gawk-diffs
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[SCM] gawk branch, feature/minrx, updated. gawk-4.1.0-5899-g7fe49d23


From: Arnold Robbins
Subject: [SCM] gawk branch, feature/minrx, updated. gawk-4.1.0-5899-g7fe49d23
Date: Mon, 13 Jan 2025 02:50:53 -0500 (EST)

This is an automated email from the git hooks/post-receive script. It was
generated because a ref change was pushed to the repository containing
the project "gawk".

The branch, feature/minrx has been updated
       via  7fe49d23c08b9a6ac71b0d3d02ba72741097d153 (commit)
      from  5ae987ec8130975f38c9b487726a4ac6137b7a3c (commit)

Those revisions listed above that are new to this repository have
not appeared on any other notification email; so we list those
revisions in full, below.

- Log -----------------------------------------------------------------
http://git.sv.gnu.org/cgit/gawk.git/commit/?id=7fe49d23c08b9a6ac71b0d3d02ba72741097d153

commit 7fe49d23c08b9a6ac71b0d3d02ba72741097d153
Author: Arnold D. Robbins <arnold@skeeve.com>
Date:   Mon Jan 13 09:50:22 2025 +0200

    Add Roaring Bitmap files, update Makefile.am.

diff --git a/support/ChangeLog b/support/ChangeLog
index dac22a51..6b53c0ca 100644
--- a/support/ChangeLog
+++ b/support/ChangeLog
@@ -1,3 +1,8 @@
+2025-01-13         Arnold D. Robbins     <arnold@skeeve.com>
+
+       * roaring.h, roaring.c: New files.
+       * Makefile.am (libsupport_a_SOURCES): Add roaring.h and roaring.c.
+
 2024-12-24         Arnold D. Robbins     <arnold@skeeve.com>
 
        * minrx.h, minrx.cpp: Updated.
diff --git a/support/Makefile.am b/support/Makefile.am
index 4012cf3c..431391c6 100644
--- a/support/Makefile.am
+++ b/support/Makefile.am
@@ -70,6 +70,8 @@ libsupport_a_SOURCES = \
        random.h \
        regex.c \
        regex.h \
+       roaring.c \
+       roaring.h \
        verify.h \
        xalloc.h \
        malloc/dynarray.h \
diff --git a/support/Makefile.in b/support/Makefile.in
index 72e5a68a..66dc8870 100644
--- a/support/Makefile.in
+++ b/support/Makefile.in
@@ -150,17 +150,17 @@ am__libsupport_a_SOURCES_DIST = attribute.h cdefs.h 
charset.c \
        charset.h dfa.c dfa.h dynarray.h flexmember.h getopt.c \
        getopt.h getopt1.c getopt_int.h idx.h intprops.h \
        intprops-internal.h libc-config.h localeinfo.c localeinfo.h \
-       minrx.cpp minrx.h random.c random.h regex.c regex.h verify.h \
-       xalloc.h malloc/dynarray.h malloc/dynarray_at_failure.c \
-       malloc/dynarray_emplace_enlarge.c malloc/dynarray_finalize.c \
-       malloc/dynarray_resize.c malloc/dynarray_resize_clear.c pma.c \
-       pma.h
+       minrx.cpp minrx.h random.c random.h regex.c regex.h roaring.c \
+       roaring.h verify.h xalloc.h malloc/dynarray.h \
+       malloc/dynarray_at_failure.c malloc/dynarray_emplace_enlarge.c \
+       malloc/dynarray_finalize.c malloc/dynarray_resize.c \
+       malloc/dynarray_resize_clear.c pma.c pma.h
 am__dirstamp = $(am__leading_dot)dirstamp
 @USE_PERSISTENT_MALLOC_TRUE@am__objects_1 = pma.$(OBJEXT)
 am_libsupport_a_OBJECTS = charset.$(OBJEXT) dfa.$(OBJEXT) \
        getopt.$(OBJEXT) getopt1.$(OBJEXT) localeinfo.$(OBJEXT) \
        minrx.$(OBJEXT) random.$(OBJEXT) regex.$(OBJEXT) \
-       malloc/dynarray_at_failure.$(OBJEXT) \
+       roaring.$(OBJEXT) malloc/dynarray_at_failure.$(OBJEXT) \
        malloc/dynarray_emplace_enlarge.$(OBJEXT) \
        malloc/dynarray_finalize.$(OBJEXT) \
        malloc/dynarray_resize.$(OBJEXT) \
@@ -185,7 +185,7 @@ am__depfiles_remade = ./$(DEPDIR)/charset.Po 
./$(DEPDIR)/dfa.Po \
        ./$(DEPDIR)/getopt.Po ./$(DEPDIR)/getopt1.Po \
        ./$(DEPDIR)/localeinfo.Po ./$(DEPDIR)/minrx.Po \
        ./$(DEPDIR)/pma.Po ./$(DEPDIR)/random.Po ./$(DEPDIR)/regex.Po \
-       malloc/$(DEPDIR)/dynarray_at_failure.Po \
+       ./$(DEPDIR)/roaring.Po malloc/$(DEPDIR)/dynarray_at_failure.Po \
        malloc/$(DEPDIR)/dynarray_emplace_enlarge.Po \
        malloc/$(DEPDIR)/dynarray_finalize.Po \
        malloc/$(DEPDIR)/dynarray_resize.Po \
@@ -402,8 +402,8 @@ libsupport_a_SOURCES = attribute.h cdefs.h charset.c 
charset.h dfa.c \
        dfa.h dynarray.h flexmember.h getopt.c getopt.h getopt1.c \
        getopt_int.h idx.h intprops.h intprops-internal.h \
        libc-config.h localeinfo.c localeinfo.h minrx.cpp minrx.h \
-       random.c random.h regex.c regex.h verify.h xalloc.h \
-       malloc/dynarray.h malloc/dynarray_at_failure.c \
+       random.c random.h regex.c regex.h roaring.c roaring.h verify.h \
+       xalloc.h malloc/dynarray.h malloc/dynarray_at_failure.c \
        malloc/dynarray_emplace_enlarge.c malloc/dynarray_finalize.c \
        malloc/dynarray_resize.c malloc/dynarray_resize_clear.c \
        $(am__append_1)
@@ -487,6 +487,7 @@ distclean-compile:
 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pma.Po@am__quote@ # 
am--include-marker
 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/random.Po@am__quote@ # 
am--include-marker
 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/regex.Po@am__quote@ # 
am--include-marker
+@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/roaring.Po@am__quote@ # 
am--include-marker
 @AMDEP_TRUE@@am__include@ 
@am__quote@malloc/$(DEPDIR)/dynarray_at_failure.Po@am__quote@ # 
am--include-marker
 @AMDEP_TRUE@@am__include@ 
@am__quote@malloc/$(DEPDIR)/dynarray_emplace_enlarge.Po@am__quote@ # 
am--include-marker
 @AMDEP_TRUE@@am__include@ 
@am__quote@malloc/$(DEPDIR)/dynarray_finalize.Po@am__quote@ # am--include-marker
@@ -665,6 +666,7 @@ distclean: distclean-am
        -rm -f ./$(DEPDIR)/pma.Po
        -rm -f ./$(DEPDIR)/random.Po
        -rm -f ./$(DEPDIR)/regex.Po
+       -rm -f ./$(DEPDIR)/roaring.Po
        -rm -f malloc/$(DEPDIR)/dynarray_at_failure.Po
        -rm -f malloc/$(DEPDIR)/dynarray_emplace_enlarge.Po
        -rm -f malloc/$(DEPDIR)/dynarray_finalize.Po
@@ -724,6 +726,7 @@ maintainer-clean: maintainer-clean-am
        -rm -f ./$(DEPDIR)/pma.Po
        -rm -f ./$(DEPDIR)/random.Po
        -rm -f ./$(DEPDIR)/regex.Po
+       -rm -f ./$(DEPDIR)/roaring.Po
        -rm -f malloc/$(DEPDIR)/dynarray_at_failure.Po
        -rm -f malloc/$(DEPDIR)/dynarray_emplace_enlarge.Po
        -rm -f malloc/$(DEPDIR)/dynarray_finalize.Po
diff --git a/support/roaring.c b/support/roaring.c
new file mode 100644
index 00000000..1a44f2eb
--- /dev/null
+++ b/support/roaring.c
@@ -0,0 +1,26061 @@
+// !!! DO NOT EDIT - THIS IS AN AUTO-GENERATED FILE !!!
+// Created by amalgamation.sh on 2024-10-04T22:14:33Z
+
+/*
+ * The CRoaring project is under a dual license (Apache/MIT).
+ * Users of the library may choose one or the other license.
+ */
+/*
+ * Copyright 2016-2022 The CRoaring authors
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ */
+/*
+ * MIT License
+ *
+ * Copyright 2016-2022 The CRoaring authors
+ *
+ * Permission is hereby granted, free of charge, to any
+ * person obtaining a copy of this software and associated
+ * documentation files (the "Software"), to deal in the
+ * Software without restriction, including without
+ * limitation the rights to use, copy, modify, merge,
+ * publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software
+ * is furnished to do so, subject to the following
+ * conditions:
+ *
+ * The above copyright notice and this permission notice
+ * shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+ * ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+ * TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+ * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+ * SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+ * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+ * IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ *
+ * SPDX-License-Identifier: MIT
+ */
+
+#include "roaring.h"
+
+/* used for http://dmalloc.com/ Dmalloc - Debug Malloc Library */
+#ifdef DMALLOC
+#include "dmalloc.h"
+#endif
+
+#include "roaring.h"  /* include public API definitions */
+/* begin file include/roaring/isadetection.h */
+#ifndef ROARING_ISADETECTION_H
+#define ROARING_ISADETECTION_H
+#if defined(__x86_64__) || defined(_M_AMD64)  // x64
+
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#ifdef __has_include
+// We want to make sure that the AVX-512 functions are only built on compilers
+// fully supporting AVX-512.
+#if __has_include(<avx512vbmi2intrin.h>)
+#define CROARING_COMPILER_SUPPORTS_AVX512 1
+#endif  // #if __has_include(<avx512vbmi2intrin.h>)
+#endif  // #ifdef __has_include
+
+// Visual Studio 2019 and up support AVX-512
+#ifdef _MSC_VER
+#if _MSC_VER >= 1920
+#define CROARING_COMPILER_SUPPORTS_AVX512 1
+#endif  // #if _MSC_VER >= 1920
+#endif  // #ifdef _MSC_VER
+
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#define CROARING_COMPILER_SUPPORTS_AVX512 0
+#endif  // #ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#endif  // #ifndef CROARING_COMPILER_SUPPORTS_AVX512
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+enum {
+    ROARING_SUPPORTS_AVX2 = 1,
+    ROARING_SUPPORTS_AVX512 = 2,
+};
+int croaring_hardware_support(void);
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+#endif  // x64
+#endif  // ROARING_ISADETECTION_H
+/* end file include/roaring/isadetection.h */
+/* begin file include/roaring/containers/perfparameters.h */
+#ifndef PERFPARAMETERS_H_
+#define PERFPARAMETERS_H_
+
+#include <stdbool.h>
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/**
+During lazy computations, we can transform array containers into bitset
+containers as
+long as we can expect them to have  ARRAY_LAZY_LOWERBOUND values.
