ }
+ }
+ if (actual_count != node->count) {
+ return art_validate_fail(
+ &validator, "Node256 count does not match actual children");
+ }
+ return true;
+}
+
+// Finds the child with the given key chunk in the inner node, returns NULL if
+// no such child is found.
+static art_node_t *art_find_child(const art_inner_node_t *node,
+ art_key_chunk_t key_chunk) {
+ switch (art_get_type(node)) {
+ case CROARING_ART_NODE4_TYPE:
+ return art_node4_find_child((art_node4_t *)node, key_chunk);
+ case CROARING_ART_NODE16_TYPE:
+ return art_node16_find_child((art_node16_t *)node, key_chunk);
+ case CROARING_ART_NODE48_TYPE:
+ return art_node48_find_child((art_node48_t *)node, key_chunk);
+ case CROARING_ART_NODE256_TYPE:
+ return art_node256_find_child((art_node256_t *)node, key_chunk);
+ default:
+ assert(false);
+ return NULL;
+ }
+}
+
+// Replaces the child with the given key chunk in the inner node.
+static void art_replace(art_inner_node_t *node, art_key_chunk_t key_chunk,
+ art_node_t *new_child) {
+ switch (art_get_type(node)) {
+ case CROARING_ART_NODE4_TYPE:
+ art_node4_replace((art_node4_t *)node, key_chunk, new_child);
+ break;
+ case CROARING_ART_NODE16_TYPE:
+ art_node16_replace((art_node16_t *)node, key_chunk, new_child);
+ break;
+ case CROARING_ART_NODE48_TYPE:
+ art_node48_replace((art_node48_t *)node, key_chunk, new_child);
+ break;
+ case CROARING_ART_NODE256_TYPE:
+ art_node256_replace((art_node256_t *)node, key_chunk, new_child);
+ break;
+ default:
+ assert(false);
+ }
+}
+
+// Erases the child with the given key chunk from the inner node, returns the
+// updated node (the same as the initial node if it was not shrunk).
+static art_node_t *art_node_erase(art_inner_node_t *node,
+ art_key_chunk_t key_chunk) {
+ switch (art_get_type(node)) {
+ case CROARING_ART_NODE4_TYPE:
+ return art_node4_erase((art_node4_t *)node, key_chunk);
+ case CROARING_ART_NODE16_TYPE:
+ return art_node16_erase((art_node16_t *)node, key_chunk);
+ case CROARING_ART_NODE48_TYPE:
+ return art_node48_erase((art_node48_t *)node, key_chunk);
+ case CROARING_ART_NODE256_TYPE:
+ return art_node256_erase((art_node256_t *)node, key_chunk);
+ default:
+ assert(false);
+ return NULL;
+ }
+}
+
+// Inserts the leaf with the given key chunk in the inner node, returns a
+// pointer to the (possibly expanded) node.
+static art_node_t *art_node_insert_leaf(art_inner_node_t *node,
+ art_key_chunk_t key_chunk,
+ art_leaf_t *leaf) {
+ art_node_t *child = (art_node_t *)(CROARING_SET_LEAF(leaf));
+ switch (art_get_type(node)) {
+ case CROARING_ART_NODE4_TYPE:
+ return art_node4_insert((art_node4_t *)node, child, key_chunk);
+ case CROARING_ART_NODE16_TYPE:
+ return art_node16_insert((art_node16_t *)node, child, key_chunk);
+ case CROARING_ART_NODE48_TYPE:
+ return art_node48_insert((art_node48_t *)node, child, key_chunk);
+ case CROARING_ART_NODE256_TYPE:
+ return art_node256_insert((art_node256_t *)node, child, key_chunk);
+ default:
+ assert(false);
+ return NULL;
+ }
+}
+
+// Frees the node and its children. Leaves are freed by the user.
+static void art_free_node(art_node_t *node) {
+ if (art_is_leaf(node)) {
+ // We leave it up to the user to free leaves.
+ return;
+ }
+ switch (art_get_type((art_inner_node_t *)node)) {
+ case CROARING_ART_NODE4_TYPE:
+ art_free_node4((art_node4_t *)node);
+ break;
+ case CROARING_ART_NODE16_TYPE:
+ art_free_node16((art_node16_t *)node);
+ break;
+ case CROARING_ART_NODE48_TYPE:
+ art_free_node48((art_node48_t *)node);
+ break;
+ case CROARING_ART_NODE256_TYPE:
+ art_free_node256((art_node256_t *)node);
+ break;
+ default:
+ assert(false);
+ }
+}
+
+// Returns the next child in key order, or NULL if called on a leaf.
+// Provided index may be in the range [-1, 255].
+static art_indexed_child_t art_node_next_child(const art_node_t *node,
+ int index) {
+ if (art_is_leaf(node)) {
+ art_indexed_child_t indexed_child;
+ indexed_child.child = NULL;
+ return indexed_child;
+ }
+ switch (art_get_type((art_inner_node_t *)node)) {
+ case CROARING_ART_NODE4_TYPE:
+ return art_node4_next_child((art_node4_t *)node, index);
+ case CROARING_ART_NODE16_TYPE:
+ return art_node16_next_child((art_node16_t *)node, index);
+ case CROARING_ART_NODE48_TYPE:
+ return art_node48_next_child((art_node48_t *)node, index);
+ case CROARING_ART_NODE256_TYPE:
+ return art_node256_next_child((art_node256_t *)node, index);
+ default:
+ assert(false);
+ return (art_indexed_child_t){0, 0, 0};
+ }
+}
+
+// Returns the previous child in key order, or NULL if called on a leaf.
+// Provided index may be in the range [0, 256].
+static art_indexed_child_t art_node_prev_child(const art_node_t *node,
+ int index) {
+ if (art_is_leaf(node)) {
+ art_indexed_child_t indexed_child;
+ indexed_child.child = NULL;
+ return indexed_child;
+ }
+ switch (art_get_type((art_inner_node_t *)node)) {
+ case CROARING_ART_NODE4_TYPE:
+ return art_node4_prev_child((art_node4_t *)node, index);
+ case CROARING_ART_NODE16_TYPE:
+ return art_node16_prev_child((art_node16_t *)node, index);
+ case CROARING_ART_NODE48_TYPE:
+ return art_node48_prev_child((art_node48_t *)node, index);
+ case CROARING_ART_NODE256_TYPE:
+ return art_node256_prev_child((art_node256_t *)node, index);
+ default:
+ assert(false);
+ return (art_indexed_child_t){0, 0, 0};
+ }
+}
+
+// Returns the child found at the provided index, or NULL if called on a leaf.
+// Provided index is only valid if returned by art_node_(next|prev)_child.
+static art_indexed_child_t art_node_child_at(const art_node_t *node,
+ int index) {
+ if (art_is_leaf(node)) {
+ art_indexed_child_t indexed_child;
+ indexed_child.child = NULL;
+ return indexed_child;
+ }
+ switch (art_get_type((art_inner_node_t *)node)) {
+ case CROARING_ART_NODE4_TYPE:
+ return art_node4_child_at((art_node4_t *)node, index);
+ case CROARING_ART_NODE16_TYPE:
+ return art_node16_child_at((art_node16_t *)node, index);
+ case CROARING_ART_NODE48_TYPE:
+ return art_node48_child_at((art_node48_t *)node, index);
+ case CROARING_ART_NODE256_TYPE:
+ return art_node256_child_at((art_node256_t *)node, index);
+ default:
+ assert(false);
+ return (art_indexed_child_t){0, 0, 0};
+ }
+}
+
+// Returns the child with the smallest key equal to or greater than the given
+// key chunk, NULL if called on a leaf or no such child was found.
+static art_indexed_child_t art_node_lower_bound(const art_node_t *node,
+ art_key_chunk_t key_chunk) {
+ if (art_is_leaf(node)) {
+ art_indexed_child_t indexed_child;
+ indexed_child.child = NULL;
+ return indexed_child;
+ }
+ switch (art_get_type((art_inner_node_t *)node)) {
+ case CROARING_ART_NODE4_TYPE:
+ return art_node4_lower_bound((art_node4_t *)node, key_chunk);
+ case CROARING_ART_NODE16_TYPE:
+ return art_node16_lower_bound((art_node16_t *)node, key_chunk);
+ case CROARING_ART_NODE48_TYPE:
+ return art_node48_lower_bound((art_node48_t *)node, key_chunk);
+ case CROARING_ART_NODE256_TYPE:
+ return art_node256_lower_bound((art_node256_t *)node, key_chunk);
+ default:
+ assert(false);
+ return (art_indexed_child_t){0, 0, 0};
+ }
+}
+
+// ====================== End of node-specific functions
=======================
+
+// Compares the given ranges of two keys, returns their relative order:
+// * Key range 1 < key range 2: a negative value
+// * Key range 1 == key range 2: 0
+// * Key range 1 > key range 2: a positive value
+static inline int art_compare_prefix(const art_key_chunk_t key1[],
+ uint8_t key1_from,
+ const art_key_chunk_t key2[],
+ uint8_t key2_from, uint8_t length) {
+ return memcmp(key1 + key1_from, key2 + key2_from, length);
+}
+
+// Compares two keys in full, see art_compare_prefix.
+int art_compare_keys(const art_key_chunk_t key1[],
+ const art_key_chunk_t key2[]) {
+ return art_compare_prefix(key1, 0, key2, 0, ART_KEY_BYTES);
+}
+
+// Returns the length of the common prefix between two key ranges.
+static uint8_t art_common_prefix(const art_key_chunk_t key1[],
+ uint8_t key1_from, uint8_t key1_to,
+ const art_key_chunk_t key2[],
+ uint8_t key2_from, uint8_t key2_to) {
+ uint8_t min_len = key1_to - key1_from;
+ uint8_t key2_len = key2_to - key2_from;
+ if (key2_len < min_len) {
+ min_len = key2_len;
+ }
+ uint8_t offset = 0;
+ for (; offset < min_len; ++offset) {
+ if (key1[key1_from + offset] != key2[key2_from + offset]) {
+ return offset;
+ }
+ }
+ return offset;
+}
+
+// Returns a pointer to the rootmost node where the value was inserted, may not
+// be equal to `node`.
+static art_node_t *art_insert_at(art_node_t *node, const art_key_chunk_t key[],
+ uint8_t depth, art_leaf_t *new_leaf) {
+ if (art_is_leaf(node)) {
+ art_leaf_t *leaf = CROARING_CAST_LEAF(node);
+ uint8_t common_prefix = art_common_prefix(
+ leaf->key, depth, ART_KEY_BYTES, key, depth, ART_KEY_BYTES);
+
+ // Previously this was a leaf, create an inner node instead and add
both
+ // the existing and new leaf to it.
+ art_node_t *new_node =
+ (art_node_t *)art_node4_create(key + depth, common_prefix);
+
+ new_node = art_node_insert_leaf((art_inner_node_t *)new_node,
+ leaf->key[depth + common_prefix],
leaf);
+ new_node = art_node_insert_leaf((art_inner_node_t *)new_node,
+ key[depth + common_prefix], new_leaf);
+
+ // The new inner node is now the rootmost node.
+ return new_node;
+ }
+ art_inner_node_t *inner_node = (art_inner_node_t *)node;
+ // Not a leaf: inner node
+ uint8_t common_prefix =
+ art_common_prefix(inner_node->prefix, 0, inner_node->prefix_size, key,
+ depth, ART_KEY_BYTES);
+ if (common_prefix != inner_node->prefix_size) {
+ // Partial prefix match. Create a new internal node to hold the common
+ // prefix.
+ art_node4_t *node4 =
+ art_node4_create(inner_node->prefix, common_prefix);
+
+ // Make the existing internal node a child of the new internal node.
+ node4 = (art_node4_t *)art_node4_insert(
+ node4, node, inner_node->prefix[common_prefix]);
+
+ // Correct the prefix of the moved internal node, trimming off the
chunk
+ // inserted into the new internal node.
+ inner_node->prefix_size = inner_node->prefix_size - common_prefix - 1;
+ if (inner_node->prefix_size > 0) {
+ // Move the remaining prefix to the correct position.
+ memmove(inner_node->prefix, inner_node->prefix + common_prefix + 1,
+ inner_node->prefix_size);
+ }
+
+ // Insert the value in the new internal node.
+ return art_node_insert_leaf(&node4->base, key[common_prefix + depth],
+ new_leaf);
+ }
+ // Prefix matches entirely or node has no prefix. Look for an existing
+ // child.
+ art_key_chunk_t key_chunk = key[depth + common_prefix];
+ art_node_t *child = art_find_child(inner_node, key_chunk);
+ if (child != NULL) {
+ art_node_t *new_child =
+ art_insert_at(child, key, depth + common_prefix + 1, new_leaf);
+ if (new_child != child) {
+ // Node type changed.
+ art_replace(inner_node, key_chunk, new_child);
+ }
+ return node;
+ }
+ return art_node_insert_leaf(inner_node, key_chunk, new_leaf);
+}
+
+// Erase helper struct.
+typedef struct art_erase_result_s {
+ // The rootmost node where the value was erased, may not be equal to
`node`.
+ // If no value was removed, this is null.
+ art_node_t *rootmost_node;
+
+ // Value removed, null if not removed.
+ art_val_t *value_erased;
+} art_erase_result_t;
+
+// Searches for the given key starting at `node`, erases it if found.
+static art_erase_result_t art_erase_at(art_node_t *node,
+ const art_key_chunk_t *key,
+ uint8_t depth) {
+ art_erase_result_t result;
+ result.rootmost_node = NULL;
+ result.value_erased = NULL;
+
+ if (art_is_leaf(node)) {
+ art_leaf_t *leaf = CROARING_CAST_LEAF(node);
+ uint8_t common_prefix = art_common_prefix(leaf->key, 0, ART_KEY_BYTES,
+ key, 0, ART_KEY_BYTES);
+ if (common_prefix != ART_KEY_BYTES) {
+ // Leaf key mismatch.
+ return result;
+ }
+ result.value_erased = (art_val_t *)leaf;
+ return result;
+ }
+ art_inner_node_t *inner_node = (art_inner_node_t *)node;
+ uint8_t common_prefix =
+ art_common_prefix(inner_node->prefix, 0, inner_node->prefix_size, key,
+ depth, ART_KEY_BYTES);
+ if (common_prefix != inner_node->prefix_size) {
+ // Prefix mismatch.
+ return result;
+ }
+ art_key_chunk_t key_chunk = key[depth + common_prefix];
+ art_node_t *child = art_find_child(inner_node, key_chunk);
+ if (child == NULL) {
+ // No child with key chunk.
+ return result;
+ }
+ // Try to erase the key further down. Skip the key chunk associated with
the
+ // child in the node.
+ art_erase_result_t child_result =
+ art_erase_at(child, key, depth + common_prefix + 1);
+ if (child_result.value_erased == NULL) {
+ return result;
+ }
+ result.value_erased = child_result.value_erased;
+ result.rootmost_node = node;
+ if (child_result.rootmost_node == NULL) {
+ // Child node was fully erased, erase it from this node's children.
+ result.rootmost_node = art_node_erase(inner_node, key_chunk);
+ } else if (child_result.rootmost_node != child) {
+ // Child node was not fully erased, update the pointer to it in this
+ // node.
+ art_replace(inner_node, key_chunk, child_result.rootmost_node);
+ }
+ return result;
+}
+
+// Searches for the given key starting at `node`, returns NULL if the key was
+// not found.
+static art_val_t *art_find_at(const art_node_t *node,
+ const art_key_chunk_t *key, uint8_t depth) {
+ while (!art_is_leaf(node)) {
+ art_inner_node_t *inner_node = (art_inner_node_t *)node;
+ uint8_t common_prefix =
+ art_common_prefix(inner_node->prefix, 0, inner_node->prefix_size,
+ key, depth, ART_KEY_BYTES);
+ if (common_prefix != inner_node->prefix_size) {
+ return NULL;
+ }
+ art_node_t *child =
+ art_find_child(inner_node, key[depth + inner_node->prefix_size]);
+ if (child == NULL) {
+ return NULL;
+ }
+ node = child;
+ // Include both the prefix and the child key chunk in the depth.
+ depth += inner_node->prefix_size + 1;
+ }
+ art_leaf_t *leaf = CROARING_CAST_LEAF(node);
+ if (depth >= ART_KEY_BYTES) {
+ return (art_val_t *)leaf;
+ }
+ uint8_t common_prefix =
+ art_common_prefix(leaf->key, 0, ART_KEY_BYTES, key, 0, ART_KEY_BYTES);
+ if (common_prefix == ART_KEY_BYTES) {
+ return (art_val_t *)leaf;
+ }
+ return NULL;
+}
+
+// Returns the size in bytes of the subtrie.
+size_t art_size_in_bytes_at(const art_node_t *node) {
+ if (art_is_leaf(node)) {
+ return 0;
+ }
+ size_t size = 0;
+ switch (art_get_type((art_inner_node_t *)node)) {
+ case CROARING_ART_NODE4_TYPE: {
+ size += sizeof(art_node4_t);
+ } break;
+ case CROARING_ART_NODE16_TYPE: {
+ size += sizeof(art_node16_t);
+ } break;
+ case CROARING_ART_NODE48_TYPE: {
+ size += sizeof(art_node48_t);
+ } break;
+ case CROARING_ART_NODE256_TYPE: {
+ size += sizeof(art_node256_t);
+ } break;
+ default:
+ assert(false);
+ break;
+ }
+ art_indexed_child_t indexed_child = art_node_next_child(node, -1);
+ while (indexed_child.child != NULL) {
+ size += art_size_in_bytes_at(indexed_child.child);
+ indexed_child = art_node_next_child(node, indexed_child.index);
+ }
+ return size;
+}
+
+static void art_node_print_type(const art_node_t *node) {
+ if (art_is_leaf(node)) {
+ printf("Leaf");
+ return;
+ }
+ switch (art_get_type((art_inner_node_t *)node)) {
+ case CROARING_ART_NODE4_TYPE:
+ printf("Node4");
+ return;
+ case CROARING_ART_NODE16_TYPE:
+ printf("Node16");
+ return;
+ case CROARING_ART_NODE48_TYPE:
+ printf("Node48");
+ return;
+ case CROARING_ART_NODE256_TYPE:
+ printf("Node256");
+ return;
+ default:
+ assert(false);
+ return;
+ }
+}
+
+void art_node_printf(const art_node_t *node, uint8_t depth) {
+ if (art_is_leaf(node)) {
+ printf("{ type: Leaf, key: ");
+ art_leaf_t *leaf = CROARING_CAST_LEAF(node);
+ for (size_t i = 0; i < ART_KEY_BYTES; ++i) {
+ printf("%02x", leaf->key[i]);
+ }
+ printf(" }\n");
+ return;
+ }
+ printf("{\n");
+ depth++;
+
+ printf("%*s", depth, "");
+ printf("type: ");
+ art_node_print_type(node);
+ printf("\n");
+
+ art_inner_node_t *inner_node = (art_inner_node_t *)node;
+ printf("%*s", depth, "");
+ printf("prefix_size: %d\n", inner_node->prefix_size);
+
+ printf("%*s", depth, "");
+ printf("prefix: ");
+ for (uint8_t i = 0; i < inner_node->prefix_size; ++i) {
+ printf("%02x", inner_node->prefix[i]);
+ }
+ printf("\n");
+
+ switch (art_get_type(inner_node)) {
+ case CROARING_ART_NODE4_TYPE: {
+ art_node4_t *node4 = (art_node4_t *)node;
+ for (uint8_t i = 0; i < node4->count; ++i) {
+ printf("%*s", depth, "");
+ printf("key: %02x ", node4->keys[i]);
+ art_node_printf(node4->children[i], depth);
+ }
+ } break;
+ case CROARING_ART_NODE16_TYPE: {
+ art_node16_t *node16 = (art_node16_t *)node;
+ for (uint8_t i = 0; i < node16->count; ++i) {
+ printf("%*s", depth, "");
+ printf("key: %02x ", node16->keys[i]);
+ art_node_printf(node16->children[i], depth);
+ }
+ } break;
+ case CROARING_ART_NODE48_TYPE: {
+ art_node48_t *node48 = (art_node48_t *)node;
+ for (int i = 0; i < 256; ++i) {
+ if (node48->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
+ printf("%*s", depth, "");
+ printf("key: %02x ", i);
+ printf("child: %02x ", node48->keys[i]);
+ art_node_printf(node48->children[node48->keys[i]], depth);
+ }
+ }
+ } break;
+ case CROARING_ART_NODE256_TYPE: {
+ art_node256_t *node256 = (art_node256_t *)node;
+ for (int i = 0; i < 256; ++i) {
+ if (node256->children[i] != NULL) {
+ printf("%*s", depth, "");
+ printf("key: %02x ", i);
+ art_node_printf(node256->children[i], depth);
+ }
+ }
+ } break;
+ default:
+ assert(false);
+ break;
+ }
+ depth--;
+ printf("%*s", depth, "");
+ printf("}\n");
+}
+
+void art_insert(art_t *art, const art_key_chunk_t *key, art_val_t *val) {
+ art_leaf_t *leaf = (art_leaf_t *)val;
+ art_leaf_populate(leaf, key);
+ if (art->root == NULL) {
+ art->root = (art_node_t *)CROARING_SET_LEAF(leaf);
+ return;
+ }
+ art->root = art_insert_at(art->root, key, 0, leaf);
+}
+
+art_val_t *art_erase(art_t *art, const art_key_chunk_t *key) {
+ if (art->root == NULL) {
+ return NULL;
+ }
+ art_erase_result_t result = art_erase_at(art->root, key, 0);
+ if (result.value_erased == NULL) {
+ return NULL;
+ }
+ art->root = result.rootmost_node;
+ return result.value_erased;
+}
+
+art_val_t *art_find(const art_t *art, const art_key_chunk_t *key) {
+ if (art->root == NULL) {
+ return NULL;
+ }
+ return art_find_at(art->root, key, 0);
+}
+
+bool art_is_empty(const art_t *art) { return art->root == NULL; }
+
+void art_free(art_t *art) {
+ if (art->root == NULL) {
+ return;
+ }
+ art_free_node(art->root);
+}
+
+size_t art_size_in_bytes(const art_t *art) {
+ size_t size = sizeof(art_t);
+ if (art->root != NULL) {
+ size += art_size_in_bytes_at(art->root);
+ }
+ return size;
+}
+
+void art_printf(const art_t *art) {
+ if (art->root == NULL) {
+ return;
+ }
+ art_node_printf(art->root, 0);
+}
+
+// Returns the current node that the iterator is positioned at.
+static inline art_node_t *art_iterator_node(art_iterator_t *iterator) {
+ return iterator->frames[iterator->frame].node;
+}
+
+// Sets the iterator key and value to the leaf's key and value. Always returns
+// true for convenience.
+static inline bool art_iterator_valid_loc(art_iterator_t *iterator,
+ art_leaf_t *leaf) {
+ iterator->frames[iterator->frame].node = CROARING_SET_LEAF(leaf);
+ iterator->frames[iterator->frame].index_in_node = 0;
+ memcpy(iterator->key, leaf->key, ART_KEY_BYTES);
+ iterator->value = (art_val_t *)leaf;
+ return true;
+}
+
+// Invalidates the iterator key and value. Always returns false for
convenience.
+static inline bool art_iterator_invalid_loc(art_iterator_t *iterator) {
+ memset(iterator->key, 0, ART_KEY_BYTES);
+ iterator->value = NULL;
+ return false;
+}
+
+// Moves the iterator one level down in the tree, given a node at the current
+// level and the index of the child that we're going down to.
+//
+// Note: does not set the index at the new level.
+static void art_iterator_down(art_iterator_t *iterator,
+ const art_inner_node_t *node,
+ uint8_t index_in_node) {
+ iterator->frames[iterator->frame].node = (art_node_t *)node;
+ iterator->frames[iterator->frame].index_in_node = index_in_node;
+ iterator->frame++;
+ art_indexed_child_t indexed_child =
+ art_node_child_at((art_node_t *)node, index_in_node);
+ assert(indexed_child.child != NULL);
+ iterator->frames[iterator->frame].node = indexed_child.child;
+ iterator->depth += node->prefix_size + 1;
+}
+
+// Moves the iterator to the next/previous child of the current node. Returns
+// the child moved to, or NULL if there is no neighboring child.
+static art_node_t *art_iterator_neighbor_child(
+ art_iterator_t *iterator, const art_inner_node_t *inner_node,
+ bool forward) {
+ art_iterator_frame_t frame = iterator->frames[iterator->frame];
+ art_indexed_child_t indexed_child;
+ if (forward) {
+ indexed_child = art_node_next_child(frame.node, frame.index_in_node);
+ } else {
+ indexed_child = art_node_prev_child(frame.node, frame.index_in_node);
+ }
+ if (indexed_child.child != NULL) {
+ art_iterator_down(iterator, inner_node, indexed_child.index);
+ }
+ return indexed_child.child;
+}
+
+// Moves the iterator one level up in the tree, returns false if not possible.
+static bool art_iterator_up(art_iterator_t *iterator) {
+ if (iterator->frame == 0) {
+ return false;
+ }
+ iterator->frame--;
+ // We went up, so we are at an inner node.
+ iterator->depth -=
+ ((art_inner_node_t *)art_iterator_node(iterator))->prefix_size + 1;
+ return true;
+}
+
+// Moves the iterator one level, followed by a move to the next / previous
leaf.
+// Sets the status of the iterator.
+static bool art_iterator_up_and_move(art_iterator_t *iterator, bool forward) {
+ if (!art_iterator_up(iterator)) {
+ // We're at the root.
+ return art_iterator_invalid_loc(iterator);
+ }
+ return art_iterator_move(iterator, forward);
+}
+
+// Initializes the iterator at the first / last leaf of the given node.
+// Returns true for convenience.
+static bool art_node_init_iterator(const art_node_t *node,
+ art_iterator_t *iterator, bool first) {
+ while (!art_is_leaf(node)) {
+ art_indexed_child_t indexed_child;
+ if (first) {
+ indexed_child = art_node_next_child(node, -1);
+ } else {
+ indexed_child = art_node_prev_child(node, 256);
+ }
+ art_iterator_down(iterator, (art_inner_node_t *)node,
+ indexed_child.index);
+ node = indexed_child.child;
+ }
+ // We're at a leaf.
+ iterator->frames[iterator->frame].node = (art_node_t *)node;
+ iterator->frames[iterator->frame].index_in_node = 0; // Should not matter.
+ return art_iterator_valid_loc(iterator, CROARING_CAST_LEAF(node));
+}
+
+bool art_iterator_move(art_iterator_t *iterator, bool forward) {
+ if (art_is_leaf(art_iterator_node(iterator))) {
+ bool went_up = art_iterator_up(iterator);
+ if (!went_up) {
+ // This leaf is the root, we're done.
+ return art_iterator_invalid_loc(iterator);
+ }
+ }
+ // Advance within inner node.
+ art_node_t *neighbor_child = art_iterator_neighbor_child(
+ iterator, (art_inner_node_t *)art_iterator_node(iterator), forward);
+ if (neighbor_child != NULL) {
+ // There is another child at this level, go down to the first or last
+ // leaf.
+ return art_node_init_iterator(neighbor_child, iterator, forward);
+ }
+ // No more children at this level, go up.
+ return art_iterator_up_and_move(iterator, forward);
+}
+
+// Assumes the iterator is positioned at a node with an equal prefix path up to
+// the depth of the iterator.
+static bool art_node_iterator_lower_bound(const art_node_t *node,
+ art_iterator_t *iterator,
+ const art_key_chunk_t key[]) {
+ while (!art_is_leaf(node)) {
+ art_inner_node_t *inner_node = (art_inner_node_t *)node;
+ int prefix_comparison =
+ art_compare_prefix(inner_node->prefix, 0, key, iterator->depth,
+ inner_node->prefix_size);
+ if (prefix_comparison < 0) {
+ // Prefix so far has been equal, but we've found a smaller key.
+ // Since we take the lower bound within each node, we can return
the
+ // next leaf.
+ return art_iterator_up_and_move(iterator, true);
+ } else if (prefix_comparison > 0) {
+ // No key equal to the key we're looking for, return the first
leaf.
+ return art_node_init_iterator(node, iterator, true);
+ }
+ // Prefix is equal, move to lower bound child.
+ art_key_chunk_t key_chunk =
+ key[iterator->depth + inner_node->prefix_size];
+ art_indexed_child_t indexed_child =
+ art_node_lower_bound(node, key_chunk);
+ if (indexed_child.child == NULL) {
+ // Only smaller keys among children.
+ return art_iterator_up_and_move(iterator, true);
+ }
+ if (indexed_child.key_chunk > key_chunk) {
+ // Only larger children, return the first larger child.
+ art_iterator_down(iterator, inner_node, indexed_child.index);
+ return art_node_init_iterator(indexed_child.child, iterator, true);
+ }
+ // We found a child with an equal prefix.
+ art_iterator_down(iterator, inner_node, indexed_child.index);
+ node = indexed_child.child;
+ }
+ art_leaf_t *leaf = CROARING_CAST_LEAF(node);
+ if (art_compare_keys(leaf->key, key) >= 0) {
+ // Leaf has an equal or larger key.
+ return art_iterator_valid_loc(iterator, leaf);
+ }
+ // Leaf has an equal prefix, but the full key is smaller. Move to the next
+ // leaf.
+ return art_iterator_up_and_move(iterator, true);
+}
+
+art_iterator_t art_init_iterator(const art_t *art, bool first) {
+ art_iterator_t iterator = CROARING_ZERO_INITIALIZER;
+ if (art->root == NULL) {
+ return iterator;
+ }
+ art_node_init_iterator(art->root, &iterator, first);
+ return iterator;
+}
+
+bool art_iterator_next(art_iterator_t *iterator) {
+ return art_iterator_move(iterator, true);
+}
+
+bool art_iterator_prev(art_iterator_t *iterator) {
+ return art_iterator_move(iterator, false);
+}
+
+bool art_iterator_lower_bound(art_iterator_t *iterator,
+ const art_key_chunk_t *key) {
+ if (iterator->value == NULL) {
+ // We're beyond the end / start of the ART so the iterator does not
have
+ // a valid key. Start from the root.
+ iterator->frame = 0;
+ iterator->depth = 0;
+ art_node_t *root = art_iterator_node(iterator);
+ if (root == NULL) {
+ return false;
+ }
+ return art_node_iterator_lower_bound(root, iterator, key);
+ }
+ int compare_result =
+ art_compare_prefix(iterator->key, 0, key, 0, ART_KEY_BYTES);
+ // Move up until we have an equal prefix, after which we can do a normal
+ // lower bound search.
+ while (compare_result != 0) {
+ if (!art_iterator_up(iterator)) {
+ if (compare_result < 0) {
+ // Only smaller keys found.
+ return art_iterator_invalid_loc(iterator);
+ } else {
+ return art_node_init_iterator(art_iterator_node(iterator),
+ iterator, true);
+ }
+ }
+ // Since we're only moving up, we can keep comparing against the
+ // iterator key.
+ art_inner_node_t *inner_node =
+ (art_inner_node_t *)art_iterator_node(iterator);
+ compare_result =
+ art_compare_prefix(iterator->key, 0, key, 0,
+ iterator->depth + inner_node->prefix_size);
+ }
+ if (compare_result > 0) {
+ return art_node_init_iterator(art_iterator_node(iterator), iterator,
+ true);
+ }
+ return art_node_iterator_lower_bound(art_iterator_node(iterator), iterator,
+ key);
+}
+
+art_iterator_t art_lower_bound(const art_t *art, const art_key_chunk_t *key) {
+ art_iterator_t iterator = CROARING_ZERO_INITIALIZER;
+ if (art->root != NULL) {
+ art_node_iterator_lower_bound(art->root, &iterator, key);
+ }
+ return iterator;
+}
+
+art_iterator_t art_upper_bound(const art_t *art, const art_key_chunk_t *key) {
+ art_iterator_t iterator = CROARING_ZERO_INITIALIZER;
+ if (art->root != NULL) {
+ if (art_node_iterator_lower_bound(art->root, &iterator, key) &&
+ art_compare_keys(iterator.key, key) == 0) {
+ art_iterator_next(&iterator);
+ }
+ }
+ return iterator;
+}
+
+void art_iterator_insert(art_t *art, art_iterator_t *iterator,
+ const art_key_chunk_t *key, art_val_t *val) {
+ // TODO: This can likely be faster.
+ art_insert(art, key, val);
+ assert(art->root != NULL);
+ iterator->frame = 0;
+ iterator->depth = 0;
+ art_node_iterator_lower_bound(art->root, iterator, key);
+}
+
+// TODO: consider keeping `art_t *art` in the iterator.
+art_val_t *art_iterator_erase(art_t *art, art_iterator_t *iterator) {
+ if (iterator->value == NULL) {
+ return NULL;
+ }
+ art_key_chunk_t initial_key[ART_KEY_BYTES];
+ memcpy(initial_key, iterator->key, ART_KEY_BYTES);
+
+ art_val_t *value_erased = iterator->value;
+ bool went_up = art_iterator_up(iterator);
+ if (!went_up) {
+ // We're erasing the root.
+ art->root = NULL;
+ art_iterator_invalid_loc(iterator);
+ return value_erased;
+ }
+
+ // Erase the leaf.
+ art_inner_node_t *parent_node =
+ (art_inner_node_t *)art_iterator_node(iterator);
+ art_key_chunk_t key_chunk_in_parent =
+ iterator->key[iterator->depth + parent_node->prefix_size];
+ art_node_t *new_parent_node =
+ art_node_erase(parent_node, key_chunk_in_parent);
+
+ if (new_parent_node != ((art_node_t *)parent_node)) {
+ // Replace the pointer to the inner node we erased from in its
+ // parent (it may be a leaf now).
+ iterator->frames[iterator->frame].node = new_parent_node;
+ went_up = art_iterator_up(iterator);
+ if (went_up) {
+ art_inner_node_t *grandparent_node =
+ (art_inner_node_t *)art_iterator_node(iterator);
+ art_key_chunk_t key_chunk_in_grandparent =
+ iterator->key[iterator->depth + grandparent_node->prefix_size];
+ art_replace(grandparent_node, key_chunk_in_grandparent,
+ new_parent_node);
+ } else {
+ // We were already at the rootmost node.
+ art->root = new_parent_node;
+ }
+ }
+
+ iterator->frame = 0;
+ iterator->depth = 0;
+ // Do a lower bound search for the initial key, which will find the first
+ // greater key if it exists. This can likely be mildly faster if we instead
+ // start from the current position.
+ art_node_iterator_lower_bound(art->root, iterator, initial_key);
+ return value_erased;
+}
+
+static bool art_internal_validate_at(const art_node_t *node,
+ art_internal_validate_t validator) {
+ if (node == NULL) {
+ return art_validate_fail(&validator, "node is null");
+ }
+ if (art_is_leaf(node)) {
+ art_leaf_t *leaf = CROARING_CAST_LEAF(node);
+ if (art_compare_prefix(leaf->key, 0, validator.current_key, 0,
+ validator.depth) != 0) {
+ return art_validate_fail(
+ &validator,
+ "leaf key does not match its position's prefix in the tree");
+ }
+ if (validator.validate_cb != NULL &&
+ !validator.validate_cb(leaf, validator.reason)) {
+ if (*validator.reason == NULL) {
+ *validator.reason = "leaf validation failed";
+ }
+ return false;
+ }
+ } else {
+ art_inner_node_t *inner_node = (art_inner_node_t *)node;
+
+ if (validator.depth + inner_node->prefix_size + 1 > ART_KEY_BYTES) {
+ return art_validate_fail(&validator,
+ "node has too much prefix at given
depth");
+ }
+ memcpy(validator.current_key + validator.depth, inner_node->prefix,
+ inner_node->prefix_size);
+ validator.depth += inner_node->prefix_size;
+
+ switch (inner_node->typecode) {
+ case CROARING_ART_NODE4_TYPE:
+ if (!art_node4_internal_validate((art_node4_t *)inner_node,
+ validator)) {
+ return false;
+ }
+ break;
+ case CROARING_ART_NODE16_TYPE:
+ if (!art_node16_internal_validate((art_node16_t *)inner_node,
+ validator)) {
+ return false;
+ }
+ break;
+ case CROARING_ART_NODE48_TYPE:
+ if (!art_node48_internal_validate((art_node48_t *)inner_node,
+ validator)) {
+ return false;
+ }
+ break;
+ case CROARING_ART_NODE256_TYPE:
+ if (!art_node256_internal_validate((art_node256_t *)inner_node,
+ validator)) {
+ return false;
+ }
+ break;
+ default:
+ return art_validate_fail(&validator, "invalid node type");
+ }
+ }
+ return true;
+}
+
+bool art_internal_validate(const art_t *art, const char **reason,
+ art_validate_cb_t validate_cb) {
+ const char *reason_local;
+ if (reason == NULL) {
+ // Always allow assigning through *reason
+ reason = &reason_local;
+ }
+ *reason = NULL;
+ if (art->root == NULL) {
+ return true;
+ }
+ art_internal_validate_t validator = {
+ .reason = reason,
+ .validate_cb = validate_cb,
+ .depth = 0,
+ .current_key = {0},
+ };
+ return art_internal_validate_at(art->root, validator);
+}
+
+#ifdef __cplusplus
+} // extern "C"
+} // namespace roaring
+} // namespace internal
+#endif
+/* end file src/art/art.c */
+/* begin file src/bitset.c */
+#include <limits.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+extern inline void bitset_print(const bitset_t *b);
+extern inline bool bitset_for_each(const bitset_t *b, bitset_iterator iterator,
+ void *ptr);
+extern inline size_t bitset_next_set_bits(const bitset_t *bitset,
+ size_t *buffer, size_t capacity,
+ size_t *startfrom);
+extern inline void bitset_set_to_value(bitset_t *bitset, size_t i, bool flag);
+extern inline bool bitset_next_set_bit(const bitset_t *bitset, size_t *i);
+extern inline void bitset_set(bitset_t *bitset, size_t i);
+extern inline bool bitset_get(const bitset_t *bitset, size_t i);
+extern inline size_t bitset_size_in_words(const bitset_t *bitset);
+extern inline size_t bitset_size_in_bits(const bitset_t *bitset);
+extern inline size_t bitset_size_in_bytes(const bitset_t *bitset);
+
+/* Create a new bitset. Return NULL in case of failure. */
+bitset_t *bitset_create(void) {
+ bitset_t *bitset = NULL;
+ /* Allocate the bitset itself. */
+ if ((bitset = (bitset_t *)roaring_malloc(sizeof(bitset_t))) == NULL) {
+ return NULL;
+ }
+ bitset->array = NULL;
+ bitset->arraysize = 0;
+ bitset->capacity = 0;
+ return bitset;
+}
+
+/* Create a new bitset able to contain size bits. Return NULL in case of
+ * failure. */
+bitset_t *bitset_create_with_capacity(size_t size) {
+ bitset_t *bitset = NULL;
+ /* Allocate the bitset itself. */
+ if ((bitset = (bitset_t *)roaring_malloc(sizeof(bitset_t))) == NULL) {
+ return NULL;
+ }
+ bitset->arraysize =
+ (size + sizeof(uint64_t) * 8 - 1) / (sizeof(uint64_t) * 8);
+ bitset->capacity = bitset->arraysize;
+ if ((bitset->array = (uint64_t *)roaring_calloc(
+ bitset->arraysize, sizeof(uint64_t))) == NULL) {
+ roaring_free(bitset);
+ return NULL;
+ }
+ return bitset;
+}
+
+/* Create a copy */
+bitset_t *bitset_copy(const bitset_t *bitset) {
+ bitset_t *copy = NULL;
+ /* Allocate the bitset itself. */
+ if ((copy = (bitset_t *)roaring_malloc(sizeof(bitset_t))) == NULL) {
+ return NULL;
+ }
+ memcpy(copy, bitset, sizeof(bitset_t));
+ copy->capacity = copy->arraysize;
+ if ((copy->array = (uint64_t *)roaring_malloc(sizeof(uint64_t) *
+ bitset->arraysize)) == NULL)
{
+ roaring_free(copy);
+ return NULL;
+ }
+ memcpy(copy->array, bitset->array, sizeof(uint64_t) * bitset->arraysize);
+ return copy;
+}
+
+void bitset_clear(bitset_t *bitset) {
+ memset(bitset->array, 0, sizeof(uint64_t) * bitset->arraysize);
+}
+
+void bitset_fill(bitset_t *bitset) {
+ memset(bitset->array, 0xff, sizeof(uint64_t) * bitset->arraysize);
+}
+
+void bitset_shift_left(bitset_t *bitset, size_t s) {
+ size_t extra_words = s / 64;
+ int inword_shift = s % 64;
+ size_t as = bitset->arraysize;
+ if (inword_shift == 0) {
+ bitset_resize(bitset, as + extra_words, false);
+ // could be done with a memmove
+ for (size_t i = as + extra_words; i > extra_words; i--) {
+ bitset->array[i - 1] = bitset->array[i - 1 - extra_words];
+ }
+ } else {
+ bitset_resize(bitset, as + extra_words + 1, true);
+ bitset->array[as + extra_words] =
+ bitset->array[as - 1] >> (64 - inword_shift);
+ for (size_t i = as + extra_words; i >= extra_words + 2; i--) {
+ bitset->array[i - 1] =
+ (bitset->array[i - 1 - extra_words] << inword_shift) |
+ (bitset->array[i - 2 - extra_words] >> (64 - inword_shift));
+ }
+ bitset->array[extra_words] = bitset->array[0] << inword_shift;
+ }
+ for (size_t i = 0; i < extra_words; i++) {
+ bitset->array[i] = 0;
+ }
+}
+
+void bitset_shift_right(bitset_t *bitset, size_t s) {
+ size_t extra_words = s / 64;
+ int inword_shift = s % 64;
+ size_t as = bitset->arraysize;
+ if (inword_shift == 0) {
+ // could be done with a memmove
+ for (size_t i = 0; i < as - extra_words; i++) {
+ bitset->array[i] = bitset->array[i + extra_words];
+ }
+ bitset_resize(bitset, as - extra_words, false);
+
+ } else {
+ for (size_t i = 0; i + extra_words + 1 < as; i++) {
+ bitset->array[i] =
+ (bitset->array[i + extra_words] >> inword_shift) |
+ (bitset->array[i + extra_words + 1] << (64 - inword_shift));
+ }
+ bitset->array[as - extra_words - 1] =
+ (bitset->array[as - 1] >> inword_shift);
+ bitset_resize(bitset, as - extra_words, false);
+ }
+}
+
+/* Free memory. */
+void bitset_free(bitset_t *bitset) {
+ if (bitset == NULL) {
+ return;
+ }
+ roaring_free(bitset->array);
+ roaring_free(bitset);
+}
+
+/* Resize the bitset so that it can support newarraysize * 64 bits. Return true
+ * in case of success, false for failure. */
+bool bitset_resize(bitset_t *bitset, size_t newarraysize, bool padwithzeroes) {
+ if (newarraysize > SIZE_MAX / 64) {
+ return false;
+ }
+ size_t smallest =
+ newarraysize < bitset->arraysize ? newarraysize : bitset->arraysize;
+ if (bitset->capacity < newarraysize) {
+ uint64_t *newarray;
+ size_t newcapacity = bitset->capacity;
+ if (newcapacity == 0) {
+ newcapacity = 1;
+ }
+ while (newcapacity < newarraysize) {
+ newcapacity *= 2;
+ }
+ if ((newarray = (uint64_t *)roaring_realloc(
+ bitset->array, sizeof(uint64_t) * newcapacity)) == NULL) {
+ return false;
+ }
+ bitset->capacity = newcapacity;
+ bitset->array = newarray;
+ }
+ if (padwithzeroes && (newarraysize > smallest))
+ memset(bitset->array + smallest, 0,
+ sizeof(uint64_t) * (newarraysize - smallest));
+ bitset->arraysize = newarraysize;
+ return true; // success!
+}
+
+size_t bitset_count(const bitset_t *bitset) {
+ size_t card = 0;
+ size_t k = 0;
+ for (; k + 7 < bitset->arraysize; k += 8) {
+ card += roaring_hamming(bitset->array[k]);
+ card += roaring_hamming(bitset->array[k + 1]);
+ card += roaring_hamming(bitset->array[k + 2]);
+ card += roaring_hamming(bitset->array[k + 3]);
+ card += roaring_hamming(bitset->array[k + 4]);
+ card += roaring_hamming(bitset->array[k + 5]);
+ card += roaring_hamming(bitset->array[k + 6]);
+ card += roaring_hamming(bitset->array[k + 7]);
+ }
+ for (; k + 3 < bitset->arraysize; k += 4) {
+ card += roaring_hamming(bitset->array[k]);
+ card += roaring_hamming(bitset->array[k + 1]);
+ card += roaring_hamming(bitset->array[k + 2]);
+ card += roaring_hamming(bitset->array[k + 3]);
+ }
+ for (; k < bitset->arraysize; k++) {
+ card += roaring_hamming(bitset->array[k]);
+ }
+ return card;
+}
+
+bool bitset_inplace_union(bitset_t *CROARING_CBITSET_RESTRICT b1,
+ const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+ size_t minlength =
+ b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+ for (size_t k = 0; k < minlength; ++k) {
+ b1->array[k] |= b2->array[k];
+ }
+ if (b2->arraysize > b1->arraysize) {
+ size_t oldsize = b1->arraysize;
+ if (!bitset_resize(b1, b2->arraysize, false)) return false;
+ memcpy(b1->array + oldsize, b2->array + oldsize,
+ (b2->arraysize - oldsize) * sizeof(uint64_t));
+ }
+ return true;
+}
+
+bool bitset_empty(const bitset_t *bitset) {
+ for (size_t k = 0; k < bitset->arraysize; k++) {
+ if (bitset->array[k] != 0) {
+ return false;
+ }
+ }
+ return true;
+}
+
+size_t bitset_minimum(const bitset_t *bitset) {
+ for (size_t k = 0; k < bitset->arraysize; k++) {
+ uint64_t w = bitset->array[k];
+ if (w != 0) {
+ return roaring_trailing_zeroes(w) + k * 64;
+ }
+ }
+ return SIZE_MAX;
+}
+
+bool bitset_grow(bitset_t *bitset, size_t newarraysize) {
+ if (newarraysize < bitset->arraysize) {
+ return false;
+ }
+ if (newarraysize > SIZE_MAX / 64) {
+ return false;
+ }
+ if (bitset->capacity < newarraysize) {
+ uint64_t *newarray;
+ size_t newcapacity = (UINT64_C(0xFFFFFFFFFFFFFFFF) >>
+ roaring_leading_zeroes(newarraysize)) +
+ 1;
+ while (newcapacity < newarraysize) {
+ newcapacity *= 2;
+ }
+ if ((newarray = (uint64_t *)roaring_realloc(
+ bitset->array, sizeof(uint64_t) * newcapacity)) == NULL) {
+ return false;
+ }
+ bitset->capacity = newcapacity;
+ bitset->array = newarray;
+ }
+ memset(bitset->array + bitset->arraysize, 0,
+ sizeof(uint64_t) * (newarraysize - bitset->arraysize));
+ bitset->arraysize = newarraysize;
+ return true; // success!
+}
+
+size_t bitset_maximum(const bitset_t *bitset) {
+ for (size_t k = bitset->arraysize; k > 0; k--) {
+ uint64_t w = bitset->array[k - 1];
+ if (w != 0) {
+ return 63 - roaring_leading_zeroes(w) + (k - 1) * 64;
+ }
+ }
+ return 0;
+}
+
+/* Returns true if bitsets share no common elements, false otherwise.
+ *
+ * Performs early-out if common element found. */
+bool bitsets_disjoint(const bitset_t *CROARING_CBITSET_RESTRICT b1,
+ const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+ size_t minlength =
+ b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+
+ for (size_t k = 0; k < minlength; k++) {
+ if ((b1->array[k] & b2->array[k]) != 0) return false;
+ }
+ return true;
+}
+
+/* Returns true if bitsets contain at least 1 common element, false if they are
+ * disjoint.
+ *
+ * Performs early-out if common element found. */
+bool bitsets_intersect(const bitset_t *CROARING_CBITSET_RESTRICT b1,
+ const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+ size_t minlength =
+ b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+
+ for (size_t k = 0; k < minlength; k++) {
+ if ((b1->array[k] & b2->array[k]) != 0) return true;
+ }
+ return false;
+}
+
+/* Returns true if b has any bits set in or after b->array[starting_loc]. */
+static bool any_bits_set(const bitset_t *b, size_t starting_loc) {
+ if (starting_loc >= b->arraysize) {
+ return false;
+ }
+ for (size_t k = starting_loc; k < b->arraysize; k++) {
+ if (b->array[k] != 0) return true;
+ }
+ return false;
+}
+
+/* Returns true if b1 has all of b2's bits set.
+ *
+ * Performs early out if a bit is found in b2 that is not found in b1. */
+bool bitset_contains_all(const bitset_t *CROARING_CBITSET_RESTRICT b1,
+ const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+ size_t min_size = b1->arraysize;
+ if (b1->arraysize > b2->arraysize) {
+ min_size = b2->arraysize;
+ }
+ for (size_t k = 0; k < min_size; k++) {
+ if ((b1->array[k] & b2->array[k]) != b2->array[k]) {
+ return false;
+ }
+ }
+ if (b2->arraysize > b1->arraysize) {
+ /* Need to check if b2 has any bits set beyond b1's array */
+ return !any_bits_set(b2, b1->arraysize);
+ }
+ return true;
+}
+
+size_t bitset_union_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
+ const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+ size_t answer = 0;
+ size_t minlength =
+ b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+ size_t k = 0;
+ for (; k + 3 < minlength; k += 4) {
+ answer += roaring_hamming(b1->array[k] | b2->array[k]);
+ answer += roaring_hamming(b1->array[k + 1] | b2->array[k + 1]);
+ answer += roaring_hamming(b1->array[k + 2] | b2->array[k + 2]);
+ answer += roaring_hamming(b1->array[k + 3] | b2->array[k + 3]);
+ }
+ for (; k < minlength; ++k) {
+ answer += roaring_hamming(b1->array[k] | b2->array[k]);
+ }
+ if (b2->arraysize > b1->arraysize) {
+ // k is equal to b1->arraysize
+ for (; k + 3 < b2->arraysize; k += 4) {
+ answer += roaring_hamming(b2->array[k]);
+ answer += roaring_hamming(b2->array[k + 1]);
+ answer += roaring_hamming(b2->array[k + 2]);
+ answer += roaring_hamming(b2->array[k + 3]);
+ }
+ for (; k < b2->arraysize; ++k) {
+ answer += roaring_hamming(b2->array[k]);
+ }
+ } else {
+ // k is equal to b2->arraysize
+ for (; k + 3 < b1->arraysize; k += 4) {
+ answer += roaring_hamming(b1->array[k]);
+ answer += roaring_hamming(b1->array[k + 1]);
+ answer += roaring_hamming(b1->array[k + 2]);
+ answer += roaring_hamming(b1->array[k + 3]);
+ }
+ for (; k < b1->arraysize; ++k) {
+ answer += roaring_hamming(b1->array[k]);
+ }
+ }
+ return answer;
+}
+
+void bitset_inplace_intersection(bitset_t *CROARING_CBITSET_RESTRICT b1,
+ const bitset_t *CROARING_CBITSET_RESTRICT b2)
{
+ size_t minlength =
+ b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+ size_t k = 0;
+ for (; k < minlength; ++k) {
+ b1->array[k] &= b2->array[k];
+ }
+ for (; k < b1->arraysize; ++k) {
+ b1->array[k] = 0; // memset could, maybe, be a tiny bit faster
+ }
+}
+
+size_t bitset_intersection_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
+ const bitset_t *CROARING_CBITSET_RESTRICT b2)
{
+ size_t answer = 0;
+ size_t minlength =
+ b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+ for (size_t k = 0; k < minlength; ++k) {
+ answer += roaring_hamming(b1->array[k] & b2->array[k]);
+ }
+ return answer;
+}
+
+void bitset_inplace_difference(bitset_t *CROARING_CBITSET_RESTRICT b1,
+ const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+ size_t minlength =
+ b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+ size_t k = 0;
+ for (; k < minlength; ++k) {
+ b1->array[k] &= ~(b2->array[k]);
+ }
+}
+
+size_t bitset_difference_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
+ const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+ size_t minlength =
+ b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+ size_t k = 0;
+ size_t answer = 0;
+ for (; k < minlength; ++k) {
+ answer += roaring_hamming(b1->array[k] & ~(b2->array[k]));
+ }
+ for (; k < b1->arraysize; ++k) {
+ answer += roaring_hamming(b1->array[k]);
+ }
+ return answer;
+}
+
+bool bitset_inplace_symmetric_difference(
+ bitset_t *CROARING_CBITSET_RESTRICT b1,
+ const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+ size_t minlength =
+ b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+ size_t k = 0;
+ for (; k < minlength; ++k) {
+ b1->array[k] ^= b2->array[k];
+ }
+ if (b2->arraysize > b1->arraysize) {
+ size_t oldsize = b1->arraysize;
+ if (!bitset_resize(b1, b2->arraysize, false)) return false;
+ memcpy(b1->array + oldsize, b2->array + oldsize,
+ (b2->arraysize - oldsize) * sizeof(uint64_t));
+ }
+ return true;
+}
+
+size_t bitset_symmetric_difference_count(
+ const bitset_t *CROARING_CBITSET_RESTRICT b1,
+ const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+ size_t minlength =
+ b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+ size_t k = 0;
+ size_t answer = 0;
+ for (; k < minlength; ++k) {
+ answer += roaring_hamming(b1->array[k] ^ b2->array[k]);
+ }
+ if (b2->arraysize > b1->arraysize) {
+ for (; k < b2->arraysize; ++k) {
+ answer += roaring_hamming(b2->array[k]);
+ }
+ } else {
+ for (; k < b1->arraysize; ++k) {
+ answer += roaring_hamming(b1->array[k]);
+ }
+ }
+ return answer;
+}
+
+bool bitset_trim(bitset_t *bitset) {
+ size_t newsize = bitset->arraysize;
+ while (newsize > 0) {
+ if (bitset->array[newsize - 1] == 0)
+ newsize -= 1;
+ else
+ break;
+ }
+ if (bitset->capacity == newsize) return true; // nothing to do
+ uint64_t *newarray;
+ if ((newarray = (uint64_t *)roaring_realloc(
+ bitset->array, sizeof(uint64_t) * newsize)) == NULL) {
+ return false;
+ }
+ bitset->array = newarray;
+ bitset->capacity = newsize;
+ bitset->arraysize = newsize;
+ return true;
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/bitset.c */
+/* begin file src/bitset_util.c */
+#include <assert.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#ifdef __cplusplus
+using namespace ::roaring::internal;
+extern "C" {
+namespace roaring {
+namespace api {
+#endif
+
+#if CROARING_IS_X64
+static uint8_t lengthTable[256] = {
+ 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4,
+ 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4,
+ 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,
+ 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5,
+ 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,
+ 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8};
+#endif
+
+#if CROARING_IS_X64
+ALIGNED(32)
+static uint32_t vecDecodeTable[256][8] = {
+ {0, 0, 0, 0, 0, 0, 0, 0}, /* 0x00 (00000000) */
+ {1, 0, 0, 0, 0, 0, 0, 0}, /* 0x01 (00000001) */
+ {2, 0, 0, 0, 0, 0, 0, 0}, /* 0x02 (00000010) */
+ {1, 2, 0, 0, 0, 0, 0, 0}, /* 0x03 (00000011) */
+ {3, 0, 0, 0, 0, 0, 0, 0}, /* 0x04 (00000100) */
+ {1, 3, 0, 0, 0, 0, 0, 0}, /* 0x05 (00000101) */
+ {2, 3, 0, 0, 0, 0, 0, 0}, /* 0x06 (00000110) */
+ {1, 2, 3, 0, 0, 0, 0, 0}, /* 0x07 (00000111) */
+ {4, 0, 0, 0, 0, 0, 0, 0}, /* 0x08 (00001000) */
+ {1, 4, 0, 0, 0, 0, 0, 0}, /* 0x09 (00001001) */
+ {2, 4, 0, 0, 0, 0, 0, 0}, /* 0x0A (00001010) */
+ {1, 2, 4, 0, 0, 0, 0, 0}, /* 0x0B (00001011) */
+ {3, 4, 0, 0, 0, 0, 0, 0}, /* 0x0C (00001100) */
+ {1, 3, 4, 0, 0, 0, 0, 0}, /* 0x0D (00001101) */
+ {2, 3, 4, 0, 0, 0, 0, 0}, /* 0x0E (00001110) */
+ {1, 2, 3, 4, 0, 0, 0, 0}, /* 0x0F (00001111) */
+ {5, 0, 0, 0, 0, 0, 0, 0}, /* 0x10 (00010000) */
+ {1, 5, 0, 0, 0, 0, 0, 0}, /* 0x11 (00010001) */
+ {2, 5, 0, 0, 0, 0, 0, 0}, /* 0x12 (00010010) */
+ {1, 2, 5, 0, 0, 0, 0, 0}, /* 0x13 (00010011) */
+ {3, 5, 0, 0, 0, 0, 0, 0}, /* 0x14 (00010100) */
+ {1, 3, 5, 0, 0, 0, 0, 0}, /* 0x15 (00010101) */
+ {2, 3, 5, 0, 0, 0, 0, 0}, /* 0x16 (00010110) */
+ {1, 2, 3, 5, 0, 0, 0, 0}, /* 0x17 (00010111) */
+ {4, 5, 0, 0, 0, 0, 0, 0}, /* 0x18 (00011000) */
+ {1, 4, 5, 0, 0, 0, 0, 0}, /* 0x19 (00011001) */
+ {2, 4, 5, 0, 0, 0, 0, 0}, /* 0x1A (00011010) */
+ {1, 2, 4, 5, 0, 0, 0, 0}, /* 0x1B (00011011) */
+ {3, 4, 5, 0, 0, 0, 0, 0}, /* 0x1C (00011100) */
+ {1, 3, 4, 5, 0, 0, 0, 0}, /* 0x1D (00011101) */
+ {2, 3, 4, 5, 0, 0, 0, 0}, /* 0x1E (00011110) */
+ {1, 2, 3, 4, 5, 0, 0, 0}, /* 0x1F (00011111) */
+ {6, 0, 0, 0, 0, 0, 0, 0}, /* 0x20 (00100000) */
+ {1, 6, 0, 0, 0, 0, 0, 0}, /* 0x21 (00100001) */
+ {2, 6, 0, 0, 0, 0, 0, 0}, /* 0x22 (00100010) */
+ {1, 2, 6, 0, 0, 0, 0, 0}, /* 0x23 (00100011) */
+ {3, 6, 0, 0, 0, 0, 0, 0}, /* 0x24 (00100100) */
+ {1, 3, 6, 0, 0, 0, 0, 0}, /* 0x25 (00100101) */
+ {2, 3, 6, 0, 0, 0, 0, 0}, /* 0x26 (00100110) */
+ {1, 2, 3, 6, 0, 0, 0, 0}, /* 0x27 (00100111) */
+ {4, 6, 0, 0, 0, 0, 0, 0}, /* 0x28 (00101000) */
+ {1, 4, 6, 0, 0, 0, 0, 0}, /* 0x29 (00101001) */
+ {2, 4, 6, 0, 0, 0, 0, 0}, /* 0x2A (00101010) */
+ {1, 2, 4, 6, 0, 0, 0, 0}, /* 0x2B (00101011) */
+ {3, 4, 6, 0, 0, 0, 0, 0}, /* 0x2C (00101100) */
+ {1, 3, 4, 6, 0, 0, 0, 0}, /* 0x2D (00101101) */
+ {2, 3, 4, 6, 0, 0, 0, 0}, /* 0x2E (00101110) */
+ {1, 2, 3, 4, 6, 0, 0, 0}, /* 0x2F (00101111) */
+ {5, 6, 0, 0, 0, 0, 0, 0}, /* 0x30 (00110000) */
+ {1, 5, 6, 0, 0, 0, 0, 0}, /* 0x31 (00110001) */
+ {2, 5, 6, 0, 0, 0, 0, 0}, /* 0x32 (00110010) */
+ {1, 2, 5, 6, 0, 0, 0, 0}, /* 0x33 (00110011) */
+ {3, 5, 6, 0, 0, 0, 0, 0}, /* 0x34 (00110100) */
+ {1, 3, 5, 6, 0, 0, 0, 0}, /* 0x35 (00110101) */
+ {2, 3, 5, 6, 0, 0, 0, 0}, /* 0x36 (00110110) */
+ {1, 2, 3, 5, 6, 0, 0, 0}, /* 0x37 (00110111) */
+ {4, 5, 6, 0, 0, 0, 0, 0}, /* 0x38 (00111000) */
+ {1, 4, 5, 6, 0, 0, 0, 0}, /* 0x39 (00111001) */
+ {2, 4, 5, 6, 0, 0, 0, 0}, /* 0x3A (00111010) */
+ {1, 2, 4, 5, 6, 0, 0, 0}, /* 0x3B (00111011) */
+ {3, 4, 5, 6, 0, 0, 0, 0}, /* 0x3C (00111100) */
+ {1, 3, 4, 5, 6, 0, 0, 0}, /* 0x3D (00111101) */
+ {2, 3, 4, 5, 6, 0, 0, 0}, /* 0x3E (00111110) */
+ {1, 2, 3, 4, 5, 6, 0, 0}, /* 0x3F (00111111) */
+ {7, 0, 0, 0, 0, 0, 0, 0}, /* 0x40 (01000000) */
+ {1, 7, 0, 0, 0, 0, 0, 0}, /* 0x41 (01000001) */
+ {2, 7, 0, 0, 0, 0, 0, 0}, /* 0x42 (01000010) */
+ {1, 2, 7, 0, 0, 0, 0, 0}, /* 0x43 (01000011) */
+ {3, 7, 0, 0, 0, 0, 0, 0}, /* 0x44 (01000100) */
+ {1, 3, 7, 0, 0, 0, 0, 0}, /* 0x45 (01000101) */
+ {2, 3, 7, 0, 0, 0, 0, 0}, /* 0x46 (01000110) */
+ {1, 2, 3, 7, 0, 0, 0, 0}, /* 0x47 (01000111) */
+ {4, 7, 0, 0, 0, 0, 0, 0}, /* 0x48 (01001000) */
+ {1, 4, 7, 0, 0, 0, 0, 0}, /* 0x49 (01001001) */
+ {2, 4, 7, 0, 0, 0, 0, 0}, /* 0x4A (01001010) */
+ {1, 2, 4, 7, 0, 0, 0, 0}, /* 0x4B (01001011) */
+ {3, 4, 7, 0, 0, 0, 0, 0}, /* 0x4C (01001100) */
+ {1, 3, 4, 7, 0, 0, 0, 0}, /* 0x4D (01001101) */
+ {2, 3, 4, 7, 0, 0, 0, 0}, /* 0x4E (01001110) */
+ {1, 2, 3, 4, 7, 0, 0, 0}, /* 0x4F (01001111) */
+ {5, 7, 0, 0, 0, 0, 0, 0}, /* 0x50 (01010000) */
+ {1, 5, 7, 0, 0, 0, 0, 0}, /* 0x51 (01010001) */
+ {2, 5, 7, 0, 0, 0, 0, 0}, /* 0x52 (01010010) */
+ {1, 2, 5, 7, 0, 0, 0, 0}, /* 0x53 (01010011) */
+ {3, 5, 7, 0, 0, 0, 0, 0}, /* 0x54 (01010100) */
+ {1, 3, 5, 7, 0, 0, 0, 0}, /* 0x55 (01010101) */
+ {2, 3, 5, 7, 0, 0, 0, 0}, /* 0x56 (01010110) */
+ {1, 2, 3, 5, 7, 0, 0, 0}, /* 0x57 (01010111) */
+ {4, 5, 7, 0, 0, 0, 0, 0}, /* 0x58 (01011000) */
+ {1, 4, 5, 7, 0, 0, 0, 0}, /* 0x59 (01011001) */
+ {2, 4, 5, 7, 0, 0, 0, 0}, /* 0x5A (01011010) */
+ {1, 2, 4, 5, 7, 0, 0, 0}, /* 0x5B (01011011) */
+ {3, 4, 5, 7, 0, 0, 0, 0}, /* 0x5C (01011100) */
+ {1, 3, 4, 5, 7, 0, 0, 0}, /* 0x5D (01011101) */
+ {2, 3, 4, 5, 7, 0, 0, 0}, /* 0x5E (01011110) */
+ {1, 2, 3, 4, 5, 7, 0, 0}, /* 0x5F (01011111) */
+ {6, 7, 0, 0, 0, 0, 0, 0}, /* 0x60 (01100000) */
+ {1, 6, 7, 0, 0, 0, 0, 0}, /* 0x61 (01100001) */
+ {2, 6, 7, 0, 0, 0, 0, 0}, /* 0x62 (01100010) */
+ {1, 2, 6, 7, 0, 0, 0, 0}, /* 0x63 (01100011) */
+ {3, 6, 7, 0, 0, 0, 0, 0}, /* 0x64 (01100100) */
+ {1, 3, 6, 7, 0, 0, 0, 0}, /* 0x65 (01100101) */
+ {2, 3, 6, 7, 0, 0, 0, 0}, /* 0x66 (01100110) */
+ {1, 2, 3, 6, 7, 0, 0, 0}, /* 0x67 (01100111) */
+ {4, 6, 7, 0, 0, 0, 0, 0}, /* 0x68 (01101000) */
+ {1, 4, 6, 7, 0, 0, 0, 0}, /* 0x69 (01101001) */
+ {2, 4, 6, 7, 0, 0, 0, 0}, /* 0x6A (01101010) */
+ {1, 2, 4, 6, 7, 0, 0, 0}, /* 0x6B (01101011) */
+ {3, 4, 6, 7, 0, 0, 0, 0}, /* 0x6C (01101100) */
+ {1, 3, 4, 6, 7, 0, 0, 0}, /* 0x6D (01101101) */
+ {2, 3, 4, 6, 7, 0, 0, 0}, /* 0x6E (01101110) */
+ {1, 2, 3, 4, 6, 7, 0, 0}, /* 0x6F (01101111) */
+ {5, 6, 7, 0, 0, 0, 0, 0}, /* 0x70 (01110000) */
+ {1, 5, 6, 7, 0, 0, 0, 0}, /* 0x71 (01110001) */
+ {2, 5, 6, 7, 0, 0, 0, 0}, /* 0x72 (01110010) */
+ {1, 2, 5, 6, 7, 0, 0, 0}, /* 0x73 (01110011) */
+ {3, 5, 6, 7, 0, 0, 0, 0}, /* 0x74 (01110100) */
+ {1, 3, 5, 6, 7, 0, 0, 0}, /* 0x75 (01110101) */
+ {2, 3, 5, 6, 7, 0, 0, 0}, /* 0x76 (01110110) */
+ {1, 2, 3, 5, 6, 7, 0, 0}, /* 0x77 (01110111) */
+ {4, 5, 6, 7, 0, 0, 0, 0}, /* 0x78 (01111000) */
+ {1, 4, 5, 6, 7, 0, 0, 0}, /* 0x79 (01111001) */
+ {2, 4, 5, 6, 7, 0, 0, 0}, /* 0x7A (01111010) */
+ {1, 2, 4, 5, 6, 7, 0, 0}, /* 0x7B (01111011) */
+ {3, 4, 5, 6, 7, 0, 0, 0}, /* 0x7C (01111100) */
+ {1, 3, 4, 5, 6, 7, 0, 0}, /* 0x7D (01111101) */
+ {2, 3, 4, 5, 6, 7, 0, 0}, /* 0x7E (01111110) */
+ {1, 2, 3, 4, 5, 6, 7, 0}, /* 0x7F (01111111) */
+ {8, 0, 0, 0, 0, 0, 0, 0}, /* 0x80 (10000000) */
+ {1, 8, 0, 0, 0, 0, 0, 0}, /* 0x81 (10000001) */
+ {2, 8, 0, 0, 0, 0, 0, 0}, /* 0x82 (10000010) */
+ {1, 2, 8, 0, 0, 0, 0, 0}, /* 0x83 (10000011) */
+ {3, 8, 0, 0, 0, 0, 0, 0}, /* 0x84 (10000100) */
+ {1, 3, 8, 0, 0, 0, 0, 0}, /* 0x85 (10000101) */
+ {2, 3, 8, 0, 0, 0, 0, 0}, /* 0x86 (10000110) */
+ {1, 2, 3, 8, 0, 0, 0, 0}, /* 0x87 (10000111) */
+ {4, 8, 0, 0, 0, 0, 0, 0}, /* 0x88 (10001000) */
+ {1, 4, 8, 0, 0, 0, 0, 0}, /* 0x89 (10001001) */
+ {2, 4, 8, 0, 0, 0, 0, 0}, /* 0x8A (10001010) */
+ {1, 2, 4, 8, 0, 0, 0, 0}, /* 0x8B (10001011) */
+ {3, 4, 8, 0, 0, 0, 0, 0}, /* 0x8C (10001100) */
+ {1, 3, 4, 8, 0, 0, 0, 0}, /* 0x8D (10001101) */
+ {2, 3, 4, 8, 0, 0, 0, 0}, /* 0x8E (10001110) */
+ {1, 2, 3, 4, 8, 0, 0, 0}, /* 0x8F (10001111) */
+ {5, 8, 0, 0, 0, 0, 0, 0}, /* 0x90 (10010000) */
+ {1, 5, 8, 0, 0, 0, 0, 0}, /* 0x91 (10010001) */
+ {2, 5, 8, 0, 0, 0, 0, 0}, /* 0x92 (10010010) */
+ {1, 2, 5, 8, 0, 0, 0, 0}, /* 0x93 (10010011) */
+ {3, 5, 8, 0, 0, 0, 0, 0}, /* 0x94 (10010100) */
+ {1, 3, 5, 8, 0, 0, 0, 0}, /* 0x95 (10010101) */
+ {2, 3, 5, 8, 0, 0, 0, 0}, /* 0x96 (10010110) */
+ {1, 2, 3, 5, 8, 0, 0, 0}, /* 0x97 (10010111) */
+ {4, 5, 8, 0, 0, 0, 0, 0}, /* 0x98 (10011000) */
+ {1, 4, 5, 8, 0, 0, 0, 0}, /* 0x99 (10011001) */
+ {2, 4, 5, 8, 0, 0, 0, 0}, /* 0x9A (10011010) */
+ {1, 2, 4, 5, 8, 0, 0, 0}, /* 0x9B (10011011) */
+ {3, 4, 5, 8, 0, 0, 0, 0}, /* 0x9C (10011100) */
+ {1, 3, 4, 5, 8, 0, 0, 0}, /* 0x9D (10011101) */
+ {2, 3, 4, 5, 8, 0, 0, 0}, /* 0x9E (10011110) */
+ {1, 2, 3, 4, 5, 8, 0, 0}, /* 0x9F (10011111) */
+ {6, 8, 0, 0, 0, 0, 0, 0}, /* 0xA0 (10100000) */
+ {1, 6, 8, 0, 0, 0, 0, 0}, /* 0xA1 (10100001) */
+ {2, 6, 8, 0, 0, 0, 0, 0}, /* 0xA2 (10100010) */
+ {1, 2, 6, 8, 0, 0, 0, 0}, /* 0xA3 (10100011) */
+ {3, 6, 8, 0, 0, 0, 0, 0}, /* 0xA4 (10100100) */
+ {1, 3, 6, 8, 0, 0, 0, 0}, /* 0xA5 (10100101) */
+ {2, 3, 6, 8, 0, 0, 0, 0}, /* 0xA6 (10100110) */
+ {1, 2, 3, 6, 8, 0, 0, 0}, /* 0xA7 (10100111) */
+ {4, 6, 8, 0, 0, 0, 0, 0}, /* 0xA8 (10101000) */
+ {1, 4, 6, 8, 0, 0, 0, 0}, /* 0xA9 (10101001) */
+ {2, 4, 6, 8, 0, 0, 0, 0}, /* 0xAA (10101010) */
+ {1, 2, 4, 6, 8, 0, 0, 0}, /* 0xAB (10101011) */
+ {3, 4, 6, 8, 0, 0, 0, 0}, /* 0xAC (10101100) */
+ {1, 3, 4, 6, 8, 0, 0, 0}, /* 0xAD (10101101) */
+ {2, 3, 4, 6, 8, 0, 0, 0}, /* 0xAE (10101110) */
+ {1, 2, 3, 4, 6, 8, 0, 0}, /* 0xAF (10101111) */
+ {5, 6, 8, 0, 0, 0, 0, 0}, /* 0xB0 (10110000) */
+ {1, 5, 6, 8, 0, 0, 0, 0}, /* 0xB1 (10110001) */
+ {2, 5, 6, 8, 0, 0, 0, 0}, /* 0xB2 (10110010) */
+ {1, 2, 5, 6, 8, 0, 0, 0}, /* 0xB3 (10110011) */
+ {3, 5, 6, 8, 0, 0, 0, 0}, /* 0xB4 (10110100) */
+ {1, 3, 5, 6, 8, 0, 0, 0}, /* 0xB5 (10110101) */
+ {2, 3, 5, 6, 8, 0, 0, 0}, /* 0xB6 (10110110) */
+ {1, 2, 3, 5, 6, 8, 0, 0}, /* 0xB7 (10110111) */
+ {4, 5, 6, 8, 0, 0, 0, 0}, /* 0xB8 (10111000) */
+ {1, 4, 5, 6, 8, 0, 0, 0}, /* 0xB9 (10111001) */
+ {2, 4, 5, 6, 8, 0, 0, 0}, /* 0xBA (10111010) */
+ {1, 2, 4, 5, 6, 8, 0, 0}, /* 0xBB (10111011) */
+ {3, 4, 5, 6, 8, 0, 0, 0}, /* 0xBC (10111100) */
+ {1, 3, 4, 5, 6, 8, 0, 0}, /* 0xBD (10111101) */
+ {2, 3, 4, 5, 6, 8, 0, 0}, /* 0xBE (10111110) */
+ {1, 2, 3, 4, 5, 6, 8, 0}, /* 0xBF (10111111) */
+ {7, 8, 0, 0, 0, 0, 0, 0}, /* 0xC0 (11000000) */
+ {1, 7, 8, 0, 0, 0, 0, 0}, /* 0xC1 (11000001) */
+ {2, 7, 8, 0, 0, 0, 0, 0}, /* 0xC2 (11000010) */
+ {1, 2, 7, 8, 0, 0, 0, 0}, /* 0xC3 (11000011) */
+ {3, 7, 8, 0, 0, 0, 0, 0}, /* 0xC4 (11000100) */
+ {1, 3, 7, 8, 0, 0, 0, 0}, /* 0xC5 (11000101) */
+ {2, 3, 7, 8, 0, 0, 0, 0}, /* 0xC6 (11000110) */
+ {1, 2, 3, 7, 8, 0, 0, 0}, /* 0xC7 (11000111) */
+ {4, 7, 8, 0, 0, 0, 0, 0}, /* 0xC8 (11001000) */
+ {1, 4, 7, 8, 0, 0, 0, 0}, /* 0xC9 (11001001) */
+ {2, 4, 7, 8, 0, 0, 0, 0}, /* 0xCA (11001010) */
+ {1, 2, 4, 7, 8, 0, 0, 0}, /* 0xCB (11001011) */
+ {3, 4, 7, 8, 0, 0, 0, 0}, /* 0xCC (11001100) */
+ {1, 3, 4, 7, 8, 0, 0, 0}, /* 0xCD (11001101) */
+ {2, 3, 4, 7, 8, 0, 0, 0}, /* 0xCE (11001110) */
+ {1, 2, 3, 4, 7, 8, 0, 0}, /* 0xCF (11001111) */
+ {5, 7, 8, 0, 0, 0, 0, 0}, /* 0xD0 (11010000) */
+ {1, 5, 7, 8, 0, 0, 0, 0}, /* 0xD1 (11010001) */
+ {2, 5, 7, 8, 0, 0, 0, 0}, /* 0xD2 (11010010) */
+ {1, 2, 5, 7, 8, 0, 0, 0}, /* 0xD3 (11010011) */
+ {3, 5, 7, 8, 0, 0, 0, 0}, /* 0xD4 (11010100) */
+ {1, 3, 5, 7, 8, 0, 0, 0}, /* 0xD5 (11010101) */
+ {2, 3, 5, 7, 8, 0, 0, 0}, /* 0xD6 (11010110) */
+ {1, 2, 3, 5, 7, 8, 0, 0}, /* 0xD7 (11010111) */
+ {4, 5, 7, 8, 0, 0, 0, 0}, /* 0xD8 (11011000) */
+ {1, 4, 5, 7, 8, 0, 0, 0}, /* 0xD9 (11011001) */
+ {2, 4, 5, 7, 8, 0, 0, 0}, /* 0xDA (11011010) */
+ {1, 2, 4, 5, 7, 8, 0, 0}, /* 0xDB (11011011) */
+ {3, 4, 5, 7, 8, 0, 0, 0}, /* 0xDC (11011100) */
+ {1, 3, 4, 5, 7, 8, 0, 0}, /* 0xDD (11011101) */
+ {2, 3, 4, 5, 7, 8, 0, 0}, /* 0xDE (11011110) */
+ {1, 2, 3, 4, 5, 7, 8, 0}, /* 0xDF (11011111) */
+ {6, 7, 8, 0, 0, 0, 0, 0}, /* 0xE0 (11100000) */
+ {1, 6, 7, 8, 0, 0, 0, 0}, /* 0xE1 (11100001) */
+ {2, 6, 7, 8, 0, 0, 0, 0}, /* 0xE2 (11100010) */
+ {1, 2, 6, 7, 8, 0, 0, 0}, /* 0xE3 (11100011) */
+ {3, 6, 7, 8, 0, 0, 0, 0}, /* 0xE4 (11100100) */
+ {1, 3, 6, 7, 8, 0, 0, 0}, /* 0xE5 (11100101) */
+ {2, 3, 6, 7, 8, 0, 0, 0}, /* 0xE6 (11100110) */
+ {1, 2, 3, 6, 7, 8, 0, 0}, /* 0xE7 (11100111) */
+ {4, 6, 7, 8, 0, 0, 0, 0}, /* 0xE8 (11101000) */
+ {1, 4, 6, 7, 8, 0, 0, 0}, /* 0xE9 (11101001) */
+ {2, 4, 6, 7, 8, 0, 0, 0}, /* 0xEA (11101010) */
+ {1, 2, 4, 6, 7, 8, 0, 0}, /* 0xEB (11101011) */
+ {3, 4, 6, 7, 8, 0, 0, 0}, /* 0xEC (11101100) */
+ {1, 3, 4, 6, 7, 8, 0, 0}, /* 0xED (11101101) */
+ {2, 3, 4, 6, 7, 8, 0, 0}, /* 0xEE (11101110) */
+ {1, 2, 3, 4, 6, 7, 8, 0}, /* 0xEF (11101111) */
+ {5, 6, 7, 8, 0, 0, 0, 0}, /* 0xF0 (11110000) */
+ {1, 5, 6, 7, 8, 0, 0, 0}, /* 0xF1 (11110001) */
+ {2, 5, 6, 7, 8, 0, 0, 0}, /* 0xF2 (11110010) */
+ {1, 2, 5, 6, 7, 8, 0, 0}, /* 0xF3 (11110011) */
+ {3, 5, 6, 7, 8, 0, 0, 0}, /* 0xF4 (11110100) */
+ {1, 3, 5, 6, 7, 8, 0, 0}, /* 0xF5 (11110101) */
+ {2, 3, 5, 6, 7, 8, 0, 0}, /* 0xF6 (11110110) */
+ {1, 2, 3, 5, 6, 7, 8, 0}, /* 0xF7 (11110111) */
+ {4, 5, 6, 7, 8, 0, 0, 0}, /* 0xF8 (11111000) */
+ {1, 4, 5, 6, 7, 8, 0, 0}, /* 0xF9 (11111001) */
+ {2, 4, 5, 6, 7, 8, 0, 0}, /* 0xFA (11111010) */
+ {1, 2, 4, 5, 6, 7, 8, 0}, /* 0xFB (11111011) */
+ {3, 4, 5, 6, 7, 8, 0, 0}, /* 0xFC (11111100) */
+ {1, 3, 4, 5, 6, 7, 8, 0}, /* 0xFD (11111101) */
+ {2, 3, 4, 5, 6, 7, 8, 0}, /* 0xFE (11111110) */
+ {1, 2, 3, 4, 5, 6, 7, 8} /* 0xFF (11111111) */
+};
+
+#endif // #if CROARING_IS_X64
+
+#if CROARING_IS_X64
+// same as vecDecodeTable but in 16 bits
+ALIGNED(32)
+static uint16_t vecDecodeTable_uint16[256][8] = {
+ {0, 0, 0, 0, 0, 0, 0, 0}, /* 0x00 (00000000) */
+ {1, 0, 0, 0, 0, 0, 0, 0}, /* 0x01 (00000001) */
+ {2, 0, 0, 0, 0, 0, 0, 0}, /* 0x02 (00000010) */
+ {1, 2, 0, 0, 0, 0, 0, 0}, /* 0x03 (00000011) */
+ {3, 0, 0, 0, 0, 0, 0, 0}, /* 0x04 (00000100) */
+ {1, 3, 0, 0, 0, 0, 0, 0}, /* 0x05 (00000101) */
+ {2, 3, 0, 0, 0, 0, 0, 0}, /* 0x06 (00000110) */
+ {1, 2, 3, 0, 0, 0, 0, 0}, /* 0x07 (00000111) */
+ {4, 0, 0, 0, 0, 0, 0, 0}, /* 0x08 (00001000) */
+ {1, 4, 0, 0, 0, 0, 0, 0}, /* 0x09 (00001001) */
+ {2, 4, 0, 0, 0, 0, 0, 0}, /* 0x0A (00001010) */
+ {1, 2, 4, 0, 0, 0, 0, 0}, /* 0x0B (00001011) */
+ {3, 4, 0, 0, 0, 0, 0, 0}, /* 0x0C (00001100) */
+ {1, 3, 4, 0, 0, 0, 0, 0}, /* 0x0D (00001101) */
+ {2, 3, 4, 0, 0, 0, 0, 0}, /* 0x0E (00001110) */
+ {1, 2, 3, 4, 0, 0, 0, 0}, /* 0x0F (00001111) */
+ {5, 0, 0, 0, 0, 0, 0, 0}, /* 0x10 (00010000) */
+ {1, 5, 0, 0, 0, 0, 0, 0}, /* 0x11 (00010001) */
+ {2, 5, 0, 0, 0, 0, 0, 0}, /* 0x12 (00010010) */
+ {1, 2, 5, 0, 0, 0, 0, 0}, /* 0x13 (00010011) */
+ {3, 5, 0, 0, 0, 0, 0, 0}, /* 0x14 (00010100) */
+ {1, 3, 5, 0, 0, 0, 0, 0}, /* 0x15 (00010101) */
+ {2, 3, 5, 0, 0, 0, 0, 0}, /* 0x16 (00010110) */
+ {1, 2, 3, 5, 0, 0, 0, 0}, /* 0x17 (00010111) */
+ {4, 5, 0, 0, 0, 0, 0, 0}, /* 0x18 (00011000) */
+ {1, 4, 5, 0, 0, 0, 0, 0}, /* 0x19 (00011001) */
+ {2, 4, 5, 0, 0, 0, 0, 0}, /* 0x1A (00011010) */
+ {1, 2, 4, 5, 0, 0, 0, 0}, /* 0x1B (00011011) */
+ {3, 4, 5, 0, 0, 0, 0, 0}, /* 0x1C (00011100) */
+ {1, 3, 4, 5, 0, 0, 0, 0}, /* 0x1D (00011101) */
+ {2, 3, 4, 5, 0, 0, 0, 0}, /* 0x1E (00011110) */
+ {1, 2, 3, 4, 5, 0, 0, 0}, /* 0x1F (00011111) */
+ {6, 0, 0, 0, 0, 0, 0, 0}, /* 0x20 (00100000) */
+ {1, 6, 0, 0, 0, 0, 0, 0}, /* 0x21 (00100001) */
+ {2, 6, 0, 0, 0, 0, 0, 0}, /* 0x22 (00100010) */
+ {1, 2, 6, 0, 0, 0, 0, 0}, /* 0x23 (00100011) */
+ {3, 6, 0, 0, 0, 0, 0, 0}, /* 0x24 (00100100) */
+ {1, 3, 6, 0, 0, 0, 0, 0}, /* 0x25 (00100101) */
+ {2, 3, 6, 0, 0, 0, 0, 0}, /* 0x26 (00100110) */
+ {1, 2, 3, 6, 0, 0, 0, 0}, /* 0x27 (00100111) */
+ {4, 6, 0, 0, 0, 0, 0, 0}, /* 0x28 (00101000) */
+ {1, 4, 6, 0, 0, 0, 0, 0}, /* 0x29 (00101001) */
+ {2, 4, 6, 0, 0, 0, 0, 0}, /* 0x2A (00101010) */
+ {1, 2, 4, 6, 0, 0, 0, 0}, /* 0x2B (00101011) */
+ {3, 4, 6, 0, 0, 0, 0, 0}, /* 0x2C (00101100) */
+ {1, 3, 4, 6, 0, 0, 0, 0}, /* 0x2D (00101101) */
+ {2, 3, 4, 6, 0, 0, 0, 0}, /* 0x2E (00101110) */
+ {1, 2, 3, 4, 6, 0, 0, 0}, /* 0x2F (00101111) */
+ {5, 6, 0, 0, 0, 0, 0, 0}, /* 0x30 (00110000) */
+ {1, 5, 6, 0, 0, 0, 0, 0}, /* 0x31 (00110001) */
+ {2, 5, 6, 0, 0, 0, 0, 0}, /* 0x32 (00110010) */
+ {1, 2, 5, 6, 0, 0, 0, 0}, /* 0x33 (00110011) */
+ {3, 5, 6, 0, 0, 0, 0, 0}, /* 0x34 (00110100) */
+ {1, 3, 5, 6, 0, 0, 0, 0}, /* 0x35 (00110101) */
+ {2, 3, 5, 6, 0, 0, 0, 0}, /* 0x36 (00110110) */
+ {1, 2, 3, 5, 6, 0, 0, 0}, /* 0x37 (00110111) */
+ {4, 5, 6, 0, 0, 0, 0, 0}, /* 0x38 (00111000) */
+ {1, 4, 5, 6, 0, 0, 0, 0}, /* 0x39 (00111001) */
+ {2, 4, 5, 6, 0, 0, 0, 0}, /* 0x3A (00111010) */
+ {1, 2, 4, 5, 6, 0, 0, 0}, /* 0x3B (00111011) */
+ {3, 4, 5, 6, 0, 0, 0, 0}, /* 0x3C (00111100) */
+ {1, 3, 4, 5, 6, 0, 0, 0}, /* 0x3D (00111101) */
+ {2, 3, 4, 5, 6, 0, 0, 0}, /* 0x3E (00111110) */
+ {1, 2, 3, 4, 5, 6, 0, 0}, /* 0x3F (00111111) */
+ {7, 0, 0, 0, 0, 0, 0, 0}, /* 0x40 (01000000) */
+ {1, 7, 0, 0, 0, 0, 0, 0}, /* 0x41 (01000001) */
+ {2, 7, 0, 0, 0, 0, 0, 0}, /* 0x42 (01000010) */
+ {1, 2, 7, 0, 0, 0, 0, 0}, /* 0x43 (01000011) */
+ {3, 7, 0, 0, 0, 0, 0, 0}, /* 0x44 (01000100) */
+ {1, 3, 7, 0, 0, 0, 0, 0}, /* 0x45 (01000101) */
+ {2, 3, 7, 0, 0, 0, 0, 0}, /* 0x46 (01000110) */
+ {1, 2, 3, 7, 0, 0, 0, 0}, /* 0x47 (01000111) */
+ {4, 7, 0, 0, 0, 0, 0, 0}, /* 0x48 (01001000) */
+ {1, 4, 7, 0, 0, 0, 0, 0}, /* 0x49 (01001001) */
+ {2, 4, 7, 0, 0, 0, 0, 0}, /* 0x4A (01001010) */
+ {1, 2, 4, 7, 0, 0, 0, 0}, /* 0x4B (01001011) */
+ {3, 4, 7, 0, 0, 0, 0, 0}, /* 0x4C (01001100) */
+ {1, 3, 4, 7, 0, 0, 0, 0}, /* 0x4D (01001101) */
+ {2, 3, 4, 7, 0, 0, 0, 0}, /* 0x4E (01001110) */
+ {1, 2, 3, 4, 7, 0, 0, 0}, /* 0x4F (01001111) */
+ {5, 7, 0, 0, 0, 0, 0, 0}, /* 0x50 (01010000) */
+ {1, 5, 7, 0, 0, 0, 0, 0}, /* 0x51 (01010001) */
+ {2, 5, 7, 0, 0, 0, 0, 0}, /* 0x52 (01010010) */
+ {1, 2, 5, 7, 0, 0, 0, 0}, /* 0x53 (01010011) */
+ {3, 5, 7, 0, 0, 0, 0, 0}, /* 0x54 (01010100) */
+ {1, 3, 5, 7, 0, 0, 0, 0}, /* 0x55 (01010101) */
+ {2, 3, 5, 7, 0, 0, 0, 0}, /* 0x56 (01010110) */
+ {1, 2, 3, 5, 7, 0, 0, 0}, /* 0x57 (01010111) */
+ {4, 5, 7, 0, 0, 0, 0, 0}, /* 0x58 (01011000) */
+ {1, 4, 5, 7, 0, 0, 0, 0}, /* 0x59 (01011001) */
+ {2, 4, 5, 7, 0, 0, 0, 0}, /* 0x5A (01011010) */
+ {1, 2, 4, 5, 7, 0, 0, 0}, /* 0x5B (01011011) */
+ {3, 4, 5, 7, 0, 0, 0, 0}, /* 0x5C (01011100) */
+ {1, 3, 4, 5, 7, 0, 0, 0}, /* 0x5D (01011101) */
+ {2, 3, 4, 5, 7, 0, 0, 0}, /* 0x5E (01011110) */
+ {1, 2, 3, 4, 5, 7, 0, 0}, /* 0x5F (01011111) */
+ {6, 7, 0, 0, 0, 0, 0, 0}, /* 0x60 (01100000) */
+ {1, 6, 7, 0, 0, 0, 0, 0}, /* 0x61 (01100001) */
+ {2, 6, 7, 0, 0, 0, 0, 0}, /* 0x62 (01100010) */
+ {1, 2, 6, 7, 0, 0, 0, 0}, /* 0x63 (01100011) */
+ {3, 6, 7, 0, 0, 0, 0, 0}, /* 0x64 (01100100) */
+ {1, 3, 6, 7, 0, 0, 0, 0}, /* 0x65 (01100101) */
+ {2, 3, 6, 7, 0, 0, 0, 0}, /* 0x66 (01100110) */
+ {1, 2, 3, 6, 7, 0, 0, 0}, /* 0x67 (01100111) */
+ {4, 6, 7, 0, 0, 0, 0, 0}, /* 0x68 (01101000) */
+ {1, 4, 6, 7, 0, 0, 0, 0}, /* 0x69 (01101001) */
+ {2, 4, 6, 7, 0, 0, 0, 0}, /* 0x6A (01101010) */
+ {1, 2, 4, 6, 7, 0, 0, 0}, /* 0x6B (01101011) */
+ {3, 4, 6, 7, 0, 0, 0, 0}, /* 0x6C (01101100) */
+ {1, 3, 4, 6, 7, 0, 0, 0}, /* 0x6D (01101101) */
+ {2, 3, 4, 6, 7, 0, 0, 0}, /* 0x6E (01101110) */
+ {1, 2, 3, 4, 6, 7, 0, 0}, /* 0x6F (01101111) */
+ {5, 6, 7, 0, 0, 0, 0, 0}, /* 0x70 (01110000) */
+ {1, 5, 6, 7, 0, 0, 0, 0}, /* 0x71 (01110001) */
+ {2, 5, 6, 7, 0, 0, 0, 0}, /* 0x72 (01110010) */
+ {1, 2, 5, 6, 7, 0, 0, 0}, /* 0x73 (01110011) */
+ {3, 5, 6, 7, 0, 0, 0, 0}, /* 0x74 (01110100) */
+ {1, 3, 5, 6, 7, 0, 0, 0}, /* 0x75 (01110101) */
+ {2, 3, 5, 6, 7, 0, 0, 0}, /* 0x76 (01110110) */
+ {1, 2, 3, 5, 6, 7, 0, 0}, /* 0x77 (01110111) */
+ {4, 5, 6, 7, 0, 0, 0, 0}, /* 0x78 (01111000) */
+ {1, 4, 5, 6, 7, 0, 0, 0}, /* 0x79 (01111001) */
+ {2, 4, 5, 6, 7, 0, 0, 0}, /* 0x7A (01111010) */
+ {1, 2, 4, 5, 6, 7, 0, 0}, /* 0x7B (01111011) */
+ {3, 4, 5, 6, 7, 0, 0, 0}, /* 0x7C (01111100) */
+ {1, 3, 4, 5, 6, 7, 0, 0}, /* 0x7D (01111101) */
+ {2, 3, 4, 5, 6, 7, 0, 0}, /* 0x7E (01111110) */
+ {1, 2, 3, 4, 5, 6, 7, 0}, /* 0x7F (01111111) */
+ {8, 0, 0, 0, 0, 0, 0, 0}, /* 0x80 (10000000) */
+ {1, 8, 0, 0, 0, 0, 0, 0}, /* 0x81 (10000001) */
+ {2, 8, 0, 0, 0, 0, 0, 0}, /* 0x82 (10000010) */
+ {1, 2, 8, 0, 0, 0, 0, 0}, /* 0x83 (10000011) */
+ {3, 8, 0, 0, 0, 0, 0, 0}, /* 0x84 (10000100) */
+ {1, 3, 8, 0, 0, 0, 0, 0}, /* 0x85 (10000101) */
+ {2, 3, 8, 0, 0, 0, 0, 0}, /* 0x86 (10000110) */
+ {1, 2, 3, 8, 0, 0, 0, 0}, /* 0x87 (10000111) */
+ {4, 8, 0, 0, 0, 0, 0, 0}, /* 0x88 (10001000) */
+ {1, 4, 8, 0, 0, 0, 0, 0}, /* 0x89 (10001001) */
+ {2, 4, 8, 0, 0, 0, 0, 0}, /* 0x8A (10001010) */
+ {1, 2, 4, 8, 0, 0, 0, 0}, /* 0x8B (10001011) */
+ {3, 4, 8, 0, 0, 0, 0, 0}, /* 0x8C (10001100) */
+ {1, 3, 4, 8, 0, 0, 0, 0}, /* 0x8D (10001101) */
+ {2, 3, 4, 8, 0, 0, 0, 0}, /* 0x8E (10001110) */
+ {1, 2, 3, 4, 8, 0, 0, 0}, /* 0x8F (10001111) */
+ {5, 8, 0, 0, 0, 0, 0, 0}, /* 0x90 (10010000) */
+ {1, 5, 8, 0, 0, 0, 0, 0}, /* 0x91 (10010001) */
+ {2, 5, 8, 0, 0, 0, 0, 0}, /* 0x92 (10010010) */
+ {1, 2, 5, 8, 0, 0, 0, 0}, /* 0x93 (10010011) */
+ {3, 5, 8, 0, 0, 0, 0, 0}, /* 0x94 (10010100) */
+ {1, 3, 5, 8, 0, 0, 0, 0}, /* 0x95 (10010101) */
+ {2, 3, 5, 8, 0, 0, 0, 0}, /* 0x96 (10010110) */
+ {1, 2, 3, 5, 8, 0, 0, 0}, /* 0x97 (10010111) */
+ {4, 5, 8, 0, 0, 0, 0, 0}, /* 0x98 (10011000) */
+ {1, 4, 5, 8, 0, 0, 0, 0}, /* 0x99 (10011001) */
+ {2, 4, 5, 8, 0, 0, 0, 0}, /* 0x9A (10011010) */
+ {1, 2, 4, 5, 8, 0, 0, 0}, /* 0x9B (10011011) */
+ {3, 4, 5, 8, 0, 0, 0, 0}, /* 0x9C (10011100) */
+ {1, 3, 4, 5, 8, 0, 0, 0}, /* 0x9D (10011101) */
+ {2, 3, 4, 5, 8, 0, 0, 0}, /* 0x9E (10011110) */
+ {1, 2, 3, 4, 5, 8, 0, 0}, /* 0x9F (10011111) */
+ {6, 8, 0, 0, 0, 0, 0, 0}, /* 0xA0 (10100000) */
+ {1, 6, 8, 0, 0, 0, 0, 0}, /* 0xA1 (10100001) */
+ {2, 6, 8, 0, 0, 0, 0, 0}, /* 0xA2 (10100010) */
+ {1, 2, 6, 8, 0, 0, 0, 0}, /* 0xA3 (10100011) */
+ {3, 6, 8, 0, 0, 0, 0, 0}, /* 0xA4 (10100100) */
+ {1, 3, 6, 8, 0, 0, 0, 0}, /* 0xA5 (10100101) */
+ {2, 3, 6, 8, 0, 0, 0, 0}, /* 0xA6 (10100110) */
+ {1, 2, 3, 6, 8, 0, 0, 0}, /* 0xA7 (10100111) */
+ {4, 6, 8, 0, 0, 0, 0, 0}, /* 0xA8 (10101000) */
+ {1, 4, 6, 8, 0, 0, 0, 0}, /* 0xA9 (10101001) */
+ {2, 4, 6, 8, 0, 0, 0, 0}, /* 0xAA (10101010) */
+ {1, 2, 4, 6, 8, 0, 0, 0}, /* 0xAB (10101011) */
+ {3, 4, 6, 8, 0, 0, 0, 0}, /* 0xAC (10101100) */
+ {1, 3, 4, 6, 8, 0, 0, 0}, /* 0xAD (10101101) */
+ {2, 3, 4, 6, 8, 0, 0, 0}, /* 0xAE (10101110) */
+ {1, 2, 3, 4, 6, 8, 0, 0}, /* 0xAF (10101111) */
+ {5, 6, 8, 0, 0, 0, 0, 0}, /* 0xB0 (10110000) */
+ {1, 5, 6, 8, 0, 0, 0, 0}, /* 0xB1 (10110001) */
+ {2, 5, 6, 8, 0, 0, 0, 0}, /* 0xB2 (10110010) */
+ {1, 2, 5, 6, 8, 0, 0, 0}, /* 0xB3 (10110011) */
+ {3, 5, 6, 8, 0, 0, 0, 0}, /* 0xB4 (10110100) */
+ {1, 3, 5, 6, 8, 0, 0, 0}, /* 0xB5 (10110101) */
+ {2, 3, 5, 6, 8, 0, 0, 0}, /* 0xB6 (10110110) */
+ {1, 2, 3, 5, 6, 8, 0, 0}, /* 0xB7 (10110111) */
+ {4, 5, 6, 8, 0, 0, 0, 0}, /* 0xB8 (10111000) */
+ {1, 4, 5, 6, 8, 0, 0, 0}, /* 0xB9 (10111001) */
+ {2, 4, 5, 6, 8, 0, 0, 0}, /* 0xBA (10111010) */
+ {1, 2, 4, 5, 6, 8, 0, 0}, /* 0xBB (10111011) */
+ {3, 4, 5, 6, 8, 0, 0, 0}, /* 0xBC (10111100) */
+ {1, 3, 4, 5, 6, 8, 0, 0}, /* 0xBD (10111101) */
+ {2, 3, 4, 5, 6, 8, 0, 0}, /* 0xBE (10111110) */
+ {1, 2, 3, 4, 5, 6, 8, 0}, /* 0xBF (10111111) */
+ {7, 8, 0, 0, 0, 0, 0, 0}, /* 0xC0 (11000000) */
+ {1, 7, 8, 0, 0, 0, 0, 0}, /* 0xC1 (11000001) */
+ {2, 7, 8, 0, 0, 0, 0, 0}, /* 0xC2 (11000010) */
+ {1, 2, 7, 8, 0, 0, 0, 0}, /* 0xC3 (11000011) */
+ {3, 7, 8, 0, 0, 0, 0, 0}, /* 0xC4 (11000100) */
+ {1, 3, 7, 8, 0, 0, 0, 0}, /* 0xC5 (11000101) */
+ {2, 3, 7, 8, 0, 0, 0, 0}, /* 0xC6 (11000110) */
+ {1, 2, 3, 7, 8, 0, 0, 0}, /* 0xC7 (11000111) */
+ {4, 7, 8, 0, 0, 0, 0, 0}, /* 0xC8 (11001000) */
+ {1, 4, 7, 8, 0, 0, 0, 0}, /* 0xC9 (11001001) */
+ {2, 4, 7, 8, 0, 0, 0, 0}, /* 0xCA (11001010) */
+ {1, 2, 4, 7, 8, 0, 0, 0}, /* 0xCB (11001011) */
+ {3, 4, 7, 8, 0, 0, 0, 0}, /* 0xCC (11001100) */
+ {1, 3, 4, 7, 8, 0, 0, 0}, /* 0xCD (11001101) */
+ {2, 3, 4, 7, 8, 0, 0, 0}, /* 0xCE (11001110) */
+ {1, 2, 3, 4, 7, 8, 0, 0}, /* 0xCF (11001111) */
+ {5, 7, 8, 0, 0, 0, 0, 0}, /* 0xD0 (11010000) */
+ {1, 5, 7, 8, 0, 0, 0, 0}, /* 0xD1 (11010001) */
+ {2, 5, 7, 8, 0, 0, 0, 0}, /* 0xD2 (11010010) */
+ {1, 2, 5, 7, 8, 0, 0, 0}, /* 0xD3 (11010011) */
+ {3, 5, 7, 8, 0, 0, 0, 0}, /* 0xD4 (11010100) */
+ {1, 3, 5, 7, 8, 0, 0, 0}, /* 0xD5 (11010101) */
+ {2, 3, 5, 7, 8, 0, 0, 0}, /* 0xD6 (11010110) */
+ {1, 2, 3, 5, 7, 8, 0, 0}, /* 0xD7 (11010111) */
+ {4, 5, 7, 8, 0, 0, 0, 0}, /* 0xD8 (11011000) */
+ {1, 4, 5, 7, 8, 0, 0, 0}, /* 0xD9 (11011001) */
+ {2, 4, 5, 7, 8, 0, 0, 0}, /* 0xDA (11011010) */
+ {1, 2, 4, 5, 7, 8, 0, 0}, /* 0xDB (11011011) */
+ {3, 4, 5, 7, 8, 0, 0, 0}, /* 0xDC (11011100) */
+ {1, 3, 4, 5, 7, 8, 0, 0}, /* 0xDD (11011101) */
+ {2, 3, 4, 5, 7, 8, 0, 0}, /* 0xDE (11011110) */
+ {1, 2, 3, 4, 5, 7, 8, 0}, /* 0xDF (11011111) */
+ {6, 7, 8, 0, 0, 0, 0, 0}, /* 0xE0 (11100000) */
+ {1, 6, 7, 8, 0, 0, 0, 0}, /* 0xE1 (11100001) */
+ {2, 6, 7, 8, 0, 0, 0, 0}, /* 0xE2 (11100010) */
+ {1, 2, 6, 7, 8, 0, 0, 0}, /* 0xE3 (11100011) */
+ {3, 6, 7, 8, 0, 0, 0, 0}, /* 0xE4 (11100100) */
+ {1, 3, 6, 7, 8, 0, 0, 0}, /* 0xE5 (11100101) */
+ {2, 3, 6, 7, 8, 0, 0, 0}, /* 0xE6 (11100110) */
+ {1, 2, 3, 6, 7, 8, 0, 0}, /* 0xE7 (11100111) */
+ {4, 6, 7, 8, 0, 0, 0, 0}, /* 0xE8 (11101000) */
+ {1, 4, 6, 7, 8, 0, 0, 0}, /* 0xE9 (11101001) */
+ {2, 4, 6, 7, 8, 0, 0, 0}, /* 0xEA (11101010) */
+ {1, 2, 4, 6, 7, 8, 0, 0}, /* 0xEB (11101011) */
+ {3, 4, 6, 7, 8, 0, 0, 0}, /* 0xEC (11101100) */
+ {1, 3, 4, 6, 7, 8, 0, 0}, /* 0xED (11101101) */
+ {2, 3, 4, 6, 7, 8, 0, 0}, /* 0xEE (11101110) */
+ {1, 2, 3, 4, 6, 7, 8, 0}, /* 0xEF (11101111) */
+ {5, 6, 7, 8, 0, 0, 0, 0}, /* 0xF0 (11110000) */
+ {1, 5, 6, 7, 8, 0, 0, 0}, /* 0xF1 (11110001) */
+ {2, 5, 6, 7, 8, 0, 0, 0}, /* 0xF2 (11110010) */
+ {1, 2, 5, 6, 7, 8, 0, 0}, /* 0xF3 (11110011) */
+ {3, 5, 6, 7, 8, 0, 0, 0}, /* 0xF4 (11110100) */
+ {1, 3, 5, 6, 7, 8, 0, 0}, /* 0xF5 (11110101) */
+ {2, 3, 5, 6, 7, 8, 0, 0}, /* 0xF6 (11110110) */
+ {1, 2, 3, 5, 6, 7, 8, 0}, /* 0xF7 (11110111) */
+ {4, 5, 6, 7, 8, 0, 0, 0}, /* 0xF8 (11111000) */
+ {1, 4, 5, 6, 7, 8, 0, 0}, /* 0xF9 (11111001) */
+ {2, 4, 5, 6, 7, 8, 0, 0}, /* 0xFA (11111010) */
+ {1, 2, 4, 5, 6, 7, 8, 0}, /* 0xFB (11111011) */
+ {3, 4, 5, 6, 7, 8, 0, 0}, /* 0xFC (11111100) */
+ {1, 3, 4, 5, 6, 7, 8, 0}, /* 0xFD (11111101) */
+ {2, 3, 4, 5, 6, 7, 8, 0}, /* 0xFE (11111110) */
+ {1, 2, 3, 4, 5, 6, 7, 8} /* 0xFF (11111111) */
+};
+
+#endif
+
+#if CROARING_IS_X64
+#if CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX512
+const uint8_t vbmi2_table[64] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63};
+size_t bitset_extract_setbits_avx512(const uint64_t *words, size_t length,
+ uint32_t *vout, size_t outcapacity,
+ uint32_t base) {
+ uint32_t *out = (uint32_t *)vout;
+ uint32_t *initout = out;
+ uint32_t *safeout = out + outcapacity;
+ __m512i base_v = _mm512_set1_epi32(base);
+ __m512i index_table = _mm512_loadu_si512(vbmi2_table);
+ size_t i = 0;
+
+ for (; (i < length) && ((out + 64) < safeout); i += 1) {
+ uint64_t v = words[i];
+ __m512i vec = _mm512_maskz_compress_epi8(v, index_table);
+
+ uint8_t advance = (uint8_t)roaring_hamming(v);
+
+ __m512i vbase =
+ _mm512_add_epi32(base_v, _mm512_set1_epi32((int)(i * 64)));
+ __m512i r1 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 0));
+ __m512i r2 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 1));
+ __m512i r3 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 2));
+ __m512i r4 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 3));
+
+ r1 = _mm512_add_epi32(r1, vbase);
+ r2 = _mm512_add_epi32(r2, vbase);
+ r3 = _mm512_add_epi32(r3, vbase);
+ r4 = _mm512_add_epi32(r4, vbase);
+ _mm512_storeu_si512((__m512i *)out, r1);
+ _mm512_storeu_si512((__m512i *)(out + 16), r2);
+ _mm512_storeu_si512((__m512i *)(out + 32), r3);
+ _mm512_storeu_si512((__m512i *)(out + 48), r4);
+
+ out += advance;
+ }
+
+ base += i * 64;
+
+ for (; (i < length) && (out < safeout); ++i) {
+ uint64_t w = words[i];
+ while ((w != 0) && (out < safeout)) {
+ int r =
+ roaring_trailing_zeroes(w); // on x64, should compile to TZCNT
+ uint32_t val = r + base;
+ memcpy(out, &val,
+ sizeof(uint32_t)); // should be compiled as a MOV on x64
+ out++;
+ w &= (w - 1);
+ }
+ base += 64;
+ }
+
+ return out - initout;
+}
+
+// Reference:
+//
https://lemire.me/blog/2022/05/10/faster-bitset-decoding-using-intel-avx-512/
+size_t bitset_extract_setbits_avx512_uint16(const uint64_t *array,
+ size_t length, uint16_t *vout,
+ size_t capacity, uint16_t base) {
+ uint16_t *out = (uint16_t *)vout;
+ uint16_t *initout = out;
+ uint16_t *safeout = vout + capacity;
+
+ __m512i base_v = _mm512_set1_epi16(base);
+ __m512i index_table = _mm512_loadu_si512(vbmi2_table);
+ size_t i = 0;
+
+ for (; (i < length) && ((out + 64) < safeout); i++) {
+ uint64_t v = array[i];
+ __m512i vec = _mm512_maskz_compress_epi8(v, index_table);
+
+ uint8_t advance = (uint8_t)roaring_hamming(v);
+
+ __m512i vbase =
+ _mm512_add_epi16(base_v, _mm512_set1_epi16((short)(i * 64)));
+ __m512i r1 = _mm512_cvtepi8_epi16(_mm512_extracti32x8_epi32(vec, 0));
+ __m512i r2 = _mm512_cvtepi8_epi16(_mm512_extracti32x8_epi32(vec, 1));
+
+ r1 = _mm512_add_epi16(r1, vbase);
+ r2 = _mm512_add_epi16(r2, vbase);
+
+ _mm512_storeu_si512((__m512i *)out, r1);
+ _mm512_storeu_si512((__m512i *)(out + 32), r2);
+ out += advance;
+ }
+
+ base += i * 64;
+
+ for (; (i < length) && (out < safeout); ++i) {
+ uint64_t w = array[i];
+ while ((w != 0) && (out < safeout)) {
+ int r =
+ roaring_trailing_zeroes(w); // on x64, should compile to TZCNT
+ uint32_t val = r + base;
+ memcpy(out, &val, sizeof(uint16_t));
+ out++;
+ w &= (w - 1);
+ }
+ base += 64;
+ }
+
+ return out - initout;
+}
+CROARING_UNTARGET_AVX512
+#endif
+
+CROARING_TARGET_AVX2
+size_t bitset_extract_setbits_avx2(const uint64_t *words, size_t length,
+ uint32_t *out, size_t outcapacity,
+ uint32_t base) {
+ uint32_t *initout = out;
+ __m256i baseVec = _mm256_set1_epi32(base - 1);
+ __m256i incVec = _mm256_set1_epi32(64);
+ __m256i add8 = _mm256_set1_epi32(8);
+ uint32_t *safeout = out + outcapacity;
+ size_t i = 0;
+ for (; (i < length) && (out + 64 <= safeout); ++i) {
+ uint64_t w = words[i];
+ if (w == 0) {
+ baseVec = _mm256_add_epi32(baseVec, incVec);
+ } else {
+ for (int k = 0; k < 4; ++k) {
+ uint8_t byteA = (uint8_t)w;
+ uint8_t byteB = (uint8_t)(w >> 8);
+ w >>= 16;
+ __m256i vecA =
+ _mm256_loadu_si256((const __m256i *)vecDecodeTable[byteA]);
+ __m256i vecB =
+ _mm256_loadu_si256((const __m256i *)vecDecodeTable[byteB]);
+ uint8_t advanceA = lengthTable[byteA];
+ uint8_t advanceB = lengthTable[byteB];
+ vecA = _mm256_add_epi32(baseVec, vecA);
+ baseVec = _mm256_add_epi32(baseVec, add8);
+ vecB = _mm256_add_epi32(baseVec, vecB);
+ baseVec = _mm256_add_epi32(baseVec, add8);
+ _mm256_storeu_si256((__m256i *)out, vecA);
+ out += advanceA;
+ _mm256_storeu_si256((__m256i *)out, vecB);
+ out += advanceB;
+ }
+ }
+ }
+ base += i * 64;
+ for (; (i < length) && (out < safeout); ++i) {
+ uint64_t w = words[i];
+ while ((w != 0) && (out < safeout)) {
+ int r =
+ roaring_trailing_zeroes(w); // on x64, should compile to TZCNT
+ uint32_t val = r + base;
+ memcpy(out, &val,
+ sizeof(uint32_t)); // should be compiled as a MOV on x64
+ out++;
+ w &= (w - 1);
+ }
+ base += 64;
+ }
+ return out - initout;
+}
+CROARING_UNTARGET_AVX2
+#endif // CROARING_IS_X64
+
+size_t bitset_extract_setbits(const uint64_t *words, size_t length,
+ uint32_t *out, uint32_t base) {
+ int outpos = 0;
+ for (size_t i = 0; i < length; ++i) {
+ uint64_t w = words[i];
+ while (w != 0) {
+ int r =
+ roaring_trailing_zeroes(w); // on x64, should compile to TZCNT
+ uint32_t val = r + base;
+ memcpy(out + outpos, &val,
+ sizeof(uint32_t)); // should be compiled as a MOV on x64
+ outpos++;
+ w &= (w - 1);
+ }
+ base += 64;
+ }
+ return outpos;
+}
+
+size_t bitset_extract_intersection_setbits_uint16(
+ const uint64_t *__restrict__ words1, const uint64_t *__restrict__ words2,
+ size_t length, uint16_t *out, uint16_t base) {
+ int outpos = 0;
+ for (size_t i = 0; i < length; ++i) {
+ uint64_t w = words1[i] & words2[i];
+ while (w != 0) {
+ int r = roaring_trailing_zeroes(w);
+ out[outpos++] = (uint16_t)(r + base);
+ w &= (w - 1);
+ }
+ base += 64;
+ }
+ return outpos;
+}
+
+#if CROARING_IS_X64
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out" as 16-bit integers, values start at "base" (can
+ *be set to zero).
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ *
+ * This function uses SSE decoding.
+ */
+CROARING_TARGET_AVX2
+size_t bitset_extract_setbits_sse_uint16(const uint64_t *words, size_t length,
+ uint16_t *out, size_t outcapacity,
+ uint16_t base) {
+ uint16_t *initout = out;
+ __m128i baseVec = _mm_set1_epi16(base - 1);
+ __m128i incVec = _mm_set1_epi16(64);
+ __m128i add8 = _mm_set1_epi16(8);
+ uint16_t *safeout = out + outcapacity;
+ const int numberofbytes = 2; // process two bytes at a time
+ size_t i = 0;
+ for (; (i < length) && (out + numberofbytes * 8 <= safeout); ++i) {
+ uint64_t w = words[i];
+ if (w == 0) {
+ baseVec = _mm_add_epi16(baseVec, incVec);
+ } else {
+ for (int k = 0; k < 4; ++k) {
+ uint8_t byteA = (uint8_t)w;
+ uint8_t byteB = (uint8_t)(w >> 8);
+ w >>= 16;
+ __m128i vecA = _mm_loadu_si128(
+ (const __m128i *)vecDecodeTable_uint16[byteA]);
+ __m128i vecB = _mm_loadu_si128(
+ (const __m128i *)vecDecodeTable_uint16[byteB]);
+ uint8_t advanceA = lengthTable[byteA];
+ uint8_t advanceB = lengthTable[byteB];
+ vecA = _mm_add_epi16(baseVec, vecA);
+ baseVec = _mm_add_epi16(baseVec, add8);
+ vecB = _mm_add_epi16(baseVec, vecB);
+ baseVec = _mm_add_epi16(baseVec, add8);
+ _mm_storeu_si128((__m128i *)out, vecA);
+ out += advanceA;
+ _mm_storeu_si128((__m128i *)out, vecB);
+ out += advanceB;
+ }
+ }
+ }
+ base += (uint16_t)(i * 64);
+ for (; (i < length) && (out < safeout); ++i) {
+ uint64_t w = words[i];
+ while ((w != 0) && (out < safeout)) {
+ int r = roaring_trailing_zeroes(w);
+ *out = (uint16_t)(r + base);
+ out++;
+ w &= (w - 1);
+ }
+ base += 64;
+ }
+ return out - initout;
+}
+CROARING_UNTARGET_AVX2
+#endif
+
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out", values start at "base" (can be set to zero).
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ */
+size_t bitset_extract_setbits_uint16(const uint64_t *words, size_t length,
+ uint16_t *out, uint16_t base) {
+ int outpos = 0;
+ for (size_t i = 0; i < length; ++i) {
+ uint64_t w = words[i];
+ while (w != 0) {
+ int r = roaring_trailing_zeroes(w);
+ out[outpos++] = (uint16_t)(r + base);
+ w &= (w - 1);
+ }
+ base += 64;
+ }
+ return outpos;
+}
+
+#if defined(CROARING_ASMBITMANIPOPTIMIZATION) && defined(CROARING_IS_X64)
+
+static inline uint64_t _asm_bitset_set_list_withcard(uint64_t *words,
+ uint64_t card,
+ const uint16_t *list,
+ uint64_t length) {
+ uint64_t offset, load, pos;
+ uint64_t shift = 6;
+ const uint16_t *end = list + length;
+ if (!length) return card;
+ // TODO: could unroll for performance, see bitset_set_list
+ // bts is not available as an intrinsic in GCC
+ __asm volatile(
+ "1:\n"
+ "movzwq (%[list]), %[pos]\n"
+ "shrx %[shift], %[pos], %[offset]\n"
+ "mov (%[words],%[offset],8), %[load]\n"
+ "bts %[pos], %[load]\n"
+ "mov %[load], (%[words],%[offset],8)\n"
+ "sbb $-1, %[card]\n"
+ "add $2, %[list]\n"
+ "cmp %[list], %[end]\n"
+ "jnz 1b"
+ : [card] "+&r"(card), [list] "+&r"(list), [load] "=&r"(load),
+ [pos] "=&r"(pos), [offset] "=&r"(offset)
+ : [end] "r"(end), [words] "r"(words), [shift] "r"(shift));
+ return card;
+}
+
+static inline void _asm_bitset_set_list(uint64_t *words, const uint16_t *list,
+ uint64_t length) {
+ uint64_t pos;
+ const uint16_t *end = list + length;
+
+ uint64_t shift = 6;
+ uint64_t offset;
+ uint64_t load;
+ for (; list + 3 < end; list += 4) {
+ pos = list[0];
+ __asm volatile(
+ "shrx %[shift], %[pos], %[offset]\n"
+ "mov (%[words],%[offset],8), %[load]\n"
+ "bts %[pos], %[load]\n"
+ "mov %[load], (%[words],%[offset],8)"
+ : [load] "=&r"(load), [offset] "=&r"(offset)
+ : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
+ pos = list[1];
+ __asm volatile(
+ "shrx %[shift], %[pos], %[offset]\n"
+ "mov (%[words],%[offset],8), %[load]\n"
+ "bts %[pos], %[load]\n"
+ "mov %[load], (%[words],%[offset],8)"
+ : [load] "=&r"(load), [offset] "=&r"(offset)
+ : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
+ pos = list[2];
+ __asm volatile(
+ "shrx %[shift], %[pos], %[offset]\n"
+ "mov (%[words],%[offset],8), %[load]\n"
+ "bts %[pos], %[load]\n"
+ "mov %[load], (%[words],%[offset],8)"
+ : [load] "=&r"(load), [offset] "=&r"(offset)
+ : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
+ pos = list[3];
+ __asm volatile(
+ "shrx %[shift], %[pos], %[offset]\n"
+ "mov (%[words],%[offset],8), %[load]\n"
+ "bts %[pos], %[load]\n"
+ "mov %[load], (%[words],%[offset],8)"
+ : [load] "=&r"(load), [offset] "=&r"(offset)
+ : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
+ }
+
+ while (list != end) {
+ pos = list[0];
+ __asm volatile(
+ "shrx %[shift], %[pos], %[offset]\n"
+ "mov (%[words],%[offset],8), %[load]\n"
+ "bts %[pos], %[load]\n"
+ "mov %[load], (%[words],%[offset],8)"
+ : [load] "=&r"(load), [offset] "=&r"(offset)
+ : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
+ list++;
+ }
+}
+
+static inline uint64_t _asm_bitset_clear_list(uint64_t *words, uint64_t card,
+ const uint16_t *list,
+ uint64_t length) {
+ uint64_t offset, load, pos;
+ uint64_t shift = 6;
+ const uint16_t *end = list + length;
+ if (!length) return card;
+ // btr is not available as an intrinsic in GCC
+ __asm volatile(
+ "1:\n"
+ "movzwq (%[list]), %[pos]\n"
+ "shrx %[shift], %[pos], %[offset]\n"
+ "mov (%[words],%[offset],8), %[load]\n"
+ "btr %[pos], %[load]\n"
+ "mov %[load], (%[words],%[offset],8)\n"
+ "sbb $0, %[card]\n"
+ "add $2, %[list]\n"
+ "cmp %[list], %[end]\n"
+ "jnz 1b"
+ : [card] "+&r"(card), [list] "+&r"(list), [load] "=&r"(load),
+ [pos] "=&r"(pos), [offset] "=&r"(offset)
+ : [end] "r"(end), [words] "r"(words), [shift] "r"(shift)
+ :
+ /* clobbers */ "memory");
+ return card;
+}
+
+static inline uint64_t _scalar_bitset_clear_list(uint64_t *words, uint64_t
card,
+ const uint16_t *list,
+ uint64_t length) {
+ uint64_t offset, load, newload, pos, index;
+ const uint16_t *end = list + length;
+ while (list != end) {
+ pos = *(const uint16_t *)list;
+ offset = pos >> 6;
+ index = pos % 64;
+ load = words[offset];
+ newload = load & ~(UINT64_C(1) << index);
+ card -= (load ^ newload) >> index;
+ words[offset] = newload;
+ list++;
+ }
+ return card;
+}
+
+static inline uint64_t _scalar_bitset_set_list_withcard(uint64_t *words,
+ uint64_t card,
+ const uint16_t *list,
+ uint64_t length) {
+ uint64_t offset, load, newload, pos, index;
+ const uint16_t *end = list + length;
+ while (list != end) {
+ pos = *list;
+ offset = pos >> 6;
+ index = pos % 64;
+ load = words[offset];
+ newload = load | (UINT64_C(1) << index);
+ card += (load ^ newload) >> index;
+ words[offset] = newload;
+ list++;
+ }
+ return card;
+}
+
+static inline void _scalar_bitset_set_list(uint64_t *words,
+ const uint16_t *list,
+ uint64_t length) {
+ uint64_t offset, load, newload, pos, index;
+ const uint16_t *end = list + length;
+ while (list != end) {
+ pos = *list;
+ offset = pos >> 6;
+ index = pos % 64;
+ load = words[offset];
+ newload = load | (UINT64_C(1) << index);
+ words[offset] = newload;
+ list++;
+ }
+}
+
+uint64_t bitset_clear_list(uint64_t *words, uint64_t card, const uint16_t
*list,
+ uint64_t length) {
+ if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+ return _asm_bitset_clear_list(words, card, list, length);
+ } else {
+ return _scalar_bitset_clear_list(words, card, list, length);
+ }
+}
+
+uint64_t bitset_set_list_withcard(uint64_t *words, uint64_t card,
+ const uint16_t *list, uint64_t length) {
+ if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+ return _asm_bitset_set_list_withcard(words, card, list, length);
+ } else {
+ return _scalar_bitset_set_list_withcard(words, card, list, length);
+ }
+}
+
+void bitset_set_list(uint64_t *words, const uint16_t *list, uint64_t length) {
+ if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+ _asm_bitset_set_list(words, list, length);
+ } else {
+ _scalar_bitset_set_list(words, list, length);
+ }
+}
+#else
+uint64_t bitset_clear_list(uint64_t *words, uint64_t card, const uint16_t
*list,
+ uint64_t length) {
+ uint64_t offset, load, newload, pos, index;
+ const uint16_t *end = list + length;
+ while (list != end) {
+ pos = *(const uint16_t *)list;
+ offset = pos >> 6;
+ index = pos % 64;
+ load = words[offset];
+ newload = load & ~(UINT64_C(1) << index);
+ card -= (load ^ newload) >> index;
+ words[offset] = newload;
+ list++;
+ }
+ return card;
+}
+
+uint64_t bitset_set_list_withcard(uint64_t *words, uint64_t card,
+ const uint16_t *list, uint64_t length) {
+ uint64_t offset, load, newload, pos, index;
+ const uint16_t *end = list + length;
+ while (list != end) {
+ pos = *list;
+ offset = pos >> 6;
+ index = pos % 64;
+ load = words[offset];
+ newload = load | (UINT64_C(1) << index);
+ card += (load ^ newload) >> index;
+ words[offset] = newload;
+ list++;
+ }
+ return card;
+}
+
+void bitset_set_list(uint64_t *words, const uint16_t *list, uint64_t length) {
+ uint64_t offset, load, newload, pos, index;
+ const uint16_t *end = list + length;
+ while (list != end) {
+ pos = *list;
+ offset = pos >> 6;
+ index = pos % 64;
+ load = words[offset];
+ newload = load | (UINT64_C(1) << index);
+ words[offset] = newload;
+ list++;
+ }
+}
+
+#endif
+
+/* flip specified bits */
+/* TODO: consider whether worthwhile to make an asm version */
+
+uint64_t bitset_flip_list_withcard(uint64_t *words, uint64_t card,
+ const uint16_t *list, uint64_t length) {
+ uint64_t offset, load, newload, pos, index;
+ const uint16_t *end = list + length;
+ while (list != end) {
+ pos = *list;
+ offset = pos >> 6;
+ index = pos % 64;
+ load = words[offset];
+ newload = load ^ (UINT64_C(1) << index);
+ // todo: is a branch here all that bad?
+ card +=
+ (1 - 2 * (((UINT64_C(1) << index) & load) >> index)); // +1 or -1
+ words[offset] = newload;
+ list++;
+ }
+ return card;
+}
+
+void bitset_flip_list(uint64_t *words, const uint16_t *list, uint64_t length) {
+ uint64_t offset, load, newload, pos, index;
+ const uint16_t *end = list + length;
+ while (list != end) {
+ pos = *list;
+ offset = pos >> 6;
+ index = pos % 64;
+ load = words[offset];
+ newload = load ^ (UINT64_C(1) << index);
+ words[offset] = newload;
+ list++;
+ }
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace api {
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic pop
+#endif
+/* end file src/bitset_util.c */
+/* begin file src/containers/array.c */
+/*
+ * array.c
+ *
+ */
+
+#include <assert.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+extern inline uint16_t array_container_minimum(const array_container_t *arr);
+extern inline uint16_t array_container_maximum(const array_container_t *arr);
+extern inline int array_container_index_equalorlarger(
+ const array_container_t *arr, uint16_t x);
+
+extern inline int array_container_rank(const array_container_t *arr,
+ uint16_t x);
+extern inline uint32_t array_container_rank_many(const array_container_t *arr,
+ uint64_t start_rank,
+ const uint32_t *begin,
+ const uint32_t *end,
+ uint64_t *ans);
+extern inline int array_container_get_index(const array_container_t *arr,
+ uint16_t x);
+extern inline bool array_container_contains(const array_container_t *arr,
+ uint16_t pos);
+extern inline int array_container_cardinality(const array_container_t *array);
+extern inline bool array_container_nonzero_cardinality(
+ const array_container_t *array);
+extern inline int32_t array_container_serialized_size_in_bytes(int32_t card);
+extern inline bool array_container_empty(const array_container_t *array);
+extern inline bool array_container_full(const array_container_t *array);
+
+/* Create a new array with capacity size. Return NULL in case of failure. */
+array_container_t *array_container_create_given_capacity(int32_t size) {
+ array_container_t *container;
+
+ if ((container = (array_container_t *)roaring_malloc(
+ sizeof(array_container_t))) == NULL) {
+ return NULL;
+ }
+
+ if (size <= 0) { // we don't want to rely on malloc(0)
+ container->array = NULL;
+ } else if ((container->array = (uint16_t *)roaring_malloc(sizeof(uint16_t)
*
+ size)) == NULL) {
+ roaring_free(container);
+ return NULL;
+ }
+
+ container->capacity = size;
+ container->cardinality = 0;
+
+ return container;
+}
+
+/* Create a new array. Return NULL in case of failure. */
+array_container_t *array_container_create(void) {
+ return array_container_create_given_capacity(ARRAY_DEFAULT_INIT_SIZE);
+}
+
+/* Create a new array containing all values in [min,max). */
+array_container_t *array_container_create_range(uint32_t min, uint32_t max) {
+ array_container_t *answer =
+ array_container_create_given_capacity(max - min + 1);
+ if (answer == NULL) return answer;
+ answer->cardinality = 0;
+ for (uint32_t k = min; k < max; k++) {
+ answer->array[answer->cardinality++] = k;
+ }
+ return answer;
+}
+
+/* Duplicate container */
+ALLOW_UNALIGNED
+array_container_t *array_container_clone(const array_container_t *src) {
+ array_container_t *newcontainer =
+ array_container_create_given_capacity(src->capacity);
+ if (newcontainer == NULL) return NULL;
+
+ newcontainer->cardinality = src->cardinality;
+
+ memcpy(newcontainer->array, src->array,
+ src->cardinality * sizeof(uint16_t));
+
+ return newcontainer;
+}
+
+void array_container_offset(const array_container_t *c, container_t **loc,
+ container_t **hic, uint16_t offset) {
+ array_container_t *lo = NULL, *hi = NULL;
+ int top, lo_cap, hi_cap;
+
+ top = (1 << 16) - offset;
+
+ lo_cap = count_less(c->array, c->cardinality, top);
+ if (loc && lo_cap) {
+ lo = array_container_create_given_capacity(lo_cap);
+ for (int i = 0; i < lo_cap; ++i) {
+ array_container_add(lo, c->array[i] + offset);
+ }
+ *loc = (container_t *)lo;
+ }
+
+ hi_cap = c->cardinality - lo_cap;
+ if (hic && hi_cap) {
+ hi = array_container_create_given_capacity(hi_cap);
+ for (int i = lo_cap; i < c->cardinality; ++i) {
+ array_container_add(hi, c->array[i] + offset);
+ }
+ *hic = (container_t *)hi;
+ }
+}
+
+int array_container_shrink_to_fit(array_container_t *src) {
+ if (src->cardinality == src->capacity) return 0; // nothing to do
+ int savings = src->capacity - src->cardinality;
+ src->capacity = src->cardinality;
+ if (src->capacity ==
+ 0) { // we do not want to rely on realloc for zero allocs
+ roaring_free(src->array);
+ src->array = NULL;
+ } else {
+ uint16_t *oldarray = src->array;
+ src->array = (uint16_t *)roaring_realloc(
+ oldarray, src->capacity * sizeof(uint16_t));
+ if (src->array == NULL) roaring_free(oldarray); // should never
happen?
+ }
+ return savings;
+}
+
+/* Free memory. */
+void array_container_free(array_container_t *arr) {
+ if (arr == NULL) return;
+ roaring_free(arr->array);
+ roaring_free(arr);
+}
+
+static inline int32_t grow_capacity(int32_t capacity) {
+ return (capacity <= 0) ? ARRAY_DEFAULT_INIT_SIZE
+ : capacity < 64 ? capacity * 2
+ : capacity < 1024 ? capacity * 3 / 2
+ : capacity * 5 / 4;
+}
+
+static inline int32_t clamp(int32_t val, int32_t min, int32_t max) {
+ return ((val < min) ? min : (val > max) ? max : val);
+}
+
+void array_container_grow(array_container_t *container, int32_t min,
+ bool preserve) {
+ int32_t max = (min <= DEFAULT_MAX_SIZE ? DEFAULT_MAX_SIZE : 65536);
+ int32_t new_capacity = clamp(grow_capacity(container->capacity), min, max);
+
+ container->capacity = new_capacity;
+ uint16_t *array = container->array;
+
+ if (preserve) {
+ container->array =
+ (uint16_t *)roaring_realloc(array, new_capacity *
sizeof(uint16_t));
+ if (container->array == NULL) roaring_free(array);
+ } else {
+ roaring_free(array);
+ container->array =
+ (uint16_t *)roaring_malloc(new_capacity * sizeof(uint16_t));
+ }
+
+ // if realloc fails, we have container->array == NULL.
+}
+
+/* Copy one container into another. We assume that they are distinct. */
+void array_container_copy(const array_container_t *src,
+ array_container_t *dst) {
+ const int32_t cardinality = src->cardinality;
+ if (cardinality > dst->capacity) {
+ array_container_grow(dst, cardinality, false);
+ }
+
+ dst->cardinality = cardinality;
+ memcpy(dst->array, src->array, cardinality * sizeof(uint16_t));
+}
+
+void array_container_add_from_range(array_container_t *arr, uint32_t min,
+ uint32_t max, uint16_t step) {
+ for (uint32_t value = min; value < max; value += step) {
+ array_container_append(arr, value);
+ }
+}
+
+/* Computes the union of array1 and array2 and write the result to arrayout.
+ * It is assumed that arrayout is distinct from both array1 and array2.
+ */
+void array_container_union(const array_container_t *array_1,
+ const array_container_t *array_2,
+ array_container_t *out) {
+ const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality;
+ const int32_t max_cardinality = card_1 + card_2;
+
+ if (out->capacity < max_cardinality) {
+ array_container_grow(out, max_cardinality, false);
+ }
+ out->cardinality = (int32_t)fast_union_uint16(
+ array_1->array, card_1, array_2->array, card_2, out->array);
+}
+
+/* Computes the difference of array1 and array2 and write the result
+ * to array out.
+ * Array out does not need to be distinct from array_1
+ */
+void array_container_andnot(const array_container_t *array_1,
+ const array_container_t *array_2,
+ array_container_t *out) {
+ if (out->capacity < array_1->cardinality)
+ array_container_grow(out, array_1->cardinality, false);
+#if CROARING_IS_X64
+ if ((croaring_hardware_support() & ROARING_SUPPORTS_AVX2) &&
+ (out != array_1) && (out != array_2)) {
+ out->cardinality = difference_vector16(
+ array_1->array, array_1->cardinality, array_2->array,
+ array_2->cardinality, out->array);
+ } else {
+ out->cardinality =
+ difference_uint16(array_1->array, array_1->cardinality,
+ array_2->array, array_2->cardinality,
out->array);
+ }
+#else
+ out->cardinality =
+ difference_uint16(array_1->array, array_1->cardinality, array_2->array,
+ array_2->cardinality, out->array);
+#endif
+}
+
+/* Computes the symmetric difference of array1 and array2 and write the
+ * result
+ * to arrayout.
+ * It is assumed that arrayout is distinct from both array1 and array2.