+*/
+enum { ARRAY_LAZY_LOWERBOUND = 1024 };
+
+/* default initial size of a run container
+   setting it to zero delays the malloc.*/
+enum { RUN_DEFAULT_INIT_SIZE = 0 };
+
+/* default initial size of an array container
+   setting it to zero delays the malloc */
+enum { ARRAY_DEFAULT_INIT_SIZE = 0 };
+
+/* automatic bitset conversion during lazy or */
+#ifndef LAZY_OR_BITSET_CONVERSION
+#define LAZY_OR_BITSET_CONVERSION true
+#endif
+
+/* automatically attempt to convert a bitset to a full run during lazy
+ * evaluation */
+#ifndef LAZY_OR_BITSET_CONVERSION_TO_FULL
+#define LAZY_OR_BITSET_CONVERSION_TO_FULL true
+#endif
+
+/* automatically attempt to convert a bitset to a full run */
+#ifndef OR_BITSET_CONVERSION_TO_FULL
+#define OR_BITSET_CONVERSION_TO_FULL true
+#endif
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif
+/* end file include/roaring/containers/perfparameters.h */
+/* begin file include/roaring/containers/container_defs.h */
+/*
+ * container_defs.h
+ *
+ * Unlike containers.h (which is a file aggregating all the container includes,
+ * like array.h, bitset.h, and run.h) this is a file included BY those headers
+ * to do things like define the container base class `container_t`.
+ */
+
+#ifndef INCLUDE_CONTAINERS_CONTAINER_DEFS_H_
+#define INCLUDE_CONTAINERS_CONTAINER_DEFS_H_
+
+#ifdef __cplusplus
+#include <type_traits>  // used by casting helper for compile-time check
+#endif
+
+// The preferences are a separate file to separate out tweakable parameters
+
+#ifdef __cplusplus
+namespace roaring {
+namespace internal {  // No extern "C" (contains template)
+#endif
+
+/*
+ * Since roaring_array_t's definition is not opaque, the container type is
+ * part of the API.  If it's not going to be `void*` then it needs a name, and
+ * expectations are to prefix C library-exported names with `roaring_` etc.
+ *
+ * Rather than force the whole codebase to use the name `roaring_container_t`,
+ * the few API appearances use the macro ROARING_CONTAINER_T.  Those includes
+ * are prior to containers.h, so make a short private alias of `container_t`.
+ * Then undefine the awkward macro so it's not used any more than it has to be.
+ */
+typedef ROARING_CONTAINER_T container_t;
+#undef ROARING_CONTAINER_T
+
+/*
+ * See ROARING_CONTAINER_T for notes on using container_t as a base class.
+ * This macro helps make the following pattern look nicer:
+ *
+ *     #ifdef __cplusplus
+ *     struct roaring_array_s : public container_t {
+ *     #else
+ *     struct roaring_array_s {
+ *     #endif
+ *         int32_t cardinality;
+ *         int32_t capacity;
+ *         uint16_t *array;
+ *     }
+ */
+#if defined(__cplusplus)
+#define STRUCT_CONTAINER(name) struct name : public container_t /* { ... } */
+#else
+#define STRUCT_CONTAINER(name) struct name /* { ... } */
+#endif
+
+/**
+ * Since container_t* is not void* in C++, "dangerous" casts are not needed to
+ * downcast; only a static_cast<> is needed.  Define a macro for static casting
+ * which helps make casts more visible, and catches problems at compile-time
+ * when building the C sources in C++ mode:
+ *
+ *     void some_func(container_t **c, ...) {  // double pointer, not single
+ *         array_container_t *ac1 = (array_container_t *)(c);  // uncaught!!
+ *
+ *         array_container_t *ac2 = CAST(array_container_t *, c)  // C++ errors
+ *         array_container_t *ac3 = CAST_array(c);  // shorthand for #2, errors
+ *     }
+ *
+ * Trickier to do is a cast from `container**` to `array_container_t**`.  This
+ * needs a reinterpret_cast<>, which sacrifices safety...so a template is used
+ * leveraging <type_traits> to make sure it's legal in the C++ build.
+ */
+#ifdef __cplusplus
+#define CAST(type, value) static_cast<type>(value)
+#define movable_CAST(type, value) movable_CAST_HELPER<type>(value)
+
+template <typename PPDerived, typename Base>
+PPDerived movable_CAST_HELPER(Base **ptr_to_ptr) {
+    typedef typename std::remove_pointer<PPDerived>::type PDerived;
+    typedef typename std::remove_pointer<PDerived>::type Derived;
+    static_assert(std::is_base_of<Base, Derived>::value,
+                  "use movable_CAST() for container_t** => xxx_container_t**");
+    return reinterpret_cast<Derived **>(ptr_to_ptr);
+}
+#else
+#define CAST(type, value) ((type)value)
+#define movable_CAST(type, value) ((type)value)
+#endif
+
+// Use for converting e.g. an `array_container_t**` to a `container_t**`
+//
+#define movable_CAST_base(c) movable_CAST(container_t **, c)
+
+#ifdef __cplusplus
+}
+}  // namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_CONTAINER_DEFS_H_ */
+/* end file include/roaring/containers/container_defs.h */
+/* begin file include/roaring/array_util.h */
+#ifndef CROARING_ARRAY_UTIL_H
+#define CROARING_ARRAY_UTIL_H
+
+#include <stddef.h>  // for size_t
+#include <stdint.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif  // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/*
+ *  Good old binary search.
+ *  Assumes that array is sorted, has logarithmic complexity.
+ *  if the result is x, then:
+ *     if ( x>0 )  you have array[x] = ikey
+ *     if ( x<0 ) then inserting ikey at position -x-1 in array (insuring that
+ * array[-x-1]=ikey) keys the array sorted.
+ */
+inline int32_t binarySearch(const uint16_t *array, int32_t lenarray,
+                            uint16_t ikey) {
+    int32_t low = 0;
+    int32_t high = lenarray - 1;
+    while (low <= high) {
+        int32_t middleIndex = (low + high) >> 1;
+        uint16_t middleValue = array[middleIndex];
+        if (middleValue < ikey) {
+            low = middleIndex + 1;
+        } else if (middleValue > ikey) {
+            high = middleIndex - 1;
+        } else {
+            return middleIndex;
+        }
+    }
+    return -(low + 1);
+}
+
+/**
+ * Galloping search
+ * Assumes that array is sorted, has logarithmic complexity.
+ * if the result is x, then if x = length, you have that all values in array
+ * between pos and length are smaller than min. otherwise returns the first
+ * index x such that array[x] >= min.
+ */
+static inline int32_t advanceUntil(const uint16_t *array, int32_t pos,
+                                   int32_t length, uint16_t min) {
+    int32_t lower = pos + 1;
+
+    if ((lower >= length) || (array[lower] >= min)) {
+        return lower;
+    }
+
+    int32_t spansize = 1;
+
+    while ((lower + spansize < length) && (array[lower + spansize] < min)) {
+        spansize <<= 1;
+    }
+    int32_t upper = (lower + spansize < length) ? lower + spansize : length - 
1;
+
+    if (array[upper] == min) {
+        return upper;
+    }
+    if (array[upper] < min) {
+        // means
+        // array
+        // has no
+        // item
+        // >= min
+        // pos = array.length;
+        return length;
+    }
+
+    // we know that the next-smallest span was too small
+    lower += (spansize >> 1);
+
+    int32_t mid = 0;
+    while (lower + 1 != upper) {
+        mid = (lower + upper) >> 1;
+        if (array[mid] == min) {
+            return mid;
+        } else if (array[mid] < min) {
+            lower = mid;
+        } else {
+            upper = mid;
+        }
+    }
+    return upper;
+}
+
+/**
+ * Returns number of elements which are less than ikey.
+ * Array elements must be unique and sorted.
+ */
+static inline int32_t count_less(const uint16_t *array, int32_t lenarray,
+                                 uint16_t ikey) {
+    if (lenarray == 0) return 0;
+    int32_t pos = binarySearch(array, lenarray, ikey);
+    return pos >= 0 ? pos : -(pos + 1);
+}
+
+/**
+ * Returns number of elements which are greater than ikey.
+ * Array elements must be unique and sorted.
+ */
+static inline int32_t count_greater(const uint16_t *array, int32_t lenarray,
+                                    uint16_t ikey) {
+    if (lenarray == 0) return 0;
+    int32_t pos = binarySearch(array, lenarray, ikey);
+    if (pos >= 0) {
+        return lenarray - (pos + 1);
+    } else {
+        return lenarray - (-pos - 1);
+    }
+}
+
+/**
+ * From Schlegel et al., Fast Sorted-Set Intersection using SIMD Instructions
+ * Optimized by D. Lemire on May 3rd 2013
+ *
+ * C should have capacity greater than the minimum of s_1 and s_b + 8
+ * where 8 is sizeof(__m128i)/sizeof(uint16_t).
+ */
+int32_t intersect_vector16(const uint16_t *__restrict__ A, size_t s_a,
+                           const uint16_t *__restrict__ B, size_t s_b,
+                           uint16_t *C);
+
+int32_t intersect_vector16_inplace(uint16_t *__restrict__ A, size_t s_a,
+                                   const uint16_t *__restrict__ B, size_t s_b);
+
+/**
+ * Take an array container and write it out to a 32-bit array, using base
+ * as the offset.
+ */
+int array_container_to_uint32_array_vector16(void *vout, const uint16_t *array,
+                                             size_t cardinality, uint32_t 
base);
+#if CROARING_COMPILER_SUPPORTS_AVX512
+int avx512_array_container_to_uint32_array(void *vout, const uint16_t *array,
+                                           size_t cardinality, uint32_t base);
+#endif
+/**
+ * Compute the cardinality of the intersection using SSE4 instructions
+ */
+int32_t intersect_vector16_cardinality(const uint16_t *__restrict__ A,
+                                       size_t s_a,
+                                       const uint16_t *__restrict__ B,
+                                       size_t s_b);
+
+/* Computes the intersection between one small and one large set of uint16_t.
+ * Stores the result into buffer and return the number of elements. */
+int32_t intersect_skewed_uint16(const uint16_t *smallarray, size_t size_s,
+                                const uint16_t *largearray, size_t size_l,
+                                uint16_t *buffer);
+
+/* Computes the size of the intersection between one small and one large set of
+ * uint16_t. */
+int32_t intersect_skewed_uint16_cardinality(const uint16_t *smallarray,
+                                            size_t size_s,
+                                            const uint16_t *largearray,
+                                            size_t size_l);
+
+/* Check whether the size of the intersection between one small and one large
+ * set of uint16_t is non-zero. */
+bool intersect_skewed_uint16_nonempty(const uint16_t *smallarray, size_t 
size_s,
+                                      const uint16_t *largearray,
+                                      size_t size_l);
+/**
+ * Generic intersection function.
+ */
+int32_t intersect_uint16(const uint16_t *A, const size_t lenA,
+                         const uint16_t *B, const size_t lenB, uint16_t *out);
+/**
+ * Compute the size of the intersection (generic).
+ */
+int32_t intersect_uint16_cardinality(const uint16_t *A, const size_t lenA,
+                                     const uint16_t *B, const size_t lenB);
+
+/**
+ * Checking whether the size of the intersection  is non-zero.
+ */
+bool intersect_uint16_nonempty(const uint16_t *A, const size_t lenA,
+                               const uint16_t *B, const size_t lenB);
+/**
+ * Generic union function.
+ */
+size_t union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t 
*set_2,
+                    size_t size_2, uint16_t *buffer);
+
+/**
+ * Generic XOR function.
+ */
+int32_t xor_uint16(const uint16_t *array_1, int32_t card_1,
+                   const uint16_t *array_2, int32_t card_2, uint16_t *out);
+
+/**
+ * Generic difference function (ANDNOT).
+ */
+int difference_uint16(const uint16_t *a1, int length1, const uint16_t *a2,
+                      int length2, uint16_t *a_out);
+
+/**
+ * Generic intersection function.
+ */
+size_t intersection_uint32(const uint32_t *A, const size_t lenA,
+                           const uint32_t *B, const size_t lenB, uint32_t 
*out);
+
+/**
+ * Generic intersection function, returns just the cardinality.
+ */
+size_t intersection_uint32_card(const uint32_t *A, const size_t lenA,
+                                const uint32_t *B, const size_t lenB);
+
+/**
+ * Generic union function.