+ */
+void array_container_xor(const array_container_t *array_1,
+ const array_container_t *array_2,
+ array_container_t *out) {
+ const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality;
+ const int32_t max_cardinality = card_1 + card_2;
+ if (out->capacity < max_cardinality) {
+ array_container_grow(out, max_cardinality, false);
+ }
+
+#if CROARING_IS_X64
+ if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+ out->cardinality =
+ xor_vector16(array_1->array, array_1->cardinality, array_2->array,
+ array_2->cardinality, out->array);
+ } else {
+ out->cardinality =
+ xor_uint16(array_1->array, array_1->cardinality, array_2->array,
+ array_2->cardinality, out->array);
+ }
+#else
+ out->cardinality =
+ xor_uint16(array_1->array, array_1->cardinality, array_2->array,
+ array_2->cardinality, out->array);
+#endif
+}
+
+static inline int32_t minimum_int32(int32_t a, int32_t b) {
+ return (a < b) ? a : b;
+}
+
+/* computes the intersection of array1 and array2 and write the result to
+ * arrayout.
+ * It is assumed that arrayout is distinct from both array1 and array2.
+ * */
+void array_container_intersection(const array_container_t *array1,
+ const array_container_t *array2,
+ array_container_t *out) {
+ int32_t card_1 = array1->cardinality, card_2 = array2->cardinality,
+ min_card = minimum_int32(card_1, card_2);
+ const int threshold = 64; // subject to tuning
+#if CROARING_IS_X64
+ if (out->capacity < min_card) {
+ array_container_grow(out, min_card + sizeof(__m128i) /
sizeof(uint16_t),
+ false);
+ }
+#else
+ if (out->capacity < min_card) {
+ array_container_grow(out, min_card, false);
+ }
+#endif
+
+ if (card_1 * threshold < card_2) {
+ out->cardinality = intersect_skewed_uint16(
+ array1->array, card_1, array2->array, card_2, out->array);
+ } else if (card_2 * threshold < card_1) {
+ out->cardinality = intersect_skewed_uint16(
+ array2->array, card_2, array1->array, card_1, out->array);
+ } else {
+#if CROARING_IS_X64
+ if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+ out->cardinality = intersect_vector16(
+ array1->array, card_1, array2->array, card_2, out->array);
+ } else {
+ out->cardinality = intersect_uint16(
+ array1->array, card_1, array2->array, card_2, out->array);
+ }
+#else
+ out->cardinality = intersect_uint16(array1->array, card_1,
+ array2->array, card_2, out->array);
+#endif
+ }
+}
+
+/* computes the size of the intersection of array1 and array2
+ * */
+int array_container_intersection_cardinality(const array_container_t *array1,
+ const array_container_t *array2) {
+ int32_t card_1 = array1->cardinality, card_2 = array2->cardinality;
+ const int threshold = 64; // subject to tuning
+ if (card_1 * threshold < card_2) {
+ return intersect_skewed_uint16_cardinality(array1->array, card_1,
+ array2->array, card_2);
+ } else if (card_2 * threshold < card_1) {
+ return intersect_skewed_uint16_cardinality(array2->array, card_2,
+ array1->array, card_1);
+ } else {
+#if CROARING_IS_X64
+ if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+ return intersect_vector16_cardinality(array1->array, card_1,
+ array2->array, card_2);
+ } else {
+ return intersect_uint16_cardinality(array1->array, card_1,
+ array2->array, card_2);
+ }
+#else
+ return intersect_uint16_cardinality(array1->array, card_1,
+ array2->array, card_2);
+#endif
+ }
+}
+
+bool array_container_intersect(const array_container_t *array1,
+ const array_container_t *array2) {
+ int32_t card_1 = array1->cardinality, card_2 = array2->cardinality;
+ const int threshold = 64; // subject to tuning
+ if (card_1 * threshold < card_2) {
+ return intersect_skewed_uint16_nonempty(array1->array, card_1,
+ array2->array, card_2);
+ } else if (card_2 * threshold < card_1) {
+ return intersect_skewed_uint16_nonempty(array2->array, card_2,
+ array1->array, card_1);
+ } else {
+ // we do not bother vectorizing
+ return intersect_uint16_nonempty(array1->array, card_1, array2->array,
+ card_2);
+ }
+}
+
+/* computes the intersection of array1 and array2 and write the result to
+ * array1.
+ * */
+void array_container_intersection_inplace(array_container_t *src_1,
+ const array_container_t *src_2) {
+ int32_t card_1 = src_1->cardinality, card_2 = src_2->cardinality;
+ const int threshold = 64; // subject to tuning
+ if (card_1 * threshold < card_2) {
+ src_1->cardinality = intersect_skewed_uint16(
+ src_1->array, card_1, src_2->array, card_2, src_1->array);
+ } else if (card_2 * threshold < card_1) {
+ src_1->cardinality = intersect_skewed_uint16(
+ src_2->array, card_2, src_1->array, card_1, src_1->array);
+ } else {
+#if CROARING_IS_X64
+ if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+ src_1->cardinality = intersect_vector16_inplace(
+ src_1->array, card_1, src_2->array, card_2);
+ } else {
+ src_1->cardinality = intersect_uint16(
+ src_1->array, card_1, src_2->array, card_2, src_1->array);
+ }
+#else
+ src_1->cardinality = intersect_uint16(
+ src_1->array, card_1, src_2->array, card_2, src_1->array);
+#endif
+ }
+}
+
+ALLOW_UNALIGNED
+int array_container_to_uint32_array(void *vout, const array_container_t *cont,
+ uint32_t base) {
+#if CROARING_IS_X64
+ int support = croaring_hardware_support();
+#if CROARING_COMPILER_SUPPORTS_AVX512
+ if (support & ROARING_SUPPORTS_AVX512) {
+ return avx512_array_container_to_uint32_array(vout, cont->array,
+ cont->cardinality, base);
+ }
+#endif
+ if (support & ROARING_SUPPORTS_AVX2) {
+ return array_container_to_uint32_array_vector16(
+ vout, cont->array, cont->cardinality, base);
+ }
+#endif // CROARING_IS_X64
+ int outpos = 0;
+ uint32_t *out = (uint32_t *)vout;
+ size_t i = 0;
+ for (; i < (size_t)cont->cardinality; ++i) {
+ const uint32_t val = base + cont->array[i];
+ memcpy(out + outpos, &val,
+ sizeof(uint32_t)); // should be compiled as a MOV on x64
+ outpos++;
+ }
+ return outpos;
+}
+
+void array_container_printf(const array_container_t *v) {
+ if (v->cardinality == 0) {
+ printf("{}");
+ return;
+ }
+ printf("{");
+ printf("%d", v->array[0]);
+ for (int i = 1; i < v->cardinality; ++i) {
+ printf(",%d", v->array[i]);
+ }
+ printf("}");
+}
+
+void array_container_printf_as_uint32_array(const array_container_t *v,
+ uint32_t base) {
+ if (v->cardinality == 0) {
+ return;
+ }
+ printf("%u", v->array[0] + base);
+ for (int i = 1; i < v->cardinality; ++i) {
+ printf(",%u", v->array[i] + base);
+ }
+}
+
+/*
+ * Validate the container. Returns true if valid.
+ */
+bool array_container_validate(const array_container_t *v, const char **reason)
{
+ if (v->capacity < 0) {
+ *reason = "negative capacity";
+ return false;
+ }
+ if (v->cardinality < 0) {
+ *reason = "negative cardinality";
+ return false;
+ }
+ if (v->cardinality > v->capacity) {
+ *reason = "cardinality exceeds capacity";
+ return false;
+ }
+ if (v->cardinality > DEFAULT_MAX_SIZE) {
+ *reason = "cardinality exceeds DEFAULT_MAX_SIZE";
+ return false;
+ }
+ if (v->cardinality == 0) {
+ *reason = "zero cardinality";
+ return false;
+ }
+
+ if (v->array == NULL) {
+ *reason = "NULL array pointer";
+ return false;
+ }
+ uint16_t prev = v->array[0];
+ for (int i = 1; i < v->cardinality; ++i) {
+ if (v->array[i] <= prev) {
+ *reason = "array elements not strictly increasing";
+ return false;
+ }
+ prev = v->array[i];
+ }
+
+ return true;
+}
+
+/* Compute the number of runs */
+int32_t array_container_number_of_runs(const array_container_t *ac) {
+ // Can SIMD work here?
+ int32_t nr_runs = 0;
+ int32_t prev = -2;
+ for (const uint16_t *p = ac->array; p != ac->array + ac->cardinality; ++p)
{
+ if (*p != prev + 1) nr_runs++;
+ prev = *p;
+ }
+ return nr_runs;
+}
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * The number of bytes written should be
+ * array_container_size_in_bytes(container).
+ *
+ */
+int32_t array_container_write(const array_container_t *container, char *buf) {
+ memcpy(buf, container->array, container->cardinality * sizeof(uint16_t));
+ return array_container_size_in_bytes(container);
+}
+
+bool array_container_is_subset(const array_container_t *container1,
+ const array_container_t *container2) {
+ if (container1->cardinality > container2->cardinality) {
+ return false;
+ }
+ int i1 = 0, i2 = 0;
+ while (i1 < container1->cardinality && i2 < container2->cardinality) {
+ if (container1->array[i1] == container2->array[i2]) {
+ i1++;
+ i2++;
+ } else if (container1->array[i1] > container2->array[i2]) {
+ i2++;
+ } else { // container1->array[i1] < container2->array[i2]
+ return false;
+ }
+ }
+ if (i1 == container1->cardinality) {
+ return true;
+ } else {
+ return false;
+ }
+}
+
+int32_t array_container_read(int32_t cardinality, array_container_t *container,
+ const char *buf) {
+ if (container->capacity < cardinality) {
+ array_container_grow(container, cardinality, false);
+ }
+ container->cardinality = cardinality;
+ memcpy(container->array, buf, container->cardinality * sizeof(uint16_t));
+
+ return array_container_size_in_bytes(container);
+}
+
+bool array_container_iterate(const array_container_t *cont, uint32_t base,
+ roaring_iterator iterator, void *ptr) {
+ for (int i = 0; i < cont->cardinality; i++)
+ if (!iterator(cont->array[i] + base, ptr)) return false;
+ return true;
+}
+
+bool array_container_iterate64(const array_container_t *cont, uint32_t base,
+ roaring_iterator64 iterator, uint64_t high_bits,
+ void *ptr) {
+ for (int i = 0; i < cont->cardinality; i++)
+ if (!iterator(high_bits | (uint64_t)(cont->array[i] + base), ptr))
+ return false;
+ return true;
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/array.c */
+/* begin file src/containers/bitset.c */
+/*
+ * bitset.c
+ *
+ */
+#ifndef _POSIX_C_SOURCE
+#define _POSIX_C_SOURCE 200809L
+#endif
+#include <assert.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+extern inline int bitset_container_cardinality(
+ const bitset_container_t *bitset);
+extern inline void bitset_container_set(bitset_container_t *bitset,
+ uint16_t pos);
+// unused at this time:
+// extern inline void bitset_container_unset(bitset_container_t *bitset,
+// uint16_t pos);
+extern inline bool bitset_container_get(const bitset_container_t *bitset,
+ uint16_t pos);
+extern inline int32_t bitset_container_serialized_size_in_bytes(void);
+extern inline bool bitset_container_add(bitset_container_t *bitset,
+ uint16_t pos);
+extern inline bool bitset_container_remove(bitset_container_t *bitset,
+ uint16_t pos);
+extern inline bool bitset_container_contains(const bitset_container_t *bitset,
+ uint16_t pos);
+
+void bitset_container_clear(bitset_container_t *bitset) {
+ memset(bitset->words, 0, sizeof(uint64_t) *
BITSET_CONTAINER_SIZE_IN_WORDS);
+ bitset->cardinality = 0;
+}
+
+void bitset_container_set_all(bitset_container_t *bitset) {
+ memset(bitset->words, INT64_C(-1),
+ sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+ bitset->cardinality = (1 << 16);
+}
+
+/* Create a new bitset. Return NULL in case of failure. */
+bitset_container_t *bitset_container_create(void) {
+ bitset_container_t *bitset =
+ (bitset_container_t *)roaring_malloc(sizeof(bitset_container_t));
+
+ if (!bitset) {
+ return NULL;
+ }
+
+ size_t align_size = 32;
+#if CROARING_IS_X64
+ int support = croaring_hardware_support();
+ if (support & ROARING_SUPPORTS_AVX512) {
+ // sizeof(__m512i) == 64
+ align_size = 64;
+ } else {
+ // sizeof(__m256i) == 32
+ align_size = 32;
+ }
+#endif
+ bitset->words = (uint64_t *)roaring_aligned_malloc(
+ align_size, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+ if (!bitset->words) {
+ roaring_free(bitset);
+ return NULL;
+ }
+ bitset_container_clear(bitset);
+ return bitset;
+}
+
+/* Copy one container into another. We assume that they are distinct. */
+void bitset_container_copy(const bitset_container_t *source,
+ bitset_container_t *dest) {
+ dest->cardinality = source->cardinality;
+ memcpy(dest->words, source->words,
+ sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+}
+
+void bitset_container_add_from_range(bitset_container_t *bitset, uint32_t min,
+ uint32_t max, uint16_t step) {
+ if (step == 0) return; // refuse to crash
+ if ((64 % step) == 0) { // step divides 64
+ uint64_t mask = 0; // construct the repeated mask
+ for (uint32_t value = (min % step); value < 64; value += step) {
+ mask |= ((uint64_t)1 << value);
+ }
+ uint32_t firstword = min / 64;
+ uint32_t endword = (max - 1) / 64;
+ bitset->cardinality = (max - min + step - 1) / step;
+ if (firstword == endword) {
+ bitset->words[firstword] |=
+ mask & (((~UINT64_C(0)) << (min % 64)) &
+ ((~UINT64_C(0)) >> ((~max + 1) % 64)));
+ return;
+ }
+ bitset->words[firstword] = mask & ((~UINT64_C(0)) << (min % 64));
+ for (uint32_t i = firstword + 1; i < endword; i++)
+ bitset->words[i] = mask;
+ bitset->words[endword] = mask & ((~UINT64_C(0)) >> ((~max + 1) % 64));
+ } else {
+ for (uint32_t value = min; value < max; value += step) {
+ bitset_container_add(bitset, value);
+ }
+ }
+}
+
+/* Free memory. */
+void bitset_container_free(bitset_container_t *bitset) {
+ if (bitset == NULL) return;
+ roaring_aligned_free(bitset->words);
+ roaring_free(bitset);
+}
+
+/* duplicate container. */
+ALLOW_UNALIGNED
+bitset_container_t *bitset_container_clone(const bitset_container_t *src) {
+ bitset_container_t *bitset =
+ (bitset_container_t *)roaring_malloc(sizeof(bitset_container_t));
+
+ if (!bitset) {
+ return NULL;
+ }
+
+ size_t align_size = 32;
+#if CROARING_IS_X64
+ if (croaring_hardware_support() & ROARING_SUPPORTS_AVX512) {
+ // sizeof(__m512i) == 64
+ align_size = 64;
+ } else {
+ // sizeof(__m256i) == 32
+ align_size = 32;
+ }
+#endif
+ bitset->words = (uint64_t *)roaring_aligned_malloc(
+ align_size, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+ if (!bitset->words) {
+ roaring_free(bitset);
+ return NULL;
+ }
+ bitset->cardinality = src->cardinality;
+ memcpy(bitset->words, src->words,
+ sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+ return bitset;
+}
+
+void bitset_container_offset(const bitset_container_t *c, container_t **loc,
+ container_t **hic, uint16_t offset) {
+ bitset_container_t *bc = NULL;
+ uint64_t val;
+ uint16_t b, i, end;
+
+ b = offset >> 6;
+ i = offset % 64;
+ end = 1024 - b;
+
+ if (loc != NULL) {
+ bc = bitset_container_create();
+ if (i == 0) {
+ memcpy(bc->words + b, c->words, 8 * end);
+ } else {
+ bc->words[b] = c->words[0] << i;
+ for (uint32_t k = 1; k < end; ++k) {
+ val = c->words[k] << i;
+ val |= c->words[k - 1] >> (64 - i);
+ bc->words[b + k] = val;
+ }
+ }
+
+ bc->cardinality = bitset_container_compute_cardinality(bc);
+ if (bc->cardinality != 0) {
+ *loc = bc;
+ }
+ if (bc->cardinality == c->cardinality) {
+ return;
+ }
+ }
+
+ if (hic == NULL) {
+ // Both hic and loc can't be NULL, so bc is never NULL here
+ if (bc->cardinality == 0) {
+ bitset_container_free(bc);
+ }
+ return;
+ }
+
+ if (bc == NULL || bc->cardinality != 0) {
+ bc = bitset_container_create();
+ }
+
+ if (i == 0) {
+ memcpy(bc->words, c->words + end, 8 * b);
+ } else {
+ for (uint32_t k = end; k < 1024; ++k) {
+ val = c->words[k] << i;
+ val |= c->words[k - 1] >> (64 - i);
+ bc->words[k - end] = val;
+ }
+ bc->words[b] = c->words[1023] >> (64 - i);
+ }
+
+ bc->cardinality = bitset_container_compute_cardinality(bc);
+ if (bc->cardinality == 0) {
+ bitset_container_free(bc);
+ return;
+ }
+ *hic = bc;
+}
+
+void bitset_container_set_range(bitset_container_t *bitset, uint32_t begin,
+ uint32_t end) {
+ bitset_set_range(bitset->words, begin, end);
+ bitset->cardinality =
+ bitset_container_compute_cardinality(bitset); // could be smarter
+}
+
+bool bitset_container_intersect(const bitset_container_t *src_1,
+ const bitset_container_t *src_2) {
+ // could vectorize, but this is probably already quite fast in practice
+ const uint64_t *__restrict__ words_1 = src_1->words;
+ const uint64_t *__restrict__ words_2 = src_2->words;
+ for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) {
+ if ((words_1[i] & words_2[i]) != 0) return true;
+ }
+ return false;
+}
+
+#if CROARING_IS_X64
+#ifndef CROARING_WORDS_IN_AVX2_REG
+#define CROARING_WORDS_IN_AVX2_REG sizeof(__m256i) / sizeof(uint64_t)
+#endif
+#ifndef WORDS_IN_AVX512_REG
+#define WORDS_IN_AVX512_REG sizeof(__m512i) / sizeof(uint64_t)
+#endif
+/* Get the number of bits set (force computation) */
+static inline int _scalar_bitset_container_compute_cardinality(
+ const bitset_container_t *bitset) {
+ const uint64_t *words = bitset->words;
+ int32_t sum = 0;
+ for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 4) {
+ sum += roaring_hamming(words[i]);
+ sum += roaring_hamming(words[i + 1]);
+ sum += roaring_hamming(words[i + 2]);
+ sum += roaring_hamming(words[i + 3]);
+ }
+ return sum;
+}
+/* Get the number of bits set (force computation) */
+int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
+ int support = croaring_hardware_support();
+#if CROARING_COMPILER_SUPPORTS_AVX512
+ if (support & ROARING_SUPPORTS_AVX512) {
+ return (int)avx512_vpopcount(
+ (const __m512i *)bitset->words,
+ BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX512_REG));
+ } else
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+ if (support & ROARING_SUPPORTS_AVX2) {
+ return (int)avx2_harley_seal_popcount256(
+ (const __m256i *)bitset->words,
+ BITSET_CONTAINER_SIZE_IN_WORDS / (CROARING_WORDS_IN_AVX2_REG));
+ } else {
+ return _scalar_bitset_container_compute_cardinality(bitset);
+ }
+}
+
+#elif defined(CROARING_USENEON)
+int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
+ uint16x8_t n0 = vdupq_n_u16(0);
+ uint16x8_t n1 = vdupq_n_u16(0);
+ uint16x8_t n2 = vdupq_n_u16(0);
+ uint16x8_t n3 = vdupq_n_u16(0);
+ for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) {
+ uint64x2_t c0 = vld1q_u64(&bitset->words[i + 0]);
+ n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0))));
+ uint64x2_t c1 = vld1q_u64(&bitset->words[i + 2]);
+ n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1))));
+ uint64x2_t c2 = vld1q_u64(&bitset->words[i + 4]);
+ n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2))));
+ uint64x2_t c3 = vld1q_u64(&bitset->words[i + 6]);
+ n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3))));
+ }
+ uint64x2_t n = vdupq_n_u64(0);
+ n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0)));
+ n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1)));
+ n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2)));
+ n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3)));
+ return vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1);
+}
+
+#else // CROARING_IS_X64
+
+/* Get the number of bits set (force computation) */
+int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
+ const uint64_t *words = bitset->words;
+ int32_t sum = 0;
+ for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 4) {
+ sum += roaring_hamming(words[i]);
+ sum += roaring_hamming(words[i + 1]);
+ sum += roaring_hamming(words[i + 2]);
+ sum += roaring_hamming(words[i + 3]);
+ }
+ return sum;
+}
+
+#endif // CROARING_IS_X64
+
+#if CROARING_IS_X64
+
+#define CROARING_BITSET_CONTAINER_FN_REPEAT 8
+#ifndef WORDS_IN_AVX512_REG
+#define WORDS_IN_AVX512_REG sizeof(__m512i) / sizeof(uint64_t)
+#endif // WORDS_IN_AVX512_REG
+
+/* Computes a binary operation (eg union) on bitset1 and bitset2 and write the
+ result to bitsetout */
+// clang-format off
+#define CROARING_AVX512_BITSET_CONTAINER_FN1(before, opname, opsymbol,
avx_intrinsic, \
+ neon_intrinsic, after)
\
+ static inline int _avx512_bitset_container_##opname##_nocard(
\
+ const bitset_container_t *src_1, const bitset_container_t *src_2,
\
+ bitset_container_t *dst) {
\
+ const uint8_t * __restrict__ words_1 = (const uint8_t *)src_1->words;
\
+ const uint8_t * __restrict__ words_2 = (const uint8_t *)src_2->words;
\
+ /* not using the blocking optimization for some reason*/
\
+ uint8_t *out = (uint8_t*)dst->words;
\
+ const int innerloop = 8;
\
+ for (size_t i = 0;
\
+ i < BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX512_REG);
\
+ i+=innerloop) {
\
+ __m512i A1, A2, AO;
\
+ A1 = _mm512_loadu_si512((const __m512i *)(words_1));
\
+ A2 = _mm512_loadu_si512((const __m512i *)(words_2));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm512_storeu_si512((__m512i *)out, AO);
\
+ A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 64));
\
+ A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 64));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm512_storeu_si512((__m512i *)(out+64), AO);
\
+ A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 128));
\
+ A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 128));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm512_storeu_si512((__m512i *)(out+128), AO);
\
+ A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 192));
\
+ A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 192));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm512_storeu_si512((__m512i *)(out+192), AO);
\
+ A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 256));
\
+ A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 256));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm512_storeu_si512((__m512i *)(out+256), AO);
\
+ A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 320));
\
+ A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 320));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm512_storeu_si512((__m512i *)(out+320), AO);
\
+ A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 384));
\
+ A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 384));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm512_storeu_si512((__m512i *)(out+384), AO);
\
+ A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 448));
\
+ A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 448));
\
+ AO = avx_intrinsic(A2, A1); \
+ _mm512_storeu_si512((__m512i *)(out+448), AO); \
+ out+=512; \
+ words_1 += 512; \
+ words_2 += 512; \
+ } \
+ dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \
+ return dst->cardinality; \
+ }
+
+#define CROARING_AVX512_BITSET_CONTAINER_FN2(before, opname, opsymbol,
avx_intrinsic, \
+ neon_intrinsic, after)
\
+ /* next, a version that updates cardinality*/
\
+ static inline int _avx512_bitset_container_##opname(const bitset_container_t
*src_1, \
+ const bitset_container_t *src_2,
\
+ bitset_container_t *dst) {
\
+ const __m512i * __restrict__ words_1 = (const __m512i *) src_1->words;
\
+ const __m512i * __restrict__ words_2 = (const __m512i *) src_2->words;
\
+ __m512i *out = (__m512i *) dst->words;
\
+ dst->cardinality =
(int32_t)avx512_harley_seal_popcount512andstore_##opname(words_2,\
+ words_1, out,BITSET_CONTAINER_SIZE_IN_WORDS /
(WORDS_IN_AVX512_REG)); \
+ return dst->cardinality;
\
+ }
+
+#define CROARING_AVX512_BITSET_CONTAINER_FN3(before, opname, opsymbol,
avx_intrinsic, \
+ neon_intrinsic, after)
\
+ /* next, a version that just computes the cardinality*/
\
+ static inline int _avx512_bitset_container_##opname##_justcard(
\
+ const bitset_container_t *src_1, const bitset_container_t *src_2) {
\
+ const __m512i * __restrict__ data1 = (const __m512i *) src_1->words;
\
+ const __m512i * __restrict__ data2 = (const __m512i *) src_2->words;
\
+ return (int)avx512_harley_seal_popcount512_##opname(data2,
\
+ data1, BITSET_CONTAINER_SIZE_IN_WORDS /
(WORDS_IN_AVX512_REG)); \
+ }
+
+
+// we duplicate the function because other containers use the "or" term, makes
API more consistent
+#if CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, or, |,
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, union, |,
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, and, &,
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, intersection, &,
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, xor, ^,
_mm512_xor_si512, veorq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, andnot, &~,
_mm512_andnot_si512, vbicq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+// we duplicate the function because other containers use the "or" term, makes
API more consistent
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, or, |,
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, union, |,
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, and, &,
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, intersection, &,
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, xor, ^,
_mm512_xor_si512, veorq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, andnot, &~,
_mm512_andnot_si512, vbicq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+// we duplicate the function because other containers use the "or" term, makes
API more consistent
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, or, |,
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, union, |,
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, and, &,
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, intersection, &,
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, xor, ^,
_mm512_xor_si512, veorq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, andnot, &~,
_mm512_andnot_si512, vbicq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+
+#ifndef CROARING_WORDS_IN_AVX2_REG
+#define CROARING_WORDS_IN_AVX2_REG sizeof(__m256i) / sizeof(uint64_t)
+#endif // CROARING_WORDS_IN_AVX2_REG
+#define CROARING_LOOP_SIZE \
+ BITSET_CONTAINER_SIZE_IN_WORDS / \
+ ((CROARING_WORDS_IN_AVX2_REG)*CROARING_BITSET_CONTAINER_FN_REPEAT)
+
+/* Computes a binary operation (eg union) on bitset1 and bitset2 and write the
+ result to bitsetout */
+// clang-format off
+#define CROARING_AVX_BITSET_CONTAINER_FN1(before, opname, opsymbol,
avx_intrinsic, \
+ neon_intrinsic, after)
\
+ static inline int _avx2_bitset_container_##opname##_nocard(
\
+ const bitset_container_t *src_1, const bitset_container_t *src_2,
\
+ bitset_container_t *dst) {
\
+ const uint8_t *__restrict__ words_1 = (const uint8_t *)src_1->words;
\
+ const uint8_t *__restrict__ words_2 = (const uint8_t *)src_2->words;
\
+ /* not using the blocking optimization for some reason*/
\
+ uint8_t *out = (uint8_t *)dst->words;
\
+ const int innerloop = 8;
\
+ for (size_t i = 0;
\
+ i < BITSET_CONTAINER_SIZE_IN_WORDS / (CROARING_WORDS_IN_AVX2_REG);
\
+ i += innerloop) {
\
+ __m256i A1, A2, AO;
\
+ A1 = _mm256_lddqu_si256((const __m256i *)(words_1));
\
+ A2 = _mm256_lddqu_si256((const __m256i *)(words_2));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm256_storeu_si256((__m256i *)out, AO);
\
+ A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 32));
\
+ A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 32));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm256_storeu_si256((__m256i *)(out + 32), AO);
\
+ A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 64));
\
+ A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 64));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm256_storeu_si256((__m256i *)(out + 64), AO);
\
+ A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 96));
\
+ A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 96));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm256_storeu_si256((__m256i *)(out + 96), AO);
\
+ A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 128));
\
+ A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 128));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm256_storeu_si256((__m256i *)(out + 128), AO);
\
+ A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 160));
\
+ A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 160));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm256_storeu_si256((__m256i *)(out + 160), AO);
\
+ A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 192));
\
+ A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 192));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm256_storeu_si256((__m256i *)(out + 192), AO);
\
+ A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 224));
\
+ A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 224));
\
+ AO = avx_intrinsic(A2, A1);
\
+ _mm256_storeu_si256((__m256i *)(out + 224), AO);
\
+ out += 256;
\
+ words_1 += 256;
\
+ words_2 += 256;
\
+ }
\
+ dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
\
+ return dst->cardinality;
\
+ }
+
+#define CROARING_AVX_BITSET_CONTAINER_FN2(before, opname, opsymbol,
avx_intrinsic, \
+ neon_intrinsic, after)
\
+ /* next, a version that updates cardinality*/
\
+ static inline int _avx2_bitset_container_##opname(const bitset_container_t
*src_1, \
+ const bitset_container_t *src_2,
\
+ bitset_container_t *dst) {
\
+ const __m256i *__restrict__ words_1 = (const __m256i *)src_1->words;
\
+ const __m256i *__restrict__ words_2 = (const __m256i *)src_2->words;
\
+ __m256i *out = (__m256i *)dst->words;
\
+ dst->cardinality = (int32_t)avx2_harley_seal_popcount256andstore_##opname(
\
+ words_2, words_1, out,
\
+ BITSET_CONTAINER_SIZE_IN_WORDS / (CROARING_WORDS_IN_AVX2_REG));
\
+ return dst->cardinality;
\
+ }
\
+
+#define CROARING_AVX_BITSET_CONTAINER_FN3(before, opname, opsymbol,
avx_intrinsic, \
+ neon_intrinsic, after)
\
+ /* next, a version that just computes the cardinality*/
\
+ static inline int _avx2_bitset_container_##opname##_justcard(
\
+ const bitset_container_t *src_1, const bitset_container_t *src_2) {
\
+ const __m256i *__restrict__ data1 = (const __m256i *)src_1->words;
\
+ const __m256i *__restrict__ data2 = (const __m256i *)src_2->words;
\
+ return (int)avx2_harley_seal_popcount256_##opname(
\
+ data2, data1, BITSET_CONTAINER_SIZE_IN_WORDS /
(CROARING_WORDS_IN_AVX2_REG)); \
+ }
+
+
+// we duplicate the function because other containers use the "or" term, makes
API more consistent
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, or, |,
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, union, |,
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, and, &,
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, intersection, &,
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, xor, ^,
_mm256_xor_si256, veorq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, andnot, &~,
_mm256_andnot_si256, vbicq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+// we duplicate the function because other containers use the "or" term, makes
API more consistent
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, or, |,
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, union, |,
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, and, &,
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, intersection, &,
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, xor, ^,
_mm256_xor_si256, veorq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, andnot, &~,
_mm256_andnot_si256, vbicq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+// we duplicate the function because other containers use the "or" term, makes
API more consistent
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, or, |,
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, union, |,
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, and, &,
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, intersection, &,
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, xor, ^,
_mm256_xor_si256, veorq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, andnot, &~,
_mm256_andnot_si256, vbicq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+
+#define SCALAR_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic,
\
+ neon_intrinsic)
\
+ static inline int _scalar_bitset_container_##opname(const bitset_container_t
*src_1, \
+ const bitset_container_t *src_2,
\
+ bitset_container_t *dst) {
\
+ const uint64_t *__restrict__ words_1 = src_1->words;
\
+ const uint64_t *__restrict__ words_2 = src_2->words;
\
+ uint64_t *out = dst->words;
\
+ int32_t sum = 0;
\
+ for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) {
\
+ const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]),
\
+ word_2 = (words_1[i + 1]) opsymbol(words_2[i + 1]);
\
+ out[i] = word_1;
\
+ out[i + 1] = word_2;
\
+ sum += roaring_hamming(word_1);
\
+ sum += roaring_hamming(word_2);
\
+ }
\
+ dst->cardinality = sum;
\
+ return dst->cardinality;
\
+ }
\
+ static inline int _scalar_bitset_container_##opname##_nocard(
\
+ const bitset_container_t *src_1, const bitset_container_t *src_2,
\
+ bitset_container_t *dst) {
\
+ const uint64_t *__restrict__ words_1 = src_1->words;
\
+ const uint64_t *__restrict__ words_2 = src_2->words;
\
+ uint64_t *out = dst->words;
\
+ for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) {
\
+ out[i] = (words_1[i])opsymbol(words_2[i]);
\
+ }
\
+ dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
\
+ return dst->cardinality;
\
+ }
\
+ static inline int _scalar_bitset_container_##opname##_justcard(
\
+ const bitset_container_t *src_1, const bitset_container_t *src_2) {
\
+ const uint64_t *__restrict__ words_1 = src_1->words;
\
+ const uint64_t *__restrict__ words_2 = src_2->words;
\
+ int32_t sum = 0;
\
+ for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) {
\
+ const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]),
\
+ word_2 = (words_1[i + 1]) opsymbol(words_2[i + 1]);
\
+ sum += roaring_hamming(word_1);
\
+ sum += roaring_hamming(word_2);
\
+ }
\
+ return sum;
\
+ }
+
+// we duplicate the function because other containers use the "or" term, makes
API more consistent
+SCALAR_BITSET_CONTAINER_FN(or, |, _mm256_or_si256, vorrq_u64)
+SCALAR_BITSET_CONTAINER_FN(union, |, _mm256_or_si256, vorrq_u64)
+
+// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
+SCALAR_BITSET_CONTAINER_FN(and, &, _mm256_and_si256, vandq_u64)
+SCALAR_BITSET_CONTAINER_FN(intersection, &, _mm256_and_si256, vandq_u64)
+
+SCALAR_BITSET_CONTAINER_FN(xor, ^, _mm256_xor_si256, veorq_u64)
+SCALAR_BITSET_CONTAINER_FN(andnot, &~, _mm256_andnot_si256, vbicq_u64)
+
+#if CROARING_COMPILER_SUPPORTS_AVX512
+#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic,
neon_intrinsic) \
+ int bitset_container_##opname(const bitset_container_t *src_1,
\
+ const bitset_container_t *src_2,
\
+ bitset_container_t *dst) {
\
+ int support = croaring_hardware_support();
\
+ if ( support & ROARING_SUPPORTS_AVX512 ) {
\
+ return _avx512_bitset_container_##opname(src_1, src_2, dst);
\
+ }
\
+ else if ( support & ROARING_SUPPORTS_AVX2 ) {
\
+ return _avx2_bitset_container_##opname(src_1, src_2, dst);
\
+ } else {
\
+ return _scalar_bitset_container_##opname(src_1, src_2, dst);
\
+ }
\
+ }
\
+ int bitset_container_##opname##_nocard(const bitset_container_t *src_1,
\
+ const bitset_container_t *src_2,
\
+ bitset_container_t *dst) {
\
+ int support = croaring_hardware_support();
\
+ if ( support & ROARING_SUPPORTS_AVX512 ) {
\
+ return _avx512_bitset_container_##opname##_nocard(src_1, src_2, dst);
\
+ }
\
+ else if ( support & ROARING_SUPPORTS_AVX2 ) {
\
+ return _avx2_bitset_container_##opname##_nocard(src_1, src_2, dst);
\
+ } else {
\
+ return _scalar_bitset_container_##opname##_nocard(src_1, src_2, dst);
\
+ }
\
+ }
\
+ int bitset_container_##opname##_justcard(const bitset_container_t *src_1,
\
+ const bitset_container_t *src_2) {
\
+ int support = croaring_hardware_support();
\
+ if ( support & ROARING_SUPPORTS_AVX512 ) {
\
+ return _avx512_bitset_container_##opname##_justcard(src_1, src_2);
\
+ }
\
+ else if ( support & ROARING_SUPPORTS_AVX2 ) {
\
+ return _avx2_bitset_container_##opname##_justcard(src_1, src_2);
\
+ } else {
\
+ return _scalar_bitset_container_##opname##_justcard(src_1, src_2);
\
+ }
\
+ }
+
+#else // CROARING_COMPILER_SUPPORTS_AVX512
+
+
+#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic,
neon_intrinsic) \
+ int bitset_container_##opname(const bitset_container_t *src_1,
\
+ const bitset_container_t *src_2,
\
+ bitset_container_t *dst) {
\
+ if ( croaring_hardware_support() & ROARING_SUPPORTS_AVX2 ) {
\
+ return _avx2_bitset_container_##opname(src_1, src_2, dst);
\
+ } else {
\
+ return _scalar_bitset_container_##opname(src_1, src_2, dst);
\
+ }
\
+ }
\
+ int bitset_container_##opname##_nocard(const bitset_container_t *src_1,
\
+ const bitset_container_t *src_2,
\
+ bitset_container_t *dst) {
\
+ if ( croaring_hardware_support() & ROARING_SUPPORTS_AVX2 ) {
\
+ return _avx2_bitset_container_##opname##_nocard(src_1, src_2, dst);
\
+ } else {
\
+ return _scalar_bitset_container_##opname##_nocard(src_1, src_2, dst);
\
+ }
\
+ }
\
+ int bitset_container_##opname##_justcard(const bitset_container_t *src_1,
\
+ const bitset_container_t *src_2) {
\
+ if ( croaring_hardware_support() & ROARING_SUPPORTS_AVX2 ) {
\
+ return _avx2_bitset_container_##opname##_justcard(src_1, src_2);
\
+ } else {
\
+ return _scalar_bitset_container_##opname##_justcard(src_1, src_2);
\
+ }
\
+ }
+
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+
+#elif defined(CROARING_USENEON)
+
+#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic,
neon_intrinsic) \
+int bitset_container_##opname(const bitset_container_t *src_1, \
+ const bitset_container_t *src_2, \
+ bitset_container_t *dst) { \
+ const uint64_t * __restrict__ words_1 = src_1->words; \
+ const uint64_t * __restrict__ words_2 = src_2->words; \
+ uint64_t *out = dst->words; \
+ uint16x8_t n0 = vdupq_n_u16(0); \
+ uint16x8_t n1 = vdupq_n_u16(0); \
+ uint16x8_t n2 = vdupq_n_u16(0); \
+ uint16x8_t n3 = vdupq_n_u16(0); \
+ for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) { \
+ uint64x2_t c0 = neon_intrinsic(vld1q_u64(&words_1[i + 0]), \
+ vld1q_u64(&words_2[i + 0])); \
+ n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0)))); \
+ vst1q_u64(&out[i + 0], c0); \
+ uint64x2_t c1 = neon_intrinsic(vld1q_u64(&words_1[i + 2]), \
+ vld1q_u64(&words_2[i + 2])); \
+ n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1)))); \
+ vst1q_u64(&out[i + 2], c1); \
+ uint64x2_t c2 = neon_intrinsic(vld1q_u64(&words_1[i + 4]), \
+ vld1q_u64(&words_2[i + 4])); \
+ n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2)))); \
+ vst1q_u64(&out[i + 4], c2); \
+ uint64x2_t c3 = neon_intrinsic(vld1q_u64(&words_1[i + 6]), \
+ vld1q_u64(&words_2[i + 6])); \
+ n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3)))); \
+ vst1q_u64(&out[i + 6], c3); \
+ } \
+ uint64x2_t n = vdupq_n_u64(0); \
+ n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0))); \
+ n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1))); \
+ n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2))); \
+ n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3))); \
+ dst->cardinality = vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1); \
+ return dst->cardinality; \
+} \
+int bitset_container_##opname##_nocard(const bitset_container_t *src_1, \
+ const bitset_container_t *src_2, \
+ bitset_container_t *dst) { \
+ const uint64_t * __restrict__ words_1 = src_1->words; \
+ const uint64_t * __restrict__ words_2 = src_2->words; \
+ uint64_t *out = dst->words; \
+ for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) { \
+ vst1q_u64(&out[i + 0], neon_intrinsic(vld1q_u64(&words_1[i + 0]), \
+ vld1q_u64(&words_2[i + 0]))); \
+ vst1q_u64(&out[i + 2], neon_intrinsic(vld1q_u64(&words_1[i + 2]), \
+ vld1q_u64(&words_2[i + 2]))); \
+ vst1q_u64(&out[i + 4], neon_intrinsic(vld1q_u64(&words_1[i + 4]), \
+ vld1q_u64(&words_2[i + 4]))); \
+ vst1q_u64(&out[i + 6], neon_intrinsic(vld1q_u64(&words_1[i + 6]), \
+ vld1q_u64(&words_2[i + 6]))); \
+ } \
+ dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \
+ return dst->cardinality; \
+} \
+int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \
+ const bitset_container_t *src_2) { \
+ const uint64_t * __restrict__ words_1 = src_1->words; \
+ const uint64_t * __restrict__ words_2 = src_2->words; \
+ uint16x8_t n0 = vdupq_n_u16(0); \
+ uint16x8_t n1 = vdupq_n_u16(0); \
+ uint16x8_t n2 = vdupq_n_u16(0); \
+ uint16x8_t n3 = vdupq_n_u16(0); \
+ for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) { \
+ uint64x2_t c0 = neon_intrinsic(vld1q_u64(&words_1[i + 0]), \
+ vld1q_u64(&words_2[i + 0])); \
+ n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0)))); \
+ uint64x2_t c1 = neon_intrinsic(vld1q_u64(&words_1[i + 2]), \
+ vld1q_u64(&words_2[i + 2])); \
+ n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1)))); \
+ uint64x2_t c2 = neon_intrinsic(vld1q_u64(&words_1[i + 4]), \
+ vld1q_u64(&words_2[i + 4])); \
+ n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2)))); \
+ uint64x2_t c3 = neon_intrinsic(vld1q_u64(&words_1[i + 6]), \
+ vld1q_u64(&words_2[i + 6])); \
+ n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3)))); \
+ } \
+ uint64x2_t n = vdupq_n_u64(0); \
+ n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0))); \
+ n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1))); \
+ n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2))); \
+ n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3))); \
+ return vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1); \
+}
+
+#else
+
+#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic,
neon_intrinsic) \
+int bitset_container_##opname(const bitset_container_t *src_1, \
+ const bitset_container_t *src_2, \
+ bitset_container_t *dst) { \
+ const uint64_t * __restrict__ words_1 = src_1->words; \
+ const uint64_t * __restrict__ words_2 = src_2->words; \
+ uint64_t *out = dst->words; \
+ int32_t sum = 0; \
+ for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) { \
+ const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]), \
+ word_2 = (words_1[i + 1])opsymbol(words_2[i + 1]); \
+ out[i] = word_1; \
+ out[i + 1] = word_2; \
+ sum += roaring_hamming(word_1); \
+ sum += roaring_hamming(word_2); \
+ } \
+ dst->cardinality = sum; \
+ return dst->cardinality; \
+} \
+int bitset_container_##opname##_nocard(const bitset_container_t *src_1, \
+ const bitset_container_t *src_2, \
+ bitset_container_t *dst) { \
+ const uint64_t * __restrict__ words_1 = src_1->words; \
+ const uint64_t * __restrict__ words_2 = src_2->words; \
+ uint64_t *out = dst->words; \
+ for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) { \
+ out[i] = (words_1[i])opsymbol(words_2[i]); \
+ } \
+ dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \
+ return dst->cardinality; \
+} \
+int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \
+ const bitset_container_t *src_2) { \
+ const uint64_t * __restrict__ words_1 = src_1->words; \
+ const uint64_t * __restrict__ words_2 = src_2->words; \
+ int32_t sum = 0; \
+ for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) { \
+ const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]), \
+ word_2 = (words_1[i + 1])opsymbol(words_2[i + 1]); \
+ sum += roaring_hamming(word_1); \
+ sum += roaring_hamming(word_2); \
+ } \
+ return sum; \
+}
+
+#endif // CROARING_IS_X64
+
+// we duplicate the function because other containers use the "or" term, makes
API more consistent
+CROARING_BITSET_CONTAINER_FN(or, |, _mm256_or_si256, vorrq_u64)
+CROARING_BITSET_CONTAINER_FN(union, |, _mm256_or_si256, vorrq_u64)
+
+// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
+CROARING_BITSET_CONTAINER_FN(and, &, _mm256_and_si256, vandq_u64)
+CROARING_BITSET_CONTAINER_FN(intersection, &, _mm256_and_si256, vandq_u64)
+
+CROARING_BITSET_CONTAINER_FN(xor, ^, _mm256_xor_si256, veorq_u64)
+CROARING_BITSET_CONTAINER_FN(andnot, &~, _mm256_andnot_si256, vbicq_u64)
+// clang-format On
+
+
+ALLOW_UNALIGNED
+int bitset_container_to_uint32_array(
+ uint32_t *out,
+ const bitset_container_t *bc,
+ uint32_t base
+){
+#if CROARING_IS_X64
+ int support = croaring_hardware_support();
+#if CROARING_COMPILER_SUPPORTS_AVX512
+ if(( support & ROARING_SUPPORTS_AVX512 ) && (bc->cardinality >= 8192)) //
heuristic
+ return (int) bitset_extract_setbits_avx512(bc->words,
+ BITSET_CONTAINER_SIZE_IN_WORDS, out, bc->cardinality, base);
+ else
+#endif
+ if(( support & ROARING_SUPPORTS_AVX2 ) && (bc->cardinality >= 8192)) //
heuristic
+ return (int) bitset_extract_setbits_avx2(bc->words,
+ BITSET_CONTAINER_SIZE_IN_WORDS, out, bc->cardinality, base);
+ else
+ return (int) bitset_extract_setbits(bc->words,
+ BITSET_CONTAINER_SIZE_IN_WORDS, out, base);
+#else
+ return (int) bitset_extract_setbits(bc->words,
+ BITSET_CONTAINER_SIZE_IN_WORDS, out, base);
+#endif
+}
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void bitset_container_printf(const bitset_container_t * v) {
+ printf("{");
+ uint32_t base = 0;
+ bool iamfirst = true;// TODO: rework so that this is not necessary yet
still readable
+ for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
+ uint64_t w = v->words[i];
+ while (w != 0) {
+ uint64_t t = w & (~w + 1);
+ int r = roaring_trailing_zeroes(w);
+ if(iamfirst) {// predicted to be false
+ printf("%u",base + r);
+ iamfirst = false;
+ } else {
+ printf(",%u",base + r);
+ }
+ w ^= t;
+ }
+ base += 64;
+ }
+ printf("}");
+}
+
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit
integers starting at base.
+ */
+void bitset_container_printf_as_uint32_array(const bitset_container_t * v,
uint32_t base) {
+ bool iamfirst = true;// TODO: rework so that this is not necessary yet
still readable
+ for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
+ uint64_t w = v->words[i];
+ while (w != 0) {
+ uint64_t t = w & (~w + 1);
+ int r = roaring_trailing_zeroes(w);
+ if(iamfirst) {// predicted to be false
+ printf("%u", r + base);
+ iamfirst = false;
+ } else {
+ printf(",%u",r + base);
+ }
+ w ^= t;
+ }
+ base += 64;
+ }
+}
+
+/*
+ * Validate the container. Returns true if valid.
+ */
+bool bitset_container_validate(const bitset_container_t *v, const char
**reason) {
+ if (v->words == NULL) {
+ *reason = "words is NULL";
+ return false;
+ }
+ if (v->cardinality != bitset_container_compute_cardinality(v)) {
+ *reason = "cardinality is incorrect";
+ return false;
+ }
+ if (v->cardinality <= DEFAULT_MAX_SIZE) {
+ *reason = "cardinality is too small for a bitmap container";
+ return false;
+ }
+ // Attempt to forcibly load the first and last words, hopefully causing
+ // a segfault or an address sanitizer error if words is not allocated.
+ volatile uint64_t *words = v->words;
+ (void) words[0];
+ (void) words[BITSET_CONTAINER_SIZE_IN_WORDS - 1];
+ return true;
+}
+
+
+// TODO: use the fast lower bound, also
+int bitset_container_number_of_runs(bitset_container_t *bc) {
+ int num_runs = 0;
+ uint64_t next_word = bc->words[0];
+
+ for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS-1; ++i) {
+ uint64_t word = next_word;
+ next_word = bc->words[i+1];
+ num_runs += roaring_hamming((~word) & (word << 1)) + ( (word >> 63) &
~next_word);
+ }
+
+ uint64_t word = next_word;
+ num_runs += roaring_hamming((~word) & (word << 1));
+ if((word & 0x8000000000000000ULL) != 0)
+ num_runs++;
+ return num_runs;
+}
+
+
+int32_t bitset_container_write(const bitset_container_t *container,
+ char *buf) {
+ memcpy(buf, container->words, BITSET_CONTAINER_SIZE_IN_WORDS *
sizeof(uint64_t));
+ return bitset_container_size_in_bytes(container);
+}
+
+
+int32_t bitset_container_read(int32_t cardinality, bitset_container_t
*container,
+ const char *buf) {
+ container->cardinality = cardinality;
+ memcpy(container->words, buf, BITSET_CONTAINER_SIZE_IN_WORDS *
sizeof(uint64_t));
+ return bitset_container_size_in_bytes(container);
+}
+
+bool bitset_container_iterate(const bitset_container_t *cont, uint32_t base,
roaring_iterator iterator, void *ptr) {
+ for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
+ uint64_t w = cont->words[i];
+ while (w != 0) {
+ uint64_t t = w & (~w + 1);
+ int r = roaring_trailing_zeroes(w);
+ if(!iterator(r + base, ptr)) return false;
+ w ^= t;
+ }
+ base += 64;
+ }
+ return true;
+}
+
+bool bitset_container_iterate64(const bitset_container_t *cont, uint32_t base,
roaring_iterator64 iterator, uint64_t high_bits, void *ptr) {
+ for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
+ uint64_t w = cont->words[i];
+ while (w != 0) {
+ uint64_t t = w & (~w + 1);
+ int r = roaring_trailing_zeroes(w);
+ if(!iterator(high_bits | (uint64_t)(r + base), ptr)) return false;
+ w ^= t;
+ }
+ base += 64;
+ }
+ return true;
+}
+
+#if CROARING_IS_X64
+#if CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX512
+ALLOW_UNALIGNED
+static inline bool _avx512_bitset_container_equals(const bitset_container_t
*container1, const bitset_container_t *container2) {
+ const __m512i *ptr1 = (const __m512i*)container1->words;
+ const __m512i *ptr2 = (const __m512i*)container2->words;
+ for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)/64;
i++) {
+ __m512i r1 = _mm512_loadu_si512(ptr1+i);
+ __m512i r2 = _mm512_loadu_si512(ptr2+i);
+ __mmask64 mask = _mm512_cmpeq_epi8_mask(r1, r2);
+ if ((uint64_t)mask != UINT64_MAX) {
+ return false;
+ }
+ }
+ return true;
+}
+CROARING_UNTARGET_AVX512
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX2
+ALLOW_UNALIGNED
+static inline bool _avx2_bitset_container_equals(const bitset_container_t
*container1, const bitset_container_t *container2) {
+ const __m256i *ptr1 = (const __m256i*)container1->words;
+ const __m256i *ptr2 = (const __m256i*)container2->words;
+ for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)/32;
i++) {
+ __m256i r1 = _mm256_loadu_si256(ptr1+i);
+ __m256i r2 = _mm256_loadu_si256(ptr2+i);
+ int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2));
+ if ((uint32_t)mask != UINT32_MAX) {
+ return false;
+ }
+ }
+ return true;
+}
+CROARING_UNTARGET_AVX2
+#endif // CROARING_IS_X64
+
+ALLOW_UNALIGNED
+bool bitset_container_equals(const bitset_container_t *container1, const
bitset_container_t *container2) {
+ if((container1->cardinality != BITSET_UNKNOWN_CARDINALITY) &&
(container2->cardinality != BITSET_UNKNOWN_CARDINALITY)) {
+ if(container1->cardinality != container2->cardinality) {
+ return false;
+ }
+ if (container1->cardinality == INT32_C(0x10000)) {
+ return true;
+ }
+ }
+#if CROARING_IS_X64
+ int support = croaring_hardware_support();
+#if CROARING_COMPILER_SUPPORTS_AVX512
+ if( support & ROARING_SUPPORTS_AVX512 ) {
+ return _avx512_bitset_container_equals(container1, container2);
+ }
+ else
+#endif
+ if( support & ROARING_SUPPORTS_AVX2 ) {
+ return _avx2_bitset_container_equals(container1, container2);
+ }
+#endif
+ return memcmp(container1->words,
+ container2->words,
+ BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)) == 0;
+}
+
+bool bitset_container_is_subset(const bitset_container_t *container1,
+ const bitset_container_t *container2) {
+ if((container1->cardinality != BITSET_UNKNOWN_CARDINALITY) &&
(container2->cardinality != BITSET_UNKNOWN_CARDINALITY)) {
+ if(container1->cardinality > container2->cardinality) {
+ return false;
+ }
+ }
+ for(int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
+ if((container1->words[i] & container2->words[i]) !=
container1->words[i]) {
+ return false;
+ }
+ }
+ return true;
+}
+
+bool bitset_container_select(const bitset_container_t *container, uint32_t
*start_rank, uint32_t rank, uint32_t *element) {
+ int card = bitset_container_cardinality(container);
+ if(rank >= *start_rank + card) {
+ *start_rank += card;
+ return false;
+ }
+ const uint64_t *words = container->words;
+ int32_t size;
+ for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 1) {
+ size = roaring_hamming(words[i]);
+ if(rank <= *start_rank + size) {
+ uint64_t w = container->words[i];
+ uint16_t base = i*64;
+ while (w != 0) {
+ uint64_t t = w & (~w + 1);
+ int r = roaring_trailing_zeroes(w);
+ if(*start_rank == rank) {
+ *element = r+base;
+ return true;
+ }
+ w ^= t;
+ *start_rank += 1;
+ }
+ }
+ else
+ *start_rank += size;
+ }
+ assert(false);
+ roaring_unreachable;
+}
+
+
+/* Returns the smallest value (assumes not empty) */
+uint16_t bitset_container_minimum(const bitset_container_t *container) {
+ for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
+ uint64_t w = container->words[i];
+ if (w != 0) {
+ int r = roaring_trailing_zeroes(w);
+ return r + i * 64;
+ }
+ }
+ return UINT16_MAX;
+}
+
+/* Returns the largest value (assumes not empty) */
+uint16_t bitset_container_maximum(const bitset_container_t *container) {
+ for (int32_t i = BITSET_CONTAINER_SIZE_IN_WORDS - 1; i > 0; --i ) {
+ uint64_t w = container->words[i];
+ if (w != 0) {
+ int r = roaring_leading_zeroes(w);
+ return i * 64 + 63 - r;
+ }
+ }
+ return 0;
+}
+
+/* Returns the number of values equal or smaller than x */
+int bitset_container_rank(const bitset_container_t *container, uint16_t x) {
+ // credit: aqrit
+ int sum = 0;
+ int i = 0;
+ for (int end = x / 64; i < end; i++){
+ sum += roaring_hamming(container->words[i]);
+ }
+ uint64_t lastword = container->words[i];
+ uint64_t lastpos = UINT64_C(1) << (x % 64);
+ uint64_t mask = lastpos + lastpos - 1; // smear right
+ sum += roaring_hamming(lastword & mask);
+ return sum;
+}
+
+uint32_t bitset_container_rank_many(const bitset_container_t *container,
uint64_t start_rank, const uint32_t* begin, const uint32_t* end, uint64_t* ans){
+ const uint16_t high = (uint16_t)((*begin) >> 16);
+ int i = 0;
+ int sum = 0;
+ const uint32_t* iter = begin;
+ for(; iter != end; iter++) {
+ uint32_t x = *iter;
+ uint16_t xhigh = (uint16_t)(x >> 16);
+ if(xhigh != high) return iter - begin; // stop at next container
+
+ uint16_t xlow = (uint16_t)x;
+ for(int count = xlow / 64; i < count; i++){
+ sum += roaring_hamming(container->words[i]);
+ }
+ uint64_t lastword = container->words[i];
+ uint64_t lastpos = UINT64_C(1) << (xlow % 64);
+ uint64_t mask = lastpos + lastpos - 1; // smear right
+ *(ans++) = start_rank + sum + roaring_hamming(lastword & mask);
+ }
+ return iter - begin;
+}
+
+
+/* Returns the index of x , if not exsist return -1 */
+int bitset_container_get_index(const bitset_container_t *container, uint16_t
x) {
+ if (bitset_container_get(container, x)) {
+ // credit: aqrit
+ int sum = 0;
+ int i = 0;
+ for (int end = x / 64; i < end; i++){
+ sum += roaring_hamming(container->words[i]);
+ }
+ uint64_t lastword = container->words[i];
+ uint64_t lastpos = UINT64_C(1) << (x % 64);
+ uint64_t mask = lastpos + lastpos - 1; // smear right
+ sum += roaring_hamming(lastword & mask);
+ return sum - 1;
+ } else {
+ return -1;
+ }
+}
+
+/* Returns the index of the first value equal or larger than x, or -1 */
+int bitset_container_index_equalorlarger(const bitset_container_t *container,
uint16_t x) {
+ uint32_t x32 = x;
+ uint32_t k = x32 / 64;
+ uint64_t word = container->words[k];
+ const int diff = x32 - k * 64; // in [0,64)
+ word = (word >> diff) << diff; // a mask is faster, but we don't care
+ while(word == 0) {
+ k++;
+ if(k == BITSET_CONTAINER_SIZE_IN_WORDS) return -1;
+ word = container->words[k];
+ }
+ return k * 64 + roaring_trailing_zeroes(word);
+}
+
+#ifdef __cplusplus
+} } } // extern "C" { namespace roaring { namespace internal {
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic pop
+#endif/* end file src/containers/bitset.c */
+/* begin file src/containers/containers.c */
+
+
+#ifdef __cplusplus
+extern "C" {
+// In Windows MSVC C++ compiler, (type){init} does not compile,
+// it causes C4576: a parenthesized type followed by an initializer list is a
+// non-standard explicit type conversion syntax The correct syntax is
type{init}
+#define ROARING_INIT_ROARING_CONTAINER_ITERATOR_T roaring_container_iterator_t
+namespace roaring {
+namespace internal {
+#else
+#define ROARING_INIT_ROARING_CONTAINER_ITERATOR_T
(roaring_container_iterator_t)
+#endif
+
+static inline uint32_t minimum_uint32(uint32_t a, uint32_t b) {
+ return (a < b) ? a : b;
+}
+
+extern inline const container_t *container_unwrap_shared(
+ const container_t *candidate_shared_container, uint8_t *type);
+
+extern inline container_t *container_mutable_unwrap_shared(
+ container_t *candidate_shared_container, uint8_t *type);
+
+extern inline int container_get_cardinality(const container_t *c,
+ uint8_t typecode);
+
+extern inline container_t *container_iand(container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2,
+ uint8_t *result_type);
+
+extern inline container_t *container_ior(container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2,
+ uint8_t *result_type);
+
+extern inline container_t *container_ixor(container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2,
+ uint8_t *result_type);
+
+extern inline container_t *container_iandnot(container_t *c1, uint8_t type1,
+ const container_t *c2,
+ uint8_t type2,
+ uint8_t *result_type);
+
+void container_free(container_t *c, uint8_t type) {
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ bitset_container_free(CAST_bitset(c));
+ break;
+ case ARRAY_CONTAINER_TYPE:
+ array_container_free(CAST_array(c));
+ break;
+ case RUN_CONTAINER_TYPE:
+ run_container_free(CAST_run(c));
+ break;
+ case SHARED_CONTAINER_TYPE:
+ shared_container_free(CAST_shared(c));
+ break;
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+}
+
+void container_printf(const container_t *c, uint8_t type) {
+ c = container_unwrap_shared(c, &type);
+ switch (type) {
+ case BITSET_CONTAINER_TYPE:
+ bitset_container_printf(const_CAST_bitset(c));
+ return;
+ case ARRAY_CONTAINER_TYPE:
+ array_container_printf(const_CAST_array(c));
+ return;
+ case RUN_CONTAINER_TYPE:
+ run_container_printf(const_CAST_run(c));
+ return;
+ default:
+ roaring_unreachable;
+ }
+}
+
+void container_printf_as_uint32_array(const container_t *c, uint8_t typecode,
+ uint32_t base) {
+ c = container_unwrap_shared(c, &typecode);
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ bitset_container_printf_as_uint32_array(const_CAST_bitset(c),
base);
+ return;
+ case ARRAY_CONTAINER_TYPE:
+ array_container_printf_as_uint32_array(const_CAST_array(c), base);
+ return;
+ case RUN_CONTAINER_TYPE:
+ run_container_printf_as_uint32_array(const_CAST_run(c), base);
+ return;
+ default:
+ roaring_unreachable;
+ }
+}
+
+bool container_internal_validate(const container_t *container, uint8_t
typecode,
+ const char **reason) {
+ if (container == NULL) {
+ *reason = "container is NULL";
+ return false;
+ }
+ // Not using container_unwrap_shared because it asserts if shared
containers
+ // are nested
+ if (typecode == SHARED_CONTAINER_TYPE) {
+ const shared_container_t *shared_container =
+ const_CAST_shared(container);
+ if (croaring_refcount_get(&shared_container->counter) == 0) {
+ *reason = "shared container has zero refcount";
+ return false;
+ }
+ if (shared_container->typecode == SHARED_CONTAINER_TYPE) {
+ *reason = "shared container is nested";
+ return false;
+ }
+ if (shared_container->container == NULL) {
+ *reason = "shared container has NULL container";
+ return false;
+ }
+ container = shared_container->container;
+ typecode = shared_container->typecode;
+ }
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_validate(const_CAST_bitset(container),
+ reason);
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_validate(const_CAST_array(container),
+ reason);
+ case RUN_CONTAINER_TYPE:
+ return run_container_validate(const_CAST_run(container), reason);
+ default:
+ *reason = "invalid typecode";
+ return false;
+ }
+}
+
+extern inline bool container_nonzero_cardinality(const container_t *c,
+ uint8_t typecode);
+
+extern inline int container_to_uint32_array(uint32_t *output,
+ const container_t *c,
+ uint8_t typecode, uint32_t base);
+
+extern inline container_t *container_add(container_t *c, uint16_t val,
+ uint8_t typecode, // !!! 2nd arg?
+ uint8_t *new_typecode);
+
+extern inline bool container_contains(const container_t *c, uint16_t val,
+ uint8_t typecode); // !!! 2nd arg?
+
+extern inline container_t *container_and(const container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2,
+ uint8_t *result_type);
+
+extern inline container_t *container_or(const container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2,
+ uint8_t *result_type);
+
+extern inline container_t *container_xor(const container_t *c1, uint8_t type1,
+ const container_t *c2, uint8_t type2,
+ uint8_t *result_type);
+
+container_t *get_copy_of_container(container_t *c, uint8_t *typecode,
+ bool copy_on_write) {
+ if (copy_on_write) {
+ shared_container_t *shared_container;
+ if (*typecode == SHARED_CONTAINER_TYPE) {
+ shared_container = CAST_shared(c);
+ croaring_refcount_inc(&shared_container->counter);
+ return shared_container;
+ }
+ assert(*typecode != SHARED_CONTAINER_TYPE);
+
+ if ((shared_container = (shared_container_t *)roaring_malloc(
+ sizeof(shared_container_t))) == NULL) {
+ return NULL;
+ }
+
+ shared_container->container = c;
+ shared_container->typecode = *typecode;
+ // At this point, we are creating new shared container
+ // so there should be no other references, and setting
+ // the counter to 2 - even non-atomically - is safe as
+ // long as the value is set before the return statement.
+ shared_container->counter = 2;
+ *typecode = SHARED_CONTAINER_TYPE;
+
+ return shared_container;
+ } // copy_on_write
+ // otherwise, no copy on write...
+ const container_t *actual_container = container_unwrap_shared(c, typecode);
+ assert(*typecode != SHARED_CONTAINER_TYPE);
+ return container_clone(actual_container, *typecode);
+}
+
+/**
+ * Copies a container, requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ */
+container_t *container_clone(const container_t *c, uint8_t typecode) {
+ // We do not want to allow cloning of shared containers.
+ // c = container_unwrap_shared(c, &typecode);
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE:
+ return bitset_container_clone(const_CAST_bitset(c));
+ case ARRAY_CONTAINER_TYPE:
+ return array_container_clone(const_CAST_array(c));
+ case RUN_CONTAINER_TYPE:
+ return run_container_clone(const_CAST_run(c));
+ case SHARED_CONTAINER_TYPE:
+ // Shared containers are not cloneable. Are you mixing COW and
+ // non-COW bitmaps?
+ return NULL;
+ default:
+ assert(false);
+ roaring_unreachable;
+ return NULL;
+ }
+}
+
+container_t *shared_container_extract_copy(shared_container_t *sc,
+ uint8_t *typecode) {
+ assert(sc->typecode != SHARED_CONTAINER_TYPE);
+ *typecode = sc->typecode;
+ container_t *answer;
+ if (croaring_refcount_dec(&sc->counter)) {
+ answer = sc->container;
+ sc->container = NULL; // paranoid
+ roaring_free(sc);
+ } else {
+ answer = container_clone(sc->container, *typecode);
+ }
+ assert(*typecode != SHARED_CONTAINER_TYPE);
+ return answer;
+}
+
+void shared_container_free(shared_container_t *container) {
+ if (croaring_refcount_dec(&container->counter)) {
+ assert(container->typecode != SHARED_CONTAINER_TYPE);
+ container_free(container->container, container->typecode);
+ container->container = NULL; // paranoid
+ roaring_free(container);
+ }
+}
+
+extern inline container_t *container_not(const container_t *c1, uint8_t type1,
+ uint8_t *result_type);
+
+extern inline container_t *container_not_range(const container_t *c1,
+ uint8_t type1,
+ uint32_t range_start,
+ uint32_t range_end,
+ uint8_t *result_type);
+
+extern inline container_t *container_inot(container_t *c1, uint8_t type1,
+ uint8_t *result_type);
+
+extern inline container_t *container_inot_range(container_t *c1, uint8_t type1,
+ uint32_t range_start,
+ uint32_t range_end,
+ uint8_t *result_type);
+
+extern inline container_t *container_range_of_ones(uint32_t range_start,
+ uint32_t range_end,
+ uint8_t *result_type);
+
+// where are the correponding things for union and intersection??
+extern inline container_t *container_lazy_xor(const container_t *c1,
+ uint8_t type1,
+ const container_t *c2,
+ uint8_t type2,
+ uint8_t *result_type);
+
+extern inline container_t *container_lazy_ixor(container_t *c1, uint8_t type1,
+ const container_t *c2,
+ uint8_t type2,
+ uint8_t *result_type);
+
+extern inline container_t *container_andnot(const container_t *c1,
+ uint8_t type1,
+ const container_t *c2,
+ uint8_t type2,
+ uint8_t *result_type);
+
+roaring_container_iterator_t container_init_iterator(const container_t *c,
+ uint8_t typecode,
+ uint16_t *value) {
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE: {
+ const bitset_container_t *bc = const_CAST_bitset(c);
+ uint32_t wordindex = 0;
+ uint64_t word;
+ while ((word = bc->words[wordindex]) == 0) {
+ wordindex++;
+ }
+ // word is non-zero
+ int32_t index = wordindex * 64 + roaring_trailing_zeroes(word);
+ *value = index;
+ return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
+ .index = index,
+ };
+ }
+ case ARRAY_CONTAINER_TYPE: {
+ const array_container_t *ac = const_CAST_array(c);
+ *value = ac->array[0];
+ return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
+ .index = 0,
+ };
+ }
+ case RUN_CONTAINER_TYPE: {
+ const run_container_t *rc = const_CAST_run(c);
+ *value = rc->runs[0].value;
+ return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
+ .index = 0,
+ };
+ }
+ default:
+ assert(false);
+ roaring_unreachable;
+ return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{0};
+ }
+}
+
+roaring_container_iterator_t container_init_iterator_last(const container_t *c,
+ uint8_t typecode,
+ uint16_t *value) {
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE: {
+ const bitset_container_t *bc = const_CAST_bitset(c);
+ uint32_t wordindex = BITSET_CONTAINER_SIZE_IN_WORDS - 1;
+ uint64_t word;
+ while ((word = bc->words[wordindex]) == 0) {
+ wordindex--;
+ }
+ // word is non-zero
+ int32_t index =
+ wordindex * 64 + (63 - roaring_leading_zeroes(word));
+ *value = index;
+ return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
+ .index = index,
+ };
+ }
+ case ARRAY_CONTAINER_TYPE: {
+ const array_container_t *ac = const_CAST_array(c);
+ int32_t index = ac->cardinality - 1;
+ *value = ac->array[index];
+ return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
+ .index = index,
+ };
+ }
+ case RUN_CONTAINER_TYPE: {
+ const run_container_t *rc = const_CAST_run(c);
+ int32_t run_index = rc->n_runs - 1;
+ const rle16_t *last_run = &rc->runs[run_index];
+ *value = last_run->value + last_run->length;
+ return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
+ .index = run_index,
+ };
+ }
+ default:
+ assert(false);
+ roaring_unreachable;
+ return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{0};
+ }
+}
+
+bool container_iterator_next(const container_t *c, uint8_t typecode,
+ roaring_container_iterator_t *it,
+ uint16_t *value) {
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE: {
+ const bitset_container_t *bc = const_CAST_bitset(c);
+ it->index++;
+
+ uint32_t wordindex = it->index / 64;
+ if (wordindex >= BITSET_CONTAINER_SIZE_IN_WORDS) {
+ return false;
+ }
+
+ uint64_t word =
+ bc->words[wordindex] & (UINT64_MAX << (it->index % 64));
+ // next part could be optimized/simplified
+ while (word == 0 &&
+ (wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS)) {
+ wordindex++;
+ word = bc->words[wordindex];
+ }
+ if (word != 0) {
+ it->index = wordindex * 64 + roaring_trailing_zeroes(word);
+ *value = it->index;
+ return true;
+ }
+ return false;
+ }
+ case ARRAY_CONTAINER_TYPE: {
+ const array_container_t *ac = const_CAST_array(c);
+ it->index++;
+ if (it->index < ac->cardinality) {
+ *value = ac->array[it->index];
+ return true;
+ }
+ return false;
+ }
+ case RUN_CONTAINER_TYPE: {
+ if (*value == UINT16_MAX) { // Avoid overflow to zero
+ return false;
+ }
+
+ const run_container_t *rc = const_CAST_run(c);
+ uint32_t limit =
+ rc->runs[it->index].value + rc->runs[it->index].length;
+ if (*value < limit) {
+ (*value)++;
+ return true;
+ }
+
+ it->index++;
+ if (it->index < rc->n_runs) {
+ *value = rc->runs[it->index].value;
+ return true;
+ }
+ return false;
+ }
+ default:
+ assert(false);
+ roaring_unreachable;
+ return false;
+ }
+}
+
+bool container_iterator_prev(const container_t *c, uint8_t typecode,
+ roaring_container_iterator_t *it,
+ uint16_t *value) {
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE: {
+ if (--it->index < 0) {
+ return false;
+ }
+
+ const bitset_container_t *bc = const_CAST_bitset(c);
+ int32_t wordindex = it->index / 64;
+ uint64_t word =
+ bc->words[wordindex] & (UINT64_MAX >> (63 - (it->index % 64)));
+
+ while (word == 0 && --wordindex >= 0) {
+ word = bc->words[wordindex];
+ }
+ if (word == 0) {
+ return false;
+ }
+
+ it->index = (wordindex * 64) + (63 - roaring_leading_zeroes(word));
+ *value = it->index;
+ return true;
+ }
+ case ARRAY_CONTAINER_TYPE: {
+ if (--it->index < 0) {
+ return false;
+ }
+ const array_container_t *ac = const_CAST_array(c);
+ *value = ac->array[it->index];
+ return true;
+ }
+ case RUN_CONTAINER_TYPE: {
+ if (*value == 0) {
+ return false;
+ }
+
+ const run_container_t *rc = const_CAST_run(c);
+ (*value)--;
+ if (*value >= rc->runs[it->index].value) {
+ return true;
+ }
+
+ if (--it->index < 0) {
+ return false;
+ }
+
+ *value = rc->runs[it->index].value + rc->runs[it->index].length;
+ return true;
+ }
+ default:
+ assert(false);
+ roaring_unreachable;
+ return false;
+ }
+}
+
+bool container_iterator_lower_bound(const container_t *c, uint8_t typecode,
+ roaring_container_iterator_t *it,
+ uint16_t *value_out, uint16_t val) {
+ if (val > container_maximum(c, typecode)) {
+ return false;
+ }
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE: {
+ const bitset_container_t *bc = const_CAST_bitset(c);
+ it->index = bitset_container_index_equalorlarger(bc, val);
+ *value_out = it->index;
+ return true;
+ }
+ case ARRAY_CONTAINER_TYPE: {
+ const array_container_t *ac = const_CAST_array(c);
+ it->index = array_container_index_equalorlarger(ac, val);
+ *value_out = ac->array[it->index];
+ return true;
+ }
+ case RUN_CONTAINER_TYPE: {
+ const run_container_t *rc = const_CAST_run(c);
+ it->index = run_container_index_equalorlarger(rc, val);
+ if (rc->runs[it->index].value <= val) {
+ *value_out = val;
+ } else {
+ *value_out = rc->runs[it->index].value;
+ }
+ return true;
+ }
+ default:
+ assert(false);
+ roaring_unreachable;
+ return false;
+ }
+}
+
+bool container_iterator_read_into_uint32(const container_t *c, uint8_t
typecode,
+ roaring_container_iterator_t *it,
+ uint32_t high16, uint32_t *buf,
+ uint32_t count, uint32_t *consumed,
+ uint16_t *value_out) {
+ *consumed = 0;
+ if (count == 0) {
+ return false;
+ }
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE: {
+ const bitset_container_t *bc = const_CAST_bitset(c);
+ uint32_t wordindex = it->index / 64;
+ uint64_t word =
+ bc->words[wordindex] & (UINT64_MAX << (it->index % 64));
+ do {
+ // Read set bits.
+ while (word != 0 && *consumed < count) {
+ *buf = high16 |
+ (wordindex * 64 + roaring_trailing_zeroes(word));
+ word = word & (word - 1);
+ buf++;
+ (*consumed)++;
+ }
+ // Skip unset bits.
+ while (word == 0 &&
+ wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS) {
+ wordindex++;
+ word = bc->words[wordindex];
+ }
+ } while (word != 0 && *consumed < count);
+
+ if (word != 0) {
+ it->index = wordindex * 64 + roaring_trailing_zeroes(word);
+ *value_out = it->index;
+ return true;
+ }
+ return false;
+ }
+ case ARRAY_CONTAINER_TYPE: {
+ const array_container_t *ac = const_CAST_array(c);
+ uint32_t num_values =
+ minimum_uint32(ac->cardinality - it->index, count);
+ for (uint32_t i = 0; i < num_values; i++) {
+ buf[i] = high16 | ac->array[it->index + i];
+ }
+ *consumed += num_values;
+ it->index += num_values;
+ if (it->index < ac->cardinality) {
+ *value_out = ac->array[it->index];
+ return true;
+ }
+ return false;
+ }
+ case RUN_CONTAINER_TYPE: {
+ const run_container_t *rc = const_CAST_run(c);
+ do {
+ uint32_t largest_run_value =
+ rc->runs[it->index].value + rc->runs[it->index].length;
+ uint32_t num_values = minimum_uint32(
+ largest_run_value - *value_out + 1, count - *consumed);
+ for (uint32_t i = 0; i < num_values; i++) {
+ buf[i] = high16 | (*value_out + i);
+ }
+ *value_out += num_values;
+ buf += num_values;
+ *consumed += num_values;
+
+ // We check for `value == 0` because `it->value += num_values`
+ // can overflow when `value == UINT16_MAX`, and `count >
+ // length`. In this case `value` will overflow to 0.
+ if (*value_out > largest_run_value || *value_out == 0) {
+ it->index++;
+ if (it->index < rc->n_runs) {
+ *value_out = rc->runs[it->index].value;
+ } else {
+ return false;
+ }
+ }
+ } while (*consumed < count);
+ return true;
+ }
+ default:
+ assert(false);
+ roaring_unreachable;
+ return 0;
+ }
+}
+
+bool container_iterator_read_into_uint64(const container_t *c, uint8_t
typecode,
+ roaring_container_iterator_t *it,
+ uint64_t high48, uint64_t *buf,
+ uint32_t count, uint32_t *consumed,
+ uint16_t *value_out) {
+ *consumed = 0;
+ if (count == 0) {
+ return false;
+ }
+ switch (typecode) {
+ case BITSET_CONTAINER_TYPE: {
+ const bitset_container_t *bc = const_CAST_bitset(c);
+ uint32_t wordindex = it->index / 64;
+ uint64_t word =
+ bc->words[wordindex] & (UINT64_MAX << (it->index % 64));
+ do {
+ // Read set bits.
+ while (word != 0 && *consumed < count) {
+ *buf = high48 |
+ (wordindex * 64 + roaring_trailing_zeroes(word));
+ word = word & (word - 1);
+ buf++;
+ (*consumed)++;
+ }
+ // Skip unset bits.
+ while (word == 0 &&
+ wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS) {
+ wordindex++;
+ word = bc->words[wordindex];
+ }
+ } while (word != 0 && *consumed < count);
+
+ if (word != 0) {
+ it->index = wordindex * 64 + roaring_trailing_zeroes(word);
+ *value_out = it->index;
+ return true;
+ }
+ return false;
+ }
+ case ARRAY_CONTAINER_TYPE: {
+ const array_container_t *ac = const_CAST_array(c);
+ uint32_t num_values =
+ minimum_uint32(ac->cardinality - it->index, count);
+ for (uint32_t i = 0; i < num_values; i++) {
+ buf[i] = high48 | ac->array[it->index + i];
+ }
+ *consumed += num_values;
+ it->index += num_values;
+ if (it->index < ac->cardinality) {
+ *value_out = ac->array[it->index];
+ return true;
+ }
+ return false;
+ }
+ case RUN_CONTAINER_TYPE: {
+ const run_container_t *rc = const_CAST_run(c);
+ do {
+ uint32_t largest_run_value =
+ rc->runs[it->index].value + rc->runs[it->index].length;
+ uint32_t num_values = minimum_uint32(
+ largest_run_value - *value_out + 1, count - *consumed);
+ for (uint32_t i = 0; i < num_values; i++) {
+ buf[i] = high48 | (*value_out + i);
+ }
+ *value_out += num_values;
+ buf += num_values;
+ *consumed += num_values;
+
+ // We check for `value == 0` because `it->value += num_values`
+ // can overflow when `value == UINT16_MAX`, and `count >
+ // length`. In this case `value` will overflow to 0.
+ if (*value_out > largest_run_value || *value_out == 0) {
+ it->index++;
+ if (it->index < rc->n_runs) {
+ *value_out = rc->runs[it->index].value;
+ } else {
+ return false;
+ }
+ }
+ } while (*consumed < count);
+ return true;
+ }
+ default:
+ assert(false);
+ roaring_unreachable;
+ return 0;
+ }
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#undef ROARING_INIT_ROARING_CONTAINER_ITERATOR_T
+/* end file src/containers/containers.c */
+/* begin file src/containers/convert.c */
+#include <stdio.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+// file contains grubby stuff that must know impl. details of all container
+// types.
+bitset_container_t *bitset_container_from_array(const array_container_t *ac) {
+ bitset_container_t *ans = bitset_container_create();
+ int limit = array_container_cardinality(ac);
+ for (int i = 0; i < limit; ++i) bitset_container_set(ans, ac->array[i]);
+ return ans;
+}
+
+bitset_container_t *bitset_container_from_run(const run_container_t *arr) {
+ int card = run_container_cardinality(arr);
+ bitset_container_t *answer = bitset_container_create();
+ for (int rlepos = 0; rlepos < arr->n_runs; ++rlepos) {
+ rle16_t vl = arr->runs[rlepos];
+ bitset_set_lenrange(answer->words, vl.value, vl.length);
+ }
+ answer->cardinality = card;
+ return answer;
+}
+
+array_container_t *array_container_from_run(const run_container_t *arr) {
+ array_container_t *answer =
+ array_container_create_given_capacity(run_container_cardinality(arr));
+ answer->cardinality = 0;
+ for (int rlepos = 0; rlepos < arr->n_runs; ++rlepos) {
+ int run_start = arr->runs[rlepos].value;
+ int run_end = run_start + arr->runs[rlepos].length;
+
+ for (int run_value = run_start; run_value <= run_end; ++run_value) {
+ answer->array[answer->cardinality++] = (uint16_t)run_value;
+ }
+ }
+ return answer;
+}
+
+array_container_t *array_container_from_bitset(const bitset_container_t *bits)
{
+ array_container_t *result =
+ array_container_create_given_capacity(bits->cardinality);
+ result->cardinality = bits->cardinality;
+#if CROARING_IS_X64
+#if CROARING_COMPILER_SUPPORTS_AVX512
+ if (croaring_hardware_support() & ROARING_SUPPORTS_AVX512) {
+ bitset_extract_setbits_avx512_uint16(
+ bits->words, BITSET_CONTAINER_SIZE_IN_WORDS, result->array,
+ bits->cardinality, 0);
+ } else
+#endif
+ {
+ // sse version ends up being slower here
+ // (bitset_extract_setbits_sse_uint16)
+ // because of the sparsity of the data
+ bitset_extract_setbits_uint16(
+ bits->words, BITSET_CONTAINER_SIZE_IN_WORDS, result->array, 0);
+ }
+#else
+ // If the system is not x64, then we have no accelerated function.
+ bitset_extract_setbits_uint16(bits->words, BITSET_CONTAINER_SIZE_IN_WORDS,
+ result->array, 0);
+#endif
+
+ return result;
+}
+
+/* assumes that container has adequate space. Run from [s,e] (inclusive) */
+static void add_run(run_container_t *rc, int s, int e) {
+ rc->runs[rc->n_runs].value = s;
+ rc->runs[rc->n_runs].length = e - s;
+ rc->n_runs++;
+}
+
+run_container_t *run_container_from_array(const array_container_t *c) {
+ int32_t n_runs = array_container_number_of_runs(c);
+ run_container_t *answer = run_container_create_given_capacity(n_runs);
+ int prev = -2;
+ int run_start = -1;
+ int32_t card = c->cardinality;
+ if (card == 0) return answer;
+ for (int i = 0; i < card; ++i) {
+ const uint16_t cur_val = c->array[i];
+ if (cur_val != prev + 1) {
+ // new run starts; flush old one, if any
+ if (run_start != -1) add_run(answer, run_start, prev);
+ run_start = cur_val;
+ }
+ prev = c->array[i];
+ }
+ // now prev is the last seen value
+ add_run(answer, run_start, prev);
+ // assert(run_container_cardinality(answer) == c->cardinality);
+ return answer;
+}
+
+/**
+ * Convert the runcontainer to either a Bitmap or an Array Container, depending
+ * on the cardinality. Frees the container.
+ * Allocates and returns new container, which caller is responsible for
freeing.
+ * It does not free the run container.
+ */
+container_t *convert_to_bitset_or_array_container(run_container_t *rc,
+ int32_t card,
+ uint8_t *resulttype) {
+ if (card <= DEFAULT_MAX_SIZE) {
+ array_container_t *answer =
array_container_create_given_capacity(card);
+ answer->cardinality = 0;
+ for (int rlepos = 0; rlepos < rc->n_runs; ++rlepos) {
+ uint16_t run_start = rc->runs[rlepos].value;
+ uint16_t run_end = run_start + rc->runs[rlepos].length;
+ for (uint16_t run_value = run_start; run_value < run_end;
+ ++run_value) {
+ answer->array[answer->cardinality++] = run_value;
+ }
+ answer->array[answer->cardinality++] = run_end;
+ }
+ assert(card == answer->cardinality);
+ *resulttype = ARRAY_CONTAINER_TYPE;
+ // run_container_free(r);
+ return answer;
+ }
+ bitset_container_t *answer = bitset_container_create();
+ for (int rlepos = 0; rlepos < rc->n_runs; ++rlepos) {
+ uint16_t run_start = rc->runs[rlepos].value;
+ bitset_set_lenrange(answer->words, run_start, rc->runs[rlepos].length);
+ }
+ answer->cardinality = card;
+ *resulttype = BITSET_CONTAINER_TYPE;
+ // run_container_free(r);
+ return answer;
+}
+
+/* Converts a run container to either an array or a bitset, IF it saves space.
+ */
+/* If a conversion occurs, the caller is responsible to free the original
+ * container and
+ * he becomes responsible to free the new one. */
+container_t *convert_run_to_efficient_container(run_container_t *c,
+ uint8_t *typecode_after) {
+ int32_t size_as_run_container =
+ run_container_serialized_size_in_bytes(c->n_runs);
+
+ int32_t size_as_bitset_container =
+ bitset_container_serialized_size_in_bytes();
+ int32_t card = run_container_cardinality(c);
+ int32_t size_as_array_container =
+ array_container_serialized_size_in_bytes(card);
+
+ int32_t min_size_non_run =
+ size_as_bitset_container < size_as_array_container
+ ? size_as_bitset_container
+ : size_as_array_container;
+ if (size_as_run_container <= min_size_non_run) { // no conversion
+ *typecode_after = RUN_CONTAINER_TYPE;
+ return c;
+ }
+ if (card <= DEFAULT_MAX_SIZE) {
+ // to array
+ array_container_t *answer =
array_container_create_given_capacity(card);
+ answer->cardinality = 0;
+ for (int rlepos = 0; rlepos < c->n_runs; ++rlepos) {
+ int run_start = c->runs[rlepos].value;
+ int run_end = run_start + c->runs[rlepos].length;
+
+ for (int run_value = run_start; run_value <= run_end; ++run_value)
{
+ answer->array[answer->cardinality++] = (uint16_t)run_value;
+ }
+ }
+ *typecode_after = ARRAY_CONTAINER_TYPE;
+ return answer;
+ }
+
+ // else to bitset
+ bitset_container_t *answer = bitset_container_create();
+
+ for (int rlepos = 0; rlepos < c->n_runs; ++rlepos) {
+ int start = c->runs[rlepos].value;
+ int end = start + c->runs[rlepos].length;
+ bitset_set_range(answer->words, start, end + 1);
+ }
+ answer->cardinality = card;
+ *typecode_after = BITSET_CONTAINER_TYPE;
+ return answer;
+}
+
+// like convert_run_to_efficient_container but frees the old result if needed
+container_t *convert_run_to_efficient_container_and_free(
+ run_container_t *c, uint8_t *typecode_after) {
+ container_t *answer = convert_run_to_efficient_container(c,
typecode_after);
+ if (answer != c) run_container_free(c);
+ return answer;
+}
+
+/* once converted, the original container is disposed here, rather than
+ in roaring_array
+*/
+
+// TODO: split into run- array- and bitset- subfunctions for sanity;
+// a few function calls won't really matter.
+
+container_t *convert_run_optimize(container_t *c, uint8_t typecode_original,
+ uint8_t *typecode_after) {
+ if (typecode_original == RUN_CONTAINER_TYPE) {
+ container_t *newc =
+ convert_run_to_efficient_container(CAST_run(c), typecode_after);
+ if (newc != c) {
+ container_free(c, typecode_original);
+ }
+ return newc;
+ } else if (typecode_original == ARRAY_CONTAINER_TYPE) {
+ // it might need to be converted to a run container.
+ array_container_t *c_qua_array = CAST_array(c);
+ int32_t n_runs = array_container_number_of_runs(c_qua_array);
+ int32_t size_as_run_container =
+ run_container_serialized_size_in_bytes(n_runs);
+ int32_t card = array_container_cardinality(c_qua_array);
+ int32_t size_as_array_container =
+ array_container_serialized_size_in_bytes(card);
+
+ if (size_as_run_container >= size_as_array_container) {
+ *typecode_after = ARRAY_CONTAINER_TYPE;
+ return c;
+ }
+ // else convert array to run container
+ run_container_t *answer = run_container_create_given_capacity(n_runs);
+ int prev = -2;
+ int run_start = -1;
+
+ assert(card > 0);
+ for (int i = 0; i < card; ++i) {
+ uint16_t cur_val = c_qua_array->array[i];
+ if (cur_val != prev + 1) {
+ // new run starts; flush old one, if any
+ if (run_start != -1) add_run(answer, run_start, prev);
+ run_start = cur_val;
+ }
+ prev = c_qua_array->array[i];
+ }
+ assert(run_start >= 0);
+ // now prev is the last seen value
+ add_run(answer, run_start, prev);
+ *typecode_after = RUN_CONTAINER_TYPE;
+ array_container_free(c_qua_array);
+ return answer;
+ } else if (typecode_original ==
+ BITSET_CONTAINER_TYPE) { // run conversions on bitset
+ // does bitset need conversion to run?
+ bitset_container_t *c_qua_bitset = CAST_bitset(c);
+ int32_t n_runs = bitset_container_number_of_runs(c_qua_bitset);
+ int32_t size_as_run_container =
+ run_container_serialized_size_in_bytes(n_runs);
+ int32_t size_as_bitset_container =
+ bitset_container_serialized_size_in_bytes();
+
+ if (size_as_bitset_container <= size_as_run_container) {
+ // no conversion needed.
+ *typecode_after = BITSET_CONTAINER_TYPE;
+ return c;
+ }
+ // bitset to runcontainer (ported from Java RunContainer(
+ // BitmapContainer bc, int nbrRuns))
+ assert(n_runs > 0); // no empty bitmaps
+ run_container_t *answer = run_container_create_given_capacity(n_runs);
+
+ int long_ctr = 0;
+ uint64_t cur_word = c_qua_bitset->words[0];
+ while (true) {
+ while (cur_word == UINT64_C(0) &&
+ long_ctr < BITSET_CONTAINER_SIZE_IN_WORDS - 1)
+ cur_word = c_qua_bitset->words[++long_ctr];
+
+ if (cur_word == UINT64_C(0)) {
+ bitset_container_free(c_qua_bitset);
+ *typecode_after = RUN_CONTAINER_TYPE;
+ return answer;
+ }
+
+ int local_run_start = roaring_trailing_zeroes(cur_word);
+ int run_start = local_run_start + 64 * long_ctr;
+ uint64_t cur_word_with_1s = cur_word | (cur_word - 1);
+
+ int run_end = 0;
+ while (cur_word_with_1s == UINT64_C(0xFFFFFFFFFFFFFFFF) &&
+ long_ctr < BITSET_CONTAINER_SIZE_IN_WORDS - 1)
+ cur_word_with_1s = c_qua_bitset->words[++long_ctr];
+
+ if (cur_word_with_1s == UINT64_C(0xFFFFFFFFFFFFFFFF)) {
+ run_end = 64 + long_ctr * 64; // exclusive, I guess
+ add_run(answer, run_start, run_end - 1);
+ bitset_container_free(c_qua_bitset);
+ *typecode_after = RUN_CONTAINER_TYPE;
+ return answer;
+ }
+ int local_run_end = roaring_trailing_zeroes(~cur_word_with_1s);
+ run_end = local_run_end + long_ctr * 64;
+ add_run(answer, run_start, run_end - 1);
+ cur_word = cur_word_with_1s & (cur_word_with_1s + 1);
+ }
+ return answer;
+ } else {
+ assert(false);
+ roaring_unreachable;
+ return NULL;
+ }
+}
+
+container_t *container_from_run_range(const run_container_t *run, uint32_t min,
+ uint32_t max, uint8_t *typecode_after) {
+ // We expect most of the time to end up with a bitset container
+ bitset_container_t *bitset = bitset_container_create();
+ *typecode_after = BITSET_CONTAINER_TYPE;
+ int32_t union_cardinality = 0;
+ for (int32_t i = 0; i < run->n_runs; ++i) {
+ uint32_t rle_min = run->runs[i].value;
+ uint32_t rle_max = rle_min + run->runs[i].length;
+ bitset_set_lenrange(bitset->words, rle_min, rle_max - rle_min);
+ union_cardinality += run->runs[i].length + 1;
+ }
+ union_cardinality += max - min + 1;
+ union_cardinality -=
+ bitset_lenrange_cardinality(bitset->words, min, max - min);
+ bitset_set_lenrange(bitset->words, min, max - min);
+ bitset->cardinality = union_cardinality;
+ if (bitset->cardinality <= DEFAULT_MAX_SIZE) {
+ // we need to convert to an array container
+ array_container_t *array = array_container_from_bitset(bitset);
+ *typecode_after = ARRAY_CONTAINER_TYPE;
+ bitset_container_free(bitset);
+ return array;
+ }
+ return bitset;
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/convert.c */
+/* begin file src/containers/mixed_andnot.c */
+/*
+ * mixed_andnot.c. More methods since operation is not symmetric,
+ * except no "wide" andnot , so no lazy options motivated.
+ */
+
+#include <assert.h>
+#include <string.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst, a valid array container that could be the same as dst.*/
+void array_bitset_container_andnot(const array_container_t *src_1,
+ const bitset_container_t *src_2,
+ array_container_t *dst) {
+ // follows Java implementation as of June 2016
+ if (dst->capacity < src_1->cardinality) {
+ array_container_grow(dst, src_1->cardinality, false);
+ }
+ int32_t newcard = 0;
+ const int32_t origcard = src_1->cardinality;
+ for (int i = 0; i < origcard; ++i) {
+ uint16_t key = src_1->array[i];
+ dst->array[newcard] = key;
+ newcard += 1 - bitset_container_contains(src_2, key);
+ }
+ dst->cardinality = newcard;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * src_1 */
+
+void array_bitset_container_iandnot(array_container_t *src_1,
+ const bitset_container_t *src_2) {
+ array_bitset_container_andnot(src_1, src_2, src_1);
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst, which does not initially have a valid container.
+ * Return true for a bitset result; false for array
+ */
+
+bool bitset_array_container_andnot(const bitset_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst) {
+ // Java did this directly, but we have option of asm or avx
+ bitset_container_t *result = bitset_container_create();
+ bitset_container_copy(src_1, result);
+ result->cardinality =
+ (int32_t)bitset_clear_list(result->words,
(uint64_t)result->cardinality,
+ src_2->array, (uint64_t)src_2->cardinality);
+
+ // do required type conversions.
+ if (result->cardinality <= DEFAULT_MAX_SIZE) {
+ *dst = array_container_from_bitset(result);
+ bitset_container_free(result);
+ return false;
+ }
+ *dst = result;
+ return true;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). It will modify src_1
+ * to be dst if the result is a bitset. Otherwise, it will
+ * free src_1 and dst will be a new array container. In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset */
+
+bool bitset_array_container_iandnot(bitset_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst) {
+ *dst = src_1;
+ src_1->cardinality =
+ (int32_t)bitset_clear_list(src_1->words, (uint64_t)src_1->cardinality,
+ src_2->array, (uint64_t)src_2->cardinality);
+
+ if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
+ *dst = array_container_from_bitset(src_1);
+ bitset_container_free(src_1);
+ return false; // not bitset
+ } else
+ return true;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_andnot(const run_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst) {
+ // follows the Java implementation as of June 2016
+ int card = run_container_cardinality(src_1);
+ if (card <= DEFAULT_MAX_SIZE) {
+ // must be an array
+ array_container_t *answer =
array_container_create_given_capacity(card);
+ answer->cardinality = 0;
+ for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+ rle16_t rle = src_1->runs[rlepos];
+ for (int run_value = rle.value; run_value <= rle.value +
rle.length;
+ ++run_value) {
+ if (!bitset_container_get(src_2, (uint16_t)run_value)) {
+ answer->array[answer->cardinality++] = (uint16_t)run_value;
+ }
+ }
+ }
+ *dst = answer;
+ return false;
+ } else { // we guess it will be a bitset, though have to check guess when
+ // done
+ bitset_container_t *answer = bitset_container_clone(src_2);
+
+ uint32_t last_pos = 0;
+ for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+ rle16_t rle = src_1->runs[rlepos];
+
+ uint32_t start = rle.value;
+ uint32_t end = start + rle.length + 1;
+ bitset_reset_range(answer->words, last_pos, start);
+ bitset_flip_range(answer->words, start, end);
+ last_pos = end;
+ }
+ bitset_reset_range(answer->words, last_pos, (uint32_t)(1 << 16));
+
+ answer->cardinality = bitset_container_compute_cardinality(answer);
+
+ if (answer->cardinality <= DEFAULT_MAX_SIZE) {
+ *dst = array_container_from_bitset(answer);
+ bitset_container_free(answer);
+ return false; // not bitset
+ }
+ *dst = answer;
+ return true; // bitset
+ }
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_iandnot(run_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst) {
+ // dummy implementation
+ bool ans = run_bitset_container_andnot(src_1, src_2, dst);
+ run_container_free(src_1);
+ return ans;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool bitset_run_container_andnot(const bitset_container_t *src_1,
+ const run_container_t *src_2,
+ container_t **dst) {
+ // follows Java implementation
+ bitset_container_t *result = bitset_container_create();
+
+ bitset_container_copy(src_1, result);
+ for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) {
+ rle16_t rle = src_2->runs[rlepos];
+ bitset_reset_range(result->words, rle.value,
+ rle.value + rle.length + UINT32_C(1));
+ }
+ result->cardinality = bitset_container_compute_cardinality(result);
+
+ if (result->cardinality <= DEFAULT_MAX_SIZE) {
+ *dst = array_container_from_bitset(result);
+ bitset_container_free(result);
+ return false; // not bitset
+ }
+ *dst = result;
+ return true; // bitset
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). It will modify src_1
+ * to be dst if the result is a bitset. Otherwise, it will
+ * free src_1 and dst will be a new array container. In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset */
+
+bool bitset_run_container_iandnot(bitset_container_t *src_1,
+ const run_container_t *src_2,
+ container_t **dst) {
+ *dst = src_1;
+
+ for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) {
+ rle16_t rle = src_2->runs[rlepos];
+ bitset_reset_range(src_1->words, rle.value,
+ rle.value + rle.length + UINT32_C(1));
+ }
+ src_1->cardinality = bitset_container_compute_cardinality(src_1);
+
+ if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
+ *dst = array_container_from_bitset(src_1);
+ bitset_container_free(src_1);
+ return false; // not bitset
+ } else
+ return true;
+}
+
+/* helper. a_out must be a valid array container with adequate capacity.
+ * Returns the cardinality of the output container. Partly Based on Java
+ * implementation Util.unsignedDifference.
+ *
+ * TODO: Util.unsignedDifference does not use advanceUntil. Is it cheaper
+ * to avoid advanceUntil?
+ */
+
+static int run_array_array_subtract(const run_container_t *rc,
+ const array_container_t *a_in,
+ array_container_t *a_out) {
+ int out_card = 0;
+ int32_t in_array_pos =
+ -1; // since advanceUntil always assumes we start the search AFTER
this
+
+ for (int rlepos = 0; rlepos < rc->n_runs; rlepos++) {
+ int32_t start = rc->runs[rlepos].value;
+ int32_t end = start + rc->runs[rlepos].length + 1;
+
+ in_array_pos = advanceUntil(a_in->array, in_array_pos,
+ a_in->cardinality, (uint16_t)start);
+
+ if (in_array_pos >= a_in->cardinality) { // run has no items
subtracted
+ for (int32_t i = start; i < end; ++i)
+ a_out->array[out_card++] = (uint16_t)i;
+ } else {
+ uint16_t next_nonincluded = a_in->array[in_array_pos];
+ if (next_nonincluded >= end) {
+ // another case when run goes unaltered
+ for (int32_t i = start; i < end; ++i)
+ a_out->array[out_card++] = (uint16_t)i;
+ in_array_pos--; // ensure we see this item again if necessary
+ } else {
+ for (int32_t i = start; i < end; ++i)
+ if (i != next_nonincluded)
+ a_out->array[out_card++] = (uint16_t)i;
+ else // 0 should ensure we don't match
+ next_nonincluded =
+ (in_array_pos + 1 >= a_in->cardinality)
+ ? 0
+ : a_in->array[++in_array_pos];
+ in_array_pos--; // see again
+ }
+ }
+ }
+ return out_card;
+}
+
+/* dst does not indicate a valid container initially. Eventually it
+ * can become any type of container.
+ */
+
+int run_array_container_andnot(const run_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst) {
+ // follows the Java impl as of June 2016
+
+ int card = run_container_cardinality(src_1);
+ const int arbitrary_threshold = 32;
+
+ if (card <= arbitrary_threshold) {
+ if (src_2->cardinality == 0) {
+ *dst = run_container_clone(src_1);
+ return RUN_CONTAINER_TYPE;
+ }
+ // Java's "lazyandNot.toEfficientContainer" thing
+ run_container_t *answer = run_container_create_given_capacity(
+ card + array_container_cardinality(src_2));
+
+ int rlepos = 0;
+ int xrlepos = 0; // "x" is src_2
+ rle16_t rle = src_1->runs[rlepos];
+ int32_t start = rle.value;
+ int32_t end = start + rle.length + 1;
+ int32_t xstart = src_2->array[xrlepos];
+
+ while ((rlepos < src_1->n_runs) && (xrlepos < src_2->cardinality)) {
+ if (end <= xstart) {
+ // output the first run
+ answer->runs[answer->n_runs++] =
+ CROARING_MAKE_RLE16(start, end - start - 1);
+ rlepos++;
+ if (rlepos < src_1->n_runs) {
+ start = src_1->runs[rlepos].value;
+ end = start + src_1->runs[rlepos].length + 1;
+ }
+ } else if (xstart + 1 <= start) {
+ // exit the second run
+ xrlepos++;
+ if (xrlepos < src_2->cardinality) {
+ xstart = src_2->array[xrlepos];
+ }
+ } else {
+ if (start < xstart) {
+ answer->runs[answer->n_runs++] =
+ CROARING_MAKE_RLE16(start, xstart - start - 1);
+ }
+ if (xstart + 1 < end) {
+ start = xstart + 1;
+ } else {
+ rlepos++;
+ if (rlepos < src_1->n_runs) {
+ start = src_1->runs[rlepos].value;
+ end = start + src_1->runs[rlepos].length + 1;
+ }
+ }
+ }
+ }
+ if (rlepos < src_1->n_runs) {
+ answer->runs[answer->n_runs++] =
+ CROARING_MAKE_RLE16(start, end - start - 1);
+ rlepos++;
+ if (rlepos < src_1->n_runs) {
+ memcpy(answer->runs + answer->n_runs, src_1->runs + rlepos,
+ (src_1->n_runs - rlepos) * sizeof(rle16_t));
+ answer->n_runs += (src_1->n_runs - rlepos);
+ }
+ }
+ uint8_t return_type;
+ *dst = convert_run_to_efficient_container(answer, &return_type);
+ if (answer != *dst) run_container_free(answer);
+ return return_type;
+ }
+ // else it's a bitmap or array
+
+ if (card <= DEFAULT_MAX_SIZE) {
+ array_container_t *ac = array_container_create_given_capacity(card);
+ // nb Java code used a generic iterator-based merge to compute
+ // difference
+ ac->cardinality = run_array_array_subtract(src_1, src_2, ac);
+ *dst = ac;
+ return ARRAY_CONTAINER_TYPE;
+ }
+ bitset_container_t *ans = bitset_container_from_run(src_1);
+ bool result_is_bitset = bitset_array_container_iandnot(ans, src_2, dst);
+ return (result_is_bitset ? BITSET_CONTAINER_TYPE : ARRAY_CONTAINER_TYPE);
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). It will modify src_1
+ * to be dst if the result is a bitset. Otherwise, it will
+ * free src_1 and dst will be a new array container. In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset */
+
+int run_array_container_iandnot(run_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst) {
+ // dummy implementation same as June 2016 Java
+ int ans = run_array_container_andnot(src_1, src_2, dst);
+ run_container_free(src_1);
+ return ans;
+}
+
+/* dst must be a valid array container, allowed to be src_1 */
+
+void array_run_container_andnot(const array_container_t *src_1,
+ const run_container_t *src_2,
+ array_container_t *dst) {
+ // basically following Java impl as of June 2016
+ if (src_1->cardinality > dst->capacity) {
+ array_container_grow(dst, src_1->cardinality, false);
+ }
+
+ if (src_2->n_runs == 0) {
+ memmove(dst->array, src_1->array,
+ sizeof(uint16_t) * src_1->cardinality);
+ dst->cardinality = src_1->cardinality;
+ return;
+ }
+ int32_t run_start = src_2->runs[0].value;
+ int32_t run_end = run_start + src_2->runs[0].length;
+ int which_run = 0;
+
+ uint16_t val = 0;
+ int dest_card = 0;
+ for (int i = 0; i < src_1->cardinality; ++i) {
+ val = src_1->array[i];
+ if (val < run_start)
+ dst->array[dest_card++] = val;
+ else if (val <= run_end) {
+ ; // omitted item
+ } else {
+ do {
+ if (which_run + 1 < src_2->n_runs) {
+ ++which_run;
+ run_start = src_2->runs[which_run].value;
+ run_end = run_start + src_2->runs[which_run].length;
+
+ } else
+ run_start = run_end = (1 << 16) + 1;
+ } while (val > run_end);
+ --i;
+ }
+ }
+ dst->cardinality = dest_card;
+}
+
+/* dst does not indicate a valid container initially. Eventually it
+ * can become any kind of container.
+ */
+
+void array_run_container_iandnot(array_container_t *src_1,
+ const run_container_t *src_2) {
+ array_run_container_andnot(src_1, src_2, src_1);
+}
+
+/* dst does not indicate a valid container initially. Eventually it
+ * can become any kind of container.
+ */
+
+int run_run_container_andnot(const run_container_t *src_1,
+ const run_container_t *src_2, container_t **dst) {
+ run_container_t *ans = run_container_create();
+ run_container_andnot(src_1, src_2, ans);
+ uint8_t typecode_after;
+ *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after);
+ return typecode_after;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). It will modify src_1
+ * to be dst if the result is a bitset. Otherwise, it will
+ * free src_1 and dst will be a new array container. In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset */
+
+int run_run_container_iandnot(run_container_t *src_1,
+ const run_container_t *src_2, container_t **dst)
{
+ // following Java impl as of June 2016 (dummy)
+ int ans = run_run_container_andnot(src_1, src_2, dst);
+ run_container_free(src_1);
+ return ans;
+}
+
+/*
+ * dst is a valid array container and may be the same as src_1
+ */
+
+void array_array_container_andnot(const array_container_t *src_1,
+ const array_container_t *src_2,
+ array_container_t *dst) {
+ array_container_andnot(src_1, src_2, dst);
+}
+
+/* inplace array-array andnot will always be able to reuse the space of
+ * src_1 */
+void array_array_container_iandnot(array_container_t *src_1,
+ const array_container_t *src_2) {
+ array_container_andnot(src_1, src_2, src_1);
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). Return value is
+ * "dst is a bitset"
+ */
+
+bool bitset_bitset_container_andnot(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst) {
+ bitset_container_t *ans = bitset_container_create();
+ int card = bitset_container_andnot(src_1, src_2, ans);
+ if (card <= DEFAULT_MAX_SIZE) {
+ *dst = array_container_from_bitset(ans);
+ bitset_container_free(ans);
+ return false; // not bitset
+ } else {
+ *dst = ans;
+ return true;
+ }
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). It will modify src_1
+ * to be dst if the result is a bitset. Otherwise, it will
+ * free src_1 and dst will be a new array container. In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset */
+
+bool bitset_bitset_container_iandnot(bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst) {
+ int card = bitset_container_andnot(src_1, src_2, src_1);
+ if (card <= DEFAULT_MAX_SIZE) {
+ *dst = array_container_from_bitset(src_1);
+ bitset_container_free(src_1);
+ return false; // not bitset
+ } else {
+ *dst = src_1;
+ return true;
+ }
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/mixed_andnot.c */
+/* begin file src/containers/mixed_equal.c */
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+bool array_container_equal_bitset(const array_container_t* container1,
+ const bitset_container_t* container2) {
+ if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+ if (container2->cardinality != container1->cardinality) {
+ return false;
+ }
+ }
+ int32_t pos = 0;
+ for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
+ uint64_t w = container2->words[i];
+ while (w != 0) {
+ uint64_t t = w & (~w + 1);
+ uint16_t r = i * 64 + roaring_trailing_zeroes(w);
+ if (pos >= container1->cardinality) {
+ return false;
+ }
+ if (container1->array[pos] != r) {
+ return false;
+ }
+ ++pos;
+ w ^= t;
+ }
+ }
+ return (pos == container1->cardinality);
+}
+
+bool run_container_equals_array(const run_container_t* container1,
+ const array_container_t* container2) {
+ if (run_container_cardinality(container1) != container2->cardinality)
+ return false;
+ int32_t pos = 0;
+ for (int i = 0; i < container1->n_runs; ++i) {
+ const uint32_t run_start = container1->runs[i].value;
+ const uint32_t le = container1->runs[i].length;
+
+ if (container2->array[pos] != run_start) {
+ return false;
+ }
+
+ if (container2->array[pos + le] != run_start + le) {
+ return false;
+ }
+
+ pos += le + 1;
+ }
+ return true;
+}
+
+bool run_container_equals_bitset(const run_container_t* container1,
+ const bitset_container_t* container2) {
+ int run_card = run_container_cardinality(container1);
+ int bitset_card = (container2->cardinality != BITSET_UNKNOWN_CARDINALITY)
+ ? container2->cardinality
+ : bitset_container_compute_cardinality(container2);
+ if (bitset_card != run_card) {
+ return false;
+ }
+
+ for (int32_t i = 0; i < container1->n_runs; i++) {
+ uint32_t begin = container1->runs[i].value;
+ if (container1->runs[i].length) {
+ uint32_t end = begin + container1->runs[i].length + 1;
+ if (!bitset_container_contains_range(container2, begin, end)) {
+ return false;
+ }
+ } else {
+ if (!bitset_container_contains(container2, begin)) {
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/mixed_equal.c */
+/* begin file src/containers/mixed_intersection.c */
+/*
+ * mixed_intersection.c
+ *
+ */
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst. */
+void array_bitset_container_intersection(const array_container_t *src_1,
+ const bitset_container_t *src_2,
+ array_container_t *dst) {
+ if (dst->capacity < src_1->cardinality) {
+ array_container_grow(dst, src_1->cardinality, false);
+ }
+ int32_t newcard = 0; // dst could be src_1
+ const int32_t origcard = src_1->cardinality;
+ for (int i = 0; i < origcard; ++i) {
+ uint16_t key = src_1->array[i];
+ // this branchless approach is much faster...
+ dst->array[newcard] = key;
+ newcard += bitset_container_contains(src_2, key);
+ /**
+ * we could do it this way instead...
+ * if (bitset_container_contains(src_2, key)) {
+ * dst->array[newcard++] = key;
+ * }
+ * but if the result is unpredictible, the processor generates
+ * many mispredicted branches.
+ * Difference can be huge (from 3 cycles when predictible all the way
+ * to 16 cycles when unpredictible.
+ * See
+ *
https://github.com/lemire/Code-used-on-Daniel-Lemire-s-blog/blob/master/extra/bitset/c/arraybitsetintersection.c
+ */
+ }
+ dst->cardinality = newcard;
+}
+
+/* Compute the size of the intersection of src_1 and src_2. */
+int array_bitset_container_intersection_cardinality(
+ const array_container_t *src_1, const bitset_container_t *src_2) {
+ int32_t newcard = 0;
+ const int32_t origcard = src_1->cardinality;
+ for (int i = 0; i < origcard; ++i) {
+ uint16_t key = src_1->array[i];
+ newcard += bitset_container_contains(src_2, key);
+ }
+ return newcard;
+}
+
+bool array_bitset_container_intersect(const array_container_t *src_1,
+ const bitset_container_t *src_2) {
+ const int32_t origcard = src_1->cardinality;
+ for (int i = 0; i < origcard; ++i) {
+ uint16_t key = src_1->array[i];
+ if (bitset_container_contains(src_2, key)) return true;
+ }
+ return false;
+}
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be equal to src_1. We assume that dst is a
+ * valid container. */
+void array_run_container_intersection(const array_container_t *src_1,
+ const run_container_t *src_2,
+ array_container_t *dst) {
+ if (run_container_is_full(src_2)) {
+ if (dst != src_1) array_container_copy(src_1, dst);
+ return;
+ }
+ if (dst->capacity < src_1->cardinality) {
+ array_container_grow(dst, src_1->cardinality, false);
+ }
+ if (src_2->n_runs == 0) {
+ return;
+ }
+ int32_t rlepos = 0;
+ int32_t arraypos = 0;
+ rle16_t rle = src_2->runs[rlepos];
+ int32_t newcard = 0;
+ while (arraypos < src_1->cardinality) {
+ const uint16_t arrayval = src_1->array[arraypos];
+ while (rle.value + rle.length <
+ arrayval) { // this will frequently be false
+ ++rlepos;
+ if (rlepos == src_2->n_runs) {
+ dst->cardinality = newcard;
+ return; // we are done
+ }
+ rle = src_2->runs[rlepos];
+ }
+ if (rle.value > arrayval) {
+ arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
+ rle.value);
+ } else {
+ dst->array[newcard] = arrayval;
+ newcard++;
+ arraypos++;
+ }
+ }
+ dst->cardinality = newcard;
+}
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * *dst. If the result is true then the result is a bitset_container_t
+ * otherwise is a array_container_t. If *dst == src_2, an in-place processing
+ * is attempted.*/
+bool run_bitset_container_intersection(const run_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst) {
+ if (run_container_is_full(src_1)) {
+ if (*dst != src_2) *dst = bitset_container_clone(src_2);
+ return true;
+ }
+ int32_t card = run_container_cardinality(src_1);
+ if (card <= DEFAULT_MAX_SIZE) {
+ // result can only be an array (assuming that we never make a
+ // RunContainer)
+ if (card > src_2->cardinality) {
+ card = src_2->cardinality;
+ }
+ array_container_t *answer =
array_container_create_given_capacity(card);
+ *dst = answer;
+ if (*dst == NULL) {
+ return false;
+ }
+ for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+ rle16_t rle = src_1->runs[rlepos];
+ uint32_t endofrun = (uint32_t)rle.value + rle.length;
+ for (uint32_t runValue = rle.value; runValue <= endofrun;
+ ++runValue) {
+ answer->array[answer->cardinality] = (uint16_t)runValue;
+ answer->cardinality +=
+ bitset_container_contains(src_2, runValue);
+ }
+ }
+ return false;
+ }
+ if (*dst == src_2) { // we attempt in-place
+ bitset_container_t *answer = CAST_bitset(*dst);
+ uint32_t start = 0;
+ for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+ const rle16_t rle = src_1->runs[rlepos];
+ uint32_t end = rle.value;
+ bitset_reset_range(src_2->words, start, end);
+
+ start = end + rle.length + 1;
+ }
+ bitset_reset_range(src_2->words, start, UINT32_C(1) << 16);
+ answer->cardinality = bitset_container_compute_cardinality(answer);
+ if (src_2->cardinality > DEFAULT_MAX_SIZE) {
+ return true;
+ } else {
+ array_container_t *newanswer = array_container_from_bitset(src_2);
+ if (newanswer == NULL) {
+ *dst = NULL;
+ return false;
+ }
+ *dst = newanswer;
+ return false;
+ }
+ } else { // no inplace
+ // we expect the answer to be a bitmap (if we are lucky)
+ bitset_container_t *answer = bitset_container_clone(src_2);
+
+ *dst = answer;
+ if (answer == NULL) {
+ return true;
+ }
+ uint32_t start = 0;
+ for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+ const rle16_t rle = src_1->runs[rlepos];
+ uint32_t end = rle.value;
+ bitset_reset_range(answer->words, start, end);
+ start = end + rle.length + 1;
+ }
+ bitset_reset_range(answer->words, start, UINT32_C(1) << 16);
+ answer->cardinality = bitset_container_compute_cardinality(answer);
+
+ if (answer->cardinality > DEFAULT_MAX_SIZE) {
+ return true;
+ } else {
+ array_container_t *newanswer = array_container_from_bitset(answer);
+ bitset_container_free(CAST_bitset(*dst));
+ if (newanswer == NULL) {
+ *dst = NULL;
+ return false;
+ }
+ *dst = newanswer;
+ return false;
+ }
+ }
+}
+
+/* Compute the size of the intersection between src_1 and src_2 . */
+int array_run_container_intersection_cardinality(const array_container_t
*src_1,
+ const run_container_t *src_2)
{
+ if (run_container_is_full(src_2)) {
+ return src_1->cardinality;
+ }
+ if (src_2->n_runs == 0) {
+ return 0;
+ }
+ int32_t rlepos = 0;
+ int32_t arraypos = 0;
+ rle16_t rle = src_2->runs[rlepos];
+ int32_t newcard = 0;
+ while (arraypos < src_1->cardinality) {
+ const uint16_t arrayval = src_1->array[arraypos];
+ while (rle.value + rle.length <
+ arrayval) { // this will frequently be false
+ ++rlepos;
+ if (rlepos == src_2->n_runs) {
+ return newcard; // we are done
+ }
+ rle = src_2->runs[rlepos];
+ }
+ if (rle.value > arrayval) {
+ arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
+ rle.value);
+ } else {
+ newcard++;
+ arraypos++;
+ }
+ }
+ return newcard;
+}
+
+/* Compute the intersection between src_1 and src_2
+ **/
+int run_bitset_container_intersection_cardinality(
+ const run_container_t *src_1, const bitset_container_t *src_2) {
+ if (run_container_is_full(src_1)) {
+ return bitset_container_cardinality(src_2);
+ }
+ int answer = 0;
+ for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+ rle16_t rle = src_1->runs[rlepos];
+ answer +=
+ bitset_lenrange_cardinality(src_2->words, rle.value, rle.length);
+ }
+ return answer;
+}
+
+bool array_run_container_intersect(const array_container_t *src_1,
+ const run_container_t *src_2) {
+ if (run_container_is_full(src_2)) {
+ return !array_container_empty(src_1);
+ }
+ if (src_2->n_runs == 0) {
+ return false;
+ }
+ int32_t rlepos = 0;
+ int32_t arraypos = 0;
+ rle16_t rle = src_2->runs[rlepos];
+ while (arraypos < src_1->cardinality) {
+ const uint16_t arrayval = src_1->array[arraypos];
+ while (rle.value + rle.length <
+ arrayval) { // this will frequently be false
+ ++rlepos;
+ if (rlepos == src_2->n_runs) {
+ return false; // we are done
+ }
+ rle = src_2->runs[rlepos];
+ }
+ if (rle.value > arrayval) {
+ arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
+ rle.value);
+ } else {
+ return true;
+ }
+ }
+ return false;
+}
+
+/* Compute the intersection between src_1 and src_2
+ **/
+bool run_bitset_container_intersect(const run_container_t *src_1,
+ const bitset_container_t *src_2) {
+ if (run_container_is_full(src_1)) {
+ return !bitset_container_empty(src_2);
+ }
+ for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+ rle16_t rle = src_1->runs[rlepos];
+ if (!bitset_lenrange_empty(src_2->words, rle.value, rle.length))
+ return true;
+ }
+ return false;
+}
+
+/*
+ * Compute the intersection between src_1 and src_2 and write the result
+ * to *dst. If the return function is true, the result is a bitset_container_t
+ * otherwise is a array_container_t.
+ */
+bool bitset_bitset_container_intersection(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst) {
+ const int newCardinality = bitset_container_and_justcard(src_1, src_2);
+ if (newCardinality > DEFAULT_MAX_SIZE) {
+ *dst = bitset_container_create();
+ if (*dst != NULL) {
+ bitset_container_and_nocard(src_1, src_2, CAST_bitset(*dst));
+ CAST_bitset(*dst)->cardinality = newCardinality;
+ }
+ return true; // it is a bitset
+ }
+ *dst = array_container_create_given_capacity(newCardinality);
+ if (*dst != NULL) {
+ CAST_array(*dst)->cardinality = newCardinality;
+ bitset_extract_intersection_setbits_uint16(
+ src_1->words, src_2->words, BITSET_CONTAINER_SIZE_IN_WORDS,
+ CAST_array(*dst)->array, 0);
+ }
+ return false; // not a bitset
+}
+
+bool bitset_bitset_container_intersection_inplace(
+ bitset_container_t *src_1, const bitset_container_t *src_2,
+ container_t **dst) {
+ const int newCardinality = bitset_container_and_justcard(src_1, src_2);
+ if (newCardinality > DEFAULT_MAX_SIZE) {
+ *dst = src_1;
+ bitset_container_and_nocard(src_1, src_2, src_1);
+ CAST_bitset(*dst)->cardinality = newCardinality;
+ return true; // it is a bitset
+ }
+ *dst = array_container_create_given_capacity(newCardinality);
+ if (*dst != NULL) {
+ CAST_array(*dst)->cardinality = newCardinality;
+ bitset_extract_intersection_setbits_uint16(
+ src_1->words, src_2->words, BITSET_CONTAINER_SIZE_IN_WORDS,
+ CAST_array(*dst)->array, 0);
+ }
+ return false; // not a bitset
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/mixed_intersection.c */
+/* begin file src/containers/mixed_negation.c */
+/*
+ * mixed_negation.c
+ *
+ */
+
+#include <assert.h>
+#include <string.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+// TODO: make simplified and optimized negation code across
+// the full range.
+
+/* Negation across the entire range of the container.
+ * Compute the negation of src and write the result
+ * to *dst. The complement of a
+ * sufficiently sparse set will always be dense and a hence a bitmap
+' * We assume that dst is pre-allocated and a valid bitset container
+ * There can be no in-place version.
+ */
+void array_container_negation(const array_container_t *src,
+ bitset_container_t *dst) {
+ uint64_t card = UINT64_C(1 << 16);
+ bitset_container_set_all(dst);
+
+ if (src->cardinality == 0) {
+ return;
+ }
+
+ dst->cardinality = (int32_t)bitset_clear_list(dst->words, card, src->array,
+ (uint64_t)src->cardinality);
+}
+
+/* Negation across the entire range of the container
+ * Compute the negation of src and write the result
+ * to *dst. A true return value indicates a bitset result,
+ * otherwise the result is an array container.
+ * We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_container_negation(const bitset_container_t *src,
+ container_t **dst) {
+ return bitset_container_negation_range(src, 0, (1 << 16), dst);
+}
+
+/* inplace version */
+/*
+ * Same as bitset_container_negation except that if the output is to
+ * be a
+ * bitset_container_t, then src is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_container_negation_inplace(bitset_container_t *src,
+ container_t **dst) {
+ return bitset_container_negation_range_inplace(src, 0, (1 << 16), dst);
+}
+
+/* Negation across the entire range of container
+ * Compute the negation of src and write the result
+ * to *dst. Return values are the *_TYPECODES as defined * in containers.h
+ * We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+int run_container_negation(const run_container_t *src, container_t **dst) {
+ return run_container_negation_range(src, 0, (1 << 16), dst);
+}
+
+/*
+ * Same as run_container_negation except that if the output is to
+ * be a
+ * run_container_t, and has the capacity to hold the result,
+ * then src is modified and no allocation is made.
+ * In all cases, the result is in *dst.
+ */
+int run_container_negation_inplace(run_container_t *src, container_t **dst) {
+ return run_container_negation_range_inplace(src, 0, (1 << 16), dst);
+}
+
+/* Negation across a range of the container.
+ * Compute the negation of src and write the result
+ * to *dst. Returns true if the result is a bitset container
+ * and false for an array container. *dst is not preallocated.
+ */
+bool array_container_negation_range(const array_container_t *src,
+ const int range_start, const int range_end,
+ container_t **dst) {
+ /* close port of the Java implementation */
+ if (range_start >= range_end) {
+ *dst = array_container_clone(src);
+ return false;
+ }
+
+ int32_t start_index =
+ binarySearch(src->array, src->cardinality, (uint16_t)range_start);
+ if (start_index < 0) start_index = -start_index - 1;
+
+ int32_t last_index =
+ binarySearch(src->array, src->cardinality, (uint16_t)(range_end - 1));
+ if (last_index < 0) last_index = -last_index - 2;
+
+ const int32_t current_values_in_range = last_index - start_index + 1;
+ const int32_t span_to_be_flipped = range_end - range_start;
+ const int32_t new_values_in_range =
+ span_to_be_flipped - current_values_in_range;
+ const int32_t cardinality_change =
+ new_values_in_range - current_values_in_range;
+ const int32_t new_cardinality = src->cardinality + cardinality_change;
+
+ if (new_cardinality > DEFAULT_MAX_SIZE) {
+ bitset_container_t *temp = bitset_container_from_array(src);
+ bitset_flip_range(temp->words, (uint32_t)range_start,
+ (uint32_t)range_end);
+ temp->cardinality = new_cardinality;
+ *dst = temp;
+ return true;
+ }
+
+ array_container_t *arr =
+ array_container_create_given_capacity(new_cardinality);
+ *dst = (container_t *)arr;
+ if (new_cardinality == 0) {
+ arr->cardinality = new_cardinality;
+ return false; // we are done.
+ }
+ // copy stuff before the active area
+ memcpy(arr->array, src->array, start_index * sizeof(uint16_t));
+
+ // work on the range
+ int32_t out_pos = start_index, in_pos = start_index;
+ int32_t val_in_range = range_start;
+ for (; val_in_range < range_end && in_pos <= last_index; ++val_in_range) {
+ if ((uint16_t)val_in_range != src->array[in_pos]) {
+ arr->array[out_pos++] = (uint16_t)val_in_range;
+ } else {
+ ++in_pos;
+ }
+ }
+ for (; val_in_range < range_end; ++val_in_range)
+ arr->array[out_pos++] = (uint16_t)val_in_range;
+
+ // content after the active range
+ memcpy(arr->array + out_pos, src->array + (last_index + 1),
+ (src->cardinality - (last_index + 1)) * sizeof(uint16_t));
+ arr->cardinality = new_cardinality;
+ return false;
+}
+
+/* Even when the result would fit, it is unclear how to make an
+ * inplace version without inefficient copying.
+ */
+
+bool array_container_negation_range_inplace(array_container_t *src,
+ const int range_start,
+ const int range_end,
+ container_t **dst) {
+ bool ans = array_container_negation_range(src, range_start, range_end,
dst);
+ // TODO : try a real inplace version
+ array_container_free(src);
+ return ans;
+}
+
+/* Negation across a range of the container
+ * Compute the negation of src and write the result
+ * to *dst. A true return value indicates a bitset result,
+ * otherwise the result is an array container.
+ * We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_container_negation_range(const bitset_container_t *src,
+ const int range_start, const int
range_end,
+ container_t **dst) {
+ // TODO maybe consider density-based estimate
+ // and sometimes build result directly as array, with
+ // conversion back to bitset if wrong. Or determine
+ // actual result cardinality, then go directly for the known final cont.
+
+ // keep computation using bitsets as long as possible.
+ bitset_container_t *t = bitset_container_clone(src);
+ bitset_flip_range(t->words, (uint32_t)range_start, (uint32_t)range_end);
+ t->cardinality = bitset_container_compute_cardinality(t);
+
+ if (t->cardinality > DEFAULT_MAX_SIZE) {
+ *dst = t;
+ return true;
+ } else {
+ *dst = array_container_from_bitset(t);
+ bitset_container_free(t);
+ return false;
+ }
+}
+
+/* inplace version */
+/*
+ * Same as bitset_container_negation except that if the output is to
+ * be a
+ * bitset_container_t, then src is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_container_negation_range_inplace(bitset_container_t *src,
+ const int range_start,
+ const int range_end,
+ container_t **dst) {
+ bitset_flip_range(src->words, (uint32_t)range_start, (uint32_t)range_end);
+ src->cardinality = bitset_container_compute_cardinality(src);
+ if (src->cardinality > DEFAULT_MAX_SIZE) {
+ *dst = src;
+ return true;
+ }
+ *dst = array_container_from_bitset(src);
+ bitset_container_free(src);
+ return false;
+}
+
+/* Negation across a range of container
+ * Compute the negation of src and write the result
+ * to *dst. Return values are the *_TYPECODES as defined * in containers.h
+ * We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+int run_container_negation_range(const run_container_t *src,
+ const int range_start, const int range_end,
+ container_t **dst) {
+ uint8_t return_typecode;
+
+ // follows the Java implementation
+ if (range_end <= range_start) {
+ *dst = run_container_clone(src);
+ return RUN_CONTAINER_TYPE;
+ }
+
+ run_container_t *ans = run_container_create_given_capacity(
+ src->n_runs + 1); // src->n_runs + 1);
+ int k = 0;
+ for (; k < src->n_runs && src->runs[k].value < range_start; ++k) {
+ ans->runs[k] = src->runs[k];
+ ans->n_runs++;
+ }
+
+ run_container_smart_append_exclusive(
+ ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1));
+
+ for (; k < src->n_runs; ++k) {
+ run_container_smart_append_exclusive(ans, src->runs[k].value,
+ src->runs[k].length);
+ }
+
+ *dst = convert_run_to_efficient_container(ans, &return_typecode);
+ if (return_typecode != RUN_CONTAINER_TYPE) run_container_free(ans);
+
+ return return_typecode;
+}
+
+/*
+ * Same as run_container_negation except that if the output is to
+ * be a
+ * run_container_t, and has the capacity to hold the result,
+ * then src is modified and no allocation is made.
+ * In all cases, the result is in *dst.
+ */
+int run_container_negation_range_inplace(run_container_t *src,
+ const int range_start,
+ const int range_end,
+ container_t **dst) {
+ uint8_t return_typecode;
+
+ if (range_end <= range_start) {
+ *dst = src;
+ return RUN_CONTAINER_TYPE;
+ }
+
+ // TODO: efficient special case when range is 0 to 65535 inclusive
+
+ if (src->capacity == src->n_runs) {
+ // no excess room. More checking to see if result can fit
+ bool last_val_before_range = false;
+ bool first_val_in_range = false;
+ bool last_val_in_range = false;
+ bool first_val_past_range = false;
+
+ if (range_start > 0)
+ last_val_before_range =
+ run_container_contains(src, (uint16_t)(range_start - 1));
+ first_val_in_range = run_container_contains(src,
(uint16_t)range_start);
+
+ if (last_val_before_range == first_val_in_range) {
+ last_val_in_range =
+ run_container_contains(src, (uint16_t)(range_end - 1));
+ if (range_end != 0x10000)
+ first_val_past_range =
+ run_container_contains(src, (uint16_t)range_end);
+
+ if (last_val_in_range ==
+ first_val_past_range) { // no space for inplace
+ int ans = run_container_negation_range(src, range_start,
+ range_end, dst);
+ run_container_free(src);
+ return ans;
+ }
+ }
+ }
+ // all other cases: result will fit
+
+ run_container_t *ans = src;
+ int my_nbr_runs = src->n_runs;
+
+ ans->n_runs = 0;
+ int k = 0;
+ for (; (k < my_nbr_runs) && (src->runs[k].value < range_start); ++k) {
+ // ans->runs[k] = src->runs[k]; (would be self-copy)
+ ans->n_runs++;
+ }
+
+ // as with Java implementation, use locals to give self a buffer of depth 1
+ rle16_t buffered = CROARING_MAKE_RLE16(0, 0);
+ rle16_t next = buffered;
+ if (k < my_nbr_runs) buffered = src->runs[k];
+
+ run_container_smart_append_exclusive(
+ ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1));
+
+ for (; k < my_nbr_runs; ++k) {
+ if (k + 1 < my_nbr_runs) next = src->runs[k + 1];
+
+ run_container_smart_append_exclusive(ans, buffered.value,
+ buffered.length);
+ buffered = next;
+ }
+
+ *dst = convert_run_to_efficient_container(ans, &return_typecode);
+ if (return_typecode != RUN_CONTAINER_TYPE) run_container_free(ans);
+
+ return return_typecode;
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/mixed_negation.c */
+/* begin file src/containers/mixed_subset.c */
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+bool array_container_is_subset_bitset(const array_container_t* container1,
+ const bitset_container_t* container2) {
+ if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+ if (container2->cardinality < container1->cardinality) {
+ return false;
+ }
+ }
+ for (int i = 0; i < container1->cardinality; ++i) {
+ if (!bitset_container_contains(container2, container1->array[i])) {
+ return false;
+ }
+ }
+ return true;
+}
+
+bool run_container_is_subset_array(const run_container_t* container1,
+ const array_container_t* container2) {
+ if (run_container_cardinality(container1) > container2->cardinality)
+ return false;
+ int32_t start_pos = -1, stop_pos = -1;
+ for (int i = 0; i < container1->n_runs; ++i) {
+ int32_t start = container1->runs[i].value;
+ int32_t stop = start + container1->runs[i].length;
+ start_pos = advanceUntil(container2->array, stop_pos,
+ container2->cardinality, start);
+ stop_pos = advanceUntil(container2->array, stop_pos,
+ container2->cardinality, stop);
+ if (stop_pos == container2->cardinality) {
+ return false;
+ } else if (stop_pos - start_pos != stop - start ||
+ container2->array[start_pos] != start ||
+ container2->array[stop_pos] != stop) {
+ return false;
+ }
+ }
+ return true;
+}
+
+bool array_container_is_subset_run(const array_container_t* container1,
+ const run_container_t* container2) {
+ if (container1->cardinality > run_container_cardinality(container2))
+ return false;
+ int i_array = 0, i_run = 0;
+ while (i_array < container1->cardinality && i_run < container2->n_runs) {
+ uint32_t start = container2->runs[i_run].value;
+ uint32_t stop = start + container2->runs[i_run].length;
+ if (container1->array[i_array] < start) {
+ return false;
+ } else if (container1->array[i_array] > stop) {
+ i_run++;
+ } else { // the value of the array is in the run
+ i_array++;
+ }
+ }
+ if (i_array == container1->cardinality) {
+ return true;
+ } else {
+ return false;
+ }
+}
+
+bool run_container_is_subset_bitset(const run_container_t* container1,
+ const bitset_container_t* container2) {
+ // todo: this code could be much faster
+ if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+ if (container2->cardinality < run_container_cardinality(container1)) {
+ return false;
+ }
+ } else {
+ int32_t card = bitset_container_compute_cardinality(
+ container2); // modify container2?