+ */
+size_t union_uint32(const uint32_t *set_1, size_t size_1, const uint32_t 
*set_2,
+                    size_t size_2, uint32_t *buffer);
+
+/**
+ * A fast SSE-based union function.
+ */
+uint32_t union_vector16(const uint16_t *__restrict__ set_1, uint32_t size_1,
+                        const uint16_t *__restrict__ set_2, uint32_t size_2,
+                        uint16_t *__restrict__ buffer);
+/**
+ * A fast SSE-based XOR function.
+ */
+uint32_t xor_vector16(const uint16_t *__restrict__ array1, uint32_t length1,
+                      const uint16_t *__restrict__ array2, uint32_t length2,
+                      uint16_t *__restrict__ output);
+
+/**
+ * A fast SSE-based difference function.
+ */
+int32_t difference_vector16(const uint16_t *__restrict__ A, size_t s_a,
+                            const uint16_t *__restrict__ B, size_t s_b,
+                            uint16_t *C);
+
+/**
+ * Generic union function, returns just the cardinality.
+ */
+size_t union_uint32_card(const uint32_t *set_1, size_t size_1,
+                         const uint32_t *set_2, size_t size_2);
+
+/**
+ * combines union_uint16 and  union_vector16 optimally
+ */
+size_t fast_union_uint16(const uint16_t *set_1, size_t size_1,
+                         const uint16_t *set_2, size_t size_2,
+                         uint16_t *buffer);
+
+bool memequals(const void *s1, const void *s2, size_t n);
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic pop
+#endif
+#endif
+/* end file include/roaring/array_util.h */
+/* begin file include/roaring/utilasm.h */
+/*
+ * utilasm.h
+ *
+ */
+
+#ifndef INCLUDE_UTILASM_H_
+#define INCLUDE_UTILASM_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+#endif
+
+#if defined(CROARING_INLINE_ASM)
+#define CROARING_ASMBITMANIPOPTIMIZATION  // optimization flag
+
+#define ASM_SHIFT_RIGHT(srcReg, bitsReg, destReg) \
+    __asm volatile("shrx %1, %2, %0"              \
+                   : "=r"(destReg)                \
+                   :             /* write */      \
+                   "r"(bitsReg), /* read only */  \
+                   "r"(srcReg)   /* read only */  \
+    )
+
+#define ASM_INPLACESHIFT_RIGHT(srcReg, bitsReg)  \
+    __asm volatile("shrx %1, %0, %0"             \
+                   : "+r"(srcReg)                \
+                   :            /* read/write */ \
+                   "r"(bitsReg) /* read only */  \
+    )
+
+#define ASM_SHIFT_LEFT(srcReg, bitsReg, destReg) \
+    __asm volatile("shlx %1, %2, %0"             \
+                   : "=r"(destReg)               \
+                   :             /* write */     \
+                   "r"(bitsReg), /* read only */ \
+                   "r"(srcReg)   /* read only */ \
+    )
+// set bit at position testBit within testByte to 1 and
+// copy cmovDst to cmovSrc if that bit was previously clear
+#define ASM_SET_BIT_INC_WAS_CLEAR(testByte, testBit, count) \
+    __asm volatile(                                         \
+        "bts %2, %0\n"                                      \
+        "sbb $-1, %1\n"                                     \
+        : "+r"(testByte), /* read/write */                  \
+          "+r"(count)                                       \
+        :            /* read/write */                       \
+        "r"(testBit) /* read only */                        \
+    )
+
+#define ASM_CLEAR_BIT_DEC_WAS_SET(testByte, testBit, count) \
+    __asm volatile(                                         \
+        "btr %2, %0\n"                                      \
+        "sbb $0, %1\n"                                      \
+        : "+r"(testByte), /* read/write */                  \
+          "+r"(count)                                       \
+        :            /* read/write */                       \
+        "r"(testBit) /* read only */                        \
+    )
+
+#define ASM_BT64(testByte, testBit, count) \
+    __asm volatile(                        \
+        "bt %2,%1\n"                       \
+        "sbb %0,%0" /*could use setb */    \
+        : "=r"(count)                      \
+        :              /* write */         \
+        "r"(testByte), /* read only */     \
+        "r"(testBit)   /* read only */     \
+    )
+
+#endif
+
+#ifdef __cplusplus
+}
+}  // extern "C" { namespace roaring {
+#endif
+
+#endif /* INCLUDE_UTILASM_H_ */
+/* end file include/roaring/utilasm.h */
+/* begin file include/roaring/bitset_util.h */
+#ifndef CROARING_BITSET_UTIL_H
+#define CROARING_BITSET_UTIL_H
+
+#include <stdint.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif  // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/*
+ * Set all bits in indexes [begin,end) to true.
+ */
+static inline void bitset_set_range(uint64_t *words, uint32_t start,
+                                    uint32_t end) {
+    if (start == end) return;
+    uint32_t firstword = start / 64;
+    uint32_t endword = (end - 1) / 64;
+    if (firstword == endword) {
+        words[firstword] |= ((~UINT64_C(0)) << (start % 64)) &
+                            ((~UINT64_C(0)) >> ((~end + 1) % 64));
+        return;
+    }
+    words[firstword] |= (~UINT64_C(0)) << (start % 64);
+    for (uint32_t i = firstword + 1; i < endword; i++) {
+        words[i] = ~UINT64_C(0);
+    }
+    words[endword] |= (~UINT64_C(0)) >> ((~end + 1) % 64);
+}
+
+/*
+ * Find the cardinality of the bitset in [begin,begin+lenminusone]
+ */
+static inline int bitset_lenrange_cardinality(const uint64_t *words,
+                                              uint32_t start,
+                                              uint32_t lenminusone) {
+    uint32_t firstword = start / 64;
+    uint32_t endword = (start + lenminusone) / 64;
+    if (firstword == endword) {
+        return roaring_hamming(words[firstword] &
+                               ((~UINT64_C(0)) >> ((63 - lenminusone) % 64))
+                                   << (start % 64));
+    }
+    int answer =
+        roaring_hamming(words[firstword] & ((~UINT64_C(0)) << (start % 64)));
+    for (uint32_t i = firstword + 1; i < endword; i++) {
+        answer += roaring_hamming(words[i]);
+    }
+    answer += roaring_hamming(words[endword] &
+                              (~UINT64_C(0)) >>
+                                  (((~start + 1) - lenminusone - 1) % 64));
+    return answer;
+}
+
+/*
+ * Check whether the cardinality of the bitset in [begin,begin+lenminusone] is 0
+ */
+static inline bool bitset_lenrange_empty(const uint64_t *words, uint32_t start,
+                                         uint32_t lenminusone) {
+    uint32_t firstword = start / 64;
+    uint32_t endword = (start + lenminusone) / 64;
+    if (firstword == endword) {
+        return (words[firstword] & ((~UINT64_C(0)) >> ((63 - lenminusone) % 
64))
+                                       << (start % 64)) == 0;
+    }
+    if (((words[firstword] & ((~UINT64_C(0)) << (start % 64)))) != 0) {
+        return false;
+    }
+    for (uint32_t i = firstword + 1; i < endword; i++) {
+        if (words[i] != 0) {
+            return false;
+        }
+    }
+    if ((words[endword] &
+         (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64)) != 0) {
+        return false;
+    }
+    return true;
+}
+
+/*
+ * Set all bits in indexes [begin,begin+lenminusone] to true.
+ */
+static inline void bitset_set_lenrange(uint64_t *words, uint32_t start,
+                                       uint32_t lenminusone) {
+    uint32_t firstword = start / 64;
+    uint32_t endword = (start + lenminusone) / 64;
+    if (firstword == endword) {
+        words[firstword] |= ((~UINT64_C(0)) >> ((63 - lenminusone) % 64))
+                            << (start % 64);
+        return;
+    }
+    uint64_t temp = words[endword];
+    words[firstword] |= (~UINT64_C(0)) << (start % 64);
+    for (uint32_t i = firstword + 1; i < endword; i += 2)
+        words[i] = words[i + 1] = ~UINT64_C(0);
+    words[endword] =
+        temp | (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64);
+}
+
+/*
+ * Flip all the bits in indexes [begin,end).
+ */
+static inline void bitset_flip_range(uint64_t *words, uint32_t start,
+                                     uint32_t end) {
+    if (start == end) return;
+    uint32_t firstword = start / 64;
+    uint32_t endword = (end - 1) / 64;
+    words[firstword] ^= ~((~UINT64_C(0)) << (start % 64));
+    for (uint32_t i = firstword; i < endword; i++) {
+        words[i] = ~words[i];
+    }
+    words[endword] ^= ((~UINT64_C(0)) >> ((~end + 1) % 64));
+}
+
+/*
+ * Set all bits in indexes [begin,end) to false.
+ */
+static inline void bitset_reset_range(uint64_t *words, uint32_t start,
+                                      uint32_t end) {
+    if (start == end) return;
+    uint32_t firstword = start / 64;
+    uint32_t endword = (end - 1) / 64;
+    if (firstword == endword) {
+        words[firstword] &= ~(((~UINT64_C(0)) << (start % 64)) &
+                              ((~UINT64_C(0)) >> ((~end + 1) % 64)));
+        return;
+    }
+    words[firstword] &= ~((~UINT64_C(0)) << (start % 64));
+    for (uint32_t i = firstword + 1; i < endword; i++) {
+        words[i] = UINT64_C(0);
+    }
+    words[endword] &= ~((~UINT64_C(0)) >> ((~end + 1) % 64));
+}
+
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out", values start at "base".
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ * set.
+ *
+ * Returns how many values were actually decoded.
+ *
+ * This function should only be expected to be faster than
+ * bitset_extract_setbits
+ * when the density of the bitset is high.
+ *
+ * This function uses AVX2 decoding.
+ */
+size_t bitset_extract_setbits_avx2(const uint64_t *words, size_t length,
+                                   uint32_t *out, size_t outcapacity,
+                                   uint32_t base);
+
+size_t bitset_extract_setbits_avx512(const uint64_t *words, size_t length,
+                                     uint32_t *out, size_t outcapacity,
+                                     uint32_t base);
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out", values start at "base".
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ */
+size_t bitset_extract_setbits(const uint64_t *words, size_t length,
+                              uint32_t *out, uint32_t base);
+
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out" as 16-bit integers, values start at "base" (can
+ *be set to zero)
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ *
+ * This function should only be expected to be faster than
+ *bitset_extract_setbits_uint16
+ * when the density of the bitset is high.
+ *
+ * This function uses SSE decoding.
+ */
+size_t bitset_extract_setbits_sse_uint16(const uint64_t *words, size_t length,
+                                         uint16_t *out, size_t outcapacity,
+                                         uint16_t base);
+
+size_t bitset_extract_setbits_avx512_uint16(const uint64_t *words,
+                                            size_t length, uint16_t *out,
+                                            size_t outcapacity, uint16_t base);
+
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out",  values start at "base"
+ * (can be set to zero)
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ */
+size_t bitset_extract_setbits_uint16(const uint64_t *words, size_t length,
+                                     uint16_t *out, uint16_t base);
+
+/*
+ * Given two bitsets containing "length" 64-bit words, write out the position
+ * of all the common set bits to "out", values start at "base"
+ * (can be set to zero)
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ * set.
+ *
+ * Returns how many values were actually decoded.
+ */
+size_t bitset_extract_intersection_setbits_uint16(
+    const uint64_t *__restrict__ words1, const uint64_t *__restrict__ words2,
+    size_t length, uint16_t *out, uint16_t base);
+
+/*
+ * Given a bitset having cardinality card, set all bit values in the list 
(there
+ * are length of them)
+ * and return the updated cardinality. This evidently assumes that the bitset
+ * already contained data.
+ */
+uint64_t bitset_set_list_withcard(uint64_t *words, uint64_t card,
+                                  const uint16_t *list, uint64_t length);
+/*
+ * Given a bitset, set all bit values in the list (there
+ * are length of them).
+ */
+void bitset_set_list(uint64_t *words, const uint16_t *list, uint64_t length);
+
+/*
+ * Given a bitset having cardinality card, unset all bit values in the list
+ * (there are length of them)
+ * and return the updated cardinality. This evidently assumes that the bitset
+ * already contained data.
+ */
+uint64_t bitset_clear_list(uint64_t *words, uint64_t card, const uint16_t 
*list,
+                           uint64_t length);
+
+/*
+ * Given a bitset having cardinality card, toggle all bit values in the list
+ * (there are length of them)
+ * and return the updated cardinality. This evidently assumes that the bitset
+ * already contained data.
+ */
+
+uint64_t bitset_flip_list_withcard(uint64_t *words, uint64_t card,
+                                   const uint16_t *list, uint64_t length);
+
+void bitset_flip_list(uint64_t *words, const uint16_t *list, uint64_t length);
+
+#if CROARING_IS_X64
+/***
+ * BEGIN Harley-Seal popcount functions.
+ */
+CROARING_TARGET_AVX2
+/**
+ * Compute the population count of a 256-bit word
+ * This is not especially fast, but it is convenient as part of other 
functions.
+ */
+static inline __m256i popcount256(__m256i v) {
+    const __m256i lookuppos = _mm256_setr_epi8(
+        /* 0 */ 4 + 0, /* 1 */ 4 + 1, /* 2 */ 4 + 1, /* 3 */ 4 + 2,
+        /* 4 */ 4 + 1, /* 5 */ 4 + 2, /* 6 */ 4 + 2, /* 7 */ 4 + 3,
+        /* 8 */ 4 + 1, /* 9 */ 4 + 2, /* a */ 4 + 2, /* b */ 4 + 3,
+        /* c */ 4 + 2, /* d */ 4 + 3, /* e */ 4 + 3, /* f */ 4 + 4,
+
+        /* 0 */ 4 + 0, /* 1 */ 4 + 1, /* 2 */ 4 + 1, /* 3 */ 4 + 2,
+        /* 4 */ 4 + 1, /* 5 */ 4 + 2, /* 6 */ 4 + 2, /* 7 */ 4 + 3,
+        /* 8 */ 4 + 1, /* 9 */ 4 + 2, /* a */ 4 + 2, /* b */ 4 + 3,
+        /* c */ 4 + 2, /* d */ 4 + 3, /* e */ 4 + 3, /* f */ 4 + 4);
+    const __m256i lookupneg = _mm256_setr_epi8(
+        /* 0 */ 4 - 0, /* 1 */ 4 - 1, /* 2 */ 4 - 1, /* 3 */ 4 - 2,
+        /* 4 */ 4 - 1, /* 5 */ 4 - 2, /* 6 */ 4 - 2, /* 7 */ 4 - 3,
+        /* 8 */ 4 - 1, /* 9 */ 4 - 2, /* a */ 4 - 2, /* b */ 4 - 3,
+        /* c */ 4 - 2, /* d */ 4 - 3, /* e */ 4 - 3, /* f */ 4 - 4,
+
+        /* 0 */ 4 - 0, /* 1 */ 4 - 1, /* 2 */ 4 - 1, /* 3 */ 4 - 2,
+        /* 4 */ 4 - 1, /* 5 */ 4 - 2, /* 6 */ 4 - 2, /* 7 */ 4 - 3,
+        /* 8 */ 4 - 1, /* 9 */ 4 - 2, /* a */ 4 - 2, /* b */ 4 - 3,
+        /* c */ 4 - 2, /* d */ 4 - 3, /* e */ 4 - 3, /* f */ 4 - 4);
+    const __m256i low_mask = _mm256_set1_epi8(0x0f);
+
+    const __m256i lo = _mm256_and_si256(v, low_mask);
+    const __m256i hi = _mm256_and_si256(_mm256_srli_epi16(v, 4), low_mask);
+    const __m256i popcnt1 = _mm256_shuffle_epi8(lookuppos, lo);
+    const __m256i popcnt2 = _mm256_shuffle_epi8(lookupneg, hi);
+    return _mm256_sad_epu8(popcnt1, popcnt2);
+}
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+/**
+ * Simple CSA over 256 bits
+ */
+static inline void CSA(__m256i *h, __m256i *l, __m256i a, __m256i b,
+                       __m256i c) {
+    const __m256i u = _mm256_xor_si256(a, b);
+    *h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c));
+    *l = _mm256_xor_si256(u, c);
+}
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+/**
+ * Fast Harley-Seal AVX population count function
+ */
+inline static uint64_t avx2_harley_seal_popcount256(const __m256i *data,
+                                                    const uint64_t size) {
+    __m256i total = _mm256_setzero_si256();
+    __m256i ones = _mm256_setzero_si256();
+    __m256i twos = _mm256_setzero_si256();
+    __m256i fours = _mm256_setzero_si256();
+    __m256i eights = _mm256_setzero_si256();
+    __m256i sixteens = _mm256_setzero_si256();
+    __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
+
+    const uint64_t limit = size - size % 16;
+    uint64_t i = 0;
+
+    for (; i < limit; i += 16) {
+        CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i),
+            _mm256_lddqu_si256(data + i + 1));
+        CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 2),
+            _mm256_lddqu_si256(data + i + 3));
+        CSA(&foursA, &twos, twos, twosA, twosB);
+        CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 4),
+            _mm256_lddqu_si256(data + i + 5));
+        CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 6),
+            _mm256_lddqu_si256(data + i + 7));
+        CSA(&foursB, &twos, twos, twosA, twosB);
+        CSA(&eightsA, &fours, fours, foursA, foursB);
+        CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 8),
+            _mm256_lddqu_si256(data + i + 9));
+        CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 10),
+            _mm256_lddqu_si256(data + i + 11));
+        CSA(&foursA, &twos, twos, twosA, twosB);
+        CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 12),
+            _mm256_lddqu_si256(data + i + 13));
+        CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 14),
+            _mm256_lddqu_si256(data + i + 15));
+        CSA(&foursB, &twos, twos, twosA, twosB);
+        CSA(&eightsB, &fours, fours, foursA, foursB);
+        CSA(&sixteens, &eights, eights, eightsA, eightsB);
+
+        total = _mm256_add_epi64(total, popcount256(sixteens));
+    }
+
+    total = _mm256_slli_epi64(total, 4);  // * 16
+    total = _mm256_add_epi64(
+        total, _mm256_slli_epi64(popcount256(eights), 3));  // += 8 * ...
+    total = _mm256_add_epi64(
+        total, _mm256_slli_epi64(popcount256(fours), 2));  // += 4 * ...
+    total = _mm256_add_epi64(
+        total, _mm256_slli_epi64(popcount256(twos), 1));  // += 2 * ...
+    total = _mm256_add_epi64(total, popcount256(ones));
+    for (; i < size; i++)
+        total =
+            _mm256_add_epi64(total, popcount256(_mm256_lddqu_si256(data + i)));
+
+    return (uint64_t)(_mm256_extract_epi64(total, 0)) +
+           (uint64_t)(_mm256_extract_epi64(total, 1)) +
+           (uint64_t)(_mm256_extract_epi64(total, 2)) +
+           (uint64_t)(_mm256_extract_epi64(total, 3));
+}
+CROARING_UNTARGET_AVX2
+
+#define CROARING_AVXPOPCNTFNC(opname, avx_intrinsic)                           
\
+    static inline uint64_t avx2_harley_seal_popcount256_##opname(              
\
+        const __m256i *data1, const __m256i *data2, const uint64_t size) {     
\
+        __m256i total = _mm256_setzero_si256();                                
\
+        __m256i ones = _mm256_setzero_si256();                                 
\
+        __m256i twos = _mm256_setzero_si256();                                 
\
+        __m256i fours = _mm256_setzero_si256();                                
\
+        __m256i eights = _mm256_setzero_si256();                               
\
+        __m256i sixteens = _mm256_setzero_si256();                             
\
+        __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;                
\
+        __m256i A1, A2;                                                        
\
+        const uint64_t limit = size - size % 16;                               
\
+        uint64_t i = 0;                                                        
\
+        for (; i < limit; i += 16) {                                           
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),                  
\
+                               _mm256_lddqu_si256(data2 + i));                 
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 1),              
\
+                               _mm256_lddqu_si256(data2 + i + 1));             
\
+            CSA(&twosA, &ones, ones, A1, A2);                                  
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 2),              
\
+                               _mm256_lddqu_si256(data2 + i + 2));             
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 3),              
\
+                               _mm256_lddqu_si256(data2 + i + 3));             
\
+            CSA(&twosB, &ones, ones, A1, A2);                                  
\
+            CSA(&foursA, &twos, twos, twosA, twosB);                           
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 4),              
\
+                               _mm256_lddqu_si256(data2 + i + 4));             
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 5),              
\
+                               _mm256_lddqu_si256(data2 + i + 5));             
\
+            CSA(&twosA, &ones, ones, A1, A2);                                  
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 6),              
\
+                               _mm256_lddqu_si256(data2 + i + 6));             
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 7),              
\
+                               _mm256_lddqu_si256(data2 + i + 7));             
\
+            CSA(&twosB, &ones, ones, A1, A2);                                  
\
+            CSA(&foursB, &twos, twos, twosA, twosB);                           
\
+            CSA(&eightsA, &fours, fours, foursA, foursB);                      
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 8),              
\
+                               _mm256_lddqu_si256(data2 + i + 8));             
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 9),              
\
+                               _mm256_lddqu_si256(data2 + i + 9));             
\
+            CSA(&twosA, &ones, ones, A1, A2);                                  
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 10),             
\
+                               _mm256_lddqu_si256(data2 + i + 10));            
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 11),             
\
+                               _mm256_lddqu_si256(data2 + i + 11));            
\
+            CSA(&twosB, &ones, ones, A1, A2);                                  
\
+            CSA(&foursA, &twos, twos, twosA, twosB);                           
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 12),             
\
+                               _mm256_lddqu_si256(data2 + i + 12));            
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 13),             
\
+                               _mm256_lddqu_si256(data2 + i + 13));            
\
+            CSA(&twosA, &ones, ones, A1, A2);                                  
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 14),             
\
+                               _mm256_lddqu_si256(data2 + i + 14));            
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 15),             
\
+                               _mm256_lddqu_si256(data2 + i + 15));            
\
+            CSA(&twosB, &ones, ones, A1, A2);                                  
\
+            CSA(&foursB, &twos, twos, twosA, twosB);                           
\
+            CSA(&eightsB, &fours, fours, foursA, foursB);                      
\
+            CSA(&sixteens, &eights, eights, eightsA, eightsB);                 
\
+            total = _mm256_add_epi64(total, popcount256(sixteens));            
\
+        }                                                                      
\
+        total = _mm256_slli_epi64(total, 4);                                   
\
+        total = _mm256_add_epi64(total,                                        
\
+                                 _mm256_slli_epi64(popcount256(eights), 3));   
\
+        total =                                                                
\
+            _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(fours), 2)); 
\
+        total =                                                                
\
+            _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(twos), 1));  
\
+        total = _mm256_add_epi64(total, popcount256(ones));                    
\
+        for (; i < size; i++) {                                                
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),                  
\
+                               _mm256_lddqu_si256(data2 + i));                 
\
+            total = _mm256_add_epi64(total, popcount256(A1));                  
\
+        }                                                                      
\
+        return (uint64_t)(_mm256_extract_epi64(total, 0)) +                    
\
+               (uint64_t)(_mm256_extract_epi64(total, 1)) +                    
\
+               (uint64_t)(_mm256_extract_epi64(total, 2)) +                    
\
+               (uint64_t)(_mm256_extract_epi64(total, 3));                     
\
+    }                                                                          
\
+    static inline uint64_t avx2_harley_seal_popcount256andstore_##opname(      
\
+        const __m256i *__restrict__ data1, const __m256i *__restrict__ data2,  
\
+        __m256i *__restrict__ out, const uint64_t size) {                      
\
+        __m256i total = _mm256_setzero_si256();                                
\
+        __m256i ones = _mm256_setzero_si256();                                 
\
+        __m256i twos = _mm256_setzero_si256();                                 
\
+        __m256i fours = _mm256_setzero_si256();                                
\
+        __m256i eights = _mm256_setzero_si256();                               
\
+        __m256i sixteens = _mm256_setzero_si256();                             
\
+        __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;                
\
+        __m256i A1, A2;                                                        
\
+        const uint64_t limit = size - size % 16;                               
\
+        uint64_t i = 0;                                                        
\
+        for (; i < limit; i += 16) {                                           
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),                  
\
+                               _mm256_lddqu_si256(data2 + i));                 
\