+ if (card < run_container_cardinality(container1)) {
+ return false;
+ }
+ }
+ for (int i = 0; i < container1->n_runs; ++i) {
+ uint32_t run_start = container1->runs[i].value;
+ uint32_t le = container1->runs[i].length;
+ for (uint32_t j = run_start; j <= run_start + le; ++j) {
+ if (!bitset_container_contains(container2, j)) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+bool bitset_container_is_subset_run(const bitset_container_t* container1,
+ const run_container_t* container2) {
+ // todo: this code could be much faster
+ if (container1->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+ if (container1->cardinality > run_container_cardinality(container2)) {
+ return false;
+ }
+ }
+ int32_t i_bitset = 0, i_run = 0;
+ while (i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS &&
+ i_run < container2->n_runs) {
+ uint64_t w = container1->words[i_bitset];
+ while (w != 0 && i_run < container2->n_runs) {
+ uint32_t start = container2->runs[i_run].value;
+ uint32_t stop = start + container2->runs[i_run].length;
+ uint64_t t = w & (~w + 1);
+ uint16_t r = i_bitset * 64 + roaring_trailing_zeroes(w);
+ if (r < start) {
+ return false;
+ } else if (r > stop) {
+ i_run++;
+ continue;
+ } else {
+ w ^= t;
+ }
+ }
+ if (w == 0) {
+ i_bitset++;
+ } else {
+ return false;
+ }
+ }
+ if (i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS) {
+ // terminated iterating on the run containers, check that rest of
bitset
+ // is empty
+ for (; i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS; i_bitset++) {
+ if (container1->words[i_bitset] != 0) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/mixed_subset.c */
+/* begin file src/containers/mixed_union.c */
+/*
+ * mixed_union.c
+ *
+ */
+
+#include <assert.h>
+#include <string.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. */
+void array_bitset_container_union(const array_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst) {
+ if (src_2 != dst) bitset_container_copy(src_2, dst);
+ dst->cardinality = (int32_t)bitset_set_list_withcard(
+ dst->words, dst->cardinality, src_1->array, src_1->cardinality);
+}
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst. This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */
+void array_bitset_container_lazy_union(const array_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst) {
+ if (src_2 != dst) bitset_container_copy(src_2, dst);
+ bitset_set_list(dst->words, src_1->array, src_1->cardinality);
+ dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
+}
+
+void run_bitset_container_union(const run_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst) {
+ assert(!run_container_is_full(src_1)); // catch this case upstream
+ if (src_2 != dst) bitset_container_copy(src_2, dst);
+ for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+ rle16_t rle = src_1->runs[rlepos];
+ bitset_set_lenrange(dst->words, rle.value, rle.length);
+ }
+ dst->cardinality = bitset_container_compute_cardinality(dst);
+}
+
+void run_bitset_container_lazy_union(const run_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst) {
+ assert(!run_container_is_full(src_1)); // catch this case upstream
+ if (src_2 != dst) bitset_container_copy(src_2, dst);
+ for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+ rle16_t rle = src_1->runs[rlepos];
+ bitset_set_lenrange(dst->words, rle.value, rle.length);
+ }
+ dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
+}
+
+// why do we leave the result as a run container??
+void array_run_container_union(const array_container_t *src_1,
+ const run_container_t *src_2,
+ run_container_t *dst) {
+ if (run_container_is_full(src_2)) {
+ run_container_copy(src_2, dst);
+ return;
+ }
+ // TODO: see whether the "2*" is spurious
+ run_container_grow(dst, 2 * (src_1->cardinality + src_2->n_runs), false);
+ int32_t rlepos = 0;
+ int32_t arraypos = 0;
+ rle16_t previousrle;
+ if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
+ previousrle = run_container_append_first(dst, src_2->runs[rlepos]);
+ rlepos++;
+ } else {
+ previousrle =
+ run_container_append_value_first(dst, src_1->array[arraypos]);
+ arraypos++;
+ }
+ while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) {
+ if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
+ run_container_append(dst, src_2->runs[rlepos], &previousrle);
+ rlepos++;
+ } else {
+ run_container_append_value(dst, src_1->array[arraypos],
+ &previousrle);
+ arraypos++;
+ }
+ }
+ if (arraypos < src_1->cardinality) {
+ while (arraypos < src_1->cardinality) {
+ run_container_append_value(dst, src_1->array[arraypos],
+ &previousrle);
+ arraypos++;
+ }
+ } else {
+ while (rlepos < src_2->n_runs) {
+ run_container_append(dst, src_2->runs[rlepos], &previousrle);
+ rlepos++;
+ }
+ }
+}
+
+void array_run_container_inplace_union(const array_container_t *src_1,
+ run_container_t *src_2) {
+ if (run_container_is_full(src_2)) {
+ return;
+ }
+ const int32_t maxoutput = src_1->cardinality + src_2->n_runs;
+ const int32_t neededcapacity = maxoutput + src_2->n_runs;
+ if (src_2->capacity < neededcapacity)
+ run_container_grow(src_2, neededcapacity, true);
+ memmove(src_2->runs + maxoutput, src_2->runs,
+ src_2->n_runs * sizeof(rle16_t));
+ rle16_t *inputsrc2 = src_2->runs + maxoutput;
+ int32_t rlepos = 0;
+ int32_t arraypos = 0;
+ int src2nruns = src_2->n_runs;
+ src_2->n_runs = 0;
+
+ rle16_t previousrle;
+
+ if (inputsrc2[rlepos].value <= src_1->array[arraypos]) {
+ previousrle = run_container_append_first(src_2, inputsrc2[rlepos]);
+ rlepos++;
+ } else {
+ previousrle =
+ run_container_append_value_first(src_2, src_1->array[arraypos]);
+ arraypos++;
+ }
+
+ while ((rlepos < src2nruns) && (arraypos < src_1->cardinality)) {
+ if (inputsrc2[rlepos].value <= src_1->array[arraypos]) {
+ run_container_append(src_2, inputsrc2[rlepos], &previousrle);
+ rlepos++;
+ } else {
+ run_container_append_value(src_2, src_1->array[arraypos],
+ &previousrle);
+ arraypos++;
+ }
+ }
+ if (arraypos < src_1->cardinality) {
+ while (arraypos < src_1->cardinality) {
+ run_container_append_value(src_2, src_1->array[arraypos],
+ &previousrle);
+ arraypos++;
+ }
+ } else {
+ while (rlepos < src2nruns) {
+ run_container_append(src_2, inputsrc2[rlepos], &previousrle);
+ rlepos++;
+ }
+ }
+}
+
+bool array_array_container_union(const array_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst) {
+ int totalCardinality = src_1->cardinality + src_2->cardinality;
+ if (totalCardinality <= DEFAULT_MAX_SIZE) {
+ *dst = array_container_create_given_capacity(totalCardinality);
+ if (*dst != NULL) {
+ array_container_union(src_1, src_2, CAST_array(*dst));
+ } else {
+ return true; // otherwise failure won't be caught
+ }
+ return false; // not a bitset
+ }
+ *dst = bitset_container_create();
+ bool returnval = true; // expect a bitset
+ if (*dst != NULL) {
+ bitset_container_t *ourbitset = CAST_bitset(*dst);
+ bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
+ ourbitset->cardinality = (int32_t)bitset_set_list_withcard(
+ ourbitset->words, src_1->cardinality, src_2->array,
+ src_2->cardinality);
+ if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
+ // need to convert!
+ *dst = array_container_from_bitset(ourbitset);
+ bitset_container_free(ourbitset);
+ returnval = false; // not going to be a bitset
+ }
+ }
+ return returnval;
+}
+
+bool array_array_container_inplace_union(array_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst) {
+ int totalCardinality = src_1->cardinality + src_2->cardinality;
+ *dst = NULL;
+ if (totalCardinality <= DEFAULT_MAX_SIZE) {
+ if (src_1->capacity < totalCardinality) {
+ *dst = array_container_create_given_capacity(
+ 2 * totalCardinality); // be purposefully generous
+ if (*dst != NULL) {
+ array_container_union(src_1, src_2, CAST_array(*dst));
+ } else {
+ return true; // otherwise failure won't be caught
+ }
+ return false; // not a bitset
+ } else {
+ memmove(src_1->array + src_2->cardinality, src_1->array,
+ src_1->cardinality * sizeof(uint16_t));
+ // In theory, we could use fast_union_uint16, but it is unsafe. It
+ // fails with Intel compilers in particular.
+ // https://github.com/RoaringBitmap/CRoaring/pull/452
+ // See report https://github.com/RoaringBitmap/CRoaring/issues/476
+ src_1->cardinality = (int32_t)union_uint16(
+ src_1->array + src_2->cardinality, src_1->cardinality,
+ src_2->array, src_2->cardinality, src_1->array);
+ return false; // not a bitset
+ }
+ }
+ *dst = bitset_container_create();
+ bool returnval = true; // expect a bitset
+ if (*dst != NULL) {
+ bitset_container_t *ourbitset = CAST_bitset(*dst);
+ bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
+ ourbitset->cardinality = (int32_t)bitset_set_list_withcard(
+ ourbitset->words, src_1->cardinality, src_2->array,
+ src_2->cardinality);
+ if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
+ // need to convert!
+ if (src_1->capacity < ourbitset->cardinality) {
+ array_container_grow(src_1, ourbitset->cardinality, false);
+ }
+
+ bitset_extract_setbits_uint16(ourbitset->words,
+ BITSET_CONTAINER_SIZE_IN_WORDS,
+ src_1->array, 0);
+ src_1->cardinality = ourbitset->cardinality;
+ *dst = src_1;
+ bitset_container_free(ourbitset);
+ returnval = false; // not going to be a bitset
+ }
+ }
+ return returnval;
+}
+
+bool array_array_container_lazy_union(const array_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst) {
+ int totalCardinality = src_1->cardinality + src_2->cardinality;
+ //
+ // We assume that operations involving bitset containers will be faster
than
+ // operations involving solely array containers, except maybe when array
+ // containers are small. Indeed, for example, it is cheap to compute the
+ // union between an array and a bitset container, generally more so than
+ // between a large array and another array. So it is advantageous to favour
+ // bitset containers during the computation. Of course, if we convert array
+ // containers eagerly to bitset containers, we may later need to revert the
+ // bitset containers to array containerr to satisfy the Roaring format
+ // requirements, but such one-time conversions at the end may not be overly
+ // expensive. We arrived to this design based on extensive benchmarking.
+ //
+ if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
+ *dst = array_container_create_given_capacity(totalCardinality);
+ if (*dst != NULL) {
+ array_container_union(src_1, src_2, CAST_array(*dst));
+ } else {
+ return true; // otherwise failure won't be caught
+ }
+ return false; // not a bitset
+ }
+ *dst = bitset_container_create();
+ bool returnval = true; // expect a bitset
+ if (*dst != NULL) {
+ bitset_container_t *ourbitset = CAST_bitset(*dst);
+ bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
+ bitset_set_list(ourbitset->words, src_2->array, src_2->cardinality);
+ ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
+ }
+ return returnval;
+}
+
+bool array_array_container_lazy_inplace_union(array_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst) {
+ int totalCardinality = src_1->cardinality + src_2->cardinality;
+ *dst = NULL;
+ //
+ // We assume that operations involving bitset containers will be faster
than
+ // operations involving solely array containers, except maybe when array
+ // containers are small. Indeed, for example, it is cheap to compute the
+ // union between an array and a bitset container, generally more so than
+ // between a large array and another array. So it is advantageous to favour
+ // bitset containers during the computation. Of course, if we convert array
+ // containers eagerly to bitset containers, we may later need to revert the
+ // bitset containers to array containerr to satisfy the Roaring format
+ // requirements, but such one-time conversions at the end may not be overly
+ // expensive. We arrived to this design based on extensive benchmarking.
+ //
+ if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
+ if (src_1->capacity < totalCardinality) {
+ *dst = array_container_create_given_capacity(
+ 2 * totalCardinality); // be purposefully generous
+ if (*dst != NULL) {
+ array_container_union(src_1, src_2, CAST_array(*dst));
+ } else {
+ return true; // otherwise failure won't be caught
+ }
+ return false; // not a bitset
+ } else {
+ memmove(src_1->array + src_2->cardinality, src_1->array,
+ src_1->cardinality * sizeof(uint16_t));
+ /*
+ Next line is safe:
+
+ We just need to focus on the reading and writing performed on
+ array1. In `union_vector16`, both vectorized and scalar code
still
+ obey the basic rule: read from two inputs, do the union, and then
+ write the output.
+
+ Let's say the length(cardinality) of input2 is L2:
+ ```
+ |<- L2 ->|
+ array1: [output--- |input 1---|---]
+ array2: [input 2---]
+ ```
+ Let's define 3 __m128i pointers, `pos1` starts from `input1`,
+ `pos2` starts from `input2`, these 2 point at the next byte to
+ read, `out` starts from `output`, pointing at the next byte to
+ overwrite.
+ ```
+ array1: [output--- |input 1---|---]
+ ^ ^
+ out pos1
+ array2: [input 2---]
+ ^
+ pos2
+ ```
+ The union output always contains less or equal number of elements
+ than all inputs added, so we have:
+ ```
+ out <= pos1 + pos2
+ ```
+ therefore:
+ ```
+ out <= pos1 + L2
+ ```
+ which means you will not overwrite data beyond pos1, so the data
+ haven't read is safe, and we don't care the data already read.
+ */
+ src_1->cardinality = (int32_t)fast_union_uint16(
+ src_1->array + src_2->cardinality, src_1->cardinality,
+ src_2->array, src_2->cardinality, src_1->array);
+ return false; // not a bitset
+ }
+ }
+ *dst = bitset_container_create();
+ bool returnval = true; // expect a bitset
+ if (*dst != NULL) {
+ bitset_container_t *ourbitset = CAST_bitset(*dst);
+ bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
+ bitset_set_list(ourbitset->words, src_2->array, src_2->cardinality);
+ ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
+ }
+ return returnval;
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/mixed_union.c */
+/* begin file src/containers/mixed_xor.c */
+/*
+ * mixed_xor.c
+ */
+
+#include <assert.h>
+#include <string.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially).
+ * Result is true iff dst is a bitset */
+bool array_bitset_container_xor(const array_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst) {
+ bitset_container_t *result = bitset_container_create();
+ bitset_container_copy(src_2, result);
+ result->cardinality = (int32_t)bitset_flip_list_withcard(
+ result->words, result->cardinality, src_1->array, src_1->cardinality);
+
+ // do required type conversions.
+ if (result->cardinality <= DEFAULT_MAX_SIZE) {
+ *dst = array_container_from_bitset(result);
+ bitset_container_free(result);
+ return false; // not bitset
+ }
+ *dst = result;
+ return true; // bitset
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst. This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY).
+ */
+
+void array_bitset_container_lazy_xor(const array_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst) {
+ if (src_2 != dst) bitset_container_copy(src_2, dst);
+ bitset_flip_list(dst->words, src_1->array, src_1->cardinality);
+ dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_xor(const run_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst) {
+ bitset_container_t *result = bitset_container_create();
+
+ bitset_container_copy(src_2, result);
+ for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+ rle16_t rle = src_1->runs[rlepos];
+ bitset_flip_range(result->words, rle.value,
+ rle.value + rle.length + UINT32_C(1));
+ }
+ result->cardinality = bitset_container_compute_cardinality(result);
+
+ if (result->cardinality <= DEFAULT_MAX_SIZE) {
+ *dst = array_container_from_bitset(result);
+ bitset_container_free(result);
+ return false; // not bitset
+ }
+ *dst = result;
+ return true; // bitset
+}
+
+/* lazy xor. Dst is initialized and may be equal to src_2.
+ * Result is left as a bitset container, even if actual
+ * cardinality would dictate an array container.
+ */
+
+void run_bitset_container_lazy_xor(const run_container_t *src_1,
+ const bitset_container_t *src_2,
+ bitset_container_t *dst) {
+ if (src_2 != dst) bitset_container_copy(src_2, dst);
+ for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+ rle16_t rle = src_1->runs[rlepos];
+ bitset_flip_range(dst->words, rle.value,
+ rle.value + rle.length + UINT32_C(1));
+ }
+ dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
+}
+
+/* dst does not indicate a valid container initially. Eventually it
+ * can become any kind of container.
+ */
+
+int array_run_container_xor(const array_container_t *src_1,
+ const run_container_t *src_2, container_t **dst) {
+ // semi following Java XOR implementation as of May 2016
+ // the C OR implementation works quite differently and can return a run
+ // container
+ // TODO could optimize for full run containers.
+
+ // use of lazy following Java impl.
+ const int arbitrary_threshold = 32;
+ if (src_1->cardinality < arbitrary_threshold) {
+ run_container_t *ans = run_container_create();
+ array_run_container_lazy_xor(src_1, src_2, ans); // keeps runs.
+ uint8_t typecode_after;
+ *dst =
+ convert_run_to_efficient_container_and_free(ans, &typecode_after);
+ return typecode_after;
+ }
+
+ int card = run_container_cardinality(src_2);
+ if (card <= DEFAULT_MAX_SIZE) {
+ // Java implementation works with the array, xoring the run elements
via
+ // iterator
+ array_container_t *temp = array_container_from_run(src_2);
+ bool ret_is_bitset = array_array_container_xor(temp, src_1, dst);
+ array_container_free(temp);
+ return ret_is_bitset ? BITSET_CONTAINER_TYPE : ARRAY_CONTAINER_TYPE;
+
+ } else { // guess that it will end up as a bitset
+ bitset_container_t *result = bitset_container_from_run(src_2);
+ bool is_bitset = bitset_array_container_ixor(result, src_1, dst);
+ // any necessary type conversion has been done by the ixor
+ int retval = (is_bitset ? BITSET_CONTAINER_TYPE :
ARRAY_CONTAINER_TYPE);
+ return retval;
+ }
+}
+
+/* Dst is a valid run container. (Can it be src_2? Let's say not.)
+ * Leaves result as run container, even if other options are
+ * smaller.
+ */
+
+void array_run_container_lazy_xor(const array_container_t *src_1,
+ const run_container_t *src_2,
+ run_container_t *dst) {
+ run_container_grow(dst, src_1->cardinality + src_2->n_runs, false);
+ int32_t rlepos = 0;
+ int32_t arraypos = 0;
+ dst->n_runs = 0;
+
+ while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) {
+ if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
+ run_container_smart_append_exclusive(dst,
src_2->runs[rlepos].value,
+ src_2->runs[rlepos].length);
+ rlepos++;
+ } else {
+ run_container_smart_append_exclusive(dst, src_1->array[arraypos],
+ 0);
+ arraypos++;
+ }
+ }
+ while (arraypos < src_1->cardinality) {
+ run_container_smart_append_exclusive(dst, src_1->array[arraypos], 0);
+ arraypos++;
+ }
+ while (rlepos < src_2->n_runs) {
+ run_container_smart_append_exclusive(dst, src_2->runs[rlepos].value,
+ src_2->runs[rlepos].length);
+ rlepos++;
+ }
+}
+
+/* dst does not indicate a valid container initially. Eventually it
+ * can become any kind of container.
+ */
+
+int run_run_container_xor(const run_container_t *src_1,
+ const run_container_t *src_2, container_t **dst) {
+ run_container_t *ans = run_container_create();
+ run_container_xor(src_1, src_2, ans);
+ uint8_t typecode_after;
+ *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after);
+ return typecode_after;
+}
+
+/*
+ * Java implementation (as of May 2016) for array_run, run_run
+ * and bitset_run don't do anything different for inplace.
+ * Could adopt the mixed_union.c approach instead (ie, using
+ * smart_append_exclusive)
+ *
+ */
+
+bool array_array_container_xor(const array_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst) {
+ int totalCardinality =
+ src_1->cardinality + src_2->cardinality; // upper bound
+ if (totalCardinality <= DEFAULT_MAX_SIZE) {
+ *dst = array_container_create_given_capacity(totalCardinality);
+ array_container_xor(src_1, src_2, CAST_array(*dst));
+ return false; // not a bitset
+ }
+ *dst = bitset_container_from_array(src_1);
+ bool returnval = true; // expect a bitset
+ bitset_container_t *ourbitset = CAST_bitset(*dst);
+ ourbitset->cardinality = (uint32_t)bitset_flip_list_withcard(
+ ourbitset->words, src_1->cardinality, src_2->array,
src_2->cardinality);
+ if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
+ // need to convert!
+ *dst = array_container_from_bitset(ourbitset);
+ bitset_container_free(ourbitset);
+ returnval = false; // not going to be a bitset
+ }
+
+ return returnval;
+}
+
+bool array_array_container_lazy_xor(const array_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst) {
+ int totalCardinality = src_1->cardinality + src_2->cardinality;
+ //
+ // We assume that operations involving bitset containers will be faster
than
+ // operations involving solely array containers, except maybe when array
+ // containers are small. Indeed, for example, it is cheap to compute the
+ // exclusive union between an array and a bitset container, generally more
+ // so than between a large array and another array. So it is advantageous
to
+ // favour bitset containers during the computation. Of course, if we
convert
+ // array containers eagerly to bitset containers, we may later need to
+ // revert the bitset containers to array containerr to satisfy the Roaring
+ // format requirements, but such one-time conversions at the end may not be
+ // overly expensive. We arrived to this design based on extensive
+ // benchmarking on unions. For XOR/exclusive union, we simply followed the
+ // heuristic used by the unions (see mixed_union.c). Further tuning is
+ // possible.
+ //
+ if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
+ *dst = array_container_create_given_capacity(totalCardinality);
+ if (*dst != NULL) array_container_xor(src_1, src_2, CAST_array(*dst));
+ return false; // not a bitset
+ }
+ *dst = bitset_container_from_array(src_1);
+ bool returnval = true; // expect a bitset (maybe, for XOR??)
+ if (*dst != NULL) {
+ bitset_container_t *ourbitset = CAST_bitset(*dst);
+ bitset_flip_list(ourbitset->words, src_2->array, src_2->cardinality);
+ ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
+ }
+ return returnval;
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially). Return value is
+ * "dst is a bitset"
+ */
+
+bool bitset_bitset_container_xor(const bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst) {
+ bitset_container_t *ans = bitset_container_create();
+ int card = bitset_container_xor(src_1, src_2, ans);
+ if (card <= DEFAULT_MAX_SIZE) {
+ *dst = array_container_from_bitset(ans);
+ bitset_container_free(ans);
+ return false; // not bitset
+ } else {
+ *dst = ans;
+ return true;
+ }
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially). It will modify src_1
+ * to be dst if the result is a bitset. Otherwise, it will
+ * free src_1 and dst will be a new array container. In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset */
+
+bool bitset_array_container_ixor(bitset_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst) {
+ *dst = src_1;
+ src_1->cardinality = (uint32_t)bitset_flip_list_withcard(
+ src_1->words, src_1->cardinality, src_2->array, src_2->cardinality);
+
+ if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
+ *dst = array_container_from_bitset(src_1);
+ bitset_container_free(src_1);
+ return false; // not bitset
+ } else
+ return true;
+}
+
+/* a bunch of in-place, some of which may not *really* be inplace.
+ * TODO: write actual inplace routine if efficiency warrants it
+ * Anything inplace with a bitset is a good candidate
+ */
+
+bool bitset_bitset_container_ixor(bitset_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst) {
+ int card = bitset_container_xor(src_1, src_2, src_1);
+ if (card <= DEFAULT_MAX_SIZE) {
+ *dst = array_container_from_bitset(src_1);
+ bitset_container_free(src_1);
+ return false; // not bitset
+ } else {
+ *dst = src_1;
+ return true;
+ }
+}
+
+bool array_bitset_container_ixor(array_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst) {
+ bool ans = array_bitset_container_xor(src_1, src_2, dst);
+ array_container_free(src_1);
+ return ans;
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_ixor(run_container_t *src_1,
+ const bitset_container_t *src_2,
+ container_t **dst) {
+ bool ans = run_bitset_container_xor(src_1, src_2, dst);
+ run_container_free(src_1);
+ return ans;
+}
+
+bool bitset_run_container_ixor(bitset_container_t *src_1,
+ const run_container_t *src_2,
+ container_t **dst) {
+ bool ans = run_bitset_container_xor(src_2, src_1, dst);
+ bitset_container_free(src_1);
+ return ans;
+}
+
+/* dst does not indicate a valid container initially. Eventually it
+ * can become any kind of container.
+ */
+
+int array_run_container_ixor(array_container_t *src_1,
+ const run_container_t *src_2, container_t **dst) {
+ int ans = array_run_container_xor(src_1, src_2, dst);
+ array_container_free(src_1);
+ return ans;
+}
+
+int run_array_container_ixor(run_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst) {
+ int ans = array_run_container_xor(src_2, src_1, dst);
+ run_container_free(src_1);
+ return ans;
+}
+
+bool array_array_container_ixor(array_container_t *src_1,
+ const array_container_t *src_2,
+ container_t **dst) {
+ bool ans = array_array_container_xor(src_1, src_2, dst);
+ array_container_free(src_1);
+ return ans;
+}
+
+int run_run_container_ixor(run_container_t *src_1, const run_container_t
*src_2,
+ container_t **dst) {
+ int ans = run_run_container_xor(src_1, src_2, dst);
+ run_container_free(src_1);
+ return ans;
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/mixed_xor.c */
+/* begin file src/containers/run.c */
+#include <stdio.h>
+#include <stdlib.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+extern inline uint16_t run_container_minimum(const run_container_t *run);
+extern inline uint16_t run_container_maximum(const run_container_t *run);
+extern inline int32_t interleavedBinarySearch(const rle16_t *array,
+ int32_t lenarray, uint16_t ikey);
+extern inline bool run_container_contains(const run_container_t *run,
+ uint16_t pos);
+extern inline int run_container_index_equalorlarger(const run_container_t *arr,
+ uint16_t x);
+extern inline bool run_container_is_full(const run_container_t *run);
+extern inline bool run_container_nonzero_cardinality(const run_container_t
*rc);
+extern inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs);
+extern inline run_container_t *run_container_create_range(uint32_t start,
+ uint32_t stop);
+extern inline int run_container_cardinality(const run_container_t *run);
+
+bool run_container_add(run_container_t *run, uint16_t pos) {
+ int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
+ if (index >= 0) return false; // already there
+ index = -index - 2; // points to preceding value, possibly -1
+ if (index >= 0) { // possible match
+ int32_t offset = pos - run->runs[index].value;
+ int32_t le = run->runs[index].length;
+ if (offset <= le) return false; // already there
+ if (offset == le + 1) {
+ // we may need to fuse
+ if (index + 1 < run->n_runs) {
+ if (run->runs[index + 1].value == pos + 1) {
+ // indeed fusion is needed
+ run->runs[index].length = run->runs[index + 1].value +
+ run->runs[index + 1].length -
+ run->runs[index].value;
+ recoverRoomAtIndex(run, (uint16_t)(index + 1));
+ return true;
+ }
+ }
+ run->runs[index].length++;
+ return true;
+ }
+ if (index + 1 < run->n_runs) {
+ // we may need to fuse
+ if (run->runs[index + 1].value == pos + 1) {
+ // indeed fusion is needed
+ run->runs[index + 1].value = pos;
+ run->runs[index + 1].length = run->runs[index + 1].length + 1;
+ return true;
+ }
+ }
+ }
+ if (index == -1) {
+ // we may need to extend the first run
+ if (0 < run->n_runs) {
+ if (run->runs[0].value == pos + 1) {
+ run->runs[0].length++;
+ run->runs[0].value--;
+ return true;
+ }
+ }
+ }
+ makeRoomAtIndex(run, (uint16_t)(index + 1));
+ run->runs[index + 1].value = pos;
+ run->runs[index + 1].length = 0;
+ return true;
+}
+
+/* Create a new run container. Return NULL in case of failure. */
+run_container_t *run_container_create_given_capacity(int32_t size) {
+ run_container_t *run;
+ /* Allocate the run container itself. */
+ if ((run = (run_container_t *)roaring_malloc(sizeof(run_container_t))) ==
+ NULL) {
+ return NULL;
+ }
+ if (size <= 0) { // we don't want to rely on malloc(0)
+ run->runs = NULL;
+ } else if ((run->runs = (rle16_t *)roaring_malloc(sizeof(rle16_t) *
+ size)) == NULL) {
+ roaring_free(run);
+ return NULL;
+ }
+ run->capacity = size;
+ run->n_runs = 0;
+ return run;
+}
+
+int run_container_shrink_to_fit(run_container_t *src) {
+ if (src->n_runs == src->capacity) return 0; // nothing to do
+ int savings = src->capacity - src->n_runs;
+ src->capacity = src->n_runs;
+ rle16_t *oldruns = src->runs;
+ src->runs =
+ (rle16_t *)roaring_realloc(oldruns, src->capacity * sizeof(rle16_t));
+ if (src->runs == NULL) roaring_free(oldruns); // should never happen?
+ return savings;
+}
+/* Create a new run container. Return NULL in case of failure. */
+run_container_t *run_container_create(void) {
+ return run_container_create_given_capacity(RUN_DEFAULT_INIT_SIZE);
+}
+
+ALLOW_UNALIGNED
+run_container_t *run_container_clone(const run_container_t *src) {
+ run_container_t *run = run_container_create_given_capacity(src->capacity);
+ if (run == NULL) return NULL;
+ run->capacity = src->capacity;
+ run->n_runs = src->n_runs;
+ memcpy(run->runs, src->runs, src->n_runs * sizeof(rle16_t));
+ return run;
+}
+
+void run_container_offset(const run_container_t *c, container_t **loc,
+ container_t **hic, uint16_t offset) {
+ run_container_t *lo = NULL, *hi = NULL;
+
+ bool split;
+ int lo_cap, hi_cap;
+ int top, pivot;
+
+ top = (1 << 16) - offset;
+ pivot = run_container_index_equalorlarger(c, top);
+
+ if (pivot == -1) {
+ split = false;
+ lo_cap = c->n_runs;
+ hi_cap = 0;
+ } else {
+ split = c->runs[pivot].value < top;
+ lo_cap = pivot + (split ? 1 : 0);
+ hi_cap = c->n_runs - pivot;
+ }
+
+ if (loc && lo_cap) {
+ lo = run_container_create_given_capacity(lo_cap);
+ memcpy(lo->runs, c->runs, lo_cap * sizeof(rle16_t));
+ lo->n_runs = lo_cap;
+ for (int i = 0; i < lo_cap; ++i) {
+ lo->runs[i].value += offset;
+ }
+ *loc = (container_t *)lo;
+ }
+
+ if (hic && hi_cap) {
+ hi = run_container_create_given_capacity(hi_cap);
+ memcpy(hi->runs, c->runs + pivot, hi_cap * sizeof(rle16_t));
+ hi->n_runs = hi_cap;
+ for (int i = 0; i < hi_cap; ++i) {
+ hi->runs[i].value += offset;
+ }
+ *hic = (container_t *)hi;
+ }
+
+ // Fix the split.
+ if (split) {
+ if (lo != NULL) {
+ // Add the missing run to 'lo', exhausting length.
+ lo->runs[lo->n_runs - 1].length =
+ (1 << 16) - lo->runs[lo->n_runs - 1].value - 1;
+ }
+
+ if (hi != NULL) {
+ // Fix the first run in 'hi'.
+ hi->runs[0].length -= UINT16_MAX - hi->runs[0].value + 1;
+ hi->runs[0].value = 0;
+ }
+ }
+}
+
+/* Free memory. */
+void run_container_free(run_container_t *run) {
+ if (run == NULL) return;
+ roaring_free(run->runs);
+ roaring_free(run);
+}
+
+void run_container_grow(run_container_t *run, int32_t min, bool copy) {
+ int32_t newCapacity = (run->capacity == 0) ? RUN_DEFAULT_INIT_SIZE
+ : run->capacity < 64 ? run->capacity * 2
+ : run->capacity < 1024 ? run->capacity * 3 / 2
+ : run->capacity * 5 / 4;
+ if (newCapacity < min) newCapacity = min;
+ run->capacity = newCapacity;
+ assert(run->capacity >= min);
+ if (copy) {
+ rle16_t *oldruns = run->runs;
+ run->runs = (rle16_t *)roaring_realloc(oldruns,
+ run->capacity *
sizeof(rle16_t));
+ if (run->runs == NULL) roaring_free(oldruns);
+ } else {
+ roaring_free(run->runs);
+ run->runs = (rle16_t *)roaring_malloc(run->capacity * sizeof(rle16_t));
+ }
+ // We may have run->runs == NULL.
+}
+
+/* copy one container into another */
+void run_container_copy(const run_container_t *src, run_container_t *dst) {
+ const int32_t n_runs = src->n_runs;
+ if (src->n_runs > dst->capacity) {
+ run_container_grow(dst, n_runs, false);
+ }
+ dst->n_runs = n_runs;
+ memcpy(dst->runs, src->runs, sizeof(rle16_t) * n_runs);
+}
+
+/* Compute the union of `src_1' and `src_2' and write the result to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void run_container_union(const run_container_t *src_1,
+ const run_container_t *src_2, run_container_t *dst) {
+ // TODO: this could be a lot more efficient
+
+ // we start out with inexpensive checks
+ const bool if1 = run_container_is_full(src_1);
+ const bool if2 = run_container_is_full(src_2);
+ if (if1 || if2) {
+ if (if1) {
+ run_container_copy(src_1, dst);
+ return;
+ }
+ if (if2) {
+ run_container_copy(src_2, dst);
+ return;
+ }
+ }
+ const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
+ if (dst->capacity < neededcapacity)
+ run_container_grow(dst, neededcapacity, false);
+ dst->n_runs = 0;
+ int32_t rlepos = 0;
+ int32_t xrlepos = 0;
+
+ rle16_t previousrle;
+ if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) {
+ previousrle = run_container_append_first(dst, src_1->runs[rlepos]);
+ rlepos++;
+ } else {
+ previousrle = run_container_append_first(dst, src_2->runs[xrlepos]);
+ xrlepos++;
+ }
+
+ while ((xrlepos < src_2->n_runs) && (rlepos < src_1->n_runs)) {
+ rle16_t newrl;
+ if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) {
+ newrl = src_1->runs[rlepos];
+ rlepos++;
+ } else {
+ newrl = src_2->runs[xrlepos];
+ xrlepos++;
+ }
+ run_container_append(dst, newrl, &previousrle);
+ }
+ while (xrlepos < src_2->n_runs) {
+ run_container_append(dst, src_2->runs[xrlepos], &previousrle);
+ xrlepos++;
+ }
+ while (rlepos < src_1->n_runs) {
+ run_container_append(dst, src_1->runs[rlepos], &previousrle);
+ rlepos++;
+ }
+}
+
+/* Compute the union of `src_1' and `src_2' and write the result to `src_1'
+ */
+void run_container_union_inplace(run_container_t *src_1,
+ const run_container_t *src_2) {
+ // TODO: this could be a lot more efficient
+
+ // we start out with inexpensive checks
+ const bool if1 = run_container_is_full(src_1);
+ const bool if2 = run_container_is_full(src_2);
+ if (if1 || if2) {
+ if (if1) {
+ return;
+ }
+ if (if2) {
+ run_container_copy(src_2, src_1);
+ return;
+ }
+ }
+ // we move the data to the end of the current array
+ const int32_t maxoutput = src_1->n_runs + src_2->n_runs;
+ const int32_t neededcapacity = maxoutput + src_1->n_runs;
+ if (src_1->capacity < neededcapacity)
+ run_container_grow(src_1, neededcapacity, true);
+ memmove(src_1->runs + maxoutput, src_1->runs,
+ src_1->n_runs * sizeof(rle16_t));
+ rle16_t *inputsrc1 = src_1->runs + maxoutput;
+ const int32_t input1nruns = src_1->n_runs;
+ src_1->n_runs = 0;
+ int32_t rlepos = 0;
+ int32_t xrlepos = 0;
+
+ rle16_t previousrle;
+ if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) {
+ previousrle = run_container_append_first(src_1, inputsrc1[rlepos]);
+ rlepos++;
+ } else {
+ previousrle = run_container_append_first(src_1, src_2->runs[xrlepos]);
+ xrlepos++;
+ }
+ while ((xrlepos < src_2->n_runs) && (rlepos < input1nruns)) {
+ rle16_t newrl;
+ if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) {
+ newrl = inputsrc1[rlepos];
+ rlepos++;
+ } else {
+ newrl = src_2->runs[xrlepos];
+ xrlepos++;
+ }
+ run_container_append(src_1, newrl, &previousrle);
+ }
+ while (xrlepos < src_2->n_runs) {
+ run_container_append(src_1, src_2->runs[xrlepos], &previousrle);
+ xrlepos++;
+ }
+ while (rlepos < input1nruns) {
+ run_container_append(src_1, inputsrc1[rlepos], &previousrle);
+ rlepos++;
+ }
+}
+
+/* Compute the symmetric difference of `src_1' and `src_2' and write the result
+ * to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void run_container_xor(const run_container_t *src_1,
+ const run_container_t *src_2, run_container_t *dst) {
+ // don't bother to convert xor with full range into negation
+ // since negation is implemented similarly
+
+ const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
+ if (dst->capacity < neededcapacity)
+ run_container_grow(dst, neededcapacity, false);
+
+ int32_t pos1 = 0;
+ int32_t pos2 = 0;
+ dst->n_runs = 0;
+
+ while ((pos1 < src_1->n_runs) && (pos2 < src_2->n_runs)) {
+ if (src_1->runs[pos1].value <= src_2->runs[pos2].value) {
+ run_container_smart_append_exclusive(dst, src_1->runs[pos1].value,
+ src_1->runs[pos1].length);
+ pos1++;
+ } else {
+ run_container_smart_append_exclusive(dst, src_2->runs[pos2].value,
+ src_2->runs[pos2].length);
+ pos2++;
+ }
+ }
+ while (pos1 < src_1->n_runs) {
+ run_container_smart_append_exclusive(dst, src_1->runs[pos1].value,
+ src_1->runs[pos1].length);
+ pos1++;
+ }
+
+ while (pos2 < src_2->n_runs) {
+ run_container_smart_append_exclusive(dst, src_2->runs[pos2].value,
+ src_2->runs[pos2].length);
+ pos2++;
+ }
+}
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+void run_container_intersection(const run_container_t *src_1,
+ const run_container_t *src_2,
+ run_container_t *dst) {
+ const bool if1 = run_container_is_full(src_1);
+ const bool if2 = run_container_is_full(src_2);
+ if (if1 || if2) {
+ if (if1) {
+ run_container_copy(src_2, dst);
+ return;
+ }
+ if (if2) {
+ run_container_copy(src_1, dst);
+ return;
+ }
+ }
+ // TODO: this could be a lot more efficient, could use SIMD optimizations
+ const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
+ if (dst->capacity < neededcapacity)
+ run_container_grow(dst, neededcapacity, false);
+ dst->n_runs = 0;
+ int32_t rlepos = 0;
+ int32_t xrlepos = 0;
+ int32_t start = src_1->runs[rlepos].value;
+ int32_t end = start + src_1->runs[rlepos].length + 1;
+ int32_t xstart = src_2->runs[xrlepos].value;
+ int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
+ while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
+ if (end <= xstart) {
+ ++rlepos;
+ if (rlepos < src_1->n_runs) {
+ start = src_1->runs[rlepos].value;
+ end = start + src_1->runs[rlepos].length + 1;
+ }
+ } else if (xend <= start) {
+ ++xrlepos;
+ if (xrlepos < src_2->n_runs) {
+ xstart = src_2->runs[xrlepos].value;
+ xend = xstart + src_2->runs[xrlepos].length + 1;
+ }
+ } else { // they overlap
+ const int32_t lateststart = start > xstart ? start : xstart;
+ int32_t earliestend;
+ if (end == xend) { // improbable
+ earliestend = end;
+ rlepos++;
+ xrlepos++;
+ if (rlepos < src_1->n_runs) {
+ start = src_1->runs[rlepos].value;
+ end = start + src_1->runs[rlepos].length + 1;
+ }
+ if (xrlepos < src_2->n_runs) {
+ xstart = src_2->runs[xrlepos].value;
+ xend = xstart + src_2->runs[xrlepos].length + 1;
+ }
+ } else if (end < xend) {
+ earliestend = end;
+ rlepos++;
+ if (rlepos < src_1->n_runs) {
+ start = src_1->runs[rlepos].value;
+ end = start + src_1->runs[rlepos].length + 1;
+ }
+
+ } else { // end > xend
+ earliestend = xend;
+ xrlepos++;
+ if (xrlepos < src_2->n_runs) {
+ xstart = src_2->runs[xrlepos].value;
+ xend = xstart + src_2->runs[xrlepos].length + 1;
+ }
+ }
+ dst->runs[dst->n_runs].value = (uint16_t)lateststart;
+ dst->runs[dst->n_runs].length =
+ (uint16_t)(earliestend - lateststart - 1);
+ dst->n_runs++;
+ }
+ }
+}
+
+/* Compute the size of the intersection of src_1 and src_2 . */
+int run_container_intersection_cardinality(const run_container_t *src_1,
+ const run_container_t *src_2) {
+ const bool if1 = run_container_is_full(src_1);
+ const bool if2 = run_container_is_full(src_2);
+ if (if1 || if2) {
+ if (if1) {
+ return run_container_cardinality(src_2);
+ }
+ if (if2) {
+ return run_container_cardinality(src_1);
+ }
+ }
+ int answer = 0;
+ int32_t rlepos = 0;
+ int32_t xrlepos = 0;
+ int32_t start = src_1->runs[rlepos].value;
+ int32_t end = start + src_1->runs[rlepos].length + 1;
+ int32_t xstart = src_2->runs[xrlepos].value;
+ int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
+ while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
+ if (end <= xstart) {
+ ++rlepos;
+ if (rlepos < src_1->n_runs) {
+ start = src_1->runs[rlepos].value;
+ end = start + src_1->runs[rlepos].length + 1;
+ }
+ } else if (xend <= start) {
+ ++xrlepos;
+ if (xrlepos < src_2->n_runs) {
+ xstart = src_2->runs[xrlepos].value;
+ xend = xstart + src_2->runs[xrlepos].length + 1;
+ }
+ } else { // they overlap
+ const int32_t lateststart = start > xstart ? start : xstart;
+ int32_t earliestend;
+ if (end == xend) { // improbable
+ earliestend = end;
+ rlepos++;
+ xrlepos++;
+ if (rlepos < src_1->n_runs) {
+ start = src_1->runs[rlepos].value;
+ end = start + src_1->runs[rlepos].length + 1;
+ }
+ if (xrlepos < src_2->n_runs) {
+ xstart = src_2->runs[xrlepos].value;
+ xend = xstart + src_2->runs[xrlepos].length + 1;
+ }
+ } else if (end < xend) {
+ earliestend = end;
+ rlepos++;
+ if (rlepos < src_1->n_runs) {
+ start = src_1->runs[rlepos].value;
+ end = start + src_1->runs[rlepos].length + 1;
+ }
+
+ } else { // end > xend
+ earliestend = xend;
+ xrlepos++;
+ if (xrlepos < src_2->n_runs) {
+ xstart = src_2->runs[xrlepos].value;
+ xend = xstart + src_2->runs[xrlepos].length + 1;
+ }
+ }
+ answer += earliestend - lateststart;
+ }
+ }
+ return answer;
+}
+
+bool run_container_intersect(const run_container_t *src_1,
+ const run_container_t *src_2) {
+ const bool if1 = run_container_is_full(src_1);
+ const bool if2 = run_container_is_full(src_2);
+ if (if1 || if2) {
+ if (if1) {
+ return !run_container_empty(src_2);
+ }
+ if (if2) {
+ return !run_container_empty(src_1);
+ }
+ }
+ int32_t rlepos = 0;
+ int32_t xrlepos = 0;
+ int32_t start = src_1->runs[rlepos].value;
+ int32_t end = start + src_1->runs[rlepos].length + 1;
+ int32_t xstart = src_2->runs[xrlepos].value;
+ int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
+ while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
+ if (end <= xstart) {
+ ++rlepos;
+ if (rlepos < src_1->n_runs) {
+ start = src_1->runs[rlepos].value;
+ end = start + src_1->runs[rlepos].length + 1;
+ }
+ } else if (xend <= start) {
+ ++xrlepos;
+ if (xrlepos < src_2->n_runs) {
+ xstart = src_2->runs[xrlepos].value;
+ xend = xstart + src_2->runs[xrlepos].length + 1;
+ }
+ } else { // they overlap
+ return true;
+ }
+ }
+ return false;
+}
+
+/* Compute the difference of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+void run_container_andnot(const run_container_t *src_1,
+ const run_container_t *src_2, run_container_t *dst) {
+ // following Java implementation as of June 2016
+
+ if (dst->capacity < src_1->n_runs + src_2->n_runs)
+ run_container_grow(dst, src_1->n_runs + src_2->n_runs, false);
+
+ dst->n_runs = 0;
+
+ int rlepos1 = 0;
+ int rlepos2 = 0;
+ int32_t start = src_1->runs[rlepos1].value;
+ int32_t end = start + src_1->runs[rlepos1].length + 1;
+ int32_t start2 = src_2->runs[rlepos2].value;
+ int32_t end2 = start2 + src_2->runs[rlepos2].length + 1;
+
+ while ((rlepos1 < src_1->n_runs) && (rlepos2 < src_2->n_runs)) {
+ if (end <= start2) {
+ // output the first run
+ dst->runs[dst->n_runs++] =
+ CROARING_MAKE_RLE16(start, end - start - 1);
+ rlepos1++;
+ if (rlepos1 < src_1->n_runs) {
+ start = src_1->runs[rlepos1].value;
+ end = start + src_1->runs[rlepos1].length + 1;
+ }
+ } else if (end2 <= start) {
+ // exit the second run
+ rlepos2++;
+ if (rlepos2 < src_2->n_runs) {
+ start2 = src_2->runs[rlepos2].value;
+ end2 = start2 + src_2->runs[rlepos2].length + 1;
+ }
+ } else {
+ if (start < start2) {
+ dst->runs[dst->n_runs++] =
+ CROARING_MAKE_RLE16(start, start2 - start - 1);
+ }
+ if (end2 < end) {
+ start = end2;
+ } else {
+ rlepos1++;
+ if (rlepos1 < src_1->n_runs) {
+ start = src_1->runs[rlepos1].value;
+ end = start + src_1->runs[rlepos1].length + 1;
+ }
+ }
+ }
+ }
+ if (rlepos1 < src_1->n_runs) {
+ dst->runs[dst->n_runs++] = CROARING_MAKE_RLE16(start, end - start - 1);
+ rlepos1++;
+ if (rlepos1 < src_1->n_runs) {
+ memcpy(dst->runs + dst->n_runs, src_1->runs + rlepos1,
+ sizeof(rle16_t) * (src_1->n_runs - rlepos1));
+ dst->n_runs += src_1->n_runs - rlepos1;
+ }
+ }
+}
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void run_container_printf(const run_container_t *cont) {
+ for (int i = 0; i < cont->n_runs; ++i) {
+ uint16_t run_start = cont->runs[i].value;
+ uint16_t le = cont->runs[i].length;
+ printf("[%d,%d]", run_start, run_start + le);
+ }
+}
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit
+ * integers starting at base.
+ */
+void run_container_printf_as_uint32_array(const run_container_t *cont,
+ uint32_t base) {
+ if (cont->n_runs == 0) return;
+ {
+ uint32_t run_start = base + cont->runs[0].value;
+ uint16_t le = cont->runs[0].length;
+ printf("%u", run_start);
+ for (uint32_t j = 1; j <= le; ++j) printf(",%u", run_start + j);
+ }
+ for (int32_t i = 1; i < cont->n_runs; ++i) {
+ uint32_t run_start = base + cont->runs[i].value;
+ uint16_t le = cont->runs[i].length;
+ for (uint32_t j = 0; j <= le; ++j) printf(",%u", run_start + j);
+ }
+}
+
+/*
+ * Validate the container. Returns true if valid.
+ */
+bool run_container_validate(const run_container_t *run, const char **reason) {
+ if (run->n_runs < 0) {
+ *reason = "negative run count";
+ return false;
+ }
+ if (run->capacity < 0) {
+ *reason = "negative run capacity";
+ return false;
+ }
+ if (run->capacity < run->n_runs) {
+ *reason = "capacity less than run count";
+ return false;
+ }
+
+ if (run->n_runs == 0) {
+ *reason = "zero run count";
+ return false;
+ }
+ if (run->runs == NULL) {
+ *reason = "NULL runs";
+ return false;
+ }
+
+ // Use uint32_t to avoid overflow issues on ranges that contain UINT16_MAX.
+ uint32_t last_end = 0;
+ for (int i = 0; i < run->n_runs; ++i) {
+ uint32_t start = run->runs[i].value;
+ uint32_t end = start + run->runs[i].length + 1;
+ if (end <= start) {
+ *reason = "run start + length overflow";
+ return false;
+ }
+ if (end > (1 << 16)) {
+ *reason = "run start + length too large";
+ return false;
+ }
+ if (start < last_end) {
+ *reason = "run start less than last end";
+ return false;
+ }
+ if (start == last_end && last_end != 0) {
+ *reason = "run start equal to last end, should have combined";
+ return false;
+ }
+ last_end = end;
+ }
+ return true;
+}
+
+int32_t run_container_write(const run_container_t *container, char *buf) {
+ uint16_t cast_16 = container->n_runs;
+ memcpy(buf, &cast_16, sizeof(uint16_t));
+ memcpy(buf + sizeof(uint16_t), container->runs,
+ container->n_runs * sizeof(rle16_t));
+ return run_container_size_in_bytes(container);
+}
+
+int32_t run_container_read(int32_t cardinality, run_container_t *container,
+ const char *buf) {
+ (void)cardinality;
+ uint16_t cast_16;
+ memcpy(&cast_16, buf, sizeof(uint16_t));
+ container->n_runs = cast_16;
+ if (container->n_runs > container->capacity)
+ run_container_grow(container, container->n_runs, false);
+ if (container->n_runs > 0) {
+ memcpy(container->runs, buf + sizeof(uint16_t),
+ container->n_runs * sizeof(rle16_t));
+ }
+ return run_container_size_in_bytes(container);
+}
+
+bool run_container_iterate(const run_container_t *cont, uint32_t base,
+ roaring_iterator iterator, void *ptr) {
+ for (int i = 0; i < cont->n_runs; ++i) {
+ uint32_t run_start = base + cont->runs[i].value;
+ uint16_t le = cont->runs[i].length;
+
+ for (int j = 0; j <= le; ++j)
+ if (!iterator(run_start + j, ptr)) return false;
+ }
+ return true;
+}
+
+bool run_container_iterate64(const run_container_t *cont, uint32_t base,
+ roaring_iterator64 iterator, uint64_t high_bits,
+ void *ptr) {
+ for (int i = 0; i < cont->n_runs; ++i) {
+ uint32_t run_start = base + cont->runs[i].value;
+ uint16_t le = cont->runs[i].length;
+
+ for (int j = 0; j <= le; ++j)
+ if (!iterator(high_bits | (uint64_t)(run_start + j), ptr))
+ return false;
+ }
+ return true;
+}
+
+bool run_container_is_subset(const run_container_t *container1,
+ const run_container_t *container2) {
+ int i1 = 0, i2 = 0;
+ while (i1 < container1->n_runs && i2 < container2->n_runs) {
+ int start1 = container1->runs[i1].value;
+ int stop1 = start1 + container1->runs[i1].length;
+ int start2 = container2->runs[i2].value;
+ int stop2 = start2 + container2->runs[i2].length;
+ if (start1 < start2) {
+ return false;
+ } else { // start1 >= start2
+ if (stop1 < stop2) {
+ i1++;
+ } else if (stop1 == stop2) {
+ i1++;
+ i2++;
+ } else { // stop1 > stop2
+ i2++;
+ }
+ }
+ }
+ if (i1 == container1->n_runs) {
+ return true;
+ } else {
+ return false;
+ }
+}
+
+// TODO: write smart_append_exclusive version to match the overloaded 1 param
+// Java version (or is it even used?)
+
+// follows the Java implementation closely
+// length is the rle-value. Ie, run [10,12) uses a length value 1.
+void run_container_smart_append_exclusive(run_container_t *src,
+ const uint16_t start,
+ const uint16_t length) {
+ int old_end;
+ rle16_t *last_run = src->n_runs ? src->runs + (src->n_runs - 1) : NULL;
+ rle16_t *appended_last_run = src->runs + src->n_runs;
+
+ if (!src->n_runs ||
+ (start > (old_end = last_run->value + last_run->length + 1))) {
+ *appended_last_run = CROARING_MAKE_RLE16(start, length);
+ src->n_runs++;
+ return;
+ }
+ if (old_end == start) {
+ // we merge
+ last_run->length += (length + 1);
+ return;
+ }
+ int new_end = start + length + 1;
+
+ if (start == last_run->value) {
+ // wipe out previous
+ if (new_end < old_end) {
+ *last_run = CROARING_MAKE_RLE16(new_end, old_end - new_end - 1);
+ return;
+ } else if (new_end > old_end) {
+ *last_run = CROARING_MAKE_RLE16(old_end, new_end - old_end - 1);
+ return;
+ } else {
+ src->n_runs--;
+ return;
+ }
+ }
+ last_run->length = start - last_run->value - 1;
+ if (new_end < old_end) {
+ *appended_last_run =
+ CROARING_MAKE_RLE16(new_end, old_end - new_end - 1);
+ src->n_runs++;
+ } else if (new_end > old_end) {
+ *appended_last_run =
+ CROARING_MAKE_RLE16(old_end, new_end - old_end - 1);
+ src->n_runs++;
+ }
+}
+
+bool run_container_select(const run_container_t *container,
+ uint32_t *start_rank, uint32_t rank,
+ uint32_t *element) {
+ for (int i = 0; i < container->n_runs; i++) {
+ uint16_t length = container->runs[i].length;
+ if (rank <= *start_rank + length) {
+ uint16_t value = container->runs[i].value;
+ *element = value + rank - (*start_rank);
+ return true;
+ } else
+ *start_rank += length + 1;
+ }
+ return false;
+}
+
+int run_container_rank(const run_container_t *container, uint16_t x) {
+ int sum = 0;
+ uint32_t x32 = x;
+ for (int i = 0; i < container->n_runs; i++) {
+ uint32_t startpoint = container->runs[i].value;
+ uint32_t length = container->runs[i].length;
+ uint32_t endpoint = length + startpoint;
+ if (x <= endpoint) {
+ if (x < startpoint) break;
+ return sum + (x32 - startpoint) + 1;
+ } else {
+ sum += length + 1;
+ }
+ }
+ return sum;
+}
+uint32_t run_container_rank_many(const run_container_t *container,
+ uint64_t start_rank, const uint32_t *begin,
+ const uint32_t *end, uint64_t *ans) {
+ const uint16_t high = (uint16_t)((*begin) >> 16);
+ const uint32_t *iter = begin;
+ int sum = 0;
+ int i = 0;
+ for (; iter != end; iter++) {
+ uint32_t x = *iter;
+ uint16_t xhigh = (uint16_t)(x >> 16);
+ if (xhigh != high) return iter - begin; // stop at next container
+
+ uint32_t x32 = x & 0xFFFF;
+ while (i < container->n_runs) {
+ uint32_t startpoint = container->runs[i].value;
+ uint32_t length = container->runs[i].length;
+ uint32_t endpoint = length + startpoint;
+ if (x32 <= endpoint) {
+ if (x32 < startpoint) {
+ *(ans++) = start_rank + sum;
+ } else {
+ *(ans++) = start_rank + sum + (x32 - startpoint) + 1;
+ }
+ break;
+ } else {
+ sum += length + 1;
+ i++;
+ }
+ }
+ if (i >= container->n_runs) *(ans++) = start_rank + sum;
+ }
+
+ return iter - begin;
+}
+
+int run_container_get_index(const run_container_t *container, uint16_t x) {
+ if (run_container_contains(container, x)) {
+ int sum = 0;
+ uint32_t x32 = x;
+ for (int i = 0; i < container->n_runs; i++) {
+ uint32_t startpoint = container->runs[i].value;
+ uint32_t length = container->runs[i].length;
+ uint32_t endpoint = length + startpoint;
+ if (x <= endpoint) {
+ if (x < startpoint) break;
+ return sum + (x32 - startpoint);
+ } else {
+ sum += length + 1;
+ }
+ }
+ return sum - 1;
+ } else {
+ return -1;
+ }
+}
+
+#if defined(CROARING_IS_X64) && CROARING_COMPILER_SUPPORTS_AVX512
+
+CROARING_TARGET_AVX512
+ALLOW_UNALIGNED
+/* Get the cardinality of `run'. Requires an actual computation. */
+static inline int _avx512_run_container_cardinality(
+ const run_container_t *run) {
+ const int32_t n_runs = run->n_runs;
+ const rle16_t *runs = run->runs;
+
+ /* by initializing with n_runs, we omit counting the +1 for each pair. */
+ int sum = n_runs;
+ int32_t k = 0;
+ const int32_t step = sizeof(__m512i) / sizeof(rle16_t);
+ if (n_runs > step) {
+ __m512i total = _mm512_setzero_si512();
+ for (; k + step <= n_runs; k += step) {
+ __m512i ymm1 = _mm512_loadu_si512((const __m512i *)(runs + k));
+ __m512i justlengths = _mm512_srli_epi32(ymm1, 16);
+ total = _mm512_add_epi32(total, justlengths);
+ }
+
+ __m256i lo = _mm512_extracti32x8_epi32(total, 0);
+ __m256i hi = _mm512_extracti32x8_epi32(total, 1);
+
+ // a store might be faster than extract?
+ uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)];
+ _mm256_storeu_si256((__m256i *)buffer, lo);
+ sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) +
+ (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]);
+
+ _mm256_storeu_si256((__m256i *)buffer, hi);
+ sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) +
+ (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]);
+ }
+ for (; k < n_runs; ++k) {
+ sum += runs[k].length;
+ }
+
+ return sum;
+}
+
+CROARING_UNTARGET_AVX512
+
+CROARING_TARGET_AVX2
+ALLOW_UNALIGNED
+/* Get the cardinality of `run'. Requires an actual computation. */
+static inline int _avx2_run_container_cardinality(const run_container_t *run) {
+ const int32_t n_runs = run->n_runs;
+ const rle16_t *runs = run->runs;
+
+ /* by initializing with n_runs, we omit counting the +1 for each pair. */
+ int sum = n_runs;
+ int32_t k = 0;
+ const int32_t step = sizeof(__m256i) / sizeof(rle16_t);
+ if (n_runs > step) {
+ __m256i total = _mm256_setzero_si256();
+ for (; k + step <= n_runs; k += step) {
+ __m256i ymm1 = _mm256_lddqu_si256((const __m256i *)(runs + k));
+ __m256i justlengths = _mm256_srli_epi32(ymm1, 16);
+ total = _mm256_add_epi32(total, justlengths);
+ }
+ // a store might be faster than extract?
+ uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)];
+ _mm256_storeu_si256((__m256i *)buffer, total);
+ sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) +
+ (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]);
+ }
+ for (; k < n_runs; ++k) {
+ sum += runs[k].length;
+ }
+
+ return sum;
+}
+
+ALLOW_UNALIGNED
+int _avx2_run_container_to_uint32_array(void *vout, const run_container_t
*cont,
+ uint32_t base) {
+ int outpos = 0;
+ uint32_t *out = (uint32_t *)vout;
+
+ for (int i = 0; i < cont->n_runs; ++i) {
+ uint32_t run_start = base + cont->runs[i].value;
+ uint16_t le = cont->runs[i].length;
+ if (le < 8) {
+ for (int j = 0; j <= le; ++j) {
+ uint32_t val = run_start + j;
+ memcpy(out + outpos, &val,
+ sizeof(uint32_t)); // should be compiled as a MOV on
x64
+ outpos++;
+ }
+ } else {
+ int j = 0;
+ __m256i run_start_v = _mm256_set1_epi32(run_start);
+ // [8,8,8,8....]
+ __m256i inc = _mm256_set1_epi32(8);
+ // used for generate sequence:
+ // [0, 1, 2, 3...], [8, 9, 10,...]
+ __m256i delta = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
+ for (j = 0; j + 8 <= le; j += 8) {
+ __m256i val_v = _mm256_add_epi32(run_start_v, delta);
+ _mm256_storeu_si256((__m256i *)(out + outpos), val_v);
+ delta = _mm256_add_epi32(inc, delta);
+ outpos += 8;
+ }
+ for (; j <= le; ++j) {
+ uint32_t val = run_start + j;
+ memcpy(out + outpos, &val,
+ sizeof(uint32_t)); // should be compiled as a MOV on
x64
+ outpos++;
+ }
+ }
+ }
+ return outpos;
+}
+
+CROARING_UNTARGET_AVX2
+
+/* Get the cardinality of `run'. Requires an actual computation. */
+static inline int _scalar_run_container_cardinality(
+ const run_container_t *run) {
+ const int32_t n_runs = run->n_runs;
+ const rle16_t *runs = run->runs;
+
+ /* by initializing with n_runs, we omit counting the +1 for each pair. */
+ int sum = n_runs;
+ for (int k = 0; k < n_runs; ++k) {
+ sum += runs[k].length;
+ }
+
+ return sum;
+}
+
+int run_container_cardinality(const run_container_t *run) {
+#if CROARING_COMPILER_SUPPORTS_AVX512
+ if (croaring_hardware_support() & ROARING_SUPPORTS_AVX512) {
+ return _avx512_run_container_cardinality(run);
+ } else
+#endif
+ if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+ return _avx2_run_container_cardinality(run);
+ } else {
+ return _scalar_run_container_cardinality(run);
+ }
+}
+
+int _scalar_run_container_to_uint32_array(void *vout,
+ const run_container_t *cont,
+ uint32_t base) {
+ int outpos = 0;
+ uint32_t *out = (uint32_t *)vout;
+ for (int i = 0; i < cont->n_runs; ++i) {
+ uint32_t run_start = base + cont->runs[i].value;
+ uint16_t le = cont->runs[i].length;
+ for (int j = 0; j <= le; ++j) {
+ uint32_t val = run_start + j;
+ memcpy(out + outpos, &val,
+ sizeof(uint32_t)); // should be compiled as a MOV on x64
+ outpos++;
+ }
+ }
+ return outpos;
+}
+
+int run_container_to_uint32_array(void *vout, const run_container_t *cont,
+ uint32_t base) {
+ if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+ return _avx2_run_container_to_uint32_array(vout, cont, base);
+ } else {
+ return _scalar_run_container_to_uint32_array(vout, cont, base);
+ }
+}
+
+#else
+
+/* Get the cardinality of `run'. Requires an actual computation. */
+ALLOW_UNALIGNED
+int run_container_cardinality(const run_container_t *run) {
+ const int32_t n_runs = run->n_runs;
+ const rle16_t *runs = run->runs;
+
+ /* by initializing with n_runs, we omit counting the +1 for each pair. */
+ int sum = n_runs;
+ for (int k = 0; k < n_runs; ++k) {
+ sum += runs[k].length;
+ }
+
+ return sum;
+}
+
+ALLOW_UNALIGNED
+int run_container_to_uint32_array(void *vout, const run_container_t *cont,
+ uint32_t base) {
+ int outpos = 0;
+ uint32_t *out = (uint32_t *)vout;
+ for (int i = 0; i < cont->n_runs; ++i) {
+ uint32_t run_start = base + cont->runs[i].value;
+ uint16_t le = cont->runs[i].length;
+ for (int j = 0; j <= le; ++j) {
+ uint32_t val = run_start + j;
+ memcpy(out + outpos, &val,
+ sizeof(uint32_t)); // should be compiled as a MOV on x64
+ outpos++;
+ }
+ }
+ return outpos;
+}
+
+#endif
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic pop
+#endif/* end file src/containers/run.c */
+/* begin file src/isadetection.c */
+
+/* From
+https://github.com/endorno/pytorch/blob/master/torch/lib/TH/generic/simd/simd.h
+Highly modified.
+
+Copyright (c) 2016- Facebook, Inc (Adam Paszke)
+Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
+Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
+Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
+Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
+Copyright (c) 2011-2013 NYU (Clement Farabet)
+Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou,
+Iain Melvin, Jason Weston) Copyright (c) 2006 Idiap Research Institute
+(Samy Bengio) Copyright (c) 2001-2004 Idiap Research Institute (Ronan
Collobert,
+Samy Bengio, Johnny Mariethoz)
+
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+1. Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories
+America and IDIAP Research Institute nor the names of its contributors may be
+ used to endorse or promote products derived from this software without
+ specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdlib.h>
+
+// Binaries produced by Visual Studio 19.38 with solely AVX2 routines
+// can compile to AVX-512 thus causing crashes on non-AVX-512 systems.
+// This appears to affect VS 17.8 and 17.9. We disable AVX-512 and AVX2
+// on these systems. It seems that ClangCL is not affected.
+// https://github.com/RoaringBitmap/CRoaring/pull/603
+#ifndef __clang__
+#if _MSC_VER == 1938
+#define ROARING_DISABLE_AVX 1
+#endif // _MSC_VER == 1938
+#endif // __clang__
+
+// We need portability.h to be included first, see
+// https://github.com/RoaringBitmap/CRoaring/issues/394
+#if CROARING_REGULAR_VISUAL_STUDIO
+#include <intrin.h>
+#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID)
+#include <cpuid.h>
+#endif // CROARING_REGULAR_VISUAL_STUDIO
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+enum croaring_instruction_set {
+ CROARING_DEFAULT = 0x0,
+ CROARING_NEON = 0x1,
+ CROARING_AVX2 = 0x4,
+ CROARING_SSE42 = 0x8,
+ CROARING_PCLMULQDQ = 0x10,
+ CROARING_BMI1 = 0x20,
+ CROARING_BMI2 = 0x40,
+ CROARING_ALTIVEC = 0x80,
+ CROARING_AVX512F = 0x100,
+ CROARING_AVX512DQ = 0x200,
+ CROARING_AVX512BW = 0x400,
+ CROARING_AVX512VBMI2 = 0x800,
+ CROARING_AVX512BITALG = 0x1000,
+ CROARING_AVX512VPOPCNTDQ = 0x2000,
+ CROARING_UNINITIALIZED = 0x8000
+};
+
+#if CROARING_COMPILER_SUPPORTS_AVX512
+unsigned int CROARING_AVX512_REQUIRED =
+ (CROARING_AVX512F | CROARING_AVX512DQ | CROARING_AVX512BW |
+ CROARING_AVX512VBMI2 | CROARING_AVX512BITALG | CROARING_AVX512VPOPCNTDQ);
+#endif
+
+#if defined(__x86_64__) || defined(_M_AMD64) // x64
+
+static inline void cpuid(uint32_t *eax, uint32_t *ebx, uint32_t *ecx,
+ uint32_t *edx) {
+#if CROARING_REGULAR_VISUAL_STUDIO
+ int cpu_info[4];
+ __cpuidex(cpu_info, *eax, *ecx);
+ *eax = cpu_info[0];
+ *ebx = cpu_info[1];
+ *ecx = cpu_info[2];
+ *edx = cpu_info[3];
+#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID)
+ uint32_t level = *eax;
+ __get_cpuid(level, eax, ebx, ecx, edx);
+#else
+ uint32_t a = *eax, b, c = *ecx, d;
+ __asm__("cpuid\n\t" : "+a"(a), "=b"(b), "+c"(c), "=d"(d));
+ *eax = a;
+ *ebx = b;
+ *ecx = c;
+ *edx = d;
+#endif
+}
+
+static inline uint64_t xgetbv(void) {
+#if defined(_MSC_VER)
+ return _xgetbv(0);
+#else
+ uint32_t xcr0_lo, xcr0_hi;
+ __asm__("xgetbv\n\t" : "=a"(xcr0_lo), "=d"(xcr0_hi) : "c"(0));
+ return xcr0_lo | ((uint64_t)xcr0_hi << 32);
+#endif
+}
+
+/**
+ * This is a relatively expensive function but it will get called at most
+ * *once* per compilation units. Normally, the CRoaring library is built
+ * as one compilation unit.