+            _mm256_storeu_si256(out + i, A1);                                  
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 1),              
\
+                               _mm256_lddqu_si256(data2 + i + 1));             
\
+            _mm256_storeu_si256(out + i + 1, A2);                              
\
+            CSA(&twosA, &ones, ones, A1, A2);                                  
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 2),              
\
+                               _mm256_lddqu_si256(data2 + i + 2));             
\
+            _mm256_storeu_si256(out + i + 2, A1);                              
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 3),              
\
+                               _mm256_lddqu_si256(data2 + i + 3));             
\
+            _mm256_storeu_si256(out + i + 3, A2);                              
\
+            CSA(&twosB, &ones, ones, A1, A2);                                  
\
+            CSA(&foursA, &twos, twos, twosA, twosB);                           
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 4),              
\
+                               _mm256_lddqu_si256(data2 + i + 4));             
\
+            _mm256_storeu_si256(out + i + 4, A1);                              
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 5),              
\
+                               _mm256_lddqu_si256(data2 + i + 5));             
\
+            _mm256_storeu_si256(out + i + 5, A2);                              
\
+            CSA(&twosA, &ones, ones, A1, A2);                                  
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 6),              
\
+                               _mm256_lddqu_si256(data2 + i + 6));             
\
+            _mm256_storeu_si256(out + i + 6, A1);                              
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 7),              
\
+                               _mm256_lddqu_si256(data2 + i + 7));             
\
+            _mm256_storeu_si256(out + i + 7, A2);                              
\
+            CSA(&twosB, &ones, ones, A1, A2);                                  
\
+            CSA(&foursB, &twos, twos, twosA, twosB);                           
\
+            CSA(&eightsA, &fours, fours, foursA, foursB);                      
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 8),              
\
+                               _mm256_lddqu_si256(data2 + i + 8));             
\
+            _mm256_storeu_si256(out + i + 8, A1);                              
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 9),              
\
+                               _mm256_lddqu_si256(data2 + i + 9));             
\
+            _mm256_storeu_si256(out + i + 9, A2);                              
\
+            CSA(&twosA, &ones, ones, A1, A2);                                  
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 10),             
\
+                               _mm256_lddqu_si256(data2 + i + 10));            
\
+            _mm256_storeu_si256(out + i + 10, A1);                             
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 11),             
\
+                               _mm256_lddqu_si256(data2 + i + 11));            
\
+            _mm256_storeu_si256(out + i + 11, A2);                             
\
+            CSA(&twosB, &ones, ones, A1, A2);                                  
\
+            CSA(&foursA, &twos, twos, twosA, twosB);                           
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 12),             
\
+                               _mm256_lddqu_si256(data2 + i + 12));            
\
+            _mm256_storeu_si256(out + i + 12, A1);                             
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 13),             
\
+                               _mm256_lddqu_si256(data2 + i + 13));            
\
+            _mm256_storeu_si256(out + i + 13, A2);                             
\
+            CSA(&twosA, &ones, ones, A1, A2);                                  
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 14),             
\
+                               _mm256_lddqu_si256(data2 + i + 14));            
\
+            _mm256_storeu_si256(out + i + 14, A1);                             
\
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 15),             
\
+                               _mm256_lddqu_si256(data2 + i + 15));            
\
+            _mm256_storeu_si256(out + i + 15, A2);                             
\
+            CSA(&twosB, &ones, ones, A1, A2);                                  
\
+            CSA(&foursB, &twos, twos, twosA, twosB);                           
\
+            CSA(&eightsB, &fours, fours, foursA, foursB);                      
\
+            CSA(&sixteens, &eights, eights, eightsA, eightsB);                 
\
+            total = _mm256_add_epi64(total, popcount256(sixteens));            
\
+        }                                                                      
\
+        total = _mm256_slli_epi64(total, 4);                                   
\
+        total = _mm256_add_epi64(total,                                        
\
+                                 _mm256_slli_epi64(popcount256(eights), 3));   
\
+        total =                                                                
\
+            _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(fours), 2)); 
\
+        total =                                                                
\
+            _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(twos), 1));  
\
+        total = _mm256_add_epi64(total, popcount256(ones));                    
\
+        for (; i < size; i++) {                                                
\
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),                  
\
+                               _mm256_lddqu_si256(data2 + i));                 
\
+            _mm256_storeu_si256(out + i, A1);                                  
\
+            total = _mm256_add_epi64(total, popcount256(A1));                  
\
+        }                                                                      
\
+        return (uint64_t)(_mm256_extract_epi64(total, 0)) +                    
\
+               (uint64_t)(_mm256_extract_epi64(total, 1)) +                    
\
+               (uint64_t)(_mm256_extract_epi64(total, 2)) +                    
\
+               (uint64_t)(_mm256_extract_epi64(total, 3));                     
\
+    }
+
+CROARING_TARGET_AVX2
+CROARING_AVXPOPCNTFNC(or, _mm256_or_si256)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVXPOPCNTFNC(union, _mm256_or_si256)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVXPOPCNTFNC(and, _mm256_and_si256)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVXPOPCNTFNC(intersection, _mm256_and_si256)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVXPOPCNTFNC(xor, _mm256_xor_si256)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVXPOPCNTFNC(andnot, _mm256_andnot_si256)
+CROARING_UNTARGET_AVX2
+
+#define VPOPCNT_AND_ADD(ptr, i, accu)                                  \
+    const __m512i v##i = _mm512_loadu_si512((const __m512i *)ptr + i); \
+    const __m512i p##i = _mm512_popcnt_epi64(v##i);                    \
+    accu = _mm512_add_epi64(accu, p##i);
+
+#if CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX512
+static inline uint64_t sum_epu64_256(const __m256i v) {
+    return (uint64_t)(_mm256_extract_epi64(v, 0)) +
+           (uint64_t)(_mm256_extract_epi64(v, 1)) +
+           (uint64_t)(_mm256_extract_epi64(v, 2)) +
+           (uint64_t)(_mm256_extract_epi64(v, 3));
+}
+
+static inline uint64_t simd_sum_epu64(const __m512i v) {
+    __m256i lo = _mm512_extracti64x4_epi64(v, 0);
+    __m256i hi = _mm512_extracti64x4_epi64(v, 1);
+
+    return sum_epu64_256(lo) + sum_epu64_256(hi);
+}
+
+static inline uint64_t avx512_vpopcount(const __m512i *data,
+                                        const uint64_t size) {
+    const uint64_t limit = size - size % 4;
+    __m512i total = _mm512_setzero_si512();
+    uint64_t i = 0;
+
+    for (; i < limit; i += 4) {
+        VPOPCNT_AND_ADD(data + i, 0, total);
+        VPOPCNT_AND_ADD(data + i, 1, total);
+        VPOPCNT_AND_ADD(data + i, 2, total);
+        VPOPCNT_AND_ADD(data + i, 3, total);
+    }
+
+    for (; i < size; i++) {
+        total = _mm512_add_epi64(
+            total, _mm512_popcnt_epi64(_mm512_loadu_si512(data + i)));
+    }
+
+    return simd_sum_epu64(total);
+}
+CROARING_UNTARGET_AVX512
+#endif
+
+#define CROARING_AVXPOPCNTFNC512(opname, avx_intrinsic)                       \
+    static inline uint64_t avx512_harley_seal_popcount512_##opname(           \
+        const __m512i *data1, const __m512i *data2, const uint64_t size) {    \
+        __m512i total = _mm512_setzero_si512();                               \
+        const uint64_t limit = size - size % 4;                               \
+        uint64_t i = 0;                                                       \
+        for (; i < limit; i += 4) {                                           \
+            __m512i a1 = avx_intrinsic(_mm512_loadu_si512(data1 + i),         \
+                                       _mm512_loadu_si512(data2 + i));        \
+            total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a1));         \
+            __m512i a2 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 1),     \
+                                       _mm512_loadu_si512(data2 + i + 1));    \
+            total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a2));         \
+            __m512i a3 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 2),     \
+                                       _mm512_loadu_si512(data2 + i + 2));    \
+            total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a3));         \
+            __m512i a4 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 3),     \
+                                       _mm512_loadu_si512(data2 + i + 3));    \
+            total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a4));         \
+        }                                                                     \
+        for (; i < size; i++) {                                               \
+            __m512i a = avx_intrinsic(_mm512_loadu_si512(data1 + i),          \
+                                      _mm512_loadu_si512(data2 + i));         \
+            total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a));          \
+        }                                                                     \
+        return simd_sum_epu64(total);                                         \
+    }                                                                         \
+    static inline uint64_t avx512_harley_seal_popcount512andstore_##opname(   \
+        const __m512i *__restrict__ data1, const __m512i *__restrict__ data2, \
+        __m512i *__restrict__ out, const uint64_t size) {                     \
+        __m512i total = _mm512_setzero_si512();                               \
+        const uint64_t limit = size - size % 4;                               \
+        uint64_t i = 0;                                                       \
+        for (; i < limit; i += 4) {                                           \
+            __m512i a1 = avx_intrinsic(_mm512_loadu_si512(data1 + i),         \
+                                       _mm512_loadu_si512(data2 + i));        \
+            _mm512_storeu_si512(out + i, a1);                                 \
+            total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a1));         \
+            __m512i a2 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 1),     \
+                                       _mm512_loadu_si512(data2 + i + 1));    \
+            _mm512_storeu_si512(out + i + 1, a2);                             \
+            total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a2));         \
+            __m512i a3 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 2),     \
+                                       _mm512_loadu_si512(data2 + i + 2));    \
+            _mm512_storeu_si512(out + i + 2, a3);                             \
+            total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a3));         \
+            __m512i a4 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 3),     \
+                                       _mm512_loadu_si512(data2 + i + 3));    \
+            _mm512_storeu_si512(out + i + 3, a4);                             \
+            total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a4));         \
+        }                                                                     \
+        for (; i < size; i++) {                                               \
+            __m512i a = avx_intrinsic(_mm512_loadu_si512(data1 + i),          \
+                                      _mm512_loadu_si512(data2 + i));         \
+            _mm512_storeu_si512(out + i, a);                                  \
+            total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a));          \
+        }                                                                     \
+        return simd_sum_epu64(total);                                         \
+    }
+
+#if CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVXPOPCNTFNC512(or, _mm512_or_si512)
+CROARING_AVXPOPCNTFNC512(union, _mm512_or_si512)
+CROARING_AVXPOPCNTFNC512(and, _mm512_and_si512)
+CROARING_AVXPOPCNTFNC512(intersection, _mm512_and_si512)
+CROARING_AVXPOPCNTFNC512(xor, _mm512_xor_si512)
+CROARING_AVXPOPCNTFNC512(andnot, _mm512_andnot_si512)
+CROARING_UNTARGET_AVX512
+#endif
+/***
+ * END Harley-Seal popcount functions.