+ */
+static inline uint32_t dynamic_croaring_detect_supported_architectures(void) {
+ uint32_t eax, ebx, ecx, edx;
+ uint32_t host_isa = 0x0;
+ // Can be found on Intel ISA Reference for CPUID
+ static uint32_t cpuid_avx2_bit =
+ 1 << 5; ///< @private Bit 5 of EBX for EAX=0x7
+ static uint32_t cpuid_bmi1_bit =
+ 1 << 3; ///< @private bit 3 of EBX for EAX=0x7
+ static uint32_t cpuid_bmi2_bit =
+ 1 << 8; ///< @private bit 8 of EBX for EAX=0x7
+ static uint32_t cpuid_avx512f_bit =
+ 1 << 16; ///< @private bit 16 of EBX for EAX=0x7
+ static uint32_t cpuid_avx512dq_bit =
+ 1 << 17; ///< @private bit 17 of EBX for EAX=0x7
+ static uint32_t cpuid_avx512bw_bit =
+ 1 << 30; ///< @private bit 30 of EBX for EAX=0x7
+ static uint32_t cpuid_avx512vbmi2_bit =
+ 1 << 6; ///< @private bit 6 of ECX for EAX=0x7
+ static uint32_t cpuid_avx512bitalg_bit =
+ 1 << 12; ///< @private bit 12 of ECX for EAX=0x7
+ static uint32_t cpuid_avx512vpopcntdq_bit =
+ 1 << 14; ///< @private bit 14 of ECX for EAX=0x7
+ static uint64_t cpuid_avx256_saved = 1 << 2; ///< @private bit 2 = AVX
+ static uint64_t cpuid_avx512_saved =
+ 7 << 5; ///< @private bits 5,6,7 = opmask, ZMM_hi256, hi16_ZMM
+ static uint32_t cpuid_sse42_bit =
+ 1 << 20; ///< @private bit 20 of ECX for EAX=0x1
+ static uint32_t cpuid_osxsave =
+ (1 << 26) | (1 << 27); ///< @private bits 26+27 of ECX for EAX=0x1
+ static uint32_t cpuid_pclmulqdq_bit =
+ 1 << 1; ///< @private bit 1 of ECX for EAX=0x1
+
+ // EBX for EAX=0x1
+ eax = 0x1;
+ ecx = 0x0;
+ cpuid(&eax, &ebx, &ecx, &edx);
+
+ if (ecx & cpuid_sse42_bit) {
+ host_isa |= CROARING_SSE42;
+ } else {
+ return host_isa; // everything after is redundant
+ }
+
+ if (ecx & cpuid_pclmulqdq_bit) {
+ host_isa |= CROARING_PCLMULQDQ;
+ }
+
+ if ((ecx & cpuid_osxsave) != cpuid_osxsave) {
+ return host_isa;
+ }
+
+ // xgetbv for checking if the OS saves registers
+ uint64_t xcr0 = xgetbv();
+
+ if ((xcr0 & cpuid_avx256_saved) == 0) {
+ return host_isa;
+ }
+
+ // ECX for EAX=0x7
+ eax = 0x7;
+ ecx = 0x0;
+ cpuid(&eax, &ebx, &ecx, &edx);
+ if (ebx & cpuid_avx2_bit) {
+ host_isa |= CROARING_AVX2;
+ }
+ if (ebx & cpuid_bmi1_bit) {
+ host_isa |= CROARING_BMI1;
+ }
+
+ if (ebx & cpuid_bmi2_bit) {
+ host_isa |= CROARING_BMI2;
+ }
+
+ if (!((xcr0 & cpuid_avx512_saved) == cpuid_avx512_saved)) {
+ return host_isa;
+ }
+
+ if (ebx & cpuid_avx512f_bit) {
+ host_isa |= CROARING_AVX512F;
+ }
+
+ if (ebx & cpuid_avx512bw_bit) {
+ host_isa |= CROARING_AVX512BW;
+ }
+
+ if (ebx & cpuid_avx512dq_bit) {
+ host_isa |= CROARING_AVX512DQ;
+ }
+
+ if (ecx & cpuid_avx512vbmi2_bit) {
+ host_isa |= CROARING_AVX512VBMI2;
+ }
+
+ if (ecx & cpuid_avx512bitalg_bit) {
+ host_isa |= CROARING_AVX512BITALG;
+ }
+
+ if (ecx & cpuid_avx512vpopcntdq_bit) {
+ host_isa |= CROARING_AVX512VPOPCNTDQ;
+ }
+
+ return host_isa;
+}
+
+#endif // end SIMD extension detection code
+
+#if defined(__x86_64__) || defined(_M_AMD64) // x64
+
+#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_CPP
+static inline uint32_t croaring_detect_supported_architectures(void) {
+ // thread-safe as per the C++11 standard.
+ static uint32_t buffer = dynamic_croaring_detect_supported_architectures();
+ return buffer;
+}
+#elif CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C
+static uint32_t croaring_detect_supported_architectures(void) {
+ // we use an atomic for thread safety
+ static _Atomic uint32_t buffer = CROARING_UNINITIALIZED;
+ if (buffer == CROARING_UNINITIALIZED) {
+ // atomicity is sufficient
+ buffer = dynamic_croaring_detect_supported_architectures();
+ }
+ return buffer;
+}
+#else
+// If we do not have atomics, we do the best we can.
+static inline uint32_t croaring_detect_supported_architectures(void) {
+ static uint32_t buffer = CROARING_UNINITIALIZED;
+ if (buffer == CROARING_UNINITIALIZED) {
+ buffer = dynamic_croaring_detect_supported_architectures();
+ }
+ return buffer;
+}
+#endif // CROARING_C_ATOMIC
+
+#ifdef ROARING_DISABLE_AVX
+
+int croaring_hardware_support(void) { return 0; }
+
+#elif defined(__AVX512F__) && defined(__AVX512DQ__) && \
+ defined(__AVX512BW__) && defined(__AVX512VBMI2__) && \
+ defined(__AVX512BITALG__) && defined(__AVX512VPOPCNTDQ__)
+int croaring_hardware_support(void) {
+ return ROARING_SUPPORTS_AVX2 | ROARING_SUPPORTS_AVX512;
+}
+#elif defined(__AVX2__)
+
+int croaring_hardware_support(void) {
+ static
+#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C
+ _Atomic
+#endif
+ int support = 0xFFFFFFF;
+ if (support == 0xFFFFFFF) {
+ bool avx512_support = false;
+#if CROARING_COMPILER_SUPPORTS_AVX512
+ avx512_support =
+ ((croaring_detect_supported_architectures() &
+ CROARING_AVX512_REQUIRED) == CROARING_AVX512_REQUIRED);
+#endif
+ support = ROARING_SUPPORTS_AVX2 |
+ (avx512_support ? ROARING_SUPPORTS_AVX512 : 0);
+ }
+ return support;
+}
+#else
+
+int croaring_hardware_support(void) {
+ static
+#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C
+ _Atomic
+#endif
+ int support = 0xFFFFFFF;
+ if (support == 0xFFFFFFF) {
+ bool has_avx2 = (croaring_detect_supported_architectures() &
+ CROARING_AVX2) == CROARING_AVX2;
+ bool has_avx512 = false;
+#if CROARING_COMPILER_SUPPORTS_AVX512
+ has_avx512 = (croaring_detect_supported_architectures() &
+ CROARING_AVX512_REQUIRED) == CROARING_AVX512_REQUIRED;
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+ support = (has_avx2 ? ROARING_SUPPORTS_AVX2 : 0) |
+ (has_avx512 ? ROARING_SUPPORTS_AVX512 : 0);
+ }
+ return support;
+}
+#endif
+
+#endif // defined(__x86_64__) || defined(_M_AMD64) // x64
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/isadetection.c */
+/* begin file src/memory.c */
+#include <stdlib.h>
+
+
+// without the following, we get lots of warnings about posix_memalign
+#ifndef __cplusplus
+extern int posix_memalign(void** __memptr, size_t __alignment, size_t __size);
+#endif //__cplusplus // C++ does not have a well defined signature
+
+// portable version of posix_memalign
+static void* roaring_bitmap_aligned_malloc(size_t alignment, size_t size) {
+ void* p;
+#ifdef _MSC_VER
+ p = _aligned_malloc(size, alignment);
+#elif defined(__MINGW32__) || defined(__MINGW64__)
+ p = __mingw_aligned_malloc(size, alignment);
+#else
+ // somehow, if this is used before including "x86intrin.h", it creates an
+ // implicit defined warning.
+ if (posix_memalign(&p, alignment, size) != 0) return NULL;
+#endif
+ return p;
+}
+
+static void roaring_bitmap_aligned_free(void* memblock) {
+#ifdef _MSC_VER
+ _aligned_free(memblock);
+#elif defined(__MINGW32__) || defined(__MINGW64__)
+ __mingw_aligned_free(memblock);
+#else
+ free(memblock);
+#endif
+}
+
+static roaring_memory_t global_memory_hook = {
+ .malloc = malloc,
+ .realloc = realloc,
+ .calloc = calloc,
+ .free = free,
+ .aligned_malloc = roaring_bitmap_aligned_malloc,
+ .aligned_free = roaring_bitmap_aligned_free,
+};
+
+void roaring_init_memory_hook(roaring_memory_t memory_hook) {
+ global_memory_hook = memory_hook;
+}
+
+void* roaring_malloc(size_t n) { return global_memory_hook.malloc(n); }
+
+void* roaring_realloc(void* p, size_t new_sz) {
+ return global_memory_hook.realloc(p, new_sz);
+}
+
+void* roaring_calloc(size_t n_elements, size_t element_size) {
+ return global_memory_hook.calloc(n_elements, element_size);
+}
+
+void roaring_free(void* p) { global_memory_hook.free(p); }
+
+void* roaring_aligned_malloc(size_t alignment, size_t size) {
+ return global_memory_hook.aligned_malloc(alignment, size);
+}
+
+void roaring_aligned_free(void* p) { global_memory_hook.aligned_free(p); }
+/* end file src/memory.c */
+/* begin file src/roaring.c */
+#include <assert.h>
+#include <inttypes.h>
+#include <limits.h>
+#include <stdarg.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <string.h>
+
+
+// Include after roaring.h
+
+#ifdef __cplusplus
+using namespace ::roaring::internal;
+
+extern "C" {
+namespace roaring {
+namespace api {
+#endif
+
+#define CROARING_SERIALIZATION_ARRAY_UINT32 1
+#define CROARING_SERIALIZATION_CONTAINER 2
+extern inline int roaring_trailing_zeroes(unsigned long long input_num);
+extern inline int roaring_leading_zeroes(unsigned long long input_num);
+extern inline void roaring_bitmap_init_cleared(roaring_bitmap_t *r);
+extern inline bool roaring_bitmap_get_copy_on_write(const roaring_bitmap_t *r);
+extern inline void roaring_bitmap_set_copy_on_write(roaring_bitmap_t *r,
+ bool cow);
+extern inline roaring_bitmap_t *roaring_bitmap_create(void);
+extern inline void roaring_bitmap_add_range(roaring_bitmap_t *r, uint64_t min,
+ uint64_t max);
+extern inline void roaring_bitmap_remove_range(roaring_bitmap_t *r,
+ uint64_t min, uint64_t max);
+
+static inline bool is_cow(const roaring_bitmap_t *r) {
+ return r->high_low_container.flags & ROARING_FLAG_COW;
+}
+static inline bool is_frozen(const roaring_bitmap_t *r) {
+ return r->high_low_container.flags & ROARING_FLAG_FROZEN;
+}
+
+// this is like roaring_bitmap_add, but it populates pointer arguments in such
a
+// way
+// that we can recover the container touched, which, in turn can be used to
+// accelerate some functions (when you repeatedly need to add to the same
+// container)
+static inline container_t *containerptr_roaring_bitmap_add(roaring_bitmap_t *r,
+ uint32_t val,
+ uint8_t *type,
+ int *index) {
+ roaring_array_t *ra = &r->high_low_container;
+
+ uint16_t hb = val >> 16;
+ const int i = ra_get_index(ra, hb);
+ if (i >= 0) {
+ ra_unshare_container_at_index(ra, (uint16_t)i);
+ container_t *c = ra_get_container_at_index(ra, (uint16_t)i, type);
+ uint8_t new_type = *type;
+ container_t *c2 = container_add(c, val & 0xFFFF, *type, &new_type);
+ *index = i;
+ if (c2 != c) {
+ container_free(c, *type);
+ ra_set_container_at_index(ra, i, c2, new_type);
+ *type = new_type;
+ return c2;
+ } else {
+ return c;
+ }
+ } else {
+ array_container_t *new_ac = array_container_create();
+ container_t *c =
+ container_add(new_ac, val & 0xFFFF, ARRAY_CONTAINER_TYPE, type);
+ // we could just assume that it stays an array container
+ ra_insert_new_key_value_at(ra, -i - 1, hb, c, *type);
+ *index = -i - 1;
+ return c;
+ }
+}
+
+roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap) {
+ roaring_bitmap_t *ans =
+ (roaring_bitmap_t *)roaring_malloc(sizeof(roaring_bitmap_t));
+ if (!ans) {
+ return NULL;
+ }
+ bool is_ok = ra_init_with_capacity(&ans->high_low_container, cap);
+ if (!is_ok) {
+ roaring_free(ans);
+ return NULL;
+ }
+ return ans;
+}
+
+bool roaring_bitmap_init_with_capacity(roaring_bitmap_t *r, uint32_t cap) {
+ return ra_init_with_capacity(&r->high_low_container, cap);
+}
+
+static inline void add_bulk_impl(roaring_bitmap_t *r,
+ roaring_bulk_context_t *context,
+ uint32_t val) {
+ uint16_t key = val >> 16;
+ if (context->container == NULL || context->key != key) {
+ uint8_t typecode;
+ int idx;
+ context->container =
+ containerptr_roaring_bitmap_add(r, val, &typecode, &idx);
+ context->typecode = typecode;
+ context->idx = idx;
+ context->key = key;
+ } else {
+ // no need to seek the container, it is at hand
+ // because we already have the container at hand, we can do the
+ // insertion directly, bypassing the roaring_bitmap_add call
+ uint8_t new_typecode;
+ container_t *container2 = container_add(
+ context->container, val & 0xFFFF, context->typecode,
&new_typecode);
+ if (container2 != context->container) {
+ // rare instance when we need to change the container type
+ container_free(context->container, context->typecode);
+ ra_set_container_at_index(&r->high_low_container, context->idx,
+ container2, new_typecode);
+ context->typecode = new_typecode;
+ context->container = container2;
+ }
+ }
+}
+
+void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args,
+ const uint32_t *vals) {
+ uint32_t val;
+ const uint32_t *start = vals;
+ const uint32_t *end = vals + n_args;
+ const uint32_t *current_val = start;
+
+ if (n_args == 0) {
+ return;
+ }
+
+ uint8_t typecode;
+ int idx;
+ container_t *container;
+ val = *current_val;
+ container = containerptr_roaring_bitmap_add(r, val, &typecode, &idx);
+ roaring_bulk_context_t context = {container, idx, (uint16_t)(val >> 16),
+ typecode};
+
+ for (; current_val != end; current_val++) {
+ memcpy(&val, current_val, sizeof(val));
+ add_bulk_impl(r, &context, val);
+ }
+}
+
+void roaring_bitmap_add_bulk(roaring_bitmap_t *r,
+ roaring_bulk_context_t *context, uint32_t val) {
+ add_bulk_impl(r, context, val);
+}
+
+bool roaring_bitmap_contains_bulk(const roaring_bitmap_t *r,
+ roaring_bulk_context_t *context,
+ uint32_t val) {
+ uint16_t key = val >> 16;
+ if (context->container == NULL || context->key != key) {
+ int32_t start_idx = -1;
+ if (context->container != NULL && context->key < key) {
+ start_idx = context->idx;
+ }
+ int idx = ra_advance_until(&r->high_low_container, key, start_idx);
+ if (idx == ra_get_size(&r->high_low_container)) {
+ return false;
+ }
+ uint8_t typecode;
+ context->container = ra_get_container_at_index(
+ &r->high_low_container, (uint16_t)idx, &typecode);
+ context->typecode = typecode;
+ context->idx = idx;
+ context->key =
+ ra_get_key_at_index(&r->high_low_container, (uint16_t)idx);
+ // ra_advance_until finds the next key >= the target, we found a later
+ // container.
+ if (context->key != key) {
+ return false;
+ }
+ }
+ // context is now set up
+ return container_contains(context->container, val & 0xFFFF,
+ context->typecode);
+}
+
+roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals) {
+ roaring_bitmap_t *answer = roaring_bitmap_create();
+ roaring_bitmap_add_many(answer, n_args, vals);
+ return answer;
+}
+
+roaring_bitmap_t *roaring_bitmap_of(size_t n_args, ...) {
+ // todo: could be greatly optimized but we do not expect this call to ever
+ // include long lists
+ roaring_bitmap_t *answer = roaring_bitmap_create();
+ roaring_bulk_context_t context = CROARING_ZERO_INITIALIZER;
+ va_list ap;
+ va_start(ap, n_args);
+ for (size_t i = 0; i < n_args; i++) {
+ uint32_t val = va_arg(ap, uint32_t);
+ roaring_bitmap_add_bulk(answer, &context, val);
+ }
+ va_end(ap);
+ return answer;
+}
+
+static inline uint64_t minimum_uint64(uint64_t a, uint64_t b) {
+ return (a < b) ? a : b;
+}
+
+roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max,
+ uint32_t step) {
+ if (max >= UINT64_C(0x100000000)) {
+ max = UINT64_C(0x100000000);
+ }
+ if (step == 0) return NULL;
+ if (max <= min) return NULL;
+ roaring_bitmap_t *answer = roaring_bitmap_create();
+ if (step >= (1 << 16)) {
+ for (uint32_t value = (uint32_t)min; value < max; value += step) {
+ roaring_bitmap_add(answer, value);
+ }
+ return answer;
+ }
+ uint64_t min_tmp = min;
+ do {
+ uint32_t key = (uint32_t)min_tmp >> 16;
+ uint32_t container_min = min_tmp & 0xFFFF;
+ uint32_t container_max =
+ (uint32_t)minimum_uint64(max - (key << 16), 1 << 16);
+ uint8_t type;
+ container_t *container = container_from_range(
+ &type, container_min, container_max, (uint16_t)step);
+ ra_append(&answer->high_low_container, (uint16_t)key, container, type);
+ uint32_t gap = container_max - container_min + step - 1;
+ min_tmp += gap - (gap % step);
+ } while (min_tmp < max);
+ // cardinality of bitmap will be ((uint64_t) max - min + step - 1 ) / step
+ return answer;
+}
+
+void roaring_bitmap_add_range_closed(roaring_bitmap_t *r, uint32_t min,
+ uint32_t max) {
+ if (min > max) {
+ return;
+ }
+
+ roaring_array_t *ra = &r->high_low_container;
+
+ uint32_t min_key = min >> 16;
+ uint32_t max_key = max >> 16;
+
+ int32_t num_required_containers = max_key - min_key + 1;
+ int32_t suffix_length =
+ count_greater(ra->keys, ra->size, (uint16_t)max_key);
+ int32_t prefix_length =
+ count_less(ra->keys, ra->size - suffix_length, (uint16_t)min_key);
+ int32_t common_length = ra->size - prefix_length - suffix_length;
+
+ if (num_required_containers > common_length) {
+ ra_shift_tail(ra, suffix_length,
+ num_required_containers - common_length);
+ }
+
+ int32_t src = prefix_length + common_length - 1;
+ int32_t dst = ra->size - suffix_length - 1;
+ for (uint32_t key = max_key; key != min_key - 1;
+ key--) { // beware of min_key==0
+ uint32_t container_min = (min_key == key) ? (min & 0xffff) : 0;
+ uint32_t container_max = (max_key == key) ? (max & 0xffff) : 0xffff;
+ container_t *new_container;
+ uint8_t new_type;
+
+ if (src >= 0 && ra->keys[src] == key) {
+ ra_unshare_container_at_index(ra, (uint16_t)src);
+ new_container =
+ container_add_range(ra->containers[src], ra->typecodes[src],
+ container_min, container_max, &new_type);
+ if (new_container != ra->containers[src]) {
+ container_free(ra->containers[src], ra->typecodes[src]);
+ }
+ src--;
+ } else {
+ new_container = container_from_range(&new_type, container_min,
+ container_max + 1, 1);
+ }
+ ra_replace_key_and_container_at_index(ra, dst, (uint16_t)key,
+ new_container, new_type);
+ dst--;
+ }
+}
+
+void roaring_bitmap_remove_range_closed(roaring_bitmap_t *r, uint32_t min,
+ uint32_t max) {
+ if (min > max) {
+ return;
+ }
+
+ roaring_array_t *ra = &r->high_low_container;
+
+ uint32_t min_key = min >> 16;
+ uint32_t max_key = max >> 16;
+
+ int32_t src = count_less(ra->keys, ra->size, (uint16_t)min_key);
+ int32_t dst = src;
+ while (src < ra->size && ra->keys[src] <= max_key) {
+ uint32_t container_min =
+ (min_key == ra->keys[src]) ? (min & 0xffff) : 0;
+ uint32_t container_max =
+ (max_key == ra->keys[src]) ? (max & 0xffff) : 0xffff;
+ ra_unshare_container_at_index(ra, (uint16_t)src);
+ container_t *new_container;
+ uint8_t new_type;
+ new_container =
+ container_remove_range(ra->containers[src], ra->typecodes[src],
+ container_min, container_max, &new_type);
+ if (new_container != ra->containers[src]) {
+ container_free(ra->containers[src], ra->typecodes[src]);
+ }
+ if (new_container) {
+ ra_replace_key_and_container_at_index(ra, dst, ra->keys[src],
+ new_container, new_type);
+ dst++;
+ }
+ src++;
+ }
+ if (src > dst) {
+ ra_shift_tail(ra, ra->size - src, dst - src);
+ }
+}
+
+void roaring_bitmap_printf(const roaring_bitmap_t *r) {
+ const roaring_array_t *ra = &r->high_low_container;
+
+ printf("{");
+ for (int i = 0; i < ra->size; ++i) {
+ container_printf_as_uint32_array(ra->containers[i], ra->typecodes[i],
+ ((uint32_t)ra->keys[i]) << 16);
+
+ if (i + 1 < ra->size) {
+ printf(",");
+ }
+ }
+ printf("}");
+}
+
+void roaring_bitmap_printf_describe(const roaring_bitmap_t *r) {
+ const roaring_array_t *ra = &r->high_low_container;
+
+ printf("{");
+ for (int i = 0; i < ra->size; ++i) {
+ printf("%d: %s (%d)", ra->keys[i],
+ get_full_container_name(ra->containers[i], ra->typecodes[i]),
+ container_get_cardinality(ra->containers[i], ra->typecodes[i]));
+ if (ra->typecodes[i] == SHARED_CONTAINER_TYPE) {
+ printf("(shared count = %" PRIu32 " )",
+ croaring_refcount_get(
+ &(CAST_shared(ra->containers[i])->counter)));
+ }
+
+ if (i + 1 < ra->size) {
+ printf(", ");
+ }
+ }
+ printf("}");
+}
+
+/**
+ * (For advanced users.)
+ * Collect statistics about the bitmap
+ */
+void roaring_bitmap_statistics(const roaring_bitmap_t *r,
+ roaring_statistics_t *stat) {
+ const roaring_array_t *ra = &r->high_low_container;
+
+ memset(stat, 0, sizeof(*stat));
+ stat->n_containers = ra->size;
+ stat->min_value = roaring_bitmap_minimum(r);
+ stat->max_value = roaring_bitmap_maximum(r);
+
+ for (int i = 0; i < ra->size; ++i) {
+ uint8_t truetype =
+ get_container_type(ra->containers[i], ra->typecodes[i]);
+ uint32_t card =
+ container_get_cardinality(ra->containers[i], ra->typecodes[i]);
+ uint32_t sbytes =
+ container_size_in_bytes(ra->containers[i], ra->typecodes[i]);
+ stat->cardinality += card;
+ switch (truetype) {
+ case BITSET_CONTAINER_TYPE:
+ stat->n_bitset_containers++;
+ stat->n_values_bitset_containers += card;
+ stat->n_bytes_bitset_containers += sbytes;
+ break;
+ case ARRAY_CONTAINER_TYPE:
+ stat->n_array_containers++;
+ stat->n_values_array_containers += card;
+ stat->n_bytes_array_containers += sbytes;
+ break;
+ case RUN_CONTAINER_TYPE:
+ stat->n_run_containers++;
+ stat->n_values_run_containers += card;
+ stat->n_bytes_run_containers += sbytes;
+ break;
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+ }
+}
+
+/*
+ * Checks that:
+ * - Array containers are sorted and contain no duplicates
+ * - Range containers are sorted and contain no overlapping ranges
+ * - Roaring containers are sorted by key and there are no duplicate keys
+ * - The correct container type is use for each container (e.g. bitmaps aren't
+ * used for small containers)
+ */
+bool roaring_bitmap_internal_validate(const roaring_bitmap_t *r,
+ const char **reason) {
+ const char *reason_local;
+ if (reason == NULL) {
+ // Always allow assigning through *reason
+ reason = &reason_local;
+ }
+ *reason = NULL;
+ const roaring_array_t *ra = &r->high_low_container;
+ if (ra->size < 0) {
+ *reason = "negative size";
+ return false;
+ }
+ if (ra->allocation_size < 0) {
+ *reason = "negative allocation size";
+ return false;
+ }
+ if (ra->size > ra->allocation_size) {
+ *reason = "more containers than allocated space";
+ return false;
+ }
+ if (ra->flags & ~(ROARING_FLAG_COW | ROARING_FLAG_FROZEN)) {
+ *reason = "invalid flags";
+ return false;
+ }
+ if (ra->size == 0) {
+ return true;
+ }
+
+ if (ra->keys == NULL) {
+ *reason = "keys is NULL";
+ return false;
+ }
+ if (ra->typecodes == NULL) {
+ *reason = "typecodes is NULL";
+ return false;
+ }
+ if (ra->containers == NULL) {
+ *reason = "containers is NULL";
+ return false;
+ }
+
+ uint32_t prev_key = ra->keys[0];
+ for (int32_t i = 1; i < ra->size; ++i) {
+ if (ra->keys[i] <= prev_key) {
+ *reason = "keys not strictly increasing";
+ return false;
+ }
+ prev_key = ra->keys[i];
+ }
+
+ for (int32_t i = 0; i < ra->size; ++i) {
+ if (!container_internal_validate(ra->containers[i], ra->typecodes[i],
+ reason)) {
+ // reason should already be set
+ if (*reason == NULL) {
+ *reason = "container failed to validate but no reason given";
+ }
+ return false;
+ }
+ }
+
+ return true;
+}
+
+roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r) {
+ roaring_bitmap_t *ans =
+ (roaring_bitmap_t *)roaring_malloc(sizeof(roaring_bitmap_t));
+ if (!ans) {
+ return NULL;
+ }
+ if (!ra_init_with_capacity( // allocation of list of containers can fail
+ &ans->high_low_container, r->high_low_container.size)) {
+ roaring_free(ans);
+ return NULL;
+ }
+ if (!ra_overwrite( // memory allocation of individual containers may fail
+ &r->high_low_container, &ans->high_low_container, is_cow(r))) {
+ roaring_bitmap_free(ans); // overwrite should leave in freeable state
+ return NULL;
+ }
+ roaring_bitmap_set_copy_on_write(ans, is_cow(r));
+ return ans;
+}
+
+bool roaring_bitmap_overwrite(roaring_bitmap_t *dest,
+ const roaring_bitmap_t *src) {
+ roaring_bitmap_set_copy_on_write(dest, is_cow(src));
+ return ra_overwrite(&src->high_low_container, &dest->high_low_container,
+ is_cow(src));
+}
+
+void roaring_bitmap_free(const roaring_bitmap_t *r) {
+ if (r == NULL) {
+ return;
+ }
+ if (!is_frozen(r)) {
+ ra_clear((roaring_array_t *)&r->high_low_container);
+ }
+ roaring_free((roaring_bitmap_t *)r);
+}
+
+void roaring_bitmap_clear(roaring_bitmap_t *r) {
+ ra_reset(&r->high_low_container);
+}
+
+void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t val) {
+ roaring_array_t *ra = &r->high_low_container;
+
+ const uint16_t hb = val >> 16;
+ const int i = ra_get_index(ra, hb);
+ uint8_t typecode;
+ if (i >= 0) {
+ ra_unshare_container_at_index(ra, (uint16_t)i);
+ container_t *container =
+ ra_get_container_at_index(ra, (uint16_t)i, &typecode);
+ uint8_t newtypecode = typecode;
+ container_t *container2 =
+ container_add(container, val & 0xFFFF, typecode, &newtypecode);
+ if (container2 != container) {
+ container_free(container, typecode);
+ ra_set_container_at_index(&r->high_low_container, i, container2,
+ newtypecode);
+ }
+ } else {
+ array_container_t *newac = array_container_create();
+ container_t *container =
+ container_add(newac, val & 0xFFFF, ARRAY_CONTAINER_TYPE,
&typecode);
+ // we could just assume that it stays an array container
+ ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb,
+ container, typecode);
+ }
+}
+
+bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t val) {
+ const uint16_t hb = val >> 16;
+ const int i = ra_get_index(&r->high_low_container, hb);
+ uint8_t typecode;
+ bool result = false;
+ if (i >= 0) {
+ ra_unshare_container_at_index(&r->high_low_container, (uint16_t)i);
+ container_t *container = ra_get_container_at_index(
+ &r->high_low_container, (uint16_t)i, &typecode);
+
+ const int oldCardinality =
+ container_get_cardinality(container, typecode);
+
+ uint8_t newtypecode = typecode;
+ container_t *container2 =
+ container_add(container, val & 0xFFFF, typecode, &newtypecode);
+ if (container2 != container) {
+ container_free(container, typecode);
+ ra_set_container_at_index(&r->high_low_container, i, container2,
+ newtypecode);
+ result = true;
+ } else {
+ const int newCardinality =
+ container_get_cardinality(container, newtypecode);
+
+ result = oldCardinality != newCardinality;
+ }
+ } else {
+ array_container_t *newac = array_container_create();
+ container_t *container =
+ container_add(newac, val & 0xFFFF, ARRAY_CONTAINER_TYPE,
&typecode);
+ // we could just assume that it stays an array container
+ ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb,
+ container, typecode);
+ result = true;
+ }
+
+ return result;
+}
+
+void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t val) {
+ const uint16_t hb = val >> 16;
+ const int i = ra_get_index(&r->high_low_container, hb);
+ uint8_t typecode;
+ if (i >= 0) {
+ ra_unshare_container_at_index(&r->high_low_container, (uint16_t)i);
+ container_t *container = ra_get_container_at_index(
+ &r->high_low_container, (uint16_t)i, &typecode);
+ uint8_t newtypecode = typecode;
+ container_t *container2 =
+ container_remove(container, val & 0xFFFF, typecode, &newtypecode);
+ if (container2 != container) {
+ container_free(container, typecode);
+ ra_set_container_at_index(&r->high_low_container, i, container2,
+ newtypecode);
+ }
+ if (container_get_cardinality(container2, newtypecode) != 0) {
+ ra_set_container_at_index(&r->high_low_container, i, container2,
+ newtypecode);
+ } else {
+ ra_remove_at_index_and_free(&r->high_low_container, i);
+ }
+ }
+}
+
+bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t val) {
+ const uint16_t hb = val >> 16;
+ const int i = ra_get_index(&r->high_low_container, hb);
+ uint8_t typecode;
+ bool result = false;
+ if (i >= 0) {
+ ra_unshare_container_at_index(&r->high_low_container, (uint16_t)i);
+ container_t *container = ra_get_container_at_index(
+ &r->high_low_container, (uint16_t)i, &typecode);
+
+ const int oldCardinality =
+ container_get_cardinality(container, typecode);
+
+ uint8_t newtypecode = typecode;
+ container_t *container2 =
+ container_remove(container, val & 0xFFFF, typecode, &newtypecode);
+ if (container2 != container) {
+ container_free(container, typecode);
+ ra_set_container_at_index(&r->high_low_container, i, container2,
+ newtypecode);
+ }
+
+ const int newCardinality =
+ container_get_cardinality(container2, newtypecode);
+
+ if (newCardinality != 0) {
+ ra_set_container_at_index(&r->high_low_container, i, container2,
+ newtypecode);
+ } else {
+ ra_remove_at_index_and_free(&r->high_low_container, i);
+ }
+
+ result = oldCardinality != newCardinality;
+ }
+ return result;
+}
+
+void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args,
+ const uint32_t *vals) {
+ if (n_args == 0 || r->high_low_container.size == 0) {
+ return;
+ }
+ int32_t pos =
+ -1; // position of the container used in the previous iteration
+ for (size_t i = 0; i < n_args; i++) {
+ uint16_t key = (uint16_t)(vals[i] >> 16);
+ if (pos < 0 || key != r->high_low_container.keys[pos]) {
+ pos = ra_get_index(&r->high_low_container, key);
+ }
+ if (pos >= 0) {
+ uint8_t new_typecode;
+ container_t *new_container;
+ new_container = container_remove(
+ r->high_low_container.containers[pos], vals[i] & 0xffff,
+ r->high_low_container.typecodes[pos], &new_typecode);
+ if (new_container != r->high_low_container.containers[pos]) {
+ container_free(r->high_low_container.containers[pos],
+ r->high_low_container.typecodes[pos]);
+ ra_replace_key_and_container_at_index(&r->high_low_container,
+ pos, key, new_container,
+ new_typecode);
+ }
+ if (!container_nonzero_cardinality(new_container, new_typecode)) {
+ container_free(new_container, new_typecode);
+ ra_remove_at_index(&r->high_low_container, pos);
+ pos = -1;
+ }
+ }
+ }
+}
+
+// there should be some SIMD optimizations possible here
+roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ uint8_t result_type = 0;
+ const int length1 = x1->high_low_container.size,
+ length2 = x2->high_low_container.size;
+ uint32_t neededcap = length1 > length2 ? length2 : length1;
+ roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(neededcap);
+ roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
+
+ int pos1 = 0, pos2 = 0;
+
+ while (pos1 < length1 && pos2 < length2) {
+ const uint16_t s1 =
+ ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ const uint16_t s2 =
+ ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+ if (s1 == s2) {
+ uint8_t type1, type2;
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ container_t *c = container_and(c1, type1, c2, type2, &result_type);
+
+ if (container_nonzero_cardinality(c, result_type)) {
+ ra_append(&answer->high_low_container, s1, c, result_type);
+ } else {
+ container_free(c, result_type); // otherwise: memory leak!
+ }
+ ++pos1;
+ ++pos2;
+ } else if (s1 < s2) { // s1 < s2
+ pos1 = ra_advance_until(&x1->high_low_container, s2, pos1);
+ } else { // s1 > s2
+ pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+ }
+ }
+ return answer;
+}
+
+/**
+ * Compute the union of 'number' bitmaps.
+ */
+roaring_bitmap_t *roaring_bitmap_or_many(size_t number,
+ const roaring_bitmap_t **x) {
+ if (number == 0) {
+ return roaring_bitmap_create();
+ }
+ if (number == 1) {
+ return roaring_bitmap_copy(x[0]);
+ }
+ roaring_bitmap_t *answer =
+ roaring_bitmap_lazy_or(x[0], x[1], LAZY_OR_BITSET_CONVERSION);
+ for (size_t i = 2; i < number; i++) {
+ roaring_bitmap_lazy_or_inplace(answer, x[i],
LAZY_OR_BITSET_CONVERSION);
+ }
+ roaring_bitmap_repair_after_lazy(answer);
+ return answer;
+}
+
+/**
+ * Compute the xor of 'number' bitmaps.
+ */
+roaring_bitmap_t *roaring_bitmap_xor_many(size_t number,
+ const roaring_bitmap_t **x) {
+ if (number == 0) {
+ return roaring_bitmap_create();
+ }
+ if (number == 1) {
+ return roaring_bitmap_copy(x[0]);
+ }
+ roaring_bitmap_t *answer = roaring_bitmap_lazy_xor(x[0], x[1]);
+ for (size_t i = 2; i < number; i++) {
+ roaring_bitmap_lazy_xor_inplace(answer, x[i]);
+ }
+ roaring_bitmap_repair_after_lazy(answer);
+ return answer;
+}
+
+// inplace and (modifies its first argument).
+void roaring_bitmap_and_inplace(roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ if (x1 == x2) return;
+ int pos1 = 0, pos2 = 0, intersection_size = 0;
+ const int length1 = ra_get_size(&x1->high_low_container);
+ const int length2 = ra_get_size(&x2->high_low_container);
+
+ // any skipped-over or newly emptied containers in x1
+ // have to be freed.
+ while (pos1 < length1 && pos2 < length2) {
+ const uint16_t s1 =
+ ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ const uint16_t s2 =
+ ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+ if (s1 == s2) {
+ uint8_t type1, type2, result_type;
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+
+ // We do the computation "in place" only when c1 is not a shared
+ // container. Rationale: using a shared container safely with in
+ // place computation would require making a copy and then doing the
+ // computation in place which is likely less efficient than
avoiding
+ // in place entirely and always generating a new container.
+ container_t *c =
+ (type1 == SHARED_CONTAINER_TYPE)
+ ? container_and(c1, type1, c2, type2, &result_type)
+ : container_iand(c1, type1, c2, type2, &result_type);
+
+ if (c != c1) { // in this instance a new container was created,
and
+ // we need to free the old one
+ container_free(c1, type1);
+ }
+ if (container_nonzero_cardinality(c, result_type)) {
+ ra_replace_key_and_container_at_index(&x1->high_low_container,
+ intersection_size, s1, c,
+ result_type);
+ intersection_size++;
+ } else {
+ container_free(c, result_type);
+ }
+ ++pos1;
+ ++pos2;
+ } else if (s1 < s2) {
+ pos1 = ra_advance_until_freeing(&x1->high_low_container, s2, pos1);
+ } else { // s1 > s2
+ pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+ }
+ }
+
+ // if we ended early because x2 ran out, then all remaining in x1 should be
+ // freed
+ while (pos1 < length1) {
+ container_free(x1->high_low_container.containers[pos1],
+ x1->high_low_container.typecodes[pos1]);
+ ++pos1;
+ }
+
+ // all containers after this have either been copied or freed
+ ra_downsize(&x1->high_low_container, intersection_size);
+}
+
+roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ uint8_t result_type = 0;
+ const int length1 = x1->high_low_container.size,
+ length2 = x2->high_low_container.size;
+ if (0 == length1) {
+ return roaring_bitmap_copy(x2);
+ }
+ if (0 == length2) {
+ return roaring_bitmap_copy(x1);
+ }
+ roaring_bitmap_t *answer =
+ roaring_bitmap_create_with_capacity(length1 + length2);
+ roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
+ int pos1 = 0, pos2 = 0;
+ uint8_t type1, type2;
+ uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ while (true) {
+ if (s1 == s2) {
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ container_t *c = container_or(c1, type1, c2, type2, &result_type);
+
+ // since we assume that the initial containers are non-empty, the
+ // result here
+ // can only be non-empty
+ ra_append(&answer->high_low_container, s1, c, result_type);
+ ++pos1;
+ ++pos2;
+ if (pos1 == length1) break;
+ if (pos2 == length2) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+ } else if (s1 < s2) { // s1 < s2
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ // c1 = container_clone(c1, type1);
+ c1 = get_copy_of_container(c1, &type1, is_cow(x1));
+ if (is_cow(x1)) {
+ ra_set_container_at_index(&x1->high_low_container, pos1, c1,
+ type1);
+ }
+ ra_append(&answer->high_low_container, s1, c1, type1);
+ pos1++;
+ if (pos1 == length1) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+ } else { // s1 > s2
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ // c2 = container_clone(c2, type2);
+ c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+ if (is_cow(x2)) {
+ ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+ type2);
+ }
+ ra_append(&answer->high_low_container, s2, c2, type2);
+ pos2++;
+ if (pos2 == length2) break;
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ }
+ }
+ if (pos1 == length1) {
+ ra_append_copy_range(&answer->high_low_container,
+ &x2->high_low_container, pos2, length2,
+ is_cow(x2));
+ } else if (pos2 == length2) {
+ ra_append_copy_range(&answer->high_low_container,
+ &x1->high_low_container, pos1, length1,
+ is_cow(x1));
+ }
+ return answer;
+}
+
+// inplace or (modifies its first argument).
+void roaring_bitmap_or_inplace(roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ uint8_t result_type = 0;
+ int length1 = x1->high_low_container.size;
+ const int length2 = x2->high_low_container.size;
+
+ if (0 == length2) return;
+
+ if (0 == length1) {
+ roaring_bitmap_overwrite(x1, x2);
+ return;
+ }
+ int pos1 = 0, pos2 = 0;
+ uint8_t type1, type2;
+ uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ while (true) {
+ if (s1 == s2) {
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ if (!container_is_full(c1, type1)) {
+ container_t *c2 = ra_get_container_at_index(
+ &x2->high_low_container, (uint16_t)pos2, &type2);
+ container_t *c =
+ (type1 == SHARED_CONTAINER_TYPE)
+ ? container_or(c1, type1, c2, type2, &result_type)
+ : container_ior(c1, type1, c2, type2, &result_type);
+
+ if (c != c1) { // in this instance a new container was
created,
+ // and we need to free the old one
+ container_free(c1, type1);
+ }
+ ra_set_container_at_index(&x1->high_low_container, pos1, c,
+ result_type);
+ }
+ ++pos1;
+ ++pos2;
+ if (pos1 == length1) break;
+ if (pos2 == length2) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+ } else if (s1 < s2) { // s1 < s2
+ pos1++;
+ if (pos1 == length1) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+ } else { // s1 > s2
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+ if (is_cow(x2)) {
+ ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+ type2);
+ }
+
+ // container_t *c2_clone = container_clone(c2, type2);
+ ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
+ type2);
+ pos1++;
+ length1++;
+ pos2++;
+ if (pos2 == length2) break;
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ }
+ }
+ if (pos1 == length1) {
+ ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
+ pos2, length2, is_cow(x2));
+ }
+}
+
+roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ uint8_t result_type = 0;
+ const int length1 = x1->high_low_container.size,
+ length2 = x2->high_low_container.size;
+ if (0 == length1) {
+ return roaring_bitmap_copy(x2);
+ }
+ if (0 == length2) {
+ return roaring_bitmap_copy(x1);
+ }
+ roaring_bitmap_t *answer =
+ roaring_bitmap_create_with_capacity(length1 + length2);
+ roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
+ int pos1 = 0, pos2 = 0;
+ uint8_t type1, type2;
+ uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ while (true) {
+ if (s1 == s2) {
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ container_t *c = container_xor(c1, type1, c2, type2, &result_type);
+
+ if (container_nonzero_cardinality(c, result_type)) {
+ ra_append(&answer->high_low_container, s1, c, result_type);
+ } else {
+ container_free(c, result_type);
+ }
+ ++pos1;
+ ++pos2;
+ if (pos1 == length1) break;
+ if (pos2 == length2) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+ } else if (s1 < s2) { // s1 < s2
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ c1 = get_copy_of_container(c1, &type1, is_cow(x1));
+ if (is_cow(x1)) {
+ ra_set_container_at_index(&x1->high_low_container, pos1, c1,
+ type1);
+ }
+ ra_append(&answer->high_low_container, s1, c1, type1);
+ pos1++;
+ if (pos1 == length1) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+ } else { // s1 > s2
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+ if (is_cow(x2)) {
+ ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+ type2);
+ }
+ ra_append(&answer->high_low_container, s2, c2, type2);
+ pos2++;
+ if (pos2 == length2) break;
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ }
+ }
+ if (pos1 == length1) {
+ ra_append_copy_range(&answer->high_low_container,
+ &x2->high_low_container, pos2, length2,
+ is_cow(x2));
+ } else if (pos2 == length2) {
+ ra_append_copy_range(&answer->high_low_container,
+ &x1->high_low_container, pos1, length1,
+ is_cow(x1));
+ }
+ return answer;
+}
+
+// inplace xor (modifies its first argument).
+
+void roaring_bitmap_xor_inplace(roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ assert(x1 != x2);
+ uint8_t result_type = 0;
+ int length1 = x1->high_low_container.size;
+ const int length2 = x2->high_low_container.size;
+
+ if (0 == length2) return;
+
+ if (0 == length1) {
+ roaring_bitmap_overwrite(x1, x2);
+ return;
+ }
+
+ // XOR can have new containers inserted from x2, but can also
+ // lose containers when x1 and x2 are nonempty and identical.
+
+ int pos1 = 0, pos2 = 0;
+ uint8_t type1, type2;
+ uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ while (true) {
+ if (s1 == s2) {
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+
+ // We do the computation "in place" only when c1 is not a shared
+ // container. Rationale: using a shared container safely with in
+ // place computation would require making a copy and then doing the
+ // computation in place which is likely less efficient than
avoiding
+ // in place entirely and always generating a new container.
+
+ container_t *c;
+ if (type1 == SHARED_CONTAINER_TYPE) {
+ c = container_xor(c1, type1, c2, type2, &result_type);
+ shared_container_free(CAST_shared(c1)); // so release
+ } else {
+ c = container_ixor(c1, type1, c2, type2, &result_type);
+ }
+
+ if (container_nonzero_cardinality(c, result_type)) {
+ ra_set_container_at_index(&x1->high_low_container, pos1, c,
+ result_type);
+ ++pos1;
+ } else {
+ container_free(c, result_type);
+ ra_remove_at_index(&x1->high_low_container, pos1);
+ --length1;
+ }
+
+ ++pos2;
+ if (pos1 == length1) break;
+ if (pos2 == length2) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+ } else if (s1 < s2) { // s1 < s2
+ pos1++;
+ if (pos1 == length1) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+ } else { // s1 > s2
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+ if (is_cow(x2)) {
+ ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+ type2);
+ }
+
+ ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
+ type2);
+ pos1++;
+ length1++;
+ pos2++;
+ if (pos2 == length2) break;
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ }
+ }
+ if (pos1 == length1) {
+ ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
+ pos2, length2, is_cow(x2));
+ }
+}
+
+roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ uint8_t result_type = 0;
+ const int length1 = x1->high_low_container.size,
+ length2 = x2->high_low_container.size;
+ if (0 == length1) {
+ roaring_bitmap_t *empty_bitmap = roaring_bitmap_create();
+ roaring_bitmap_set_copy_on_write(empty_bitmap,
+ is_cow(x1) || is_cow(x2));
+ return empty_bitmap;
+ }
+ if (0 == length2) {
+ return roaring_bitmap_copy(x1);
+ }
+ roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(length1);
+ roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
+
+ int pos1 = 0, pos2 = 0;
+ uint8_t type1, type2;
+ uint16_t s1 = 0;
+ uint16_t s2 = 0;
+ while (true) {
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+ if (s1 == s2) {
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ container_t *c =
+ container_andnot(c1, type1, c2, type2, &result_type);
+
+ if (container_nonzero_cardinality(c, result_type)) {
+ ra_append(&answer->high_low_container, s1, c, result_type);
+ } else {
+ container_free(c, result_type);
+ }
+ ++pos1;
+ ++pos2;
+ if (pos1 == length1) break;
+ if (pos2 == length2) break;
+ } else if (s1 < s2) { // s1 < s2
+ const int next_pos1 =
+ ra_advance_until(&x1->high_low_container, s2, pos1);
+ ra_append_copy_range(&answer->high_low_container,
+ &x1->high_low_container, pos1, next_pos1,
+ is_cow(x1));
+ // TODO : perhaps some of the copy_on_write should be based on
+ // answer rather than x1 (more stringent?). Many similar cases
+ pos1 = next_pos1;
+ if (pos1 == length1) break;
+ } else { // s1 > s2
+ pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+ if (pos2 == length2) break;
+ }
+ }
+ if (pos2 == length2) {
+ ra_append_copy_range(&answer->high_low_container,
+ &x1->high_low_container, pos1, length1,
+ is_cow(x1));
+ }
+ return answer;
+}
+
+// inplace andnot (modifies its first argument).
+
+void roaring_bitmap_andnot_inplace(roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ assert(x1 != x2);
+
+ uint8_t result_type = 0;
+ int length1 = x1->high_low_container.size;
+ const int length2 = x2->high_low_container.size;
+ int intersection_size = 0;
+
+ if (0 == length2) return;
+
+ if (0 == length1) {
+ roaring_bitmap_clear(x1);
+ return;
+ }
+
+ int pos1 = 0, pos2 = 0;
+ uint8_t type1, type2;
+ uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ while (true) {
+ if (s1 == s2) {
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+
+ // We do the computation "in place" only when c1 is not a shared
+ // container. Rationale: using a shared container safely with in
+ // place computation would require making a copy and then doing the
+ // computation in place which is likely less efficient than
avoiding
+ // in place entirely and always generating a new container.
+
+ container_t *c;
+ if (type1 == SHARED_CONTAINER_TYPE) {
+ c = container_andnot(c1, type1, c2, type2, &result_type);
+ shared_container_free(CAST_shared(c1)); // release
+ } else {
+ c = container_iandnot(c1, type1, c2, type2, &result_type);
+ }
+
+ if (container_nonzero_cardinality(c, result_type)) {
+ ra_replace_key_and_container_at_index(&x1->high_low_container,
+ intersection_size++, s1,
+ c, result_type);
+ } else {
+ container_free(c, result_type);
+ }
+
+ ++pos1;
+ ++pos2;
+ if (pos1 == length1) break;
+ if (pos2 == length2) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+ } else if (s1 < s2) { // s1 < s2
+ if (pos1 != intersection_size) {
+ container_t *c1 = ra_get_container_at_index(
+ &x1->high_low_container, (uint16_t)pos1, &type1);
+
+ ra_replace_key_and_container_at_index(
+ &x1->high_low_container, intersection_size, s1, c1, type1);
+ }
+ intersection_size++;
+ pos1++;
+ if (pos1 == length1) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+ } else { // s1 > s2
+ pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+ if (pos2 == length2) break;
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ }
+ }
+
+ if (pos1 < length1) {
+ // all containers between intersection_size and
+ // pos1 are junk. However, they have either been moved
+ // (thus still referenced) or involved in an iandnot
+ // that will clean up all containers that could not be reused.
+ // Thus we should not free the junk containers between
+ // intersection_size and pos1.
+ if (pos1 > intersection_size) {
+ // left slide of remaining items
+ ra_copy_range(&x1->high_low_container, pos1, length1,
+ intersection_size);
+ }
+ // else current placement is fine
+ intersection_size += (length1 - pos1);
+ }
+ ra_downsize(&x1->high_low_container, intersection_size);
+}
+
+uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *r) {
+ const roaring_array_t *ra = &r->high_low_container;
+
+ uint64_t card = 0;
+ for (int i = 0; i < ra->size; ++i)
+ card += container_get_cardinality(ra->containers[i], ra->typecodes[i]);
+ return card;
+}
+
+uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *r,
+ uint64_t range_start,
+ uint64_t range_end) {
+ if (range_start >= range_end || range_start > (uint64_t)UINT32_MAX + 1) {
+ return 0;
+ }
+ return roaring_bitmap_range_cardinality_closed(r, (uint32_t)range_start,
+ (uint32_t)(range_end - 1));
+}
+
+uint64_t roaring_bitmap_range_cardinality_closed(const roaring_bitmap_t *r,
+ uint32_t range_start,
+ uint32_t range_end) {
+ const roaring_array_t *ra = &r->high_low_container;
+
+ if (range_start > range_end) {
+ return 0;
+ }
+
+ // now we have: 0 <= range_start <= range_end <= UINT32_MAX
+
+ uint16_t minhb = (uint16_t)(range_start >> 16);
+ uint16_t maxhb = (uint16_t)(range_end >> 16);
+
+ uint64_t card = 0;
+
+ int i = ra_get_index(ra, minhb);
+ if (i >= 0) {
+ if (minhb == maxhb) {
+ card += container_rank(ra->containers[i], ra->typecodes[i],
+ range_end & 0xffff);
+ } else {
+ card +=
+ container_get_cardinality(ra->containers[i], ra->typecodes[i]);
+ }
+ if ((range_start & 0xffff) != 0) {
+ card -= container_rank(ra->containers[i], ra->typecodes[i],
+ (range_start & 0xffff) - 1);
+ }
+ i++;
+ } else {
+ i = -i - 1;
+ }
+
+ for (; i < ra->size; i++) {
+ uint16_t key = ra->keys[i];
+ if (key < maxhb) {
+ card +=
+ container_get_cardinality(ra->containers[i], ra->typecodes[i]);
+ } else if (key == maxhb) {
+ card += container_rank(ra->containers[i], ra->typecodes[i],
+ range_end & 0xffff);
+ break;
+ } else {
+ break;
+ }
+ }
+
+ return card;
+}
+
+bool roaring_bitmap_is_empty(const roaring_bitmap_t *r) {
+ return r->high_low_container.size == 0;
+}
+
+void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *r, uint32_t *ans) {
+ ra_to_uint32_array(&r->high_low_container, ans);
+}
+
+bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *r, size_t
offset,
+ size_t limit, uint32_t *ans) {
+ return ra_range_uint32_array(&r->high_low_container, offset, limit, ans);
+}
+
+/** convert array and bitmap containers to run containers when it is more
+ * efficient;
+ * also convert from run containers when more space efficient. Returns
+ * true if the result has at least one run container.
+ */
+bool roaring_bitmap_run_optimize(roaring_bitmap_t *r) {
+ bool answer = false;
+ for (int i = 0; i < r->high_low_container.size; i++) {
+ uint8_t type_original, type_after;
+ ra_unshare_container_at_index(
+ &r->high_low_container,
+ (uint16_t)i); // TODO: this introduces extra cloning!
+ container_t *c = ra_get_container_at_index(&r->high_low_container,
+ (uint16_t)i,
&type_original);
+ container_t *c1 = convert_run_optimize(c, type_original, &type_after);
+ if (type_after == RUN_CONTAINER_TYPE) {
+ answer = true;
+ }
+ ra_set_container_at_index(&r->high_low_container, i, c1, type_after);
+ }
+ return answer;
+}
+
+size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r) {
+ size_t answer = 0;
+ for (int i = 0; i < r->high_low_container.size; i++) {
+ uint8_t type_original;
+ container_t *c = ra_get_container_at_index(&r->high_low_container,
+ (uint16_t)i,
&type_original);
+ answer += container_shrink_to_fit(c, type_original);
+ }
+ answer += ra_shrink_to_fit(&r->high_low_container);
+ return answer;
+}
+
+/**
+ * Remove run-length encoding even when it is more space efficient
+ * return whether a change was applied
+ */
+bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r) {
+ bool answer = false;
+ for (int i = 0; i < r->high_low_container.size; i++) {
+ uint8_t type_original, type_after;
+ container_t *c = ra_get_container_at_index(&r->high_low_container,
+ (uint16_t)i,
&type_original);
+ if (get_container_type(c, type_original) == RUN_CONTAINER_TYPE) {
+ answer = true;
+ if (type_original == SHARED_CONTAINER_TYPE) {
+ run_container_t *truec = CAST_run(CAST_shared(c)->container);
+ int32_t card = run_container_cardinality(truec);
+ container_t *c1 = convert_to_bitset_or_array_container(
+ truec, card, &type_after);
+ shared_container_free(CAST_shared(c)); // frees run as needed
+ ra_set_container_at_index(&r->high_low_container, i, c1,
+ type_after);
+
+ } else {
+ int32_t card = run_container_cardinality(CAST_run(c));
+ container_t *c1 = convert_to_bitset_or_array_container(
+ CAST_run(c), card, &type_after);
+ run_container_free(CAST_run(c));
+ ra_set_container_at_index(&r->high_low_container, i, c1,
+ type_after);
+ }
+ }
+ }
+ return answer;
+}
+
+size_t roaring_bitmap_serialize(const roaring_bitmap_t *r, char *buf) {
+ size_t portablesize = roaring_bitmap_portable_size_in_bytes(r);
+ uint64_t cardinality = roaring_bitmap_get_cardinality(r);
+ uint64_t sizeasarray = cardinality * sizeof(uint32_t) + sizeof(uint32_t);
+ if (portablesize < sizeasarray) {
+ buf[0] = CROARING_SERIALIZATION_CONTAINER;
+ return roaring_bitmap_portable_serialize(r, buf + 1) + 1;
+ } else {
+ buf[0] = CROARING_SERIALIZATION_ARRAY_UINT32;
+ memcpy(buf + 1, &cardinality, sizeof(uint32_t));
+ roaring_bitmap_to_uint32_array(
+ r, (uint32_t *)(buf + 1 + sizeof(uint32_t)));
+ return 1 + (size_t)sizeasarray;
+ }
+}
+
+size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *r) {
+ size_t portablesize = roaring_bitmap_portable_size_in_bytes(r);
+ uint64_t sizeasarray =
+ roaring_bitmap_get_cardinality(r) * sizeof(uint32_t) +
sizeof(uint32_t);
+ return portablesize < sizeasarray ? portablesize + 1
+ : (size_t)sizeasarray + 1;
+}
+
+size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *r) {
+ return ra_portable_size_in_bytes(&r->high_low_container);
+}
+
+roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf,
+ size_t maxbytes) {
+ roaring_bitmap_t *ans =
+ (roaring_bitmap_t *)roaring_malloc(sizeof(roaring_bitmap_t));
+ if (ans == NULL) {
+ return NULL;
+ }
+ size_t bytesread;
+ bool is_ok = ra_portable_deserialize(&ans->high_low_container, buf,
+ maxbytes, &bytesread);
+ if (!is_ok) {
+ roaring_free(ans);
+ return NULL;
+ }
+ roaring_bitmap_set_copy_on_write(ans, false);
+ if (!is_ok) {
+ roaring_free(ans);
+ return NULL;
+ }
+ return ans;
+}
+
+roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf) {
+ return roaring_bitmap_portable_deserialize_safe(buf, SIZE_MAX);
+}
+
+size_t roaring_bitmap_portable_deserialize_size(const char *buf,
+ size_t maxbytes) {
+ return ra_portable_deserialize_size(buf, maxbytes);
+}
+
+size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *r, char *buf)
{
+ return ra_portable_serialize(&r->high_low_container, buf);
+}
+
+roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf) {
+ const char *bufaschar = (const char *)buf;
+ if (bufaschar[0] == CROARING_SERIALIZATION_ARRAY_UINT32) {
+ /* This looks like a compressed set of uint32_t elements */
+ uint32_t card;
+
+ memcpy(&card, bufaschar + 1, sizeof(uint32_t));
+
+ const uint32_t *elems =
+ (const uint32_t *)(bufaschar + 1 + sizeof(uint32_t));
+
+ roaring_bitmap_t *bitmap = roaring_bitmap_create();
+ if (bitmap == NULL) {
+ return NULL;
+ }
+ roaring_bulk_context_t context = CROARING_ZERO_INITIALIZER;
+ for (uint32_t i = 0; i < card; i++) {
+ // elems may not be aligned, read with memcpy
+ uint32_t elem;
+ memcpy(&elem, elems + i, sizeof(elem));
+ roaring_bitmap_add_bulk(bitmap, &context, elem);
+ }
+ return bitmap;
+
+ } else if (bufaschar[0] == CROARING_SERIALIZATION_CONTAINER) {
+ return roaring_bitmap_portable_deserialize(bufaschar + 1);
+ } else
+ return (NULL);
+}
+
+roaring_bitmap_t *roaring_bitmap_deserialize_safe(const void *buf,
+ size_t maxbytes) {
+ if (maxbytes < 1) {
+ return NULL;
+ }
+
+ const char *bufaschar = (const char *)buf;
+ if (bufaschar[0] == CROARING_SERIALIZATION_ARRAY_UINT32) {
+ if (maxbytes < 1 + sizeof(uint32_t)) {
+ return NULL;
+ }
+
+ /* This looks like a compressed set of uint32_t elements */
+ uint32_t card;
+ memcpy(&card, bufaschar + 1, sizeof(uint32_t));
+
+ // Check the buffer is big enough to contain card uint32_t elements
+ if (maxbytes < 1 + sizeof(uint32_t) + card * sizeof(uint32_t)) {
+ return NULL;
+ }
+
+ const uint32_t *elems =
+ (const uint32_t *)(bufaschar + 1 + sizeof(uint32_t));
+
+ roaring_bitmap_t *bitmap = roaring_bitmap_create();
+ if (bitmap == NULL) {
+ return NULL;
+ }
+ roaring_bulk_context_t context = CROARING_ZERO_INITIALIZER;
+ for (uint32_t i = 0; i < card; i++) {
+ // elems may not be aligned, read with memcpy
+ uint32_t elem;
+ memcpy(&elem, elems + i, sizeof(elem));
+ roaring_bitmap_add_bulk(bitmap, &context, elem);
+ }
+ return bitmap;
+
+ } else if (bufaschar[0] == CROARING_SERIALIZATION_CONTAINER) {
+ return roaring_bitmap_portable_deserialize_safe(bufaschar + 1,
+ maxbytes - 1);
+ } else
+ return (NULL);
+}
+
+bool roaring_iterate(const roaring_bitmap_t *r, roaring_iterator iterator,
+ void *ptr) {
+ const roaring_array_t *ra = &r->high_low_container;
+
+ for (int i = 0; i < ra->size; ++i)
+ if (!container_iterate(ra->containers[i], ra->typecodes[i],
+ ((uint32_t)ra->keys[i]) << 16, iterator, ptr)) {
+ return false;
+ }
+ return true;
+}
+
+bool roaring_iterate64(const roaring_bitmap_t *r, roaring_iterator64 iterator,
+ uint64_t high_bits, void *ptr) {
+ const roaring_array_t *ra = &r->high_low_container;
+
+ for (int i = 0; i < ra->size; ++i)
+ if (!container_iterate64(ra->containers[i], ra->typecodes[i],
+ ((uint32_t)ra->keys[i]) << 16, iterator,
+ high_bits, ptr)) {
+ return false;
+ }
+ return true;
+}
+
+/****
+ * begin roaring_uint32_iterator_t
+ *****/
+
+/**
+ * Partially initializes the iterator. Leaves it in either state:
+ * 1. Invalid due to `has_value = false`, or
+ * 2. At a container, with the high bits set, `has_value = true`.
+ */
+CROARING_WARN_UNUSED static bool iter_new_container_partial_init(
+ roaring_uint32_iterator_t *newit) {
+ newit->current_value = 0;
+ if (newit->container_index >= newit->parent->high_low_container.size ||
+ newit->container_index < 0) {
+ newit->current_value = UINT32_MAX;
+ return (newit->has_value = false);
+ }
+ newit->has_value = true;
+ // we precompute container, typecode and highbits so that successive
+ // iterators do not have to grab them from odd memory locations
+ // and have to worry about the (easily predicted) container_unwrap_shared
+ // call.
+ newit->container =
+ newit->parent->high_low_container.containers[newit->container_index];
+ newit->typecode =
+ newit->parent->high_low_container.typecodes[newit->container_index];
+ newit->highbits =
+ ((uint32_t)
+ newit->parent->high_low_container.keys[newit->container_index])
+ << 16;
+ newit->container =
+ container_unwrap_shared(newit->container, &(newit->typecode));
+ return true;
+}
+
+/**
+ * Positions the iterator at the first value of the current container that the
+ * iterator points at, if available.
+ */
+CROARING_WARN_UNUSED static bool loadfirstvalue(
+ roaring_uint32_iterator_t *newit) {
+ if (iter_new_container_partial_init(newit)) {
+ uint16_t value = 0;
+ newit->container_it =
+ container_init_iterator(newit->container, newit->typecode, &value);
+ newit->current_value = newit->highbits | value;
+ }
+ return newit->has_value;
+}
+
+/**
+ * Positions the iterator at the last value of the current container that the
+ * iterator points at, if available.
+ */
+CROARING_WARN_UNUSED static bool loadlastvalue(
+ roaring_uint32_iterator_t *newit) {
+ if (iter_new_container_partial_init(newit)) {
+ uint16_t value = 0;
+ newit->container_it = container_init_iterator_last(
+ newit->container, newit->typecode, &value);
+ newit->current_value = newit->highbits | value;
+ }
+ return newit->has_value;
+}
+
+/**
+ * Positions the iterator at the smallest value that is larger than or equal to
+ * `val` within the current container that the iterator points at. Assumes such
+ * a value exists within the current container.