+ */
+
+#endif  // CROARING_IS_X64
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic pop
+#endif
+#endif
+/* end file include/roaring/bitset_util.h */
+/* begin file include/roaring/containers/array.h */
+/*
+ * array.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_ARRAY_H_
+#define INCLUDE_CONTAINERS_ARRAY_H_
+
+#include <string.h>
+
+
+// Include other headers after roaring_types.h
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+
+// Note: in pure C++ code, you should avoid putting `using` in header files
+using api::roaring_iterator;
+using api::roaring_iterator64;
+
+namespace internal {
+#endif
+
+/* Containers with DEFAULT_MAX_SIZE or less integers should be arrays */
+enum { DEFAULT_MAX_SIZE = 4096 };
+
+/* struct array_container - sparse representation of a bitmap
+ *
+ * @cardinality: number of indices in `array` (and the bitmap)
+ * @capacity:    allocated size of `array`
+ * @array:       sorted list of integers
+ */
+STRUCT_CONTAINER(array_container_s) {
+    int32_t cardinality;
+    int32_t capacity;
+    uint16_t *array;
+};
+
+typedef struct array_container_s array_container_t;
+
+#define CAST_array(c) CAST(array_container_t *, c)  // safer downcast
+#define const_CAST_array(c) CAST(const array_container_t *, c)
+#define movable_CAST_array(c) movable_CAST(array_container_t **, c)
+
+/* Create a new array with default. Return NULL in case of failure. See also
+ * array_container_create_given_capacity. */
+array_container_t *array_container_create(void);
+
+/* Create a new array with a specified capacity size. Return NULL in case of
+ * failure. */
+array_container_t *array_container_create_given_capacity(int32_t size);
+
+/* Create a new array containing all values in [min,max). */
+array_container_t *array_container_create_range(uint32_t min, uint32_t max);
+
+/*
+ * Shrink the capacity to the actual size, return the number of bytes saved.
+ */
+int array_container_shrink_to_fit(array_container_t *src);
+
+/* Free memory owned by `array'. */
+void array_container_free(array_container_t *array);
+
+/* Duplicate container */
+array_container_t *array_container_clone(const array_container_t *src);
+
+/* Get the cardinality of `array'. */
+ALLOW_UNALIGNED
+static inline int array_container_cardinality(const array_container_t *array) {
+    return array->cardinality;
+}
+
+static inline bool array_container_nonzero_cardinality(
+    const array_container_t *array) {
+    return array->cardinality > 0;
+}
+
+/* Copy one container into another. We assume that they are distinct. */
+void array_container_copy(const array_container_t *src, array_container_t 
*dst);
+
+/*  Add all the values in [min,max) (included) at a distance k*step from min.
+    The container must have a size less or equal to DEFAULT_MAX_SIZE after this
+   addition. */
+void array_container_add_from_range(array_container_t *arr, uint32_t min,
+                                    uint32_t max, uint16_t step);
+
+static inline bool array_container_empty(const array_container_t *array) {
+    return array->cardinality == 0;
+}
+
+/* check whether the cardinality is equal to the capacity (this does not mean
+ * that it contains 1<<16 elements) */
+static inline bool array_container_full(const array_container_t *array) {
+    return array->cardinality == array->capacity;
+}
+
+/* Compute the union of `src_1' and `src_2' and write the result to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void array_container_union(const array_container_t *src_1,
+                           const array_container_t *src_2,
+                           array_container_t *dst);
+
+/* symmetric difference, see array_container_union */
+void array_container_xor(const array_container_t *array_1,
+                         const array_container_t *array_2,
+                         array_container_t *out);
+
+/* Computes the intersection of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+void array_container_intersection(const array_container_t *src_1,
+                                  const array_container_t *src_2,
+                                  array_container_t *dst);
+
+/* Check whether src_1 and src_2 intersect. */
+bool array_container_intersect(const array_container_t *src_1,
+                               const array_container_t *src_2);
+
+/* computers the size of the intersection between two arrays.
+ */
+int array_container_intersection_cardinality(const array_container_t *src_1,
+                                             const array_container_t *src_2);
+
+/* computes the intersection of array1 and array2 and write the result to
+ * array1.
+ * */
+void array_container_intersection_inplace(array_container_t *src_1,
+                                          const array_container_t *src_2);
+
+/*
+ * Write out the 16-bit integers contained in this container as a list of 
32-bit
+ * integers using base
+ * as the starting value (it might be expected that base has zeros in its 16
+ * least significant bits).
+ * The function returns the number of values written.
+ * The caller is responsible for allocating enough memory in out.
+ */
+int array_container_to_uint32_array(void *vout, const array_container_t *cont,
+                                    uint32_t base);
+
+/* Compute the number of runs */
+int32_t array_container_number_of_runs(const array_container_t *ac);
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void array_container_printf(const array_container_t *v);
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit
+ * integers starting at base.
+ */
+void array_container_printf_as_uint32_array(const array_container_t *v,
+                                            uint32_t base);
+
+bool array_container_validate(const array_container_t *v, const char **reason);
+
+/**
+ * Return the serialized size in bytes of a container having cardinality 
"card".
+ */
+static inline int32_t array_container_serialized_size_in_bytes(int32_t card) {
+    return card * 2 + 2;
+}
+
+/**
+ * Increase capacity to at least min.
+ * Whether the existing data needs to be copied over depends on the "preserve"
+ * parameter. If preserve is false, then the new content will be uninitialized,
+ * otherwise the old content is copied.
+ */
+void array_container_grow(array_container_t *container, int32_t min,
+                          bool preserve);
+
+bool array_container_iterate(const array_container_t *cont, uint32_t base,
+                             roaring_iterator iterator, void *ptr);
+bool array_container_iterate64(const array_container_t *cont, uint32_t base,
+                               roaring_iterator64 iterator, uint64_t high_bits,
+                               void *ptr);
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes written should be
+ * array_container_size_in_bytes(container).
+ *
+ */
+int32_t array_container_write(const array_container_t *container, char *buf);
+/**
+ * Reads the instance from buf, outputs how many bytes were read.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes read should be array_container_size_in_bytes(container).
+ * You need to provide the (known) cardinality.
+ */
+int32_t array_container_read(int32_t cardinality, array_container_t *container,
+                             const char *buf);
+
+/**
+ * Return the serialized size in bytes of a container (see
+ * bitset_container_write)
+ * This is meant to be compatible with the Java and Go versions of Roaring and
+ * assumes
+ * that the cardinality of the container is already known.
+ *
+ */
+ALLOW_UNALIGNED
+static inline int32_t array_container_size_in_bytes(
+    const array_container_t *container) {
+    return container->cardinality * sizeof(uint16_t);
+}
+
+/**
+ * Return true if the two arrays have the same content.
+ */
+ALLOW_UNALIGNED
+static inline bool array_container_equals(const array_container_t *container1,
+                                          const array_container_t *container2) 
{
+    if (container1->cardinality != container2->cardinality) {
+        return false;
+    }
+    return memequals(container1->array, container2->array,
+                     container1->cardinality * 2);
+}
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool array_container_is_subset(const array_container_t *container1,
+                               const array_container_t *container2);
+
+/**
+ * If the element of given rank is in this container, supposing that the first
+ * element has rank start_rank, then the function returns true and sets element
+ * accordingly.
+ * Otherwise, it returns false and update start_rank.
+ */
+static inline bool array_container_select(const array_container_t *container,
+                                          uint32_t *start_rank, uint32_t rank,
+                                          uint32_t *element) {
+    int card = array_container_cardinality(container);
+    if (*start_rank + card <= rank) {
+        *start_rank += card;
+        return false;
+    } else {
+        *element = container->array[rank - *start_rank];
+        return true;
+    }
+}
+
+/* Computes the  difference of array1 and array2 and write the result
+ * to array out.
+ * Array out does not need to be distinct from array_1
+ */
+void array_container_andnot(const array_container_t *array_1,
+                            const array_container_t *array_2,
+                            array_container_t *out);
+
+/* Append x to the set. Assumes that the value is larger than any preceding
+ * values.  */
+static inline void array_container_append(array_container_t *arr,
+                                          uint16_t pos) {
+    const int32_t capacity = arr->capacity;
+
+    if (array_container_full(arr)) {
+        array_container_grow(arr, capacity + 1, true);
+    }
+
+    arr->array[arr->cardinality++] = pos;
+}
+
+/**
+ * Add value to the set if final cardinality doesn't exceed max_cardinality.
+ * Return code:
+ * 1  -- value was added
+ * 0  -- value was already present
+ * -1 -- value was not added because cardinality would exceed max_cardinality
+ */
+static inline int array_container_try_add(array_container_t *arr,
+                                          uint16_t value,
+                                          int32_t max_cardinality) {
+    const int32_t cardinality = arr->cardinality;
+
+    // best case, we can append.
+    if ((array_container_empty(arr) || arr->array[cardinality - 1] < value) &&
+        cardinality < max_cardinality) {
+        array_container_append(arr, value);
+        return 1;
+    }
+
+    const int32_t loc = binarySearch(arr->array, cardinality, value);
+
+    if (loc >= 0) {
+        return 0;
+    } else if (cardinality < max_cardinality) {
+        if (array_container_full(arr)) {
+            array_container_grow(arr, arr->capacity + 1, true);
+        }
+        const int32_t insert_idx = -loc - 1;
+        memmove(arr->array + insert_idx + 1, arr->array + insert_idx,
+                (cardinality - insert_idx) * sizeof(uint16_t));
+        arr->array[insert_idx] = value;
+        arr->cardinality++;
+        return 1;
+    } else {
+        return -1;
+    }
+}
+
+/* Add value to the set. Returns true if x was not already present.  */
+static inline bool array_container_add(array_container_t *arr, uint16_t value) 
{
+    return array_container_try_add(arr, value, INT32_MAX) == 1;
+}
+
+/* Remove x from the set. Returns true if x was present.  */
+static inline bool array_container_remove(array_container_t *arr,
+                                          uint16_t pos) {
+    const int32_t idx = binarySearch(arr->array, arr->cardinality, pos);
+    const bool is_present = idx >= 0;
+    if (is_present) {
+        memmove(arr->array + idx, arr->array + idx + 1,
+                (arr->cardinality - idx - 1) * sizeof(uint16_t));
+        arr->cardinality--;
+    }
+
+    return is_present;
+}
+
+/* Check whether x is present.  */
+inline bool array_container_contains(const array_container_t *arr,
+                                     uint16_t pos) {
+    //    return binarySearch(arr->array, arr->cardinality, pos) >= 0;
+    // binary search with fallback to linear search for short ranges
+    int32_t low = 0;
+    const uint16_t *carr = (const uint16_t *)arr->array;
+    int32_t high = arr->cardinality - 1;
+    //    while (high - low >= 0) {
+    while (high >= low + 16) {
+        int32_t middleIndex = (low + high) >> 1;
+        uint16_t middleValue = carr[middleIndex];
+        if (middleValue < pos) {
+            low = middleIndex + 1;
+        } else if (middleValue > pos) {
+            high = middleIndex - 1;
+        } else {
+            return true;
+        }
+    }
+
+    for (int i = low; i <= high; i++) {
+        uint16_t v = carr[i];
+        if (v == pos) {
+            return true;
+        }
+        if (v > pos) return false;
+    }
+    return false;
+}
+
+void array_container_offset(const array_container_t *c, container_t **loc,
+                            container_t **hic, uint16_t offset);
+
+//* Check whether a range of values from range_start (included) to range_end
+//(excluded) is present. */
+static inline bool array_container_contains_range(const array_container_t *arr,
+                                                  uint32_t range_start,
+                                                  uint32_t range_end) {
+    const int32_t range_count = range_end - range_start;
+    const uint16_t rs_included = (uint16_t)range_start;
+    const uint16_t re_included = (uint16_t)(range_end - 1);
+
+    // Empty range is always included
+    if (range_count <= 0) {
+        return true;
+    }
+    if (range_count > arr->cardinality) {
+        return false;
+    }
+
+    const int32_t start =
+        binarySearch(arr->array, arr->cardinality, rs_included);
+    // If this sorted array contains all items in the range:
+    // * the start item must be found
+    // * the last item in range range_count must exist, and be the expected end
+    // value
+    return (start >= 0) && (arr->cardinality >= start + range_count) &&
+           (arr->array[start + range_count - 1] == re_included);
+}
+
+/* Returns the smallest value (assumes not empty) */
+inline uint16_t array_container_minimum(const array_container_t *arr) {
+    if (arr->cardinality == 0) return 0;
+    return arr->array[0];
+}
+
+/* Returns the largest value (assumes not empty) */
+inline uint16_t array_container_maximum(const array_container_t *arr) {
+    if (arr->cardinality == 0) return 0;
+    return arr->array[arr->cardinality - 1];
+}
+
+/* Returns the number of values equal or smaller than x */
+inline int array_container_rank(const array_container_t *arr, uint16_t x) {
+    const int32_t idx = binarySearch(arr->array, arr->cardinality, x);
+    const bool is_present = idx >= 0;
+    if (is_present) {
+        return idx + 1;
+    } else {
+        return -idx - 1;
+    }
+}
+
+/*  bulk version of array_container_rank(); return number of consumed elements
+ */
+inline uint32_t array_container_rank_many(const array_container_t *arr,
+                                          uint64_t start_rank,
+                                          const uint32_t *begin,
+                                          const uint32_t *end, uint64_t *ans) {
+    const uint16_t high = (uint16_t)((*begin) >> 16);
+    uint32_t pos = 0;
+    const uint32_t *iter = begin;
+    for (; iter != end; iter++) {
+        uint32_t x = *iter;
+        uint16_t xhigh = (uint16_t)(x >> 16);
+        if (xhigh != high) return iter - begin;  // stop at next container
+
+        const int32_t idx =
+            binarySearch(arr->array + pos, arr->cardinality - pos, 
(uint16_t)x);
+        const bool is_present = idx >= 0;
+        if (is_present) {
+            *(ans++) = start_rank + pos + (idx + 1);
+            pos = idx + 1;
+        } else {
+            *(ans++) = start_rank + pos + (-idx - 1);
+        }
+    }
+    return iter - begin;
+}
+
+/* Returns the index of x , if not exsist return -1 */
+inline int array_container_get_index(const array_container_t *arr, uint16_t x) 
{
+    const int32_t idx = binarySearch(arr->array, arr->cardinality, x);
+    const bool is_present = idx >= 0;
+    if (is_present) {
+        return idx;
+    } else {
+        return -1;
+    }
+}
+
+/* Returns the index of the first value equal or larger than x, or -1 */
+inline int array_container_index_equalorlarger(const array_container_t *arr,
+                                               uint16_t x) {
+    const int32_t idx = binarySearch(arr->array, arr->cardinality, x);
+    const bool is_present = idx >= 0;
+    if (is_present) {
+        return idx;
+    } else {
+        int32_t candidate = -idx - 1;
+        if (candidate < arr->cardinality) return candidate;
+        return -1;
+    }
+}
+
+/*
+ * Adds all values in range [min,max] using hint:
+ *   nvals_less is the number of array values less than $min
+ *   nvals_greater is the number of array values greater than $max
+ */
+static inline void array_container_add_range_nvals(array_container_t *array,
+                                                   uint32_t min, uint32_t max,
+                                                   int32_t nvals_less,
+                                                   int32_t nvals_greater) {
+    int32_t union_cardinality = nvals_less + (max - min + 1) + nvals_greater;
+    if (union_cardinality > array->capacity) {
+        array_container_grow(array, union_cardinality, true);
+    }
+    memmove(&(array->array[union_cardinality - nvals_greater]),
+            &(array->array[array->cardinality - nvals_greater]),
+            nvals_greater * sizeof(uint16_t));
+    for (uint32_t i = 0; i <= max - min; i++) {
+        array->array[nvals_less + i] = (uint16_t)(min + i);
+    }
+    array->cardinality = union_cardinality;
+}
+
+/**
+ * Adds all values in range [min,max]. This function is currently unused
+ * and left as a documentation.
+ */
+/*static inline void array_container_add_range(array_container_t *array,
+                                             uint32_t min, uint32_t max) {
+    int32_t nvals_greater = count_greater(array->array, array->cardinality,
+max); int32_t nvals_less = count_less(array->array, array->cardinality -
+nvals_greater, min); array_container_add_range_nvals(array, min, max,
+nvals_less, nvals_greater);
+}*/
+
+/*
+ * Removes all elements array[pos] .. array[pos+count-1]
+ */
+static inline void array_container_remove_range(array_container_t *array,
+                                                uint32_t pos, uint32_t count) {
+    if (count != 0) {
+        memmove(&(array->array[pos]), &(array->array[pos + count]),
+                (array->cardinality - pos - count) * sizeof(uint16_t));
+        array->cardinality -= count;
+    }
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_ARRAY_H_ */
+/* end file include/roaring/containers/array.h */
+/* begin file include/roaring/containers/bitset.h */
+/*
+ * bitset.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_BITSET_H_
+#define INCLUDE_CONTAINERS_BITSET_H_
+
+#include <stdbool.h>
+#include <stdint.h>
+
+
+// Include other headers after roaring_types.h
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+
+// Note: in pure C++ code, you should avoid putting `using` in header files
+using api::roaring_iterator;
+using api::roaring_iterator64;
+
+namespace internal {
+#endif
+
+enum {
+    BITSET_CONTAINER_SIZE_IN_WORDS = (1 << 16) / 64,
+    BITSET_UNKNOWN_CARDINALITY = -1
+};
+
+STRUCT_CONTAINER(bitset_container_s) {
+    int32_t cardinality;
+    uint64_t *words;
+};
+
+typedef struct bitset_container_s bitset_container_t;
+
+#define CAST_bitset(c) CAST(bitset_container_t *, c)  // safer downcast
+#define const_CAST_bitset(c) CAST(const bitset_container_t *, c)
+#define movable_CAST_bitset(c) movable_CAST(bitset_container_t **, c)
+
+/* Create a new bitset. Return NULL in case of failure. */
+bitset_container_t *bitset_container_create(void);
+
+/* Free memory. */
+void bitset_container_free(bitset_container_t *bitset);
+
+/* Clear bitset (sets bits to 0). */
+void bitset_container_clear(bitset_container_t *bitset);
+
+/* Set all bits to 1. */
+void bitset_container_set_all(bitset_container_t *bitset);
+
+/* Duplicate bitset */
+bitset_container_t *bitset_container_clone(const bitset_container_t *src);
+
+/* Set the bit in [begin,end). WARNING: as of April 2016, this method is slow
+ * and
+ * should not be used in performance-sensitive code. Ever.  */
+void bitset_container_set_range(bitset_container_t *bitset, uint32_t begin,
+                                uint32_t end);
+
+#if defined(CROARING_ASMBITMANIPOPTIMIZATION) && defined(__AVX2__)
+/* Set the ith bit.  */
+static inline void bitset_container_set(bitset_container_t *bitset,
+                                        uint16_t pos) {
+    uint64_t shift = 6;
+    uint64_t offset;
+    uint64_t p = pos;
+    ASM_SHIFT_RIGHT(p, shift, offset);
+    uint64_t load = bitset->words[offset];
+    ASM_SET_BIT_INC_WAS_CLEAR(load, p, bitset->cardinality);
+    bitset->words[offset] = load;
+}
+
+/* Unset the ith bit. Currently unused. Could be used for optimization. */
+/*static inline void bitset_container_unset(bitset_container_t *bitset,
+                                          uint16_t pos) {
+    uint64_t shift = 6;
+    uint64_t offset;
+    uint64_t p = pos;
+    ASM_SHIFT_RIGHT(p, shift, offset);
+    uint64_t load = bitset->words[offset];
+    ASM_CLEAR_BIT_DEC_WAS_SET(load, p, bitset->cardinality);
+    bitset->words[offset] = load;
+}*/
+
+/* Add `pos' to `bitset'. Returns true if `pos' was not present. Might be 
slower
+ * than bitset_container_set.  */
+static inline bool bitset_container_add(bitset_container_t *bitset,
+                                        uint16_t pos) {
+    uint64_t shift = 6;
+    uint64_t offset;
+    uint64_t p = pos;
+    ASM_SHIFT_RIGHT(p, shift, offset);
+    uint64_t load = bitset->words[offset];
+    // could be possibly slightly further optimized
+    const int32_t oldcard = bitset->cardinality;
+    ASM_SET_BIT_INC_WAS_CLEAR(load, p, bitset->cardinality);
+    bitset->words[offset] = load;
+    return bitset->cardinality - oldcard;
+}
+
+/* Remove `pos' from `bitset'. Returns true if `pos' was present.  Might be
+ * slower than bitset_container_unset.  */
+static inline bool bitset_container_remove(bitset_container_t *bitset,
+                                           uint16_t pos) {
+    uint64_t shift = 6;
+    uint64_t offset;
+    uint64_t p = pos;
+    ASM_SHIFT_RIGHT(p, shift, offset);
+    uint64_t load = bitset->words[offset];
+    // could be possibly slightly further optimized
+    const int32_t oldcard = bitset->cardinality;
+    ASM_CLEAR_BIT_DEC_WAS_SET(load, p, bitset->cardinality);
+    bitset->words[offset] = load;
+    return oldcard - bitset->cardinality;
+}
+
+/* Get the value of the ith bit.  */
+inline bool bitset_container_get(const bitset_container_t *bitset,
+                                 uint16_t pos) {
+    uint64_t word = bitset->words[pos >> 6];
+    const uint64_t p = pos;
+    ASM_INPLACESHIFT_RIGHT(word, p);
+    return word & 1;
+}
+
+#else
+
+/* Set the ith bit.  */
+static inline void bitset_container_set(bitset_container_t *bitset,
+                                        uint16_t pos) {
+    const uint64_t old_word = bitset->words[pos >> 6];
+    const int index = pos & 63;
+    const uint64_t new_word = old_word | (UINT64_C(1) << index);
+    bitset->cardinality += (uint32_t)((old_word ^ new_word) >> index);
+    bitset->words[pos >> 6] = new_word;
+}
+
+/* Unset the ith bit. Currently unused.  */
+/*static inline void bitset_container_unset(bitset_container_t *bitset,
+                                          uint16_t pos) {
+    const uint64_t old_word = bitset->words[pos >> 6];
+    const int index = pos & 63;
+    const uint64_t new_word = old_word & (~(UINT64_C(1) << index));
+    bitset->cardinality -= (uint32_t)((old_word ^ new_word) >> index);
+    bitset->words[pos >> 6] = new_word;
+}*/
+
+/* Add `pos' to `bitset'. Returns true if `pos' was not present. Might be 
slower
+ * than bitset_container_set.  */
+static inline bool bitset_container_add(bitset_container_t *bitset,
+                                        uint16_t pos) {
+    const uint64_t old_word = bitset->words[pos >> 6];
+    const int index = pos & 63;
+    const uint64_t new_word = old_word | (UINT64_C(1) << index);
+    const uint64_t increment = (old_word ^ new_word) >> index;
+    bitset->cardinality += (uint32_t)increment;
+    bitset->words[pos >> 6] = new_word;
+    return increment > 0;
+}
+
+/* Remove `pos' from `bitset'. Returns true if `pos' was present.  Might be
+ * slower than bitset_container_unset.  */
+static inline bool bitset_container_remove(bitset_container_t *bitset,
+                                           uint16_t pos) {
+    const uint64_t old_word = bitset->words[pos >> 6];
+    const int index = pos & 63;
+    const uint64_t new_word = old_word & (~(UINT64_C(1) << index));
+    const uint64_t increment = (old_word ^ new_word) >> index;
+    bitset->cardinality -= (uint32_t)increment;
+    bitset->words[pos >> 6] = new_word;
+    return increment > 0;
+}
+
+/* Get the value of the ith bit.  */
+inline bool bitset_container_get(const bitset_container_t *bitset,
+                                 uint16_t pos) {
+    const uint64_t word = bitset->words[pos >> 6];
+    return (word >> (pos & 63)) & 1;
+}
+
+#endif
+
+/*
+ * Check if all bits are set in a range of positions from pos_start (included)
+ * to pos_end (excluded).