+ */
+CROARING_WARN_UNUSED static bool loadfirstvalue_largeorequal(
+ roaring_uint32_iterator_t *newit, uint32_t val) {
+ bool partial_init = iter_new_container_partial_init(newit);
+ assert(partial_init);
+ if (!partial_init) {
+ return false;
+ }
+ uint16_t value = 0;
+ newit->container_it =
+ container_init_iterator(newit->container, newit->typecode, &value);
+ bool found = container_iterator_lower_bound(
+ newit->container, newit->typecode, &newit->container_it, &value,
+ val & 0xFFFF);
+ assert(found);
+ if (!found) {
+ return false;
+ }
+ newit->current_value = newit->highbits | value;
+ return true;
+}
+
+void roaring_iterator_init(const roaring_bitmap_t *r,
+ roaring_uint32_iterator_t *newit) {
+ newit->parent = r;
+ newit->container_index = 0;
+ newit->has_value = loadfirstvalue(newit);
+}
+
+void roaring_iterator_init_last(const roaring_bitmap_t *r,
+ roaring_uint32_iterator_t *newit) {
+ newit->parent = r;
+ newit->container_index = newit->parent->high_low_container.size - 1;
+ newit->has_value = loadlastvalue(newit);
+}
+
+roaring_uint32_iterator_t *roaring_iterator_create(const roaring_bitmap_t *r) {
+ roaring_uint32_iterator_t *newit =
+ (roaring_uint32_iterator_t *)roaring_malloc(
+ sizeof(roaring_uint32_iterator_t));
+ if (newit == NULL) return NULL;
+ roaring_iterator_init(r, newit);
+ return newit;
+}
+
+roaring_uint32_iterator_t *roaring_uint32_iterator_copy(
+ const roaring_uint32_iterator_t *it) {
+ roaring_uint32_iterator_t *newit =
+ (roaring_uint32_iterator_t *)roaring_malloc(
+ sizeof(roaring_uint32_iterator_t));
+ memcpy(newit, it, sizeof(roaring_uint32_iterator_t));
+ return newit;
+}
+
+bool roaring_uint32_iterator_move_equalorlarger(roaring_uint32_iterator_t *it,
+ uint32_t val) {
+ uint16_t hb = val >> 16;
+ const int i = ra_get_index(&it->parent->high_low_container, hb);
+ if (i >= 0) {
+ uint32_t lowvalue =
+ container_maximum(it->parent->high_low_container.containers[i],
+ it->parent->high_low_container.typecodes[i]);
+ uint16_t lb = val & 0xFFFF;
+ if (lowvalue < lb) {
+ // will have to load first value of next container
+ it->container_index = i + 1;
+ } else {
+ // the value is necessarily within the range of the container
+ it->container_index = i;
+ it->has_value = loadfirstvalue_largeorequal(it, val);
+ return it->has_value;
+ }
+ } else {
+ // there is no matching, so we are going for the next container
+ it->container_index = -i - 1;
+ }
+ it->has_value = loadfirstvalue(it);
+ return it->has_value;
+}
+
+bool roaring_uint32_iterator_advance(roaring_uint32_iterator_t *it) {
+ if (it->container_index >= it->parent->high_low_container.size) {
+ return (it->has_value = false);
+ }
+ if (it->container_index < 0) {
+ it->container_index = 0;
+ return (it->has_value = loadfirstvalue(it));
+ }
+ uint16_t low16 = (uint16_t)it->current_value;
+ if (container_iterator_next(it->container, it->typecode, &it->container_it,
+ &low16)) {
+ it->current_value = it->highbits | low16;
+ return (it->has_value = true);
+ }
+ it->container_index++;
+ return (it->has_value = loadfirstvalue(it));
+}
+
+bool roaring_uint32_iterator_previous(roaring_uint32_iterator_t *it) {
+ if (it->container_index < 0) {
+ return (it->has_value = false);
+ }
+ if (it->container_index >= it->parent->high_low_container.size) {
+ it->container_index = it->parent->high_low_container.size - 1;
+ return (it->has_value = loadlastvalue(it));
+ }
+ uint16_t low16 = (uint16_t)it->current_value;
+ if (container_iterator_prev(it->container, it->typecode, &it->container_it,
+ &low16)) {
+ it->current_value = it->highbits | low16;
+ return (it->has_value = true);
+ }
+ it->container_index--;
+ return (it->has_value = loadlastvalue(it));
+}
+
+uint32_t roaring_uint32_iterator_read(roaring_uint32_iterator_t *it,
+ uint32_t *buf, uint32_t count) {
+ uint32_t ret = 0;
+ while (it->has_value && ret < count) {
+ uint32_t consumed;
+ uint16_t low16 = (uint16_t)it->current_value;
+ bool has_value = container_iterator_read_into_uint32(
+ it->container, it->typecode, &it->container_it, it->highbits, buf,
+ count - ret, &consumed, &low16);
+ ret += consumed;
+ buf += consumed;
+ if (has_value) {
+ it->has_value = true;
+ it->current_value = it->highbits | low16;
+ assert(ret == count);
+ return ret;
+ }
+ it->container_index++;
+ it->has_value = loadfirstvalue(it);
+ }
+ return ret;
+}
+
+void roaring_uint32_iterator_free(roaring_uint32_iterator_t *it) {
+ roaring_free(it);
+}
+
+/****
+ * end of roaring_uint32_iterator_t
+ *****/
+
+bool roaring_bitmap_equals(const roaring_bitmap_t *r1,
+ const roaring_bitmap_t *r2) {
+ const roaring_array_t *ra1 = &r1->high_low_container;
+ const roaring_array_t *ra2 = &r2->high_low_container;
+
+ if (ra1->size != ra2->size) {
+ return false;
+ }
+ for (int i = 0; i < ra1->size; ++i) {
+ if (ra1->keys[i] != ra2->keys[i]) {
+ return false;
+ }
+ }
+ for (int i = 0; i < ra1->size; ++i) {
+ bool areequal = container_equals(ra1->containers[i], ra1->typecodes[i],
+ ra2->containers[i],
ra2->typecodes[i]);
+ if (!areequal) {
+ return false;
+ }
+ }
+ return true;
+}
+
+bool roaring_bitmap_is_subset(const roaring_bitmap_t *r1,
+ const roaring_bitmap_t *r2) {
+ const roaring_array_t *ra1 = &r1->high_low_container;
+ const roaring_array_t *ra2 = &r2->high_low_container;
+
+ const int length1 = ra1->size, length2 = ra2->size;
+
+ int pos1 = 0, pos2 = 0;
+
+ while (pos1 < length1 && pos2 < length2) {
+ const uint16_t s1 = ra_get_key_at_index(ra1, (uint16_t)pos1);
+ const uint16_t s2 = ra_get_key_at_index(ra2, (uint16_t)pos2);
+
+ if (s1 == s2) {
+ uint8_t type1, type2;
+ container_t *c1 =
+ ra_get_container_at_index(ra1, (uint16_t)pos1, &type1);
+ container_t *c2 =
+ ra_get_container_at_index(ra2, (uint16_t)pos2, &type2);
+ if (!container_is_subset(c1, type1, c2, type2)) return false;
+ ++pos1;
+ ++pos2;
+ } else if (s1 < s2) { // s1 < s2
+ return false;
+ } else { // s1 > s2
+ pos2 = ra_advance_until(ra2, s1, pos2);
+ }
+ }
+ if (pos1 == length1)
+ return true;
+ else
+ return false;
+}
+
+static void insert_flipped_container(roaring_array_t *ans_arr,
+ const roaring_array_t *x1_arr, uint16_t
hb,
+ uint16_t lb_start, uint16_t lb_end) {
+ const int i = ra_get_index(x1_arr, hb);
+ const int j = ra_get_index(ans_arr, hb);
+ uint8_t ctype_in, ctype_out;
+ container_t *flipped_container = NULL;
+ if (i >= 0) {
+ container_t *container_to_flip =
+ ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in);
+ flipped_container =
+ container_not_range(container_to_flip, ctype_in,
(uint32_t)lb_start,
+ (uint32_t)(lb_end + 1), &ctype_out);
+
+ if (container_get_cardinality(flipped_container, ctype_out))
+ ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
+ ctype_out);
+ else {
+ container_free(flipped_container, ctype_out);
+ }
+ } else {
+ flipped_container = container_range_of_ones(
+ (uint32_t)lb_start, (uint32_t)(lb_end + 1), &ctype_out);
+ ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
+ ctype_out);
+ }
+}
+
+static void inplace_flip_container(roaring_array_t *x1_arr, uint16_t hb,
+ uint16_t lb_start, uint16_t lb_end) {
+ const int i = ra_get_index(x1_arr, hb);
+ uint8_t ctype_in, ctype_out;
+ container_t *flipped_container = NULL;
+ if (i >= 0) {
+ container_t *container_to_flip =
+ ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in);
+ flipped_container = container_inot_range(
+ container_to_flip, ctype_in, (uint32_t)lb_start,
+ (uint32_t)(lb_end + 1), &ctype_out);
+ // if a new container was created, the old one was already freed
+ if (container_get_cardinality(flipped_container, ctype_out)) {
+ ra_set_container_at_index(x1_arr, i, flipped_container, ctype_out);
+ } else {
+ container_free(flipped_container, ctype_out);
+ ra_remove_at_index(x1_arr, i);
+ }
+
+ } else {
+ flipped_container = container_range_of_ones(
+ (uint32_t)lb_start, (uint32_t)(lb_end + 1), &ctype_out);
+ ra_insert_new_key_value_at(x1_arr, -i - 1, hb, flipped_container,
+ ctype_out);
+ }
+}
+
+static void insert_fully_flipped_container(roaring_array_t *ans_arr,
+ const roaring_array_t *x1_arr,
+ uint16_t hb) {
+ const int i = ra_get_index(x1_arr, hb);
+ const int j = ra_get_index(ans_arr, hb);
+ uint8_t ctype_in, ctype_out;
+ container_t *flipped_container = NULL;
+ if (i >= 0) {
+ container_t *container_to_flip =
+ ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in);
+ flipped_container =
+ container_not(container_to_flip, ctype_in, &ctype_out);
+ if (container_get_cardinality(flipped_container, ctype_out))
+ ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
+ ctype_out);
+ else {
+ container_free(flipped_container, ctype_out);
+ }
+ } else {
+ flipped_container = container_range_of_ones(0U, 0x10000U, &ctype_out);
+ ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
+ ctype_out);
+ }
+}
+
+static void inplace_fully_flip_container(roaring_array_t *x1_arr, uint16_t hb)
{
+ const int i = ra_get_index(x1_arr, hb);
+ uint8_t ctype_in, ctype_out;
+ container_t *flipped_container = NULL;
+ if (i >= 0) {
+ container_t *container_to_flip =
+ ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in);
+ flipped_container =
+ container_inot(container_to_flip, ctype_in, &ctype_out);
+
+ if (container_get_cardinality(flipped_container, ctype_out)) {
+ ra_set_container_at_index(x1_arr, i, flipped_container, ctype_out);
+ } else {
+ container_free(flipped_container, ctype_out);
+ ra_remove_at_index(x1_arr, i);
+ }
+
+ } else {
+ flipped_container = container_range_of_ones(0U, 0x10000U, &ctype_out);
+ ra_insert_new_key_value_at(x1_arr, -i - 1, hb, flipped_container,
+ ctype_out);
+ }
+}
+
+roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *x1,
+ uint64_t range_start,
+ uint64_t range_end) {
+ if (range_start >= range_end || range_start > (uint64_t)UINT32_MAX + 1) {
+ return roaring_bitmap_copy(x1);
+ }
+ return roaring_bitmap_flip_closed(x1, (uint32_t)range_start,
+ (uint32_t)(range_end - 1));
+}
+
+roaring_bitmap_t *roaring_bitmap_flip_closed(const roaring_bitmap_t *x1,
+ uint32_t range_start,
+ uint32_t range_end) {
+ if (range_start > range_end) {
+ return roaring_bitmap_copy(x1);
+ }
+
+ roaring_bitmap_t *ans = roaring_bitmap_create();
+ roaring_bitmap_set_copy_on_write(ans, is_cow(x1));
+
+ uint16_t hb_start = (uint16_t)(range_start >> 16);
+ const uint16_t lb_start = (uint16_t)range_start; // & 0xFFFF;
+ uint16_t hb_end = (uint16_t)(range_end >> 16);
+ const uint16_t lb_end = (uint16_t)range_end; // & 0xFFFF;
+
+ ra_append_copies_until(&ans->high_low_container, &x1->high_low_container,
+ hb_start, is_cow(x1));
+ if (hb_start == hb_end) {
+ insert_flipped_container(&ans->high_low_container,
+ &x1->high_low_container, hb_start, lb_start,
+ lb_end);
+ } else {
+ // start and end containers are distinct
+ if (lb_start > 0) {
+ // handle first (partial) container
+ insert_flipped_container(&ans->high_low_container,
+ &x1->high_low_container, hb_start,
+ lb_start, 0xFFFF);
+ ++hb_start; // for the full containers. Can't wrap.
+ }
+
+ if (lb_end != 0xFFFF) --hb_end; // later we'll handle the partial
block
+
+ for (uint32_t hb = hb_start; hb <= hb_end; ++hb) {
+ insert_fully_flipped_container(&ans->high_low_container,
+ &x1->high_low_container,
+ (uint16_t)hb);
+ }
+
+ // handle a partial final container
+ if (lb_end != 0xFFFF) {
+ insert_flipped_container(&ans->high_low_container,
+ &x1->high_low_container, hb_end + 1, 0,
+ lb_end);
+ ++hb_end;
+ }
+ }
+ ra_append_copies_after(&ans->high_low_container, &x1->high_low_container,
+ hb_end, is_cow(x1));
+ return ans;
+}
+
+void roaring_bitmap_flip_inplace(roaring_bitmap_t *x1, uint64_t range_start,
+ uint64_t range_end) {
+ if (range_start >= range_end || range_start > (uint64_t)UINT32_MAX + 1) {
+ return;
+ }
+ roaring_bitmap_flip_inplace_closed(x1, (uint32_t)range_start,
+ (uint32_t)(range_end - 1));
+}
+
+void roaring_bitmap_flip_inplace_closed(roaring_bitmap_t *x1,
+ uint32_t range_start,
+ uint32_t range_end) {
+ if (range_start > range_end) {
+ return; // empty range
+ }
+
+ uint16_t hb_start = (uint16_t)(range_start >> 16);
+ const uint16_t lb_start = (uint16_t)range_start;
+ uint16_t hb_end = (uint16_t)(range_end >> 16);
+ const uint16_t lb_end = (uint16_t)range_end;
+
+ if (hb_start == hb_end) {
+ inplace_flip_container(&x1->high_low_container, hb_start, lb_start,
+ lb_end);
+ } else {
+ // start and end containers are distinct
+ if (lb_start > 0) {
+ // handle first (partial) container
+ inplace_flip_container(&x1->high_low_container, hb_start, lb_start,
+ 0xFFFF);
+ ++hb_start; // for the full containers. Can't wrap.
+ }
+
+ if (lb_end != 0xFFFF) --hb_end;
+
+ for (uint32_t hb = hb_start; hb <= hb_end; ++hb) {
+ inplace_fully_flip_container(&x1->high_low_container,
(uint16_t)hb);
+ }
+ // handle a partial final container
+ if (lb_end != 0xFFFF) {
+ inplace_flip_container(&x1->high_low_container, hb_end + 1, 0,
+ lb_end);
+ ++hb_end;
+ }
+ }
+}
+
+static void offset_append_with_merge(roaring_array_t *ra, int k, container_t
*c,
+ uint8_t t) {
+ int size = ra_get_size(ra);
+ if (size == 0 || ra_get_key_at_index(ra, (uint16_t)(size - 1)) != k) {
+ // No merge.
+ ra_append(ra, (uint16_t)k, c, t);
+ return;
+ }
+
+ uint8_t last_t, new_t;
+ container_t *last_c, *new_c;
+
+ // NOTE: we don't need to unwrap here, since we added last_c ourselves
+ // we have the certainty it's not a shared container.
+ // The same applies to c, as it's the result of calling container_offset.
+ last_c = ra_get_container_at_index(ra, (uint16_t)(size - 1), &last_t);
+ new_c = container_ior(last_c, last_t, c, t, &new_t);
+
+ ra_set_container_at_index(ra, size - 1, new_c, new_t);
+
+ // Comparison of pointers of different origin is UB (or so claim some
+ // compiler makers), so we compare their bit representation only.
+ if ((uintptr_t)last_c != (uintptr_t)new_c) {
+ container_free(last_c, last_t);
+ }
+ container_free(c, t);
+}
+
+// roaring_bitmap_add_offset adds the value 'offset' to each and every value in
+// a bitmap, generating a new bitmap in the process. If offset + element is
+// outside of the range [0,2^32), that the element will be dropped.
+// We need "offset" to be 64 bits because we want to support values
+// between -0xFFFFFFFF up to +0xFFFFFFFF.
+roaring_bitmap_t *roaring_bitmap_add_offset(const roaring_bitmap_t *bm,
+ int64_t offset) {
+ roaring_bitmap_t *answer;
+ roaring_array_t *ans_ra;
+ int64_t container_offset;
+ uint16_t in_offset;
+
+ const roaring_array_t *bm_ra = &bm->high_low_container;
+ int length = bm_ra->size;
+
+ if (offset == 0) {
+ return roaring_bitmap_copy(bm);
+ }
+
+ container_offset = offset >> 16;
+ in_offset = (uint16_t)(offset - container_offset * (1 << 16));
+
+ answer = roaring_bitmap_create();
+ bool cow = is_cow(bm);
+ roaring_bitmap_set_copy_on_write(answer, cow);
+
+ ans_ra = &answer->high_low_container;
+
+ if (in_offset == 0) {
+ ans_ra = &answer->high_low_container;
+
+ for (int i = 0, j = 0; i < length; ++i) {
+ int64_t key = ra_get_key_at_index(bm_ra, (uint16_t)i);
+ key += container_offset;
+
+ if (key < 0 || key >= (1 << 16)) {
+ continue;
+ }
+ ra_append_copy(ans_ra, bm_ra, (uint16_t)i, cow);
+ ans_ra->keys[j++] = (uint16_t)key;
+ }
+ return answer;
+ }
+
+ uint8_t t;
+ const container_t *c;
+ container_t *lo, *hi, **lo_ptr, **hi_ptr;
+ int64_t k;
+
+ for (int i = 0; i < length; ++i) {
+ lo = hi = NULL;
+ lo_ptr = hi_ptr = NULL;
+
+ k = ra_get_key_at_index(bm_ra, (uint16_t)i) + container_offset;
+ if (k >= 0 && k < (1 << 16)) {
+ lo_ptr = &lo;
+ }
+ if (k + 1 >= 0 && k + 1 < (1 << 16)) {
+ hi_ptr = &hi;
+ }
+ if (lo_ptr == NULL && hi_ptr == NULL) {
+ continue;
+ }
+ c = ra_get_container_at_index(bm_ra, (uint16_t)i, &t);
+ c = container_unwrap_shared(c, &t);
+
+ container_add_offset(c, t, lo_ptr, hi_ptr, in_offset);
+ if (lo != NULL) {
+ offset_append_with_merge(ans_ra, (int)k, lo, t);
+ }
+ if (hi != NULL) {
+ ra_append(ans_ra, (uint16_t)(k + 1), hi, t);
+ }
+ // the `lo` and `hi` container type always keep same as container `c`.
+ // in the case of `container_add_offset` on bitset container, `lo` and
+ // `hi` may has small cardinality, they must be repaired to array
+ // container.
+ }
+
+ roaring_bitmap_repair_after_lazy(answer); // do required type conversions.
+ return answer;
+}
+
+roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2,
+ const bool bitsetconversion) {
+ uint8_t result_type = 0;
+ const int length1 = x1->high_low_container.size,
+ length2 = x2->high_low_container.size;
+ if (0 == length1) {
+ return roaring_bitmap_copy(x2);
+ }
+ if (0 == length2) {
+ return roaring_bitmap_copy(x1);
+ }
+ roaring_bitmap_t *answer =
+ roaring_bitmap_create_with_capacity(length1 + length2);
+ roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
+ int pos1 = 0, pos2 = 0;
+ uint8_t type1, type2;
+ uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ while (true) {
+ if (s1 == s2) {
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ container_t *c;
+ if (bitsetconversion &&
+ (get_container_type(c1, type1) != BITSET_CONTAINER_TYPE) &&
+ (get_container_type(c2, type2) != BITSET_CONTAINER_TYPE)) {
+ container_t *newc1 =
+ container_mutable_unwrap_shared(c1, &type1);
+ newc1 = container_to_bitset(newc1, type1);
+ type1 = BITSET_CONTAINER_TYPE;
+ c = container_lazy_ior(newc1, type1, c2, type2, &result_type);
+ if (c != newc1) { // should not happen
+ container_free(newc1, type1);
+ }
+ } else {
+ c = container_lazy_or(c1, type1, c2, type2, &result_type);
+ }
+ // since we assume that the initial containers are non-empty,
+ // the
+ // result here
+ // can only be non-empty
+ ra_append(&answer->high_low_container, s1, c, result_type);
+ ++pos1;
+ ++pos2;
+ if (pos1 == length1) break;
+ if (pos2 == length2) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+ } else if (s1 < s2) { // s1 < s2
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ c1 = get_copy_of_container(c1, &type1, is_cow(x1));
+ if (is_cow(x1)) {
+ ra_set_container_at_index(&x1->high_low_container, pos1, c1,
+ type1);
+ }
+ ra_append(&answer->high_low_container, s1, c1, type1);
+ pos1++;
+ if (pos1 == length1) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+ } else { // s1 > s2
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+ if (is_cow(x2)) {
+ ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+ type2);
+ }
+ ra_append(&answer->high_low_container, s2, c2, type2);
+ pos2++;
+ if (pos2 == length2) break;
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ }
+ }
+ if (pos1 == length1) {
+ ra_append_copy_range(&answer->high_low_container,
+ &x2->high_low_container, pos2, length2,
+ is_cow(x2));
+ } else if (pos2 == length2) {
+ ra_append_copy_range(&answer->high_low_container,
+ &x1->high_low_container, pos1, length1,
+ is_cow(x1));
+ }
+ return answer;
+}
+
+void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2,
+ const bool bitsetconversion) {
+ uint8_t result_type = 0;
+ int length1 = x1->high_low_container.size;
+ const int length2 = x2->high_low_container.size;
+
+ if (0 == length2) return;
+
+ if (0 == length1) {
+ roaring_bitmap_overwrite(x1, x2);
+ return;
+ }
+ int pos1 = 0, pos2 = 0;
+ uint8_t type1, type2;
+ uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ while (true) {
+ if (s1 == s2) {
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ if (!container_is_full(c1, type1)) {
+ if ((bitsetconversion == false) ||
+ (get_container_type(c1, type1) == BITSET_CONTAINER_TYPE)) {
+ c1 = get_writable_copy_if_shared(c1, &type1);
+ } else {
+ // convert to bitset
+ container_t *old_c1 = c1;
+ uint8_t old_type1 = type1;
+ c1 = container_mutable_unwrap_shared(c1, &type1);
+ c1 = container_to_bitset(c1, type1);
+ container_free(old_c1, old_type1);
+ type1 = BITSET_CONTAINER_TYPE;
+ }
+
+ container_t *c2 = ra_get_container_at_index(
+ &x2->high_low_container, (uint16_t)pos2, &type2);
+ container_t *c =
+ container_lazy_ior(c1, type1, c2, type2, &result_type);
+
+ if (c != c1) { // in this instance a new container was
created,
+ // and we need to free the old one
+ container_free(c1, type1);
+ }
+
+ ra_set_container_at_index(&x1->high_low_container, pos1, c,
+ result_type);
+ }
+ ++pos1;
+ ++pos2;
+ if (pos1 == length1) break;
+ if (pos2 == length2) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+ } else if (s1 < s2) { // s1 < s2
+ pos1++;
+ if (pos1 == length1) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+ } else { // s1 > s2
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ // container_t *c2_clone = container_clone(c2, type2);
+ c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+ if (is_cow(x2)) {
+ ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+ type2);
+ }
+ ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
+ type2);
+ pos1++;
+ length1++;
+ pos2++;
+ if (pos2 == length2) break;
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ }
+ }
+ if (pos1 == length1) {
+ ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
+ pos2, length2, is_cow(x2));
+ }
+}
+
+roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ uint8_t result_type = 0;
+ const int length1 = x1->high_low_container.size,
+ length2 = x2->high_low_container.size;
+ if (0 == length1) {
+ return roaring_bitmap_copy(x2);
+ }
+ if (0 == length2) {
+ return roaring_bitmap_copy(x1);
+ }
+ roaring_bitmap_t *answer =
+ roaring_bitmap_create_with_capacity(length1 + length2);
+ roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
+ int pos1 = 0, pos2 = 0;
+ uint8_t type1, type2;
+ uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ while (true) {
+ if (s1 == s2) {
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ container_t *c =
+ container_lazy_xor(c1, type1, c2, type2, &result_type);
+
+ if (container_nonzero_cardinality(c, result_type)) {
+ ra_append(&answer->high_low_container, s1, c, result_type);
+ } else {
+ container_free(c, result_type);
+ }
+
+ ++pos1;
+ ++pos2;
+ if (pos1 == length1) break;
+ if (pos2 == length2) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+ } else if (s1 < s2) { // s1 < s2
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ c1 = get_copy_of_container(c1, &type1, is_cow(x1));
+ if (is_cow(x1)) {
+ ra_set_container_at_index(&x1->high_low_container, pos1, c1,
+ type1);
+ }
+ ra_append(&answer->high_low_container, s1, c1, type1);
+ pos1++;
+ if (pos1 == length1) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+ } else { // s1 > s2
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+ if (is_cow(x2)) {
+ ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+ type2);
+ }
+ ra_append(&answer->high_low_container, s2, c2, type2);
+ pos2++;
+ if (pos2 == length2) break;
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ }
+ }
+ if (pos1 == length1) {
+ ra_append_copy_range(&answer->high_low_container,
+ &x2->high_low_container, pos2, length2,
+ is_cow(x2));
+ } else if (pos2 == length2) {
+ ra_append_copy_range(&answer->high_low_container,
+ &x1->high_low_container, pos1, length1,
+ is_cow(x1));
+ }
+ return answer;
+}
+
+void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ assert(x1 != x2);
+ uint8_t result_type = 0;
+ int length1 = x1->high_low_container.size;
+ const int length2 = x2->high_low_container.size;
+
+ if (0 == length2) return;
+
+ if (0 == length1) {
+ roaring_bitmap_overwrite(x1, x2);
+ return;
+ }
+ int pos1 = 0, pos2 = 0;
+ uint8_t type1, type2;
+ uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ while (true) {
+ if (s1 == s2) {
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+
+ // We do the computation "in place" only when c1 is not a shared
+ // container. Rationale: using a shared container safely with in
+ // place computation would require making a copy and then doing the
+ // computation in place which is likely less efficient than
avoiding
+ // in place entirely and always generating a new container.
+
+ container_t *c;
+ if (type1 == SHARED_CONTAINER_TYPE) {
+ c = container_lazy_xor(c1, type1, c2, type2, &result_type);
+ shared_container_free(CAST_shared(c1)); // release
+ } else {
+ c = container_lazy_ixor(c1, type1, c2, type2, &result_type);
+ }
+
+ if (container_nonzero_cardinality(c, result_type)) {
+ ra_set_container_at_index(&x1->high_low_container, pos1, c,
+ result_type);
+ ++pos1;
+ } else {
+ container_free(c, result_type);
+ ra_remove_at_index(&x1->high_low_container, pos1);
+ --length1;
+ }
+ ++pos2;
+ if (pos1 == length1) break;
+ if (pos2 == length2) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+ } else if (s1 < s2) { // s1 < s2
+ pos1++;
+ if (pos1 == length1) break;
+ s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+ } else { // s1 > s2
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ // container_t *c2_clone = container_clone(c2, type2);
+ c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+ if (is_cow(x2)) {
+ ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+ type2);
+ }
+ ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
+ type2);
+ pos1++;
+ length1++;
+ pos2++;
+ if (pos2 == length2) break;
+ s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+ }
+ }
+ if (pos1 == length1) {
+ ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
+ pos2, length2, is_cow(x2));
+ }
+}
+
+void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *r) {
+ roaring_array_t *ra = &r->high_low_container;
+
+ for (int i = 0; i < ra->size; ++i) {
+ const uint8_t old_type = ra->typecodes[i];
+ container_t *old_c = ra->containers[i];
+ uint8_t new_type = old_type;
+ container_t *new_c = container_repair_after_lazy(old_c, &new_type);
+ ra->containers[i] = new_c;
+ ra->typecodes[i] = new_type;
+ }
+}
+
+/**
+ * roaring_bitmap_rank returns the number of integers that are smaller or equal
+ * to x.
+ */
+uint64_t roaring_bitmap_rank(const roaring_bitmap_t *bm, uint32_t x) {
+ uint64_t size = 0;
+ uint32_t xhigh = x >> 16;
+ for (int i = 0; i < bm->high_low_container.size; i++) {
+ uint32_t key = bm->high_low_container.keys[i];
+ if (xhigh > key) {
+ size +=
+ container_get_cardinality(bm->high_low_container.containers[i],
+ bm->high_low_container.typecodes[i]);
+ } else if (xhigh == key) {
+ return size + container_rank(bm->high_low_container.containers[i],
+ bm->high_low_container.typecodes[i],
+ x & 0xFFFF);
+ } else {
+ return size;
+ }
+ }
+ return size;
+}
+void roaring_bitmap_rank_many(const roaring_bitmap_t *bm, const uint32_t
*begin,
+ const uint32_t *end, uint64_t *ans) {
+ uint64_t size = 0;
+
+ int i = 0;
+ const uint32_t *iter = begin;
+ while (i < bm->high_low_container.size && iter != end) {
+ uint32_t x = *iter;
+ uint32_t xhigh = x >> 16;
+ uint32_t key = bm->high_low_container.keys[i];
+ if (xhigh > key) {
+ size +=
+ container_get_cardinality(bm->high_low_container.containers[i],
+ bm->high_low_container.typecodes[i]);
+ i++;
+ } else if (xhigh == key) {
+ uint32_t consumed = container_rank_many(
+ bm->high_low_container.containers[i],
+ bm->high_low_container.typecodes[i], size, iter, end, ans);
+ iter += consumed;
+ ans += consumed;
+ } else {
+ *(ans++) = size;
+ iter++;
+ }
+ }
+}
+
+/**
+ * roaring_bitmap_get_index returns the index of x, if not exsist return -1.
+ */
+int64_t roaring_bitmap_get_index(const roaring_bitmap_t *bm, uint32_t x) {
+ int64_t index = 0;
+ const uint16_t xhigh = x >> 16;
+ int32_t high_idx = ra_get_index(&bm->high_low_container, xhigh);
+ if (high_idx < 0) return -1;
+
+ for (int i = 0; i < bm->high_low_container.size; i++) {
+ uint32_t key = bm->high_low_container.keys[i];
+ if (xhigh > key) {
+ index +=
+ container_get_cardinality(bm->high_low_container.containers[i],
+ bm->high_low_container.typecodes[i]);
+ } else if (xhigh == key) {
+ int32_t low_idx = container_get_index(
+ bm->high_low_container.containers[high_idx],
+ bm->high_low_container.typecodes[high_idx], x & 0xFFFF);
+ if (low_idx < 0) return -1;
+ return index + low_idx;
+ } else {
+ return -1;
+ }
+ }
+ return index;
+}
+
+/**
+ * roaring_bitmap_smallest returns the smallest value in the set.
+ * Returns UINT32_MAX if the set is empty.
+ */
+uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *bm) {
+ if (bm->high_low_container.size > 0) {
+ container_t *c = bm->high_low_container.containers[0];
+ uint8_t type = bm->high_low_container.typecodes[0];
+ uint32_t key = bm->high_low_container.keys[0];
+ uint32_t lowvalue = container_minimum(c, type);
+ return lowvalue | (key << 16);
+ }
+ return UINT32_MAX;
+}
+
+/**
+ * roaring_bitmap_smallest returns the greatest value in the set.
+ * Returns 0 if the set is empty.
+ */
+uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *bm) {
+ if (bm->high_low_container.size > 0) {
+ container_t *container =
+ bm->high_low_container.containers[bm->high_low_container.size - 1];
+ uint8_t typecode =
+ bm->high_low_container.typecodes[bm->high_low_container.size - 1];
+ uint32_t key =
+ bm->high_low_container.keys[bm->high_low_container.size - 1];
+ uint32_t lowvalue = container_maximum(container, typecode);
+ return lowvalue | (key << 16);
+ }
+ return 0;
+}
+
+bool roaring_bitmap_select(const roaring_bitmap_t *bm, uint32_t rank,
+ uint32_t *element) {
+ container_t *container;
+ uint8_t typecode;
+ uint16_t key;
+ uint32_t start_rank = 0;
+ int i = 0;
+ bool valid = false;
+ while (!valid && i < bm->high_low_container.size) {
+ container = bm->high_low_container.containers[i];
+ typecode = bm->high_low_container.typecodes[i];
+ valid =
+ container_select(container, typecode, &start_rank, rank, element);
+ i++;
+ }
+
+ if (valid) {
+ key = bm->high_low_container.keys[i - 1];
+ *element |= (((uint32_t)key) << 16); // w/o cast, key promotes signed
+ return true;
+ } else
+ return false;
+}
+
+bool roaring_bitmap_intersect(const roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ const int length1 = x1->high_low_container.size,
+ length2 = x2->high_low_container.size;
+ uint64_t answer = 0;
+ int pos1 = 0, pos2 = 0;
+
+ while (pos1 < length1 && pos2 < length2) {
+ const uint16_t s1 =
+ ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ const uint16_t s2 =
+ ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+ if (s1 == s2) {
+ uint8_t type1, type2;
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ if (container_intersect(c1, type1, c2, type2)) return true;
+ ++pos1;
+ ++pos2;
+ } else if (s1 < s2) { // s1 < s2
+ pos1 = ra_advance_until(&x1->high_low_container, s2, pos1);
+ } else { // s1 > s2
+ pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+ }
+ }
+ return answer != 0;
+}
+
+bool roaring_bitmap_intersect_with_range(const roaring_bitmap_t *bm, uint64_t
x,
+ uint64_t y) {
+ if (x >= y) {
+ // Empty range.
+ return false;
+ }
+ roaring_uint32_iterator_t it;
+ roaring_iterator_init(bm, &it);
+ if (!roaring_uint32_iterator_move_equalorlarger(&it, (uint32_t)x)) {
+ // No values above x.
+ return false;
+ }
+ if (it.current_value >= y) {
+ // No values below y.
+ return false;
+ }
+ return true;
+}
+
+uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ const int length1 = x1->high_low_container.size,
+ length2 = x2->high_low_container.size;
+ uint64_t answer = 0;
+ int pos1 = 0, pos2 = 0;
+ while (pos1 < length1 && pos2 < length2) {
+ const uint16_t s1 =
+ ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+ const uint16_t s2 =
+ ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+ if (s1 == s2) {
+ uint8_t type1, type2;
+ container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
+ (uint16_t)pos1,
&type1);
+ container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
+ (uint16_t)pos2,
&type2);
+ answer += container_and_cardinality(c1, type1, c2, type2);
+ ++pos1;
+ ++pos2;
+ } else if (s1 < s2) { // s1 < s2
+ pos1 = ra_advance_until(&x1->high_low_container, s2, pos1);
+ } else { // s1 > s2
+ pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+ }
+ }
+ return answer;
+}
+
+double roaring_bitmap_jaccard_index(const roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
+ const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
+ const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
+ return (double)inter / (double)(c1 + c2 - inter);
+}
+
+uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
+ const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
+ const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
+ return c1 + c2 - inter;
+}
+
+uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
+ const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
+ return c1 - inter;
+}
+
+uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *x1,
+ const roaring_bitmap_t *x2) {
+ const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
+ const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
+ const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
+ return c1 + c2 - 2 * inter;
+}
+
+bool roaring_bitmap_contains(const roaring_bitmap_t *r, uint32_t val) {
+ const uint16_t hb = val >> 16;
+ /*
+ * the next function call involves a binary search and lots of branching.
+ */
+ int32_t i = ra_get_index(&r->high_low_container, hb);
+ if (i < 0) return false;
+
+ uint8_t typecode;
+ // next call ought to be cheap
+ container_t *container = ra_get_container_at_index(&r->high_low_container,
+ (uint16_t)i, &typecode);
+ // rest might be a tad expensive, possibly involving another round of
binary
+ // search
+ return container_contains(container, val & 0xFFFF, typecode);
+}
+
+/**
+ * Check whether a range of values from range_start (included) to range_end
+ * (excluded) is present
+ */
+bool roaring_bitmap_contains_range(const roaring_bitmap_t *r,
+ uint64_t range_start, uint64_t range_end) {
+ if (range_start >= range_end || range_start > (uint64_t)UINT32_MAX + 1) {
+ return true;
+ }
+ return roaring_bitmap_contains_range_closed(r, (uint32_t)range_start,
+ (uint32_t)(range_end - 1));
+}
+
+/**
+ * Check whether a range of values from range_start (included) to range_end
+ * (included) is present
+ */
+bool roaring_bitmap_contains_range_closed(const roaring_bitmap_t *r,
+ uint32_t range_start,
+ uint32_t range_end) {
+ if (range_start > range_end) {
+ return true;
+ } // empty range are always contained!
+ if (range_end == range_start) {
+ return roaring_bitmap_contains(r, (uint32_t)range_start);
+ }
+ uint16_t hb_rs = (uint16_t)(range_start >> 16);
+ uint16_t hb_re = (uint16_t)(range_end >> 16);
+ const int32_t span = hb_re - hb_rs;
+ const int32_t hlc_sz = ra_get_size(&r->high_low_container);
+ if (hlc_sz < span + 1) {
+ return false;
+ }
+ int32_t is = ra_get_index(&r->high_low_container, hb_rs);
+ int32_t ie = ra_get_index(&r->high_low_container, hb_re);
+ if ((ie < 0) || (is < 0) || ((ie - is) != span) || ie >= hlc_sz) {
+ return false;
+ }
+ const uint32_t lb_rs = range_start & 0xFFFF;
+ const uint32_t lb_re = (range_end & 0xFFFF) + 1;
+ uint8_t type;
+ container_t *c =
+ ra_get_container_at_index(&r->high_low_container, (uint16_t)is, &type);
+ if (hb_rs == hb_re) {
+ return container_contains_range(c, lb_rs, lb_re, type);
+ }
+ if (!container_contains_range(c, lb_rs, 1 << 16, type)) {
+ return false;
+ }
+ c = ra_get_container_at_index(&r->high_low_container, (uint16_t)ie, &type);
+ if (!container_contains_range(c, 0, lb_re, type)) {
+ return false;
+ }
+ for (int32_t i = is + 1; i < ie; ++i) {
+ c = ra_get_container_at_index(&r->high_low_container, (uint16_t)i,
+ &type);
+ if (!container_is_full(c, type)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *r1,
+ const roaring_bitmap_t *r2) {
+ return (roaring_bitmap_get_cardinality(r2) >
+ roaring_bitmap_get_cardinality(r1) &&
+ roaring_bitmap_is_subset(r1, r2));
+}
+
+/*
+ * FROZEN SERIALIZATION FORMAT DESCRIPTION
+ *
+ * -- (beginning must be aligned by 32 bytes) --
+ * <bitset_data> uint64_t[BITSET_CONTAINER_SIZE_IN_WORDS *
+ * num_bitset_containers] <run_data> rle16_t[total number of rle elements in
+ * all run containers] <array_data> uint16_t[total number of array elements in
+ * all array containers] <keys> uint16_t[num_containers] <counts>
+ * uint16_t[num_containers] <typecodes> uint8_t[num_containers] <header>
+ * uint32_t
+ *
+ * <header> is a 4-byte value which is a bit union of FROZEN_COOKIE (15 bits)
+ * and the number of containers (17 bits).
+ *
+ * <counts> stores number of elements for every container.
+ * Its meaning depends on container type.
+ * For array and bitset containers, this value is the container cardinality
+ * minus one. For run container, it is the number of rle_t elements (n_runs).
+ *
+ * <bitset_data>,<array_data>,<run_data> are flat arrays of elements of
+ * all containers of respective type.
+ *
+ * <*_data> and <keys> are kept close together because they are not accessed
+ * during deserilization. This may reduce IO in case of large mmaped bitmaps.
+ * All members have their native alignments during deserilization except
+ * <header>, which is not guaranteed to be aligned by 4 bytes.
+ */
+
+size_t roaring_bitmap_frozen_size_in_bytes(const roaring_bitmap_t *rb) {
+ const roaring_array_t *ra = &rb->high_low_container;
+ size_t num_bytes = 0;
+ for (int32_t i = 0; i < ra->size; i++) {
+ switch (ra->typecodes[i]) {
+ case BITSET_CONTAINER_TYPE: {
+ num_bytes += BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+ break;
+ }
+ case RUN_CONTAINER_TYPE: {
+ const run_container_t *rc = const_CAST_run(ra->containers[i]);
+ num_bytes += rc->n_runs * sizeof(rle16_t);
+ break;
+ }
+ case ARRAY_CONTAINER_TYPE: {
+ const array_container_t *ac =
+ const_CAST_array(ra->containers[i]);
+ num_bytes += ac->cardinality * sizeof(uint16_t);
+ break;
+ }
+ default:
+ roaring_unreachable;
+ }
+ }
+ num_bytes += (2 + 2 + 1) * ra->size; // keys, counts, typecodes
+ num_bytes += 4; // header
+ return num_bytes;
+}
+
+inline static void *arena_alloc(char **arena, size_t num_bytes) {
+ char *res = *arena;
+ *arena += num_bytes;
+ return res;
+}
+
+void roaring_bitmap_frozen_serialize(const roaring_bitmap_t *rb, char *buf) {
+ /*
+ * Note: we do not require user to supply a specifically aligned buffer.
+ * Thus we have to use memcpy() everywhere.
+ */
+
+ const roaring_array_t *ra = &rb->high_low_container;
+
+ size_t bitset_zone_size = 0;
+ size_t run_zone_size = 0;
+ size_t array_zone_size = 0;
+ for (int32_t i = 0; i < ra->size; i++) {
+ switch (ra->typecodes[i]) {
+ case BITSET_CONTAINER_TYPE: {
+ bitset_zone_size +=
+ BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+ break;
+ }
+ case RUN_CONTAINER_TYPE: {
+ const run_container_t *rc = const_CAST_run(ra->containers[i]);
+ run_zone_size += rc->n_runs * sizeof(rle16_t);
+ break;
+ }
+ case ARRAY_CONTAINER_TYPE: {
+ const array_container_t *ac =
+ const_CAST_array(ra->containers[i]);
+ array_zone_size += ac->cardinality * sizeof(uint16_t);
+ break;
+ }
+ default:
+ roaring_unreachable;
+ }
+ }
+
+ uint64_t *bitset_zone = (uint64_t *)arena_alloc(&buf, bitset_zone_size);
+ rle16_t *run_zone = (rle16_t *)arena_alloc(&buf, run_zone_size);
+ uint16_t *array_zone = (uint16_t *)arena_alloc(&buf, array_zone_size);
+ uint16_t *key_zone = (uint16_t *)arena_alloc(&buf, 2 * ra->size);
+ uint16_t *count_zone = (uint16_t *)arena_alloc(&buf, 2 * ra->size);
+ uint8_t *typecode_zone = (uint8_t *)arena_alloc(&buf, ra->size);
+ uint32_t *header_zone = (uint32_t *)arena_alloc(&buf, 4);
+
+ for (int32_t i = 0; i < ra->size; i++) {
+ uint16_t count;
+ switch (ra->typecodes[i]) {
+ case BITSET_CONTAINER_TYPE: {
+ const bitset_container_t *bc =
+ const_CAST_bitset(ra->containers[i]);
+ memcpy(bitset_zone, bc->words,
+ BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t));
+ bitset_zone += BITSET_CONTAINER_SIZE_IN_WORDS;
+ if (bc->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+ count = (uint16_t)(bc->cardinality - 1);
+ } else {
+ count =
+ (uint16_t)(bitset_container_compute_cardinality(bc) -
+ 1);
+ }
+ break;
+ }
+ case RUN_CONTAINER_TYPE: {
+ const run_container_t *rc = const_CAST_run(ra->containers[i]);
+ size_t num_bytes = rc->n_runs * sizeof(rle16_t);
+ memcpy(run_zone, rc->runs, num_bytes);
+ run_zone += rc->n_runs;
+ count = (uint16_t)rc->n_runs;
+ break;
+ }
+ case ARRAY_CONTAINER_TYPE: {
+ const array_container_t *ac =
+ const_CAST_array(ra->containers[i]);
+ size_t num_bytes = ac->cardinality * sizeof(uint16_t);
+ memcpy(array_zone, ac->array, num_bytes);
+ array_zone += ac->cardinality;
+ count = (uint16_t)(ac->cardinality - 1);
+ break;
+ }
+ default:
+ roaring_unreachable;
+ }
+ memcpy(&count_zone[i], &count, 2);
+ }
+ memcpy(key_zone, ra->keys, ra->size * sizeof(uint16_t));
+ memcpy(typecode_zone, ra->typecodes, ra->size * sizeof(uint8_t));
+ uint32_t header = ((uint32_t)ra->size << 15) | FROZEN_COOKIE;
+ memcpy(header_zone, &header, 4);
+}
+
+const roaring_bitmap_t *roaring_bitmap_frozen_view(const char *buf,
+ size_t length) {
+ if ((uintptr_t)buf % 32 != 0) {
+ return NULL;
+ }
+
+ // cookie and num_containers
+ if (length < 4) {
+ return NULL;
+ }
+ uint32_t header;
+ memcpy(&header, buf + length - 4, 4); // header may be misaligned
+ if ((header & 0x7FFF) != FROZEN_COOKIE) {
+ return NULL;
+ }
+ int32_t num_containers = (header >> 15);
+
+ // typecodes, counts and keys
+ if (length < 4 + (size_t)num_containers * (1 + 2 + 2)) {
+ return NULL;
+ }
+ uint16_t *keys = (uint16_t *)(buf + length - 4 - num_containers * 5);
+ uint16_t *counts = (uint16_t *)(buf + length - 4 - num_containers * 3);
+ uint8_t *typecodes = (uint8_t *)(buf + length - 4 - num_containers * 1);
+
+ // {bitset,array,run}_zone
+ int32_t num_bitset_containers = 0;
+ int32_t num_run_containers = 0;
+ int32_t num_array_containers = 0;
+ size_t bitset_zone_size = 0;
+ size_t run_zone_size = 0;
+ size_t array_zone_size = 0;
+ for (int32_t i = 0; i < num_containers; i++) {
+ switch (typecodes[i]) {
+ case BITSET_CONTAINER_TYPE:
+ num_bitset_containers++;
+ bitset_zone_size +=
+ BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+ break;
+ case RUN_CONTAINER_TYPE:
+ num_run_containers++;
+ run_zone_size += counts[i] * sizeof(rle16_t);
+ break;
+ case ARRAY_CONTAINER_TYPE:
+ num_array_containers++;
+ array_zone_size += (counts[i] + UINT32_C(1)) *
sizeof(uint16_t);
+ break;
+ default:
+ return NULL;
+ }
+ }
+ if (length != bitset_zone_size + run_zone_size + array_zone_size +
+ 5 * num_containers + 4) {
+ return NULL;
+ }
+ uint64_t *bitset_zone = (uint64_t *)(buf);
+ rle16_t *run_zone = (rle16_t *)(buf + bitset_zone_size);
+ uint16_t *array_zone = (uint16_t *)(buf + bitset_zone_size +
run_zone_size);
+
+ size_t alloc_size = 0;
+ alloc_size += sizeof(roaring_bitmap_t);
+ alloc_size += num_containers * sizeof(container_t *);
+ alloc_size += num_bitset_containers * sizeof(bitset_container_t);
+ alloc_size += num_run_containers * sizeof(run_container_t);
+ alloc_size += num_array_containers * sizeof(array_container_t);
+
+ char *arena = (char *)roaring_malloc(alloc_size);
+ if (arena == NULL) {
+ return NULL;
+ }
+
+ roaring_bitmap_t *rb =
+ (roaring_bitmap_t *)arena_alloc(&arena, sizeof(roaring_bitmap_t));
+ rb->high_low_container.flags = ROARING_FLAG_FROZEN;
+ rb->high_low_container.allocation_size = num_containers;
+ rb->high_low_container.size = num_containers;
+ rb->high_low_container.keys = (uint16_t *)keys;
+ rb->high_low_container.typecodes = (uint8_t *)typecodes;
+ rb->high_low_container.containers = (container_t **)arena_alloc(
+ &arena, sizeof(container_t *) * num_containers);
+ // Ensure offset of high_low_container.containers is known distance used in
+ // C++ wrapper. sizeof(roaring_bitmap_t) is used as it is the size of the
+ // only allocation that precedes high_low_container.containers. If this is
+ // changed (new allocation or changed order), this offset will also need to
+ // be changed in the C++ wrapper.
+ assert(rb ==
+ (roaring_bitmap_t *)((char *)rb->high_low_container.containers -
+ sizeof(roaring_bitmap_t)));
+ for (int32_t i = 0; i < num_containers; i++) {
+ switch (typecodes[i]) {
+ case BITSET_CONTAINER_TYPE: {
+ bitset_container_t *bitset = (bitset_container_t *)arena_alloc(
+ &arena, sizeof(bitset_container_t));
+ bitset->words = bitset_zone;
+ bitset->cardinality = counts[i] + UINT32_C(1);
+ rb->high_low_container.containers[i] = bitset;
+ bitset_zone += BITSET_CONTAINER_SIZE_IN_WORDS;
+ break;
+ }
+ case RUN_CONTAINER_TYPE: {
+ run_container_t *run = (run_container_t *)arena_alloc(
+ &arena, sizeof(run_container_t));
+ run->capacity = counts[i];
+ run->n_runs = counts[i];
+ run->runs = run_zone;
+ rb->high_low_container.containers[i] = run;
+ run_zone += run->n_runs;
+ break;
+ }
+ case ARRAY_CONTAINER_TYPE: {
+ array_container_t *array = (array_container_t *)arena_alloc(
+ &arena, sizeof(array_container_t));
+ array->capacity = counts[i] + UINT32_C(1);
+ array->cardinality = counts[i] + UINT32_C(1);
+ array->array = array_zone;
+ rb->high_low_container.containers[i] = array;
+ array_zone += counts[i] + UINT32_C(1);
+ break;
+ }
+ default:
+ roaring_free(arena);
+ return NULL;
+ }
+ }
+
+ return rb;
+}
+
+ALLOW_UNALIGNED
+roaring_bitmap_t *roaring_bitmap_portable_deserialize_frozen(const char *buf) {
+ char *start_of_buf = (char *)buf;
+ uint32_t cookie;
+ int32_t num_containers;
+ uint16_t *descriptive_headers;
+ uint32_t *offset_headers = NULL;
+ const char *run_flag_bitset = NULL;
+ bool hasrun = false;
+
+ // deserialize cookie
+ memcpy(&cookie, buf, sizeof(uint32_t));
+ buf += sizeof(uint32_t);
+ if (cookie == SERIAL_COOKIE_NO_RUNCONTAINER) {
+ memcpy(&num_containers, buf, sizeof(int32_t));
+ buf += sizeof(int32_t);
+ descriptive_headers = (uint16_t *)buf;
+ buf += num_containers * 2 * sizeof(uint16_t);
+ offset_headers = (uint32_t *)buf;
+ buf += num_containers * sizeof(uint32_t);
+ } else if ((cookie & 0xFFFF) == SERIAL_COOKIE) {
+ num_containers = (cookie >> 16) + 1;
+ hasrun = true;
+ int32_t run_flag_bitset_size = (num_containers + 7) / 8;
+ run_flag_bitset = buf;
+ buf += run_flag_bitset_size;
+ descriptive_headers = (uint16_t *)buf;
+ buf += num_containers * 2 * sizeof(uint16_t);
+ if (num_containers >= NO_OFFSET_THRESHOLD) {
+ offset_headers = (uint32_t *)buf;
+ buf += num_containers * sizeof(uint32_t);
+ }
+ } else {
+ return NULL;
+ }
+
+ // calculate total size for allocation
+ int32_t num_bitset_containers = 0;
+ int32_t num_run_containers = 0;
+ int32_t num_array_containers = 0;
+
+ for (int32_t i = 0; i < num_containers; i++) {
+ uint16_t tmp;
+ memcpy(&tmp, descriptive_headers + 2 * i + 1, sizeof(tmp));
+ uint32_t cardinality = tmp + 1;
+ bool isbitmap = (cardinality > DEFAULT_MAX_SIZE);
+ bool isrun = false;
+ if (hasrun) {
+ if ((run_flag_bitset[i / 8] & (1 << (i % 8))) != 0) {
+ isbitmap = false;
+ isrun = true;
+ }
+ }
+
+ if (isbitmap) {
+ num_bitset_containers++;
+ } else if (isrun) {
+ num_run_containers++;
+ } else {
+ num_array_containers++;
+ }
+ }
+
+ size_t alloc_size = 0;
+ alloc_size += sizeof(roaring_bitmap_t);
+ alloc_size += num_containers * sizeof(container_t *);
+ alloc_size += num_bitset_containers * sizeof(bitset_container_t);
+ alloc_size += num_run_containers * sizeof(run_container_t);
+ alloc_size += num_array_containers * sizeof(array_container_t);
+ alloc_size += num_containers * sizeof(uint16_t); // keys
+ alloc_size += num_containers * sizeof(uint8_t); // typecodes
+
+ // allocate bitmap and construct containers
+ char *arena = (char *)roaring_malloc(alloc_size);
+ if (arena == NULL) {
+ return NULL;
+ }
+
+ roaring_bitmap_t *rb =
+ (roaring_bitmap_t *)arena_alloc(&arena, sizeof(roaring_bitmap_t));
+ rb->high_low_container.flags = ROARING_FLAG_FROZEN;
+ rb->high_low_container.allocation_size = num_containers;
+ rb->high_low_container.size = num_containers;
+ rb->high_low_container.containers = (container_t **)arena_alloc(
+ &arena, sizeof(container_t *) * num_containers);
+
+ uint16_t *keys =
+ (uint16_t *)arena_alloc(&arena, num_containers * sizeof(uint16_t));
+ uint8_t *typecodes =
+ (uint8_t *)arena_alloc(&arena, num_containers * sizeof(uint8_t));
+
+ rb->high_low_container.keys = keys;
+ rb->high_low_container.typecodes = typecodes;
+
+ for (int32_t i = 0; i < num_containers; i++) {
+ uint16_t tmp;
+ memcpy(&tmp, descriptive_headers + 2 * i + 1, sizeof(tmp));
+ int32_t cardinality = tmp + 1;
+ bool isbitmap = (cardinality > DEFAULT_MAX_SIZE);
+ bool isrun = false;
+ if (hasrun) {
+ if ((run_flag_bitset[i / 8] & (1 << (i % 8))) != 0) {
+ isbitmap = false;
+ isrun = true;
+ }
+ }
+
+ keys[i] = descriptive_headers[2 * i];
+
+ if (isbitmap) {
+ typecodes[i] = BITSET_CONTAINER_TYPE;
+ bitset_container_t *c = (bitset_container_t *)arena_alloc(
+ &arena, sizeof(bitset_container_t));
+ c->cardinality = cardinality;
+ if (offset_headers != NULL) {
+ c->words = (uint64_t *)(start_of_buf + offset_headers[i]);
+ } else {
+ c->words = (uint64_t *)buf;
+ buf += BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+ }
+ rb->high_low_container.containers[i] = c;
+ } else if (isrun) {
+ typecodes[i] = RUN_CONTAINER_TYPE;
+ run_container_t *c =
+ (run_container_t *)arena_alloc(&arena,
sizeof(run_container_t));
+ c->capacity = cardinality;
+ uint16_t n_runs;
+ if (offset_headers != NULL) {
+ memcpy(&n_runs, start_of_buf + offset_headers[i],
+ sizeof(uint16_t));
+ c->n_runs = n_runs;
+ c->runs = (rle16_t *)(start_of_buf + offset_headers[i] +
+ sizeof(uint16_t));
+ } else {
+ memcpy(&n_runs, buf, sizeof(uint16_t));
+ c->n_runs = n_runs;
+ buf += sizeof(uint16_t);
+ c->runs = (rle16_t *)buf;
+ buf += c->n_runs * sizeof(rle16_t);
+ }
+ rb->high_low_container.containers[i] = c;
+ } else {
+ typecodes[i] = ARRAY_CONTAINER_TYPE;
+ array_container_t *c = (array_container_t *)arena_alloc(
+ &arena, sizeof(array_container_t));
+ c->cardinality = cardinality;
+ c->capacity = cardinality;
+ if (offset_headers != NULL) {
+ c->array = (uint16_t *)(start_of_buf + offset_headers[i]);
+ } else {
+ c->array = (uint16_t *)buf;
+ buf += cardinality * sizeof(uint16_t);
+ }
+ rb->high_low_container.containers[i] = c;
+ }
+ }
+
+ return rb;
+}
+
+bool roaring_bitmap_to_bitset(const roaring_bitmap_t *r, bitset_t *bitset) {
+ uint32_t max_value = roaring_bitmap_maximum(r);
+ size_t new_array_size = (size_t)(max_value / 64 + 1);
+ bool resize_ok = bitset_resize(bitset, new_array_size, true);
+ if (!resize_ok) {
+ return false;
+ }
+ const roaring_array_t *ra = &r->high_low_container;
+ for (int i = 0; i < ra->size; ++i) {
+ uint64_t *words = bitset->array + (ra->keys[i] << 10);
+ uint8_t type = ra->typecodes[i];
+ const container_t *c = ra->containers[i];
+ if (type == SHARED_CONTAINER_TYPE) {
+ c = container_unwrap_shared(c, &type);
+ }
+ switch (type) {
+ case BITSET_CONTAINER_TYPE: {
+ size_t max_word_index = new_array_size - (ra->keys[i] << 10);
+ if (max_word_index > 1024) {
+ max_word_index = 1024;
+ }
+ const bitset_container_t *src = const_CAST_bitset(c);
+ memcpy(words, src->words, max_word_index * sizeof(uint64_t));
+ } break;
+ case ARRAY_CONTAINER_TYPE: {
+ const array_container_t *src = const_CAST_array(c);
+ bitset_set_list(words, src->array, src->cardinality);
+ } break;
+ case RUN_CONTAINER_TYPE: {
+ const run_container_t *src = const_CAST_run(c);
+ for (int32_t rlepos = 0; rlepos < src->n_runs; ++rlepos) {
+ rle16_t rle = src->runs[rlepos];
+ bitset_set_lenrange(words, rle.value, rle.length);
+ }
+ } break;
+ default:
+ roaring_unreachable;
+ }
+ }
+ return true;
+}
+
+#ifdef __cplusplus
+}
+}
+} // extern "C" { namespace roaring {
+#endif
+/* end file src/roaring.c */
+/* begin file src/roaring64.c */
+#include <assert.h>
+#include <stdarg.h>
+#include <stdint.h>
+#include <string.h>
+
+
+// For serialization / deserialization
+// containers.h last to avoid conflict with ROARING_CONTAINER_T.
+
+#ifdef __cplusplus
+using namespace ::roaring::internal;
+
+extern "C" {
+namespace roaring {
+namespace api {
+#endif
+
+// TODO: Copy on write.
+// TODO: Error on failed allocation.
+
+typedef struct roaring64_bitmap_s {
+ art_t art;
+ uint8_t flags;
+} roaring64_bitmap_t;
+
+// Leaf type of the ART used to keep the high 48 bits of each entry.
+typedef struct roaring64_leaf_s {
+ art_val_t _pad;
+ uint8_t typecode;
+ container_t *container;
+} roaring64_leaf_t;
+
+// Alias to make it easier to work with, since it's an internal-only type
+// anyway.
+typedef struct roaring64_leaf_s leaf_t;
+
+// Iterator struct to hold iteration state.
+typedef struct roaring64_iterator_s {
+ const roaring64_bitmap_t *parent;
+ art_iterator_t art_it;
+ roaring_container_iterator_t container_it;
+ uint64_t high48; // Key that art_it points to.
+
+ uint64_t value;
+ bool has_value;
+
+ // If has_value is false, then the iterator is saturated. This field
+ // indicates the direction of saturation. If true, there are no more values
+ // in the forward direction. If false, there are no more values in the
+ // backward direction.
+ bool saturated_forward;
+} roaring64_iterator_t;
+
+// Splits the given uint64 key into high 48 bit and low 16 bit components.
+// Expects high48_out to be of length ART_KEY_BYTES.
+static inline uint16_t split_key(uint64_t key, uint8_t high48_out[]) {
+ uint64_t tmp = croaring_htobe64(key);
+ memcpy(high48_out, (uint8_t *)(&tmp), ART_KEY_BYTES);
+ return (uint16_t)key;
+}
+
+// Recombines the high 48 bit and low 16 bit components into a uint64 key.
+// Expects high48_out to be of length ART_KEY_BYTES.
+static inline uint64_t combine_key(const uint8_t high48[], uint16_t low16) {
+ uint64_t result = 0;
+ memcpy((uint8_t *)(&result), high48, ART_KEY_BYTES);
+ return croaring_be64toh(result) | low16;
+}
+
+static inline uint64_t minimum(uint64_t a, uint64_t b) {
+ return (a < b) ? a : b;
+}
+
+static inline leaf_t *create_leaf(container_t *container, uint8_t typecode) {
+ leaf_t *leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
+ leaf->container = container;
+ leaf->typecode = typecode;
+ return leaf;
+}
+
+static inline leaf_t *copy_leaf_container(const leaf_t *leaf) {
+ leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
+ result_leaf->typecode = leaf->typecode;
+ // get_copy_of_container modifies the typecode passed in.
+ result_leaf->container = get_copy_of_container(
+ leaf->container, &result_leaf->typecode, /*copy_on_write=*/false);
+ return result_leaf;
+}
+
+static inline void free_leaf(leaf_t *leaf) { roaring_free(leaf); }
+
+static inline int compare_high48(art_key_chunk_t key1[],
+ art_key_chunk_t key2[]) {
+ return art_compare_keys(key1, key2);
+}
+
+static inline bool roaring64_iterator_init_at_leaf_first(
+ roaring64_iterator_t *it) {
+ it->high48 = combine_key(it->art_it.key, 0);
+ leaf_t *leaf = (leaf_t *)it->art_it.value;
+ uint16_t low16 = 0;
+ it->container_it =
+ container_init_iterator(leaf->container, leaf->typecode, &low16);
+ it->value = it->high48 | low16;
+ return (it->has_value = true);
+}
+
+static inline bool roaring64_iterator_init_at_leaf_last(
+ roaring64_iterator_t *it) {
+ it->high48 = combine_key(it->art_it.key, 0);
+ leaf_t *leaf = (leaf_t *)it->art_it.value;
+ uint16_t low16 = 0;
+ it->container_it =
+ container_init_iterator_last(leaf->container, leaf->typecode, &low16);
+ it->value = it->high48 | low16;
+ return (it->has_value = true);
+}
+
+static inline roaring64_iterator_t *roaring64_iterator_init_at(
+ const roaring64_bitmap_t *r, roaring64_iterator_t *it, bool first) {
+ it->parent = r;
+ it->art_it = art_init_iterator(&r->art, first);
+ it->has_value = it->art_it.value != NULL;
+ if (it->has_value) {
+ if (first) {
+ roaring64_iterator_init_at_leaf_first(it);
+ } else {
+ roaring64_iterator_init_at_leaf_last(it);
+ }
+ } else {
+ it->saturated_forward = first;
+ }
+ return it;
+}
+
+roaring64_bitmap_t *roaring64_bitmap_create(void) {
+ roaring64_bitmap_t *r =
+ (roaring64_bitmap_t *)roaring_malloc(sizeof(roaring64_bitmap_t));
+ r->art.root = NULL;
+ r->flags = 0;
+ return r;
+}
+
+void roaring64_bitmap_free(roaring64_bitmap_t *r) {
+ if (!r) {
+ return;
+ }
+ art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+ while (it.value != NULL) {
+ leaf_t *leaf = (leaf_t *)it.value;
+ container_free(leaf->container, leaf->typecode);
+ free_leaf(leaf);
+ art_iterator_next(&it);
+ }
+ art_free(&r->art);
+ roaring_free(r);
+}
+
+roaring64_bitmap_t *roaring64_bitmap_copy(const roaring64_bitmap_t *r) {
+ roaring64_bitmap_t *result = roaring64_bitmap_create();
+
+ art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+ while (it.value != NULL) {
+ leaf_t *leaf = (leaf_t *)it.value;
+ uint8_t result_typecode = leaf->typecode;
+ container_t *result_container = get_copy_of_container(
+ leaf->container, &result_typecode, /*copy_on_write=*/false);
+ leaf_t *result_leaf = create_leaf(result_container, result_typecode);
+ art_insert(&result->art, it.key, (art_val_t *)result_leaf);
+ art_iterator_next(&it);
+ }
+ return result;
+}
+
+/**
+ * Steal the containers from a 32-bit bitmap and insert them into a 64-bit
+ * bitmap (with an offset)
+ *
+ * After calling this function, the original bitmap will be empty, and the
+ * returned bitmap will contain all the values from the original bitmap.
+ */
+static void move_from_roaring32_offset(roaring64_bitmap_t *dst,
+ roaring_bitmap_t *src,
+ uint32_t high_bits) {
+ uint64_t key_base = ((uint64_t)high_bits) << 32;
+ uint32_t r32_size = ra_get_size(&src->high_low_container);
+ for (uint32_t i = 0; i < r32_size; ++i) {
+ uint16_t key = ra_get_key_at_index(&src->high_low_container, i);
+ uint8_t typecode;
+ container_t *container = ra_get_container_at_index(
+ &src->high_low_container, (uint16_t)i, &typecode);
+
+ uint8_t high48[ART_KEY_BYTES];
+ uint64_t high48_bits = key_base | ((uint64_t)key << 16);
+ split_key(high48_bits, high48);
+ leaf_t *leaf = create_leaf(container, typecode);
+ art_insert(&dst->art, high48, (art_val_t *)leaf);
+ }
+ // We stole all the containers, so leave behind a size of zero
+ src->high_low_container.size = 0;
+}
+
+roaring64_bitmap_t *roaring64_bitmap_move_from_roaring32(
+ roaring_bitmap_t *bitmap32) {
+ roaring64_bitmap_t *result = roaring64_bitmap_create();
+
+ move_from_roaring32_offset(result, bitmap32, 0);
+
+ return result;
+}
+
+roaring64_bitmap_t *roaring64_bitmap_from_range(uint64_t min, uint64_t max,
+ uint64_t step) {
+ if (step == 0 || max <= min) {
+ return NULL;
+ }
+ roaring64_bitmap_t *r = roaring64_bitmap_create();
+ if (step >= (1 << 16)) {
+ // Only one value per container.
+ for (uint64_t value = min; value < max; value += step) {
+ roaring64_bitmap_add(r, value);
+ if (value > UINT64_MAX - step) {
+ break;
+ }
+ }
+ return r;
+ }
+ do {
+ uint64_t high_bits = min & 0xFFFFFFFFFFFF0000;
+ uint16_t container_min = min & 0xFFFF;
+ uint32_t container_max = (uint32_t)minimum(max - high_bits, 1 << 16);
+
+ uint8_t typecode;
+ container_t *container = container_from_range(
+ &typecode, container_min, container_max, (uint16_t)step);
+
+ uint8_t high48[ART_KEY_BYTES];
+ split_key(min, high48);
+ leaf_t *leaf = create_leaf(container, typecode);
+ art_insert(&r->art, high48, (art_val_t *)leaf);
+
+ uint64_t gap = container_max - container_min + step - 1;
+ uint64_t increment = gap - (gap % step);
+ if (min > UINT64_MAX - increment) {
+ break;
+ }
+ min += increment;
+ } while (min < max);
+ return r;
+}
+
+roaring64_bitmap_t *roaring64_bitmap_of_ptr(size_t n_args,
+ const uint64_t *vals) {
+ roaring64_bitmap_t *r = roaring64_bitmap_create();
+ roaring64_bitmap_add_many(r, n_args, vals);
+ return r;
+}
+
+roaring64_bitmap_t *roaring64_bitmap_of(size_t n_args, ...) {
+ roaring64_bitmap_t *r = roaring64_bitmap_create();
+ roaring64_bulk_context_t context = CROARING_ZERO_INITIALIZER;
+ va_list ap;
+ va_start(ap, n_args);
+ for (size_t i = 0; i < n_args; i++) {
+ uint64_t val = va_arg(ap, uint64_t);
+ roaring64_bitmap_add_bulk(r, &context, val);
+ }
+ va_end(ap);
+ return r;
+}
+
+static inline leaf_t *containerptr_roaring64_bitmap_add(roaring64_bitmap_t *r,
+ uint8_t *high48,
+ uint16_t low16,
+ leaf_t *leaf) {
+ if (leaf != NULL) {
+ uint8_t typecode2;
+ container_t *container2 =
+ container_add(leaf->container, low16, leaf->typecode, &typecode2);
+ if (container2 != leaf->container) {
+ container_free(leaf->container, leaf->typecode);
+ leaf->container = container2;
+ leaf->typecode = typecode2;
+ }
+ return leaf;
+ } else {
+ array_container_t *ac = array_container_create();
+ uint8_t typecode;
+ container_t *container =
+ container_add(ac, low16, ARRAY_CONTAINER_TYPE, &typecode);
+ assert(ac == container);
+ leaf = create_leaf(container, typecode);
+ art_insert(&r->art, high48, (art_val_t *)leaf);
+ return leaf;
+ }
+}
+
+void roaring64_bitmap_add(roaring64_bitmap_t *r, uint64_t val) {
+ uint8_t high48[ART_KEY_BYTES];
+ uint16_t low16 = split_key(val, high48);
+ leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
+ containerptr_roaring64_bitmap_add(r, high48, low16, leaf);
+}
+
+bool roaring64_bitmap_add_checked(roaring64_bitmap_t *r, uint64_t val) {
+ uint8_t high48[ART_KEY_BYTES];
+ uint16_t low16 = split_key(val, high48);
+ leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
+
+ int old_cardinality = 0;
+ if (leaf != NULL) {
+ old_cardinality =
+ container_get_cardinality(leaf->container, leaf->typecode);
+ }
+ leaf = containerptr_roaring64_bitmap_add(r, high48, low16, leaf);
+ int new_cardinality =
+ container_get_cardinality(leaf->container, leaf->typecode);
+ return old_cardinality != new_cardinality;
+}
+
+void roaring64_bitmap_add_bulk(roaring64_bitmap_t *r,
+ roaring64_bulk_context_t *context,
+ uint64_t val) {
+ uint8_t high48[ART_KEY_BYTES];
+ uint16_t low16 = split_key(val, high48);
+ if (context->leaf != NULL &&
+ compare_high48(context->high_bytes, high48) == 0) {
+ // We're at a container with the correct high bits.
+ uint8_t typecode2;
+ container_t *container2 =
+ container_add(context->leaf->container, low16,
+ context->leaf->typecode, &typecode2);
+ if (container2 != context->leaf->container) {
+ container_free(context->leaf->container, context->leaf->typecode);
+ context->leaf->container = container2;
+ context->leaf->typecode = typecode2;
+ }
+ } else {
+ // We're not positioned anywhere yet or the high bits of the key
+ // differ.
+ leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
+ context->leaf =
+ containerptr_roaring64_bitmap_add(r, high48, low16, leaf);
+ memcpy(context->high_bytes, high48, ART_KEY_BYTES);
+ }
+}
+
+void roaring64_bitmap_add_many(roaring64_bitmap_t *r, size_t n_args,
+ const uint64_t *vals) {
+ if (n_args == 0) {
+ return;
+ }
+ const uint64_t *end = vals + n_args;
+ roaring64_bulk_context_t context = CROARING_ZERO_INITIALIZER;
+ for (const uint64_t *current_val = vals; current_val != end;
+ current_val++) {
+ roaring64_bitmap_add_bulk(r, &context, *current_val);
+ }
+}
+
+static inline void add_range_closed_at(art_t *art, uint8_t *high48,
+ uint16_t min, uint16_t max) {
+ leaf_t *leaf = (leaf_t *)art_find(art, high48);
+ if (leaf != NULL) {
+ uint8_t typecode2;
+ container_t *container2 = container_add_range(
+ leaf->container, leaf->typecode, min, max, &typecode2);
+ if (container2 != leaf->container) {
+ container_free(leaf->container, leaf->typecode);
+ leaf->container = container2;
+ leaf->typecode = typecode2;
+ }
+ return;
+ }
+ uint8_t typecode;
+ // container_add_range is inclusive, but `container_range_of_ones` is
+ // exclusive.
+ container_t *container = container_range_of_ones(min, max + 1, &typecode);
+ leaf = create_leaf(container, typecode);
+ art_insert(art, high48, (art_val_t *)leaf);
+}
+
+void roaring64_bitmap_add_range(roaring64_bitmap_t *r, uint64_t min,
+ uint64_t max) {
+ if (min >= max) {
+ return;
+ }
+ roaring64_bitmap_add_range_closed(r, min, max - 1);
+}
+
+void roaring64_bitmap_add_range_closed(roaring64_bitmap_t *r, uint64_t min,
+ uint64_t max) {
+ if (min > max) {
+ return;
+ }
+
+ art_t *art = &r->art;
+ uint8_t min_high48[ART_KEY_BYTES];
+ uint16_t min_low16 = split_key(min, min_high48);
+ uint8_t max_high48[ART_KEY_BYTES];
+ uint16_t max_low16 = split_key(max, max_high48);
+ if (compare_high48(min_high48, max_high48) == 0) {
+ // Only populate range within one container.
+ add_range_closed_at(art, min_high48, min_low16, max_low16);
+ return;
+ }
+
+ // Populate a range across containers. Fill intermediate containers
+ // entirely.
+ add_range_closed_at(art, min_high48, min_low16, 0xffff);
+ uint64_t min_high_bits = min >> 16;
+ uint64_t max_high_bits = max >> 16;
+ for (uint64_t current = min_high_bits + 1; current < max_high_bits;
+ ++current) {
+ uint8_t current_high48[ART_KEY_BYTES];
+ split_key(current << 16, current_high48);
+ add_range_closed_at(art, current_high48, 0, 0xffff);
+ }
+ add_range_closed_at(art, max_high48, 0, max_low16);
+}
+
+bool roaring64_bitmap_contains(const roaring64_bitmap_t *r, uint64_t val) {
+ uint8_t high48[ART_KEY_BYTES];
+ uint16_t low16 = split_key(val, high48);
+ leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
+ if (leaf != NULL) {
+ return container_contains(leaf->container, low16, leaf->typecode);
+ }
+ return false;
+}
+
+bool roaring64_bitmap_contains_range(const roaring64_bitmap_t *r, uint64_t min,
+ uint64_t max) {
+ if (min >= max) {
+ return true;
+ }
+
+ uint8_t min_high48[ART_KEY_BYTES];
+ uint16_t min_low16 = split_key(min, min_high48);
+ uint8_t max_high48[ART_KEY_BYTES];
+ uint16_t max_low16 = split_key(max, max_high48);
+ uint64_t max_high48_bits = (max - 1) & 0xFFFFFFFFFFFF0000; // Inclusive
+
+ art_iterator_t it = art_lower_bound(&r->art, min_high48);
+ if (it.value == NULL || combine_key(it.key, 0) > min) {
+ return false;
+ }
+ uint64_t prev_high48_bits = min & 0xFFFFFFFFFFFF0000;
+ while (it.value != NULL) {
+ uint64_t current_high48_bits = combine_key(it.key, 0);
+ if (current_high48_bits > max_high48_bits) {
+ // We've passed the end of the range with all containers containing
+ // the range.
+ return true;
+ }
+ if (current_high48_bits - prev_high48_bits > 0x10000) {
+ // There is a gap in the iterator that falls in the range.
+ return false;
+ }
+
+ leaf_t *leaf = (leaf_t *)it.value;
+ uint32_t container_min = 0;
+ if (compare_high48(it.key, min_high48) == 0) {
+ container_min = min_low16;
+ }
+ uint32_t container_max = 0xFFFF + 1; // Exclusive
+ if (compare_high48(it.key, max_high48) == 0) {
+ container_max = max_low16;
+ }
+
+ // For the first and last containers we use container_contains_range,
+ // for the intermediate containers we can use container_is_full.
+ if (container_min == 0 && container_max == 0xFFFF + 1) {
+ if (!container_is_full(leaf->container, leaf->typecode)) {
+ return false;
+ }
+ } else if (!container_contains_range(leaf->container, container_min,
+ container_max, leaf->typecode)) {
+ return false;
+ }
+ prev_high48_bits = current_high48_bits;
+ art_iterator_next(&it);
+ }
+ return prev_high48_bits == max_high48_bits;
+}
+
+bool roaring64_bitmap_contains_bulk(const roaring64_bitmap_t *r,
+ roaring64_bulk_context_t *context,
+ uint64_t val) {
+ uint8_t high48[ART_KEY_BYTES];
+ uint16_t low16 = split_key(val, high48);
+
+ if (context->leaf == NULL ||
+ art_compare_keys(context->high_bytes, high48) != 0) {
+ // We're not positioned anywhere yet or the high bits of the key
+ // differ.
+ leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
+ if (leaf == NULL) {
+ return false;
+ }
+ context->leaf = leaf;
+ memcpy(context->high_bytes, high48, ART_KEY_BYTES);
+ }
+ return container_contains(context->leaf->container, low16,
+ context->leaf->typecode);
+}
+
+bool roaring64_bitmap_select(const roaring64_bitmap_t *r, uint64_t rank,
+ uint64_t *element) {
+ art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+ uint64_t start_rank = 0;
+ while (it.value != NULL) {
+ leaf_t *leaf = (leaf_t *)it.value;
+ uint64_t cardinality =
+ container_get_cardinality(leaf->container, leaf->typecode);
+ if (start_rank + cardinality > rank) {
+ uint32_t uint32_start = 0;
+ uint32_t uint32_rank = rank - start_rank;
+ uint32_t uint32_element = 0;
+ if (container_select(leaf->container, leaf->typecode,
&uint32_start,
+ uint32_rank, &uint32_element)) {
+ *element = combine_key(it.key, (uint16_t)uint32_element);
+ return true;
+ }
+ return false;
+ }
+ start_rank += cardinality;
+ art_iterator_next(&it);
+ }
+ return false;
+}
+
+uint64_t roaring64_bitmap_rank(const roaring64_bitmap_t *r, uint64_t val) {
+ uint8_t high48[ART_KEY_BYTES];
+ uint16_t low16 = split_key(val, high48);
+
+ art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+ uint64_t rank = 0;
+ while (it.value != NULL) {
+ leaf_t *leaf = (leaf_t *)it.value;
+ int compare_result = compare_high48(it.key, high48);
+ if (compare_result < 0) {
+ rank += container_get_cardinality(leaf->container, leaf->typecode);
+ } else if (compare_result == 0) {
+ return rank +
+ container_rank(leaf->container, leaf->typecode, low16);
+ } else {
+ return rank;
+ }
+ art_iterator_next(&it);
+ }
+ return rank;
+}
+
+bool roaring64_bitmap_get_index(const roaring64_bitmap_t *r, uint64_t val,
+ uint64_t *out_index) {
+ uint8_t high48[ART_KEY_BYTES];
+ uint16_t low16 = split_key(val, high48);
+
+ art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+ uint64_t index = 0;
+ while (it.value != NULL) {
+ leaf_t *leaf = (leaf_t *)it.value;
+ int compare_result = compare_high48(it.key, high48);
+ if (compare_result < 0) {
+ index += container_get_cardinality(leaf->container,
leaf->typecode);
+ } else if (compare_result == 0) {
+ int index16 =
+ container_get_index(leaf->container, leaf->typecode, low16);
+ if (index16 < 0) {
+ return false;
+ }
+ *out_index = index + index16;
+ return true;
+ } else {
+ return false;
+ }
+ art_iterator_next(&it);
+ }
+ return false;
+}
+
+static inline leaf_t *containerptr_roaring64_bitmap_remove(
+ roaring64_bitmap_t *r, uint8_t *high48, uint16_t low16, leaf_t *leaf) {
+ if (leaf == NULL) {
+ return NULL;
+ }
+
+ container_t *container = leaf->container;
+ uint8_t typecode = leaf->typecode;
+ uint8_t typecode2;
+ container_t *container2 =
+ container_remove(container, low16, typecode, &typecode2);
+ if (container2 != container) {
+ container_free(container, typecode);
+ leaf->container = container2;
+ leaf->typecode = typecode2;
+ }
+ if (!container_nonzero_cardinality(container2, typecode2)) {
+ container_free(container2, typecode2);
+ leaf = (leaf_t *)art_erase(&r->art, high48);
+ if (leaf != NULL) {
+ free_leaf(leaf);
+ }
+ return NULL;
+ }
+ return leaf;
+}
+
+void roaring64_bitmap_remove(roaring64_bitmap_t *r, uint64_t val) {
+ art_t *art = &r->art;
+ uint8_t high48[ART_KEY_BYTES];
+ uint16_t low16 = split_key(val, high48);
+
+ leaf_t *leaf = (leaf_t *)art_find(art, high48);
+ containerptr_roaring64_bitmap_remove(r, high48, low16, leaf);
+}
+
+bool roaring64_bitmap_remove_checked(roaring64_bitmap_t *r, uint64_t val) {
+ art_t *art = &r->art;
+ uint8_t high48[ART_KEY_BYTES];
+ uint16_t low16 = split_key(val, high48);
+ leaf_t *leaf = (leaf_t *)art_find(art, high48);
+
+ if (leaf == NULL) {
+ return false;
+ }
+ int old_cardinality =
+ container_get_cardinality(leaf->container, leaf->typecode);
+ leaf = containerptr_roaring64_bitmap_remove(r, high48, low16, leaf);
+ if (leaf == NULL) {
+ return true;
+ }
+ int new_cardinality =
+ container_get_cardinality(leaf->container, leaf->typecode);
+ return new_cardinality != old_cardinality;
+}
+
+void roaring64_bitmap_remove_bulk(roaring64_bitmap_t *r,
+ roaring64_bulk_context_t *context,
+ uint64_t val) {
+ art_t *art = &r->art;
+ uint8_t high48[ART_KEY_BYTES];
+ uint16_t low16 = split_key(val, high48);
+ if (context->leaf != NULL &&
+ compare_high48(context->high_bytes, high48) == 0) {
+ // We're at a container with the correct high bits.
+ uint8_t typecode2;
+ container_t *container2 =
+ container_remove(context->leaf->container, low16,
+ context->leaf->typecode, &typecode2);
+ if (container2 != context->leaf->container) {
+ container_free(context->leaf->container, context->leaf->typecode);
+ context->leaf->container = container2;
+ context->leaf->typecode = typecode2;
+ }
+ if (!container_nonzero_cardinality(container2, typecode2)) {
+ leaf_t *leaf = (leaf_t *)art_erase(art, high48);
+ container_free(container2, typecode2);
+ free_leaf(leaf);
+ }
+ } else {
+ // We're not positioned anywhere yet or the high bits of the key
+ // differ.
+ leaf_t *leaf = (leaf_t *)art_find(art, high48);
+ context->leaf =
+ containerptr_roaring64_bitmap_remove(r, high48, low16, leaf);
+ memcpy(context->high_bytes, high48, ART_KEY_BYTES);
+ }
+}
+
+void roaring64_bitmap_remove_many(roaring64_bitmap_t *r, size_t n_args,
+ const uint64_t *vals) {
+ if (n_args == 0) {
+ return;
+ }
+ const uint64_t *end = vals + n_args;
+ roaring64_bulk_context_t context = CROARING_ZERO_INITIALIZER;
+ for (const uint64_t *current_val = vals; current_val != end;
+ current_val++) {
+ roaring64_bitmap_remove_bulk(r, &context, *current_val);
+ }
+}
+
+static inline void remove_range_closed_at(art_t *art, uint8_t *high48,
+ uint16_t min, uint16_t max) {
+ leaf_t *leaf = (leaf_t *)art_find(art, high48);
+ if (leaf == NULL) {
+ return;
+ }
+ uint8_t typecode2;
+ container_t *container2 = container_remove_range(
+ leaf->container, leaf->typecode, min, max, &typecode2);
+ if (container2 != leaf->container) {
+ container_free(leaf->container, leaf->typecode);
+ if (container2 != NULL) {
+ leaf->container = container2;
+ leaf->typecode = typecode2;
+ } else {
+ art_erase(art, high48);
+ free_leaf(leaf);
+ }
+ }
+}
+
+void roaring64_bitmap_remove_range(roaring64_bitmap_t *r, uint64_t min,
+ uint64_t max) {
+ if (min >= max) {
+ return;
+ }
+ roaring64_bitmap_remove_range_closed(r, min, max - 1);
+}
+
+void roaring64_bitmap_remove_range_closed(roaring64_bitmap_t *r, uint64_t min,
+ uint64_t max) {
+ if (min > max) {
+ return;
+ }
+
+ art_t *art = &r->art;
+ uint8_t min_high48[ART_KEY_BYTES];
+ uint16_t min_low16 = split_key(min, min_high48);
+ uint8_t max_high48[ART_KEY_BYTES];
+ uint16_t max_low16 = split_key(max, max_high48);
+ if (compare_high48(min_high48, max_high48) == 0) {
+ // Only remove a range within one container.
+ remove_range_closed_at(art, min_high48, min_low16, max_low16);
+ return;
+ }
+
+ // Remove a range across containers. Remove intermediate containers
+ // entirely.
+ remove_range_closed_at(art, min_high48, min_low16, 0xffff);
+
+ art_iterator_t it = art_upper_bound(art, min_high48);
+ while (it.value != NULL && art_compare_keys(it.key, max_high48) < 0) {
+ leaf_t *leaf = (leaf_t *)art_iterator_erase(art, &it);
+ container_free(leaf->container, leaf->typecode);
+ free_leaf(leaf);
+ }
+ remove_range_closed_at(art, max_high48, 0, max_low16);
+}
+
+void roaring64_bitmap_clear(roaring64_bitmap_t *r) {
+ roaring64_bitmap_remove_range_closed(r, 0, UINT64_MAX);
+}
+
+uint64_t roaring64_bitmap_get_cardinality(const roaring64_bitmap_t *r) {
+ art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+ uint64_t cardinality = 0;
+ while (it.value != NULL) {
+ leaf_t *leaf = (leaf_t *)it.value;
+ cardinality +=
+ container_get_cardinality(leaf->container, leaf->typecode);
+ art_iterator_next(&it);
+ }
+ return cardinality;
+}
+
+uint64_t roaring64_bitmap_range_cardinality(const roaring64_bitmap_t *r,
+ uint64_t min, uint64_t max) {
+ if (min >= max) {
+ return 0;
+ }
+ // Convert to a closed range
+ // No underflow here: passing the above condition implies min < max, so
+ // there is a number less than max
+ return roaring64_bitmap_range_closed_cardinality(r, min, max - 1);
+}
+
+uint64_t roaring64_bitmap_range_closed_cardinality(const roaring64_bitmap_t *r,
+ uint64_t min, uint64_t max)
{
+ if (min > max) {
+ return 0;
+ }
+
+ uint64_t cardinality = 0;
+ uint8_t min_high48[ART_KEY_BYTES];
+ uint16_t min_low16 = split_key(min, min_high48);
+ uint8_t max_high48[ART_KEY_BYTES];
+ uint16_t max_low16 = split_key(max, max_high48);
+
+ art_iterator_t it = art_lower_bound(&r->art, min_high48);
+ while (it.value != NULL) {
+ int max_compare_result = compare_high48(it.key, max_high48);
+ if (max_compare_result > 0) {
+ // We're outside the range.
+ break;
+ }
+
+ leaf_t *leaf = (leaf_t *)it.value;
+ if (max_compare_result == 0) {
+ // We're at the max high key, add only the range up to the low
+ // 16 bits of max.
+ cardinality +=
+ container_rank(leaf->container, leaf->typecode, max_low16);
+ } else {
+ // We're not yet at the max high key, add the full container
+ // range.
+ cardinality +=
+ container_get_cardinality(leaf->container, leaf->typecode);
+ }
+ if (compare_high48(it.key, min_high48) == 0 && min_low16 > 0) {
+ // We're at the min high key, remove the range up to the low 16
+ // bits of min.
+ cardinality -=
+ container_rank(leaf->container, leaf->typecode, min_low16 - 1);
+ }
+ art_iterator_next(&it);
+ }
+ return cardinality;
+}
+
+bool roaring64_bitmap_is_empty(const roaring64_bitmap_t *r) {
+ return art_is_empty(&r->art);
+}
+
+uint64_t roaring64_bitmap_minimum(const roaring64_bitmap_t *r) {
+ art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+ if (it.value == NULL) {
+ return UINT64_MAX;
+ }
+ leaf_t *leaf = (leaf_t *)it.value;
+ return combine_key(it.key,
+ container_minimum(leaf->container, leaf->typecode));
+}
+
+uint64_t roaring64_bitmap_maximum(const roaring64_bitmap_t *r) {
+ art_iterator_t it = art_init_iterator(&r->art, /*first=*/false);
+ if (it.value == NULL) {
+ return 0;
+ }
+ leaf_t *leaf = (leaf_t *)it.value;
+ return combine_key(it.key,
+ container_maximum(leaf->container, leaf->typecode));
+}
+
+bool roaring64_bitmap_run_optimize(roaring64_bitmap_t *r) {
+ art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+ bool has_run_container = false;
+ while (it.value != NULL) {
+ leaf_t *leaf = (leaf_t *)it.value;
+ uint8_t new_typecode;
+ // We don't need to free the existing container if a new one was
+ // created, convert_run_optimize does that internally.
+ leaf->container = convert_run_optimize(leaf->container, leaf->typecode,
+ &new_typecode);
+ leaf->typecode = new_typecode;
+ has_run_container |= new_typecode == RUN_CONTAINER_TYPE;
+ art_iterator_next(&it);
+ }
+ return has_run_container;
+}
+
+/**
+ * (For advanced users.)
+ * Collect statistics about the bitmap
+ */
+void roaring64_bitmap_statistics(const roaring64_bitmap_t *r,
+ roaring64_statistics_t *stat) {
+ memset(stat, 0, sizeof(*stat));
+ stat->min_value = roaring64_bitmap_minimum(r);
+ stat->max_value = roaring64_bitmap_maximum(r);
+
+ art_iterator_t it = art_init_iterator(&r->art, true);
+ while (it.value != NULL) {
+ leaf_t *leaf = (leaf_t *)it.value;
+ stat->n_containers++;
+ uint8_t truetype = get_container_type(leaf->container, leaf->typecode);
+ uint32_t card =
+ container_get_cardinality(leaf->container, leaf->typecode);
+ uint32_t sbytes =
+ container_size_in_bytes(leaf->container, leaf->typecode);
+ stat->cardinality += card;
+ switch (truetype) {
+ case BITSET_CONTAINER_TYPE:
+ stat->n_bitset_containers++;
+ stat->n_values_bitset_containers += card;
+ stat->n_bytes_bitset_containers += sbytes;
+ break;
+ case ARRAY_CONTAINER_TYPE:
+ stat->n_array_containers++;
+ stat->n_values_array_containers += card;
+ stat->n_bytes_array_containers += sbytes;
+ break;
+ case RUN_CONTAINER_TYPE:
+ stat->n_run_containers++;
+ stat->n_values_run_containers += card;
+ stat->n_bytes_run_containers += sbytes;
+ break;
+ default:
+ assert(false);
+ roaring_unreachable;
+ }
+ art_iterator_next(&it);
+ }
+}
+
+static bool roaring64_leaf_internal_validate(const art_val_t *val,
+ const char **reason) {
+ leaf_t *leaf = (leaf_t *)val;
+ return container_internal_validate(leaf->container, leaf->typecode,
reason);
+}
+
+bool roaring64_bitmap_internal_validate(const roaring64_bitmap_t *r,
+ const char **reason) {
+ return art_internal_validate(&r->art, reason,
+ roaring64_leaf_internal_validate);
+}
+
+bool roaring64_bitmap_equals(const roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+ art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+ while (it1.value != NULL && it2.value != NULL) {
+ if (compare_high48(it1.key, it2.key) != 0) {
+ return false;
+ }
+ leaf_t *leaf1 = (leaf_t *)it1.value;
+ leaf_t *leaf2 = (leaf_t *)it2.value;
+ if (!container_equals(leaf1->container, leaf1->typecode,
+ leaf2->container, leaf2->typecode)) {
+ return false;
+ }
+ art_iterator_next(&it1);
+ art_iterator_next(&it2);
+ }
+ return it1.value == NULL && it2.value == NULL;
+}
+
+bool roaring64_bitmap_is_subset(const roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+ art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+ while (it1.value != NULL) {
+ bool it2_present = it2.value != NULL;
+
+ int compare_result = 0;
+ if (it2_present) {
+ compare_result = compare_high48(it1.key, it2.key);
+ if (compare_result == 0) {
+ leaf_t *leaf1 = (leaf_t *)it1.value;
+ leaf_t *leaf2 = (leaf_t *)it2.value;
+ if (!container_is_subset(leaf1->container, leaf1->typecode,
+ leaf2->container, leaf2->typecode)) {
+ return false;
+ }
+ art_iterator_next(&it1);
+ art_iterator_next(&it2);
+ }
+ }
+ if (!it2_present || compare_result < 0) {
+ return false;
+ } else if (compare_result > 0) {
+ art_iterator_lower_bound(&it2, it1.key);
+ }
+ }
+ return true;
+}
+
+bool roaring64_bitmap_is_strict_subset(const roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ return roaring64_bitmap_get_cardinality(r1) <
+ roaring64_bitmap_get_cardinality(r2) &&
+ roaring64_bitmap_is_subset(r1, r2);
+}
+
+roaring64_bitmap_t *roaring64_bitmap_and(const roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ roaring64_bitmap_t *result = roaring64_bitmap_create();
+
+ art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+ art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+ while (it1.value != NULL && it2.value != NULL) {
+ // Cases:
+ // 1. it1 < it2 -> it1++
+ // 2. it1 == it1 -> output it1 & it2, it1++, it2++
+ // 3. it1 > it2 -> it2++
+ int compare_result = compare_high48(it1.key, it2.key);
+ if (compare_result == 0) {
+ // Case 2: iterators at the same high key position.
+ leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
+ leaf_t *leaf1 = (leaf_t *)it1.value;
+ leaf_t *leaf2 = (leaf_t *)it2.value;
+ result_leaf->container = container_and(
+ leaf1->container, leaf1->typecode, leaf2->container,
+ leaf2->typecode, &result_leaf->typecode);
+
+ if (container_nonzero_cardinality(result_leaf->container,
+ result_leaf->typecode)) {
+ art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
+ } else {
+ container_free(result_leaf->container, result_leaf->typecode);
+ free_leaf(result_leaf);
+ }
+ art_iterator_next(&it1);
+ art_iterator_next(&it2);
+ } else if (compare_result < 0) {
+ // Case 1: it1 is before it2.
+ art_iterator_lower_bound(&it1, it2.key);
+ } else {
+ // Case 3: it2 is before it1.
+ art_iterator_lower_bound(&it2, it1.key);
+ }
+ }
+ return result;
+}
+
+uint64_t roaring64_bitmap_and_cardinality(const roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ uint64_t result = 0;
+
+ art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+ art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+ while (it1.value != NULL && it2.value != NULL) {
+ // Cases:
+ // 1. it1 < it2 -> it1++
+ // 2. it1 == it1 -> output cardinaltiy it1 & it2, it1++, it2++
+ // 3. it1 > it2 -> it2++
+ int compare_result = compare_high48(it1.key, it2.key);
+ if (compare_result == 0) {
+ // Case 2: iterators at the same high key position.
+ leaf_t *leaf1 = (leaf_t *)it1.value;
+ leaf_t *leaf2 = (leaf_t *)it2.value;
+ result +=
+ container_and_cardinality(leaf1->container, leaf1->typecode,
+ leaf2->container, leaf2->typecode);
+ art_iterator_next(&it1);
+ art_iterator_next(&it2);
+ } else if (compare_result < 0) {
+ // Case 1: it1 is before it2.
+ art_iterator_lower_bound(&it1, it2.key);
+ } else {
+ // Case 3: it2 is before it1.
+ art_iterator_lower_bound(&it2, it1.key);
+ }
+ }
+ return result;
+}
+
+// Inplace and (modifies its first argument).
+void roaring64_bitmap_and_inplace(roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ if (r1 == r2) {
+ return;
+ }
+ art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+ art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+ while (it1.value != NULL) {
+ // Cases:
+ // 1. !it2_present -> erase it1
+ // 2. it2_present
+ // a. it1 < it2 -> erase it1
+ // b. it1 == it2 -> output it1 & it2, it1++, it2++
+ // c. it1 > it2 -> it2++
+ bool it2_present = it2.value != NULL;
+ int compare_result = 0;
+ if (it2_present) {
+ compare_result = compare_high48(it1.key, it2.key);
+ if (compare_result == 0) {
+ // Case 2a: iterators at the same high key position.
+ leaf_t *leaf1 = (leaf_t *)it1.value;
+ leaf_t *leaf2 = (leaf_t *)it2.value;
+
+ // We do the computation "in place" only when c1 is not a
+ // shared container. Rationale: using a shared container
+ // safely with in place computation would require making a
+ // copy and then doing the computation in place which is
+ // likely less efficient than avoiding in place entirely and
+ // always generating a new container.
+ uint8_t typecode2;
+ container_t *container2;
+ if (leaf1->typecode == SHARED_CONTAINER_TYPE) {
+ container2 = container_and(
+ leaf1->container, leaf1->typecode, leaf2->container,
+ leaf2->typecode, &typecode2);
+ } else {
+ container2 = container_iand(
+ leaf1->container, leaf1->typecode, leaf2->container,
+ leaf2->typecode, &typecode2);
+ }
+
+ if (container2 != leaf1->container) {
+ container_free(leaf1->container, leaf1->typecode);
+ leaf1->container = container2;
+ leaf1->typecode = typecode2;
+ }
+ if (!container_nonzero_cardinality(container2, typecode2)) {
+ container_free(container2, typecode2);
+ art_iterator_erase(&r1->art, &it1);
+ free_leaf(leaf1);
+ } else {
+ // Only advance the iterator if we didn't delete the
+ // leaf, as erasing advances by itself.
+ art_iterator_next(&it1);
+ }
+ art_iterator_next(&it2);
+ }
+ }
+
+ if (!it2_present || compare_result < 0) {
+ // Cases 1 and 3a: it1 is the only iterator or is before it2.
+ leaf_t *leaf = (leaf_t *)art_iterator_erase(&r1->art, &it1);
+ assert(leaf != NULL);
+ container_free(leaf->container, leaf->typecode);
+ free_leaf(leaf);
+ } else if (compare_result > 0) {
+ // Case 2c: it1 is after it2.
+ art_iterator_lower_bound(&it2, it1.key);
+ }
+ }
+}
+
+bool roaring64_bitmap_intersect(const roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ bool intersect = false;
+ art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+ art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+ while (it1.value != NULL && it2.value != NULL) {
+ // Cases:
+ // 1. it1 < it2 -> it1++
+ // 2. it1 == it1 -> intersect |= it1 & it2, it1++, it2++
+ // 3. it1 > it2 -> it2++
+ int compare_result = compare_high48(it1.key, it2.key);
+ if (compare_result == 0) {
+ // Case 2: iterators at the same high key position.
+ leaf_t *leaf1 = (leaf_t *)it1.value;
+ leaf_t *leaf2 = (leaf_t *)it2.value;
+ intersect |= container_intersect(leaf1->container, leaf1->typecode,
+ leaf2->container,
leaf2->typecode);
+ art_iterator_next(&it1);
+ art_iterator_next(&it2);
+ } else if (compare_result < 0) {
+ // Case 1: it1 is before it2.
+ art_iterator_lower_bound(&it1, it2.key);
+ } else {
+ // Case 3: it2 is before it1.
+ art_iterator_lower_bound(&it2, it1.key);
+ }
+ }
+ return intersect;
+}
+
+bool roaring64_bitmap_intersect_with_range(const roaring64_bitmap_t *r,
+ uint64_t min, uint64_t max) {
+ if (min >= max) {
+ return false;
+ }
+ roaring64_iterator_t it;
+ roaring64_iterator_init_at(r, &it, /*first=*/true);
+ if (!roaring64_iterator_move_equalorlarger(&it, min)) {
+ return false;
+ }
+ return roaring64_iterator_has_value(&it) &&
+ roaring64_iterator_value(&it) < max;
+}
+
+double roaring64_bitmap_jaccard_index(const roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ uint64_t c1 = roaring64_bitmap_get_cardinality(r1);
+ uint64_t c2 = roaring64_bitmap_get_cardinality(r2);
+ uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2);
+ return (double)inter / (double)(c1 + c2 - inter);
+}
+
+roaring64_bitmap_t *roaring64_bitmap_or(const roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ roaring64_bitmap_t *result = roaring64_bitmap_create();
+
+ art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+ art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+ while (it1.value != NULL || it2.value != NULL) {
+ bool it1_present = it1.value != NULL;
+ bool it2_present = it2.value != NULL;
+
+ // Cases:
+ // 1. it1_present && !it2_present -> output it1, it1++
+ // 2. !it1_present && it2_present -> output it2, it2++
+ // 3. it1_present && it2_present
+ // a. it1 < it2 -> output it1, it1++
+ // b. it1 == it2 -> output it1 | it2, it1++, it2++
+ // c. it1 > it2 -> output it2, it2++
+ int compare_result = 0;
+ if (it1_present && it2_present) {
+ compare_result = compare_high48(it1.key, it2.key);
+ if (compare_result == 0) {
+ // Case 3b: iterators at the same high key position.
+ leaf_t *leaf1 = (leaf_t *)it1.value;
+ leaf_t *leaf2 = (leaf_t *)it2.value;
+ leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
+ result_leaf->container = container_or(
+ leaf1->container, leaf1->typecode, leaf2->container,
+ leaf2->typecode, &result_leaf->typecode);
+ art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
+ art_iterator_next(&it1);
+ art_iterator_next(&it2);
+ }
+ }
+ if ((it1_present && !it2_present) || compare_result < 0) {
+ // Cases 1 and 3a: it1 is the only iterator or is before it2.
+ leaf_t *result_leaf = copy_leaf_container((leaf_t *)it1.value);
+ art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
+ art_iterator_next(&it1);
+ } else if ((!it1_present && it2_present) || compare_result > 0) {
+ // Cases 2 and 3c: it2 is the only iterator or is before it1.
+ leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value);
+ art_insert(&result->art, it2.key, (art_val_t *)result_leaf);
+ art_iterator_next(&it2);
+ }
+ }
+ return result;
+}
+
+uint64_t roaring64_bitmap_or_cardinality(const roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ uint64_t c1 = roaring64_bitmap_get_cardinality(r1);
+ uint64_t c2 = roaring64_bitmap_get_cardinality(r2);
+ uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2);
+ return c1 + c2 - inter;
+}
+
+void roaring64_bitmap_or_inplace(roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ if (r1 == r2) {
+ return;
+ }
+ art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+ art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+ while (it1.value != NULL || it2.value != NULL) {
+ bool it1_present = it1.value != NULL;
+ bool it2_present = it2.value != NULL;
+
+ // Cases:
+ // 1. it1_present && !it2_present -> it1++
+ // 2. !it1_present && it2_present -> add it2, it2++
+ // 3. it1_present && it2_present
+ // a. it1 < it2 -> it1++
+ // b. it1 == it2 -> it1 | it2, it1++, it2++
+ // c. it1 > it2 -> add it2, it2++
+ int compare_result = 0;
+ if (it1_present && it2_present) {
+ compare_result = compare_high48(it1.key, it2.key);
+ if (compare_result == 0) {
+ // Case 3b: iterators at the same high key position.
+ leaf_t *leaf1 = (leaf_t *)it1.value;
+ leaf_t *leaf2 = (leaf_t *)it2.value;
+ uint8_t typecode2;
+ container_t *container2;
+ if (leaf1->typecode == SHARED_CONTAINER_TYPE) {
+ container2 = container_or(leaf1->container,
leaf1->typecode,
+ leaf2->container,
leaf2->typecode,
+ &typecode2);
+ } else {
+ container2 = container_ior(
+ leaf1->container, leaf1->typecode, leaf2->container,
+ leaf2->typecode, &typecode2);
+ }
+ if (container2 != leaf1->container) {
+ container_free(leaf1->container, leaf1->typecode);
+ leaf1->container = container2;
+ leaf1->typecode = typecode2;
+ }
+ art_iterator_next(&it1);
+ art_iterator_next(&it2);
+ }
+ }
+ if ((it1_present && !it2_present) || compare_result < 0) {
+ // Cases 1 and 3a: it1 is the only iterator or is before it2.
+ art_iterator_next(&it1);
+ } else if ((!it1_present && it2_present) || compare_result > 0) {
+ // Cases 2 and 3c: it2 is the only iterator or is before it1.
+ leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value);
+ art_iterator_insert(&r1->art, &it1, it2.key,
+ (art_val_t *)result_leaf);
+ art_iterator_next(&it2);
+ }
+ }
+}
+
+roaring64_bitmap_t *roaring64_bitmap_xor(const roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ roaring64_bitmap_t *result = roaring64_bitmap_create();
+
+ art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+ art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+ while (it1.value != NULL || it2.value != NULL) {
+ bool it1_present = it1.value != NULL;
+ bool it2_present = it2.value != NULL;
+
+ // Cases:
+ // 1. it1_present && !it2_present -> output it1, it1++
+ // 2. !it1_present && it2_present -> output it2, it2++
+ // 3. it1_present && it2_present
+ // a. it1 < it2 -> output it1, it1++
+ // b. it1 == it2 -> output it1 ^ it2, it1++, it2++
+ // c. it1 > it2 -> output it2, it2++
+ int compare_result = 0;
+ if (it1_present && it2_present) {
+ compare_result = compare_high48(it1.key, it2.key);
+ if (compare_result == 0) {
+ // Case 3b: iterators at the same high key position.
+ leaf_t *leaf1 = (leaf_t *)it1.value;
+ leaf_t *leaf2 = (leaf_t *)it2.value;
+ leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
+ result_leaf->container = container_xor(
+ leaf1->container, leaf1->typecode, leaf2->container,
+ leaf2->typecode, &result_leaf->typecode);
+ if (container_nonzero_cardinality(result_leaf->container,
+ result_leaf->typecode)) {
+ art_insert(&result->art, it1.key, (art_val_t
*)result_leaf);
+ } else {
+ container_free(result_leaf->container,
+ result_leaf->typecode);
+ free_leaf(result_leaf);
+ }
+ art_iterator_next(&it1);
+ art_iterator_next(&it2);
+ }
+ }
+ if ((it1_present && !it2_present) || compare_result < 0) {
+ // Cases 1 and 3a: it1 is the only iterator or is before it2.
+ leaf_t *result_leaf = copy_leaf_container((leaf_t *)it1.value);
+ art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
+ art_iterator_next(&it1);
+ } else if ((!it1_present && it2_present) || compare_result > 0) {
+ // Cases 2 and 3c: it2 is the only iterator or is before it1.
+ leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value);
+ art_insert(&result->art, it2.key, (art_val_t *)result_leaf);
+ art_iterator_next(&it2);
+ }
+ }
+ return result;
+}
+
+uint64_t roaring64_bitmap_xor_cardinality(const roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ uint64_t c1 = roaring64_bitmap_get_cardinality(r1);
+ uint64_t c2 = roaring64_bitmap_get_cardinality(r2);
+ uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2);
+ return c1 + c2 - 2 * inter;
+}
+
+void roaring64_bitmap_xor_inplace(roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ assert(r1 != r2);
+ art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+ art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+ while (it1.value != NULL || it2.value != NULL) {
+ bool it1_present = it1.value != NULL;
+ bool it2_present = it2.value != NULL;
+
+ // Cases:
+ // 1. it1_present && !it2_present -> it1++
+ // 2. !it1_present && it2_present -> add it2, it2++
+ // 3. it1_present && it2_present
+ // a. it1 < it2 -> it1++
+ // b. it1 == it2 -> it1 ^ it2, it1++, it2++
+ // c. it1 > it2 -> add it2, it2++
+ int compare_result = 0;
+ if (it1_present && it2_present) {
+ compare_result = compare_high48(it1.key, it2.key);
+ if (compare_result == 0) {
+ // Case 3b: iterators at the same high key position.
+ leaf_t *leaf1 = (leaf_t *)it1.value;
+ leaf_t *leaf2 = (leaf_t *)it2.value;
+ container_t *container1 = leaf1->container;
+ uint8_t typecode1 = leaf1->typecode;
+ uint8_t typecode2;
+ container_t *container2;
+ if (leaf1->typecode == SHARED_CONTAINER_TYPE) {
+ container2 = container_xor(
+ leaf1->container, leaf1->typecode, leaf2->container,
+ leaf2->typecode, &typecode2);
+ if (container2 != container1) {
+ // We only free when doing container_xor, not
+ // container_ixor, as ixor frees the original
+ // internally.
+ container_free(container1, typecode1);
+ }
+ } else {
+ container2 = container_ixor(
+ leaf1->container, leaf1->typecode, leaf2->container,
+ leaf2->typecode, &typecode2);
+ }
+ leaf1->container = container2;
+ leaf1->typecode = typecode2;
+
+ if (!container_nonzero_cardinality(container2, typecode2)) {
+ container_free(container2, typecode2);
+ art_iterator_erase(&r1->art, &it1);
+ free_leaf(leaf1);
+ } else {
+ // Only advance the iterator if we didn't delete the
+ // leaf, as erasing advances by itself.
+ art_iterator_next(&it1);
+ }
+ art_iterator_next(&it2);
+ }
+ }
+ if ((it1_present && !it2_present) || compare_result < 0) {
+ // Cases 1 and 3a: it1 is the only iterator or is before it2.
+ art_iterator_next(&it1);
+ } else if ((!it1_present && it2_present) || compare_result > 0) {
+ // Cases 2 and 3c: it2 is the only iterator or is before it1.
+ leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value);
+ if (it1_present) {
+ art_iterator_insert(&r1->art, &it1, it2.key,
+ (art_val_t *)result_leaf);
+ art_iterator_next(&it1);
+ } else {
+ art_insert(&r1->art, it2.key, (art_val_t *)result_leaf);
+ }
+ art_iterator_next(&it2);
+ }
+ }
+}
+
+roaring64_bitmap_t *roaring64_bitmap_andnot(const roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ roaring64_bitmap_t *result = roaring64_bitmap_create();
+
+ art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+ art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+ while (it1.value != NULL) {
+ // Cases:
+ // 1. it1_present && !it2_present -> output it1, it1++
+ // 2. it1_present && it2_present
+ // a. it1 < it2 -> output it1, it1++
+ // b. it1 == it2 -> output it1 - it2, it1++, it2++
+ // c. it1 > it2 -> it2++
+ bool it2_present = it2.value != NULL;
+ int compare_result = 0;
+ if (it2_present) {
+ compare_result = compare_high48(it1.key, it2.key);
+ if (compare_result == 0) {
+ // Case 2b: iterators at the same high key position.
+ leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
+ leaf_t *leaf1 = (leaf_t *)it1.value;
+ leaf_t *leaf2 = (leaf_t *)it2.value;
+ result_leaf->container = container_andnot(
+ leaf1->container, leaf1->typecode, leaf2->container,
+ leaf2->typecode, &result_leaf->typecode);
+
+ if (container_nonzero_cardinality(result_leaf->container,
+ result_leaf->typecode)) {
+ art_insert(&result->art, it1.key, (art_val_t
*)result_leaf);
+ } else {
+ container_free(result_leaf->container,
+ result_leaf->typecode);
+ free_leaf(result_leaf);
+ }
+ art_iterator_next(&it1);
+ art_iterator_next(&it2);
+ }
+ }
+ if (!it2_present || compare_result < 0) {
+ // Cases 1 and 2a: it1 is the only iterator or is before it2.
+ leaf_t *result_leaf = copy_leaf_container((leaf_t *)it1.value);
+ art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
+ art_iterator_next(&it1);
+ } else if (compare_result > 0) {
+ // Case 2c: it1 is after it2.
+ art_iterator_next(&it2);
+ }
+ }
+ return result;
+}
+
+uint64_t roaring64_bitmap_andnot_cardinality(const roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ uint64_t c1 = roaring64_bitmap_get_cardinality(r1);
+ uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2);
+ return c1 - inter;
+}
+
+void roaring64_bitmap_andnot_inplace(roaring64_bitmap_t *r1,
+ const roaring64_bitmap_t *r2) {
+ art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+ art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+ while (it1.value != NULL) {
+ // Cases:
+ // 1. it1_present && !it2_present -> it1++
+ // 2. it1_present && it2_present
+ // a. it1 < it2 -> it1++
+ // b. it1 == it2 -> it1 - it2, it1++, it2++
+ // c. it1 > it2 -> it2++
+ bool it2_present = it2.value != NULL;
+ int compare_result = 0;
+ if (it2_present) {
+ compare_result = compare_high48(it1.key, it2.key);
+ if (compare_result == 0) {
+ // Case 2b: iterators at the same high key position.
+ leaf_t *leaf1 = (leaf_t *)it1.value;
+ leaf_t *leaf2 = (leaf_t *)it2.value;
+ container_t *container1 = leaf1->container;
+ uint8_t typecode1 = leaf1->typecode;
+ uint8_t typecode2;
+ container_t *container2;
+ if (leaf1->typecode == SHARED_CONTAINER_TYPE) {
+ container2 = container_andnot(
+ leaf1->container, leaf1->typecode, leaf2->container,
+ leaf2->typecode, &typecode2);
+ if (container2 != container1) {
+ // We only free when doing container_andnot, not
+ // container_iandnot, as iandnot frees the original
+ // internally.
+ container_free(container1, typecode1);
+ }
+ } else {
+ container2 = container_iandnot(
+ leaf1->container, leaf1->typecode, leaf2->container,
+ leaf2->typecode, &typecode2);
+ }
+ if (container2 != container1) {
+ leaf1->container = container2;
+ leaf1->typecode = typecode2;
+ }
+
+ if (!container_nonzero_cardinality(container2, typecode2)) {
+ container_free(container2, typecode2);
+ art_iterator_erase(&r1->art, &it1);
+ free_leaf(leaf1);
+ } else {
+ // Only advance the iterator if we didn't delete the
+ // leaf, as erasing advances by itself.
+ art_iterator_next(&it1);
+ }
+ art_iterator_next(&it2);
+ }
+ }
+ if (!it2_present || compare_result < 0) {
+ // Cases 1 and 2a: it1 is the only iterator or is before it2.
+ art_iterator_next(&it1);
+ } else if (compare_result > 0) {
+ // Case 2c: it1 is after it2.
+ art_iterator_next(&it2);
+ }
+ }
+}
+
+/**
+ * Flips the leaf at high48 in the range [min, max), returning a new leaf with
a
+ * new container. If the high48 key is not found in the existing bitmap, a new
+ * container is created. Returns null if the negation results in an empty
range.
+ */
+static leaf_t *roaring64_flip_leaf(const roaring64_bitmap_t *r,
+ uint8_t high48[], uint32_t min,
+ uint32_t max) {
+ leaf_t *leaf1 = (leaf_t *)art_find(&r->art, high48);
+ container_t *container2;
+ uint8_t typecode2;
+ if (leaf1 == NULL) {
+ // No container at this key, create a full container.
+ container2 = container_range_of_ones(min, max, &typecode2);
+ } else if (min == 0 && max > 0xFFFF) {
+ // Flip whole container.
+ container2 =
+ container_not(leaf1->container, leaf1->typecode, &typecode2);
+ } else {
+ // Partially flip a container.
+ container2 = container_not_range(leaf1->container, leaf1->typecode,
min,
+ max, &typecode2);
+ }
+ if (container_nonzero_cardinality(container2, typecode2)) {
+ return create_leaf(container2, typecode2);
+ }
+ container_free(container2, typecode2);
+ return NULL;
+}
+
+/**
+ * Flips the leaf at high48 in the range [min, max). If the high48 key is not
+ * found in the bitmap, a new container is created. Deletes the leaf and
+ * associated container if the negation results in an empty range.
+ */
+static void roaring64_flip_leaf_inplace(roaring64_bitmap_t *r, uint8_t
high48[],
+ uint32_t min, uint32_t max) {
+ leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
+ container_t *container2;
+ uint8_t typecode2;
+ if (leaf == NULL) {
+ // No container at this key, insert a full container.
+ container2 = container_range_of_ones(min, max, &typecode2);
+ art_insert(&r->art, high48,
+ (art_val_t *)create_leaf(container2, typecode2));
+ return;
+ }
+
+ if (min == 0 && max > 0xFFFF) {
+ // Flip whole container.
+ container2 =
+ container_inot(leaf->container, leaf->typecode, &typecode2);
+ } else {
+ // Partially flip a container.
+ container2 = container_inot_range(leaf->container, leaf->typecode, min,
+ max, &typecode2);
+ }
+
+ leaf->container = container2;
+ leaf->typecode = typecode2;
+
+ if (!container_nonzero_cardinality(leaf->container, leaf->typecode)) {
+ art_erase(&r->art, high48);
+ container_free(leaf->container, leaf->typecode);
+ free_leaf(leaf);
+ }
+}
+
+roaring64_bitmap_t *roaring64_bitmap_flip(const roaring64_bitmap_t *r,
+ uint64_t min, uint64_t max) {
+ if (min >= max) {
+ return roaring64_bitmap_copy(r);
+ }
+ return roaring64_bitmap_flip_closed(r, min, max - 1);
+}
+
+roaring64_bitmap_t *roaring64_bitmap_flip_closed(const roaring64_bitmap_t *r1,
+ uint64_t min, uint64_t max) {
+ if (min > max) {
+ return roaring64_bitmap_copy(r1);
+ }
+ uint8_t min_high48_key[ART_KEY_BYTES];
+ uint16_t min_low16 = split_key(min, min_high48_key);
+ uint8_t max_high48_key[ART_KEY_BYTES];
+ uint16_t max_low16 = split_key(max, max_high48_key);
+ uint64_t min_high48_bits = (min & 0xFFFFFFFFFFFF0000ULL) >> 16;
+ uint64_t max_high48_bits = (max & 0xFFFFFFFFFFFF0000ULL) >> 16;
+
+ roaring64_bitmap_t *r2 = roaring64_bitmap_create();
+ art_iterator_t it = art_init_iterator(&r1->art, /*first=*/true);
+
+ // Copy the containers before min unchanged.
+ while (it.value != NULL && compare_high48(it.key, min_high48_key) < 0) {
+ leaf_t *leaf1 = (leaf_t *)it.value;
+ uint8_t typecode2 = leaf1->typecode;
+ container_t *container2 = get_copy_of_container(
+ leaf1->container, &typecode2, /*copy_on_write=*/false);
+ art_insert(&r2->art, it.key,
+ (art_val_t *)create_leaf(container2, typecode2));
+ art_iterator_next(&it);
+ }
+
+ // Flip the range (including non-existent containers!) between min and max.
+ for (uint64_t high48_bits = min_high48_bits; high48_bits <=
max_high48_bits;
+ high48_bits++) {
+ uint8_t current_high48_key[ART_KEY_BYTES];
+ split_key(high48_bits << 16, current_high48_key);
+
+ uint32_t min_container = 0;
+ if (high48_bits == min_high48_bits) {
+ min_container = min_low16;
+ }
+ uint32_t max_container = 0xFFFF + 1; // Exclusive range.
+ if (high48_bits == max_high48_bits) {
+ max_container = max_low16 + 1; // Exclusive.
+ }
+
+ leaf_t *leaf = roaring64_flip_leaf(r1, current_high48_key,
+ min_container, max_container);
+ if (leaf != NULL) {
+ art_insert(&r2->art, current_high48_key, (art_val_t *)leaf);
+ }
+ }
+
+ // Copy the containers after max unchanged.
+ it = art_upper_bound(&r1->art, max_high48_key);
+ while (it.value != NULL) {
+ leaf_t *leaf1 = (leaf_t *)it.value;
+ uint8_t typecode2 = leaf1->typecode;
+ container_t *container2 = get_copy_of_container(
+ leaf1->container, &typecode2, /*copy_on_write=*/false);
+ art_insert(&r2->art, it.key,
+ (art_val_t *)create_leaf(container2, typecode2));
+ art_iterator_next(&it);
+ }
+
+ return r2;
+}
+
+void roaring64_bitmap_flip_inplace(roaring64_bitmap_t *r, uint64_t min,
+ uint64_t max) {
+ if (min >= max) {
+ return;
+ }
+ roaring64_bitmap_flip_closed_inplace(r, min, max - 1);
+}
+
+void roaring64_bitmap_flip_closed_inplace(roaring64_bitmap_t *r, uint64_t min,
+ uint64_t max) {
+ if (min > max) {
+ return;
+ }
+ uint16_t min_low16 = (uint16_t)min;
+ uint16_t max_low16 = (uint16_t)max;
+ uint64_t min_high48_bits = (min & 0xFFFFFFFFFFFF0000ULL) >> 16;
+ uint64_t max_high48_bits = (max & 0xFFFFFFFFFFFF0000ULL) >> 16;
+
+ // Flip the range (including non-existent containers!) between min and max.
+ for (uint64_t high48_bits = min_high48_bits; high48_bits <=
max_high48_bits;
+ high48_bits++) {
+ uint8_t current_high48_key[ART_KEY_BYTES];
+ split_key(high48_bits << 16, current_high48_key);
+
+ uint32_t min_container = 0;
+ if (high48_bits == min_high48_bits) {
+ min_container = min_low16;
+ }
+ uint32_t max_container = 0xFFFF + 1; // Exclusive range.
+ if (high48_bits == max_high48_bits) {
+ max_container = max_low16 + 1; // Exclusive.
+ }
+
+ roaring64_flip_leaf_inplace(r, current_high48_key, min_container,
+ max_container);
+ }
+}
+
+// Returns the number of distinct high 32-bit entries in the bitmap.
+static inline uint64_t count_high32(const roaring64_bitmap_t *r) {
+ art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+ uint64_t high32_count = 0;
+ uint32_t prev_high32 = 0;
+ while (it.value != NULL) {
+ uint32_t current_high32 = (uint32_t)(combine_key(it.key, 0) >> 32);
+ if (high32_count == 0 || prev_high32 != current_high32) {
+ high32_count++;
+ prev_high32 = current_high32;
+ }
+ art_iterator_next(&it);
+ }
+ return high32_count;
+}
+
+// Frees the (32-bit!) bitmap without freeing the containers.
+static inline void roaring_bitmap_free_without_containers(roaring_bitmap_t *r)
{
+ ra_clear_without_containers(&r->high_low_container);
+ roaring_free(r);
+}
+
+size_t roaring64_bitmap_portable_size_in_bytes(const roaring64_bitmap_t *r) {
+ //
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
+ size_t size = 0;
+
+ // Write as uint64 the distinct number of "buckets", where a bucket is
+ // defined as the most significant 32 bits of an element.
+ uint64_t high32_count;
+ size += sizeof(high32_count);
+
+ art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+ uint32_t prev_high32 = 0;
+ roaring_bitmap_t *bitmap32 = NULL;
+
+ // Iterate through buckets ordered by increasing keys.
+ while (it.value != NULL) {
+ uint32_t current_high32 = (uint32_t)(combine_key(it.key, 0) >> 32);
+ if (bitmap32 == NULL || prev_high32 != current_high32) {
+ if (bitmap32 != NULL) {
+ // Write as uint32 the most significant 32 bits of the bucket.
+ size += sizeof(prev_high32);
+
+ // Write the 32-bit Roaring bitmaps representing the least
+ // significant bits of a set of elements.
+ size += roaring_bitmap_portable_size_in_bytes(bitmap32);
+ roaring_bitmap_free_without_containers(bitmap32);
+ }
+
+ // Start a new 32-bit bitmap with the current high 32 bits.
+ art_iterator_t it2 = it;
+ uint32_t containers_with_high32 = 0;
+ while (it2.value != NULL && (uint32_t)(combine_key(it2.key, 0) >>
+ 32) == current_high32) {
+ containers_with_high32++;
+ art_iterator_next(&it2);
+ }
+ bitmap32 =
+ roaring_bitmap_create_with_capacity(containers_with_high32);
+
+ prev_high32 = current_high32;
+ }
+ leaf_t *leaf = (leaf_t *)it.value;
+ ra_append(&bitmap32->high_low_container,
+ (uint16_t)(current_high32 >> 16), leaf->container,
+ leaf->typecode);
+ art_iterator_next(&it);
+ }
+
+ if (bitmap32 != NULL) {
+ // Write as uint32 the most significant 32 bits of the bucket.
+ size += sizeof(prev_high32);
+
+ // Write the 32-bit Roaring bitmaps representing the least
+ // significant bits of a set of elements.
+ size += roaring_bitmap_portable_size_in_bytes(bitmap32);
+ roaring_bitmap_free_without_containers(bitmap32);
+ }
+
+ return size;
+}
+
+size_t roaring64_bitmap_portable_serialize(const roaring64_bitmap_t *r,
+ char *buf) {
+ //
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
+ if (buf == NULL) {
+ return 0;
+ }
+ const char *initial_buf = buf;
+
+ // Write as uint64 the distinct number of "buckets", where a bucket is
+ // defined as the most significant 32 bits of an element.
+ uint64_t high32_count = count_high32(r);
+ memcpy(buf, &high32_count, sizeof(high32_count));
+ buf += sizeof(high32_count);
+
+ art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+ uint32_t prev_high32 = 0;
+ roaring_bitmap_t *bitmap32 = NULL;
+
+ // Iterate through buckets ordered by increasing keys.
+ while (it.value != NULL) {
+ uint64_t current_high48 = combine_key(it.key, 0);
+ uint32_t current_high32 = (uint32_t)(current_high48 >> 32);
+ if (bitmap32 == NULL || prev_high32 != current_high32) {
+ if (bitmap32 != NULL) {
+ // Write as uint32 the most significant 32 bits of the bucket.
+ memcpy(buf, &prev_high32, sizeof(prev_high32));
+ buf += sizeof(prev_high32);
+
+ // Write the 32-bit Roaring bitmaps representing the least
+ // significant bits of a set of elements.
+ buf += roaring_bitmap_portable_serialize(bitmap32, buf);
+ roaring_bitmap_free_without_containers(bitmap32);
+ }
+
+ // Start a new 32-bit bitmap with the current high 32 bits.
+ art_iterator_t it2 = it;
+ uint32_t containers_with_high32 = 0;
+ while (it2.value != NULL &&
+ (uint32_t)combine_key(it2.key, 0) == current_high32) {
+ containers_with_high32++;
+ art_iterator_next(&it2);
+ }
+ bitmap32 =
+ roaring_bitmap_create_with_capacity(containers_with_high32);
+
+ prev_high32 = current_high32;
+ }
+ leaf_t *leaf = (leaf_t *)it.value;
+ ra_append(&bitmap32->high_low_container,
+ (uint16_t)(current_high48 >> 16), leaf->container,
+ leaf->typecode);
+ art_iterator_next(&it);
+ }
+
+ if (bitmap32 != NULL) {
+ // Write as uint32 the most significant 32 bits of the bucket.
+ memcpy(buf, &prev_high32, sizeof(prev_high32));
+ buf += sizeof(prev_high32);
+
+ // Write the 32-bit Roaring bitmaps representing the least
+ // significant bits of a set of elements.
+ buf += roaring_bitmap_portable_serialize(bitmap32, buf);
+ roaring_bitmap_free_without_containers(bitmap32);
+ }
+
+ return buf - initial_buf;
+}
+
+size_t roaring64_bitmap_portable_deserialize_size(const char *buf,
+ size_t maxbytes) {
+ //
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
+ if (buf == NULL) {
+ return 0;
+ }
+ size_t read_bytes = 0;
+
+ // Read as uint64 the distinct number of "buckets", where a bucket is
+ // defined as the most significant 32 bits of an element.
+ uint64_t buckets;
+ if (read_bytes + sizeof(buckets) > maxbytes) {
+ return 0;
+ }
+ memcpy(&buckets, buf, sizeof(buckets));
+ buf += sizeof(buckets);
+ read_bytes += sizeof(buckets);
+
+ // Buckets should be 32 bits with 4 bits of zero padding.
+ if (buckets > UINT32_MAX) {
+ return 0;
+ }
+
+ // Iterate through buckets ordered by increasing keys.
+ for (uint64_t bucket = 0; bucket < buckets; ++bucket) {
+ // Read as uint32 the most significant 32 bits of the bucket.
+ uint32_t high32;
+ if (read_bytes + sizeof(high32) > maxbytes) {
+ return 0;
+ }
+ buf += sizeof(high32);
+ read_bytes += sizeof(high32);
+
+ // Read the 32-bit Roaring bitmaps representing the least significant
+ // bits of a set of elements.
+ size_t bitmap32_size = roaring_bitmap_portable_deserialize_size(
+ buf, maxbytes - read_bytes);
+ if (bitmap32_size == 0) {
+ return 0;
+ }
+ buf += bitmap32_size;
+ read_bytes += bitmap32_size;
+ }
+ return read_bytes;
+}
+
+roaring64_bitmap_t *roaring64_bitmap_portable_deserialize_safe(
+ const char *buf, size_t maxbytes) {
+ //
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
+ if (buf == NULL) {
+ return NULL;
+ }
+ size_t read_bytes = 0;
+
+ // Read as uint64 the distinct number of "buckets", where a bucket is
+ // defined as the most significant 32 bits of an element.
+ uint64_t buckets;
+ if (read_bytes + sizeof(buckets) > maxbytes) {
+ return NULL;
+ }
+ memcpy(&buckets, buf, sizeof(buckets));
+ buf += sizeof(buckets);
+ read_bytes += sizeof(buckets);
+
+ // Buckets should be 32 bits with 4 bits of zero padding.
+ if (buckets > UINT32_MAX) {
+ return NULL;
+ }
+
+ roaring64_bitmap_t *r = roaring64_bitmap_create();
+ // Iterate through buckets ordered by increasing keys.
+ int64_t previous_high32 = -1;
+ for (uint64_t bucket = 0; bucket < buckets; ++bucket) {
+ // Read as uint32 the most significant 32 bits of the bucket.
+ uint32_t high32;
+ if (read_bytes + sizeof(high32) > maxbytes) {
+ roaring64_bitmap_free(r);
+ return NULL;
+ }
+ memcpy(&high32, buf, sizeof(high32));
+ buf += sizeof(high32);
+ read_bytes += sizeof(high32);
+ // High 32 bits must be strictly increasing.
+ if (high32 <= previous_high32) {
+ roaring64_bitmap_free(r);
+ return NULL;
+ }
+ previous_high32 = high32;
+
+ // Read the 32-bit Roaring bitmaps representing the least significant
+ // bits of a set of elements.
+ size_t bitmap32_size = roaring_bitmap_portable_deserialize_size(
+ buf, maxbytes - read_bytes);
+ if (bitmap32_size == 0) {
+ roaring64_bitmap_free(r);
+ return NULL;
+ }
+
+ roaring_bitmap_t *bitmap32 = roaring_bitmap_portable_deserialize_safe(
+ buf, maxbytes - read_bytes);
+ if (bitmap32 == NULL) {
+ roaring64_bitmap_free(r);
+ return NULL;
+ }
+ buf += bitmap32_size;
+ read_bytes += bitmap32_size;
+
+ // While we don't attempt to validate much, we must ensure that there
+ // is no duplication in the high 48 bits - inserting into the ART
+ // assumes (or UB) no duplicate keys. The top 32 bits must be unique
+ // because we check for strict increasing values of high32, but we
+ // must also ensure the top 16 bits within each 32-bit bitmap are also
+ // at least unique (we ensure they're strictly increasing as well,
+ // which they must be for a _valid_ bitmap, since it's cheaper to
check)
+ int32_t last_bitmap_key = -1;
+ for (int i = 0; i < bitmap32->high_low_container.size; i++) {
+ uint16_t key = bitmap32->high_low_container.keys[i];
+ if (key <= last_bitmap_key) {
+ roaring_bitmap_free(bitmap32);
+ roaring64_bitmap_free(r);
+ return NULL;
+ }
+ last_bitmap_key = key;
+ }
+
+ // Insert all containers of the 32-bit bitmap into the 64-bit bitmap.
+ move_from_roaring32_offset(r, bitmap32, high32);
+ roaring_bitmap_free(bitmap32);
+ }
+ return r;
+}
+
+bool roaring64_bitmap_iterate(const roaring64_bitmap_t *r,
+ roaring_iterator64 iterator, void *ptr) {
+ art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+ while (it.value != NULL) {
+ uint64_t high48 = combine_key(it.key, 0);
+ uint64_t high32 = high48 & 0xFFFFFFFF00000000ULL;
+ uint32_t low32 = high48;
+ leaf_t *leaf = (leaf_t *)it.value;
+ if (!container_iterate64(leaf->container, leaf->typecode, low32,
+ iterator, high32, ptr)) {
+ return false;
+ }
+ art_iterator_next(&it);
+ }
+ return true;
+}
+
+void roaring64_bitmap_to_uint64_array(const roaring64_bitmap_t *r,
+ uint64_t *out) {
+ roaring64_iterator_t it; // gets initialized in the next line
+ roaring64_iterator_init_at(r, &it, /*first=*/true);
+ roaring64_iterator_read(&it, out, UINT64_MAX);
+}
+
+roaring64_iterator_t *roaring64_iterator_create(const roaring64_bitmap_t *r) {
+ roaring64_iterator_t *it =
+ (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t));
+ return roaring64_iterator_init_at(r, it, /*first=*/true);
+}
+
+roaring64_iterator_t *roaring64_iterator_create_last(
+ const roaring64_bitmap_t *r) {
+ roaring64_iterator_t *it =
+ (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t));
+ return roaring64_iterator_init_at(r, it, /*first=*/false);
+}
+
+void roaring64_iterator_reinit(const roaring64_bitmap_t *r,
+ roaring64_iterator_t *it) {
+ roaring64_iterator_init_at(r, it, /*first=*/true);
+}
+
+void roaring64_iterator_reinit_last(const roaring64_bitmap_t *r,
+ roaring64_iterator_t *it) {
+ roaring64_iterator_init_at(r, it, /*first=*/false);
+}
+
+roaring64_iterator_t *roaring64_iterator_copy(const roaring64_iterator_t *it) {
+ roaring64_iterator_t *new_it =
+ (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t));
+ memcpy(new_it, it, sizeof(*it));
+ return new_it;
+}
+
+void roaring64_iterator_free(roaring64_iterator_t *it) { roaring_free(it); }
+
+bool roaring64_iterator_has_value(const roaring64_iterator_t *it) {
+ return it->has_value;
+}
+
+uint64_t roaring64_iterator_value(const roaring64_iterator_t *it) {
+ return it->value;
+}
+
+bool roaring64_iterator_advance(roaring64_iterator_t *it) {
+ if (it->art_it.value == NULL) {
+ if (it->saturated_forward) {
+ return (it->has_value = false);
+ }
+ roaring64_iterator_init_at(it->parent, it, /*first=*/true);
+ return it->has_value;
+ }
+ leaf_t *leaf = (leaf_t *)it->art_it.value;
+ uint16_t low16 = (uint16_t)it->value;
+ if (container_iterator_next(leaf->container, leaf->typecode,
+ &it->container_it, &low16)) {
+ it->value = it->high48 | low16;
+ return (it->has_value = true);
+ }
+ if (art_iterator_next(&it->art_it)) {
+ return roaring64_iterator_init_at_leaf_first(it);
+ }
+ it->saturated_forward = true;
+ return (it->has_value = false);
+}
+
+bool roaring64_iterator_previous(roaring64_iterator_t *it) {
+ if (it->art_it.value == NULL) {
+ if (!it->saturated_forward) {
+ // Saturated backward.
+ return (it->has_value = false);
+ }
+ roaring64_iterator_init_at(it->parent, it, /*first=*/false);
+ return it->has_value;
+ }
+ leaf_t *leaf = (leaf_t *)it->art_it.value;
+ uint16_t low16 = (uint16_t)it->value;
+ if (container_iterator_prev(leaf->container, leaf->typecode,
+ &it->container_it, &low16)) {
+ it->value = it->high48 | low16;
+ return (it->has_value = true);
+ }
+ if (art_iterator_prev(&it->art_it)) {
+ return roaring64_iterator_init_at_leaf_last(it);
+ }
+ it->saturated_forward = false; // Saturated backward.
+ return (it->has_value = false);
+}
+
+bool roaring64_iterator_move_equalorlarger(roaring64_iterator_t *it,
+ uint64_t val) {
+ uint8_t val_high48[ART_KEY_BYTES];
+ uint16_t val_low16 = split_key(val, val_high48);
+ if (!it->has_value || it->high48 != (val & 0xFFFFFFFFFFFF0000)) {
+ // The ART iterator is before or after the high48 bits of `val` (or
+ // beyond the ART altogether), so we need to move to a leaf with a key
+ // equal or greater.
+ if (!art_iterator_lower_bound(&it->art_it, val_high48)) {
+ // Only smaller keys found.
+ it->saturated_forward = true;
+ return (it->has_value = false);
+ }
+ it->high48 = combine_key(it->art_it.key, 0);
+ // Fall through to the next if statement.
+ }
+
+ if (it->high48 == (val & 0xFFFFFFFFFFFF0000)) {
+ // We're at equal high bits, check if a suitable value can be found in
+ // this container.
+ leaf_t *leaf = (leaf_t *)it->art_it.value;
+ uint16_t low16 = (uint16_t)it->value;
+ if (container_iterator_lower_bound(leaf->container, leaf->typecode,
+ &it->container_it, &low16,
+ val_low16)) {
+ it->value = it->high48 | low16;
+ return (it->has_value = true);
+ }
+ // Only smaller entries in this container, move to the next.
+ if (!art_iterator_next(&it->art_it)) {
+ it->saturated_forward = true;
+ return (it->has_value = false);
+ }
+ }
+
+ // We're at a leaf with high bits greater than `val`, so the first entry in
+ // this container is our result.
+ return roaring64_iterator_init_at_leaf_first(it);
+}
+
+uint64_t roaring64_iterator_read(roaring64_iterator_t *it, uint64_t *buf,
+ uint64_t count) {
+ uint64_t consumed = 0;
+ while (it->has_value && consumed < count) {
+ uint32_t container_consumed;
+ leaf_t *leaf = (leaf_t *)it->art_it.value;
+ uint16_t low16 = (uint16_t)it->value;
+ uint32_t container_count = UINT32_MAX;
+ if (count - consumed < (uint64_t)UINT32_MAX) {
+ container_count = count - consumed;
+ }
+ bool has_value = container_iterator_read_into_uint64(
+ leaf->container, leaf->typecode, &it->container_it, it->high48,
buf,
+ container_count, &container_consumed, &low16);
+ consumed += contain