+ */
+static inline bool bitset_container_get_range(const bitset_container_t *bitset,
+                                              uint32_t pos_start,
+                                              uint32_t pos_end) {
+    const uint32_t start = pos_start >> 6;
+    const uint32_t end = pos_end >> 6;
+
+    const uint64_t first = ~((1ULL << (pos_start & 0x3F)) - 1);
+    const uint64_t last = (1ULL << (pos_end & 0x3F)) - 1;
+
+    if (start == end)
+        return ((bitset->words[end] & first & last) == (first & last));
+    if ((bitset->words[start] & first) != first) return false;
+
+    if ((end < BITSET_CONTAINER_SIZE_IN_WORDS) &&
+        ((bitset->words[end] & last) != last)) {
+        return false;
+    }
+
+    for (uint32_t i = start + 1;
+         (i < BITSET_CONTAINER_SIZE_IN_WORDS) && (i < end); ++i) {
+        if (bitset->words[i] != UINT64_C(0xFFFFFFFFFFFFFFFF)) return false;
+    }
+
+    return true;
+}
+
+/* Check whether `bitset' is present in `array'.  Calls bitset_container_get. 
*/
+inline bool bitset_container_contains(const bitset_container_t *bitset,
+                                      uint16_t pos) {
+    return bitset_container_get(bitset, pos);
+}
+
+/*
+ * Check whether a range of bits from position `pos_start' (included) to
+ * `pos_end' (excluded) is present in `bitset'.  Calls 
bitset_container_get_all.
+ */
+static inline bool bitset_container_contains_range(
+    const bitset_container_t *bitset, uint32_t pos_start, uint32_t pos_end) {
+    return bitset_container_get_range(bitset, pos_start, pos_end);
+}
+
+/* Get the number of bits set */
+ALLOW_UNALIGNED
+static inline int bitset_container_cardinality(
+    const bitset_container_t *bitset) {
+    return bitset->cardinality;
+}
+
+/* Copy one container into another. We assume that they are distinct. */
+void bitset_container_copy(const bitset_container_t *source,
+                           bitset_container_t *dest);
+
+/*  Add all the values [min,max) at a distance k*step from min: min,
+ * min+step,.... */
+void bitset_container_add_from_range(bitset_container_t *bitset, uint32_t min,
+                                     uint32_t max, uint16_t step);
+
+/* Get the number of bits set (force computation). This does not modify bitset.
+ * To update the cardinality, you should do
+ * bitset->cardinality =  bitset_container_compute_cardinality(bitset).*/
+int bitset_container_compute_cardinality(const bitset_container_t *bitset);
+
+/* Check whether this bitset is empty,
+ *  it never modifies the bitset struct. */
+static inline bool bitset_container_empty(const bitset_container_t *bitset) {
+    if (bitset->cardinality == BITSET_UNKNOWN_CARDINALITY) {
+        for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) {
+            if ((bitset->words[i]) != 0) return false;
+        }
+        return true;
+    }
+    return bitset->cardinality == 0;
+}
+
+/* Get whether there is at least one bit set  (see bitset_container_empty for
+   the reverse), the bitset is never modified */
+static inline bool bitset_container_const_nonzero_cardinality(
+    const bitset_container_t *bitset) {
+    return !bitset_container_empty(bitset);
+}
+
+/*
+ * Check whether the two bitsets intersect
+ */
+bool bitset_container_intersect(const bitset_container_t *src_1,
+                                const bitset_container_t *src_2);
+
+/* Computes the union of bitsets `src_1' and `src_2' into `dst'  and return the
+ * cardinality. */
+int bitset_container_or(const bitset_container_t *src_1,
+                        const bitset_container_t *src_2,
+                        bitset_container_t *dst);
+
+/* Computes the union of bitsets `src_1' and `src_2' and return the 
cardinality.
+ */
+int bitset_container_or_justcard(const bitset_container_t *src_1,
+                                 const bitset_container_t *src_2);
+
+/* Computes the union of bitsets `src_1' and `src_2' into `dst' and return the
+ * cardinality. Same as bitset_container_or. */
+int bitset_container_union(const bitset_container_t *src_1,
+                           const bitset_container_t *src_2,
+                           bitset_container_t *dst);
+
+/* Computes the union of bitsets `src_1' and `src_2'  and return the
+ * cardinality. Same as bitset_container_or_justcard. */
+int bitset_container_union_justcard(const bitset_container_t *src_1,
+                                    const bitset_container_t *src_2);
+
+/* Computes the union of bitsets `src_1' and `src_2' into `dst', but does
+ * not update the cardinality. Provided to optimize chained operations. */
+int bitset_container_union_nocard(const bitset_container_t *src_1,
+                                  const bitset_container_t *src_2,
+                                  bitset_container_t *dst);
+
+/* Computes the union of bitsets `src_1' and `src_2' into `dst', but does not
+ * update the cardinality. Provided to optimize chained operations. */
+int bitset_container_or_nocard(const bitset_container_t *src_1,
+                               const bitset_container_t *src_2,
+                               bitset_container_t *dst);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' into `dst' and
+ * return the cardinality. */
+int bitset_container_and(const bitset_container_t *src_1,
+                         const bitset_container_t *src_2,
+                         bitset_container_t *dst);
+
+/* Computes the intersection of bitsets `src_1' and `src_2'  and return the
+ * cardinality. */
+int bitset_container_and_justcard(const bitset_container_t *src_1,
+                                  const bitset_container_t *src_2);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' into `dst' and
+ * return the cardinality. Same as bitset_container_and. */
+int bitset_container_intersection(const bitset_container_t *src_1,
+                                  const bitset_container_t *src_2,
+                                  bitset_container_t *dst);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' and return the
+ * cardinality. Same as bitset_container_and_justcard. */
+int bitset_container_intersection_justcard(const bitset_container_t *src_1,
+                                           const bitset_container_t *src_2);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' into `dst', but 
does
+ * not update the cardinality. Provided to optimize chained operations. */
+int bitset_container_intersection_nocard(const bitset_container_t *src_1,
+                                         const bitset_container_t *src_2,
+                                         bitset_container_t *dst);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' into `dst', but 
does
+ * not update the cardinality. Provided to optimize chained operations. */
+int bitset_container_and_nocard(const bitset_container_t *src_1,
+                                const bitset_container_t *src_2,
+                                bitset_container_t *dst);
+
+/* Computes the exclusive or of bitsets `src_1' and `src_2' into `dst' and
+ * return the cardinality. */
+int bitset_container_xor(const bitset_container_t *src_1,
+                         const bitset_container_t *src_2,
+                         bitset_container_t *dst);
+
+/* Computes the exclusive or of bitsets `src_1' and `src_2' and return the
+ * cardinality. */
+int bitset_container_xor_justcard(const bitset_container_t *src_1,
+                                  const bitset_container_t *src_2);
+
+/* Computes the exclusive or of bitsets `src_1' and `src_2' into `dst', but 
does
+ * not update the cardinality. Provided to optimize chained operations. */
+int bitset_container_xor_nocard(const bitset_container_t *src_1,
+                                const bitset_container_t *src_2,
+                                bitset_container_t *dst);
+
+/* Computes the and not of bitsets `src_1' and `src_2' into `dst' and return 
the
+ * cardinality. */
+int bitset_container_andnot(const bitset_container_t *src_1,
+                            const bitset_container_t *src_2,
+                            bitset_container_t *dst);
+
+/* Computes the and not of bitsets `src_1' and `src_2'  and return the
+ * cardinality. */
+int bitset_container_andnot_justcard(const bitset_container_t *src_1,
+                                     const bitset_container_t *src_2);
+
+/* Computes the and not or of bitsets `src_1' and `src_2' into `dst', but does
+ * not update the cardinality. Provided to optimize chained operations. */
+int bitset_container_andnot_nocard(const bitset_container_t *src_1,
+                                   const bitset_container_t *src_2,
+                                   bitset_container_t *dst);
+
+void bitset_container_offset(const bitset_container_t *c, container_t **loc,
+                             container_t **hic, uint16_t offset);
+/*
+ * Write out the 16-bit integers contained in this container as a list of 
32-bit
+ * integers using base
+ * as the starting value (it might be expected that base has zeros in its 16
+ * least significant bits).
+ * The function returns the number of values written.
+ * The caller is responsible for allocating enough memory in out.
+ * The out pointer should point to enough memory (the cardinality times 32
+ * bits).
+ */
+int bitset_container_to_uint32_array(uint32_t *out,
+                                     const bitset_container_t *bc,
+                                     uint32_t base);
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void bitset_container_printf(const bitset_container_t *v);
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit
+ * integers starting at base.
+ */
+void bitset_container_printf_as_uint32_array(const bitset_container_t *v,
+                                             uint32_t base);
+
+bool bitset_container_validate(const bitset_container_t *v,
+                               const char **reason);
+
+/**
+ * Return the serialized size in bytes of a container.
+ */
+static inline int32_t bitset_container_serialized_size_in_bytes(void) {
+    return BITSET_CONTAINER_SIZE_IN_WORDS * 8;
+}
+
+/**
+ * Return the the number of runs.
+ */
+int bitset_container_number_of_runs(bitset_container_t *bc);
+
+bool bitset_container_iterate(const bitset_container_t *cont, uint32_t base,
+                              roaring_iterator iterator, void *ptr);
+bool bitset_container_iterate64(const bitset_container_t *cont, uint32_t base,
+                                roaring_iterator64 iterator, uint64_t 
high_bits,
+                                void *ptr);
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes written should be
+ * bitset_container_size_in_bytes(container).
+ */
+int32_t bitset_container_write(const bitset_container_t *container, char *buf);
+
+/**
+ * Reads the instance from buf, outputs how many bytes were read.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes read should be 
bitset_container_size_in_bytes(container).
+ * You need to provide the (known) cardinality.
+ */
+int32_t bitset_container_read(int32_t cardinality,
+                              bitset_container_t *container, const char *buf);
+/**
+ * Return the serialized size in bytes of a container (see
+ * bitset_container_write).
+ * This is meant to be compatible with the Java and Go versions of Roaring and
+ * assumes
+ * that the cardinality of the container is already known or can be computed.
+ */
+static inline int32_t bitset_container_size_in_bytes(
+    const bitset_container_t *container) {
+    (void)container;
+    return BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+}
+
+/**
+ * Return true if the two containers have the same content.
+ */
+bool bitset_container_equals(const bitset_container_t *container1,
+                             const bitset_container_t *container2);
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool bitset_container_is_subset(const bitset_container_t *container1,
+                                const bitset_container_t *container2);
+
+/**
+ * If the element of given rank is in this container, supposing that the first
+ * element has rank start_rank, then the function returns true and sets element
+ * accordingly.
+ * Otherwise, it returns false and update start_rank.
+ */
+bool bitset_container_select(const bitset_container_t *container,
+                             uint32_t *start_rank, uint32_t rank,
+                             uint32_t *element);
+
+/* Returns the smallest value (assumes not empty) */
+uint16_t bitset_container_minimum(const bitset_container_t *container);
+
+/* Returns the largest value (assumes not empty) */
+uint16_t bitset_container_maximum(const bitset_container_t *container);
+
+/* Returns the number of values equal or smaller than x */
+int bitset_container_rank(const bitset_container_t *container, uint16_t x);
+
+/* bulk version of bitset_container_rank(); return number of consumed elements
+ */
+uint32_t bitset_container_rank_many(const bitset_container_t *container,
+                                    uint64_t start_rank, const uint32_t *begin,
+                                    const uint32_t *end, uint64_t *ans);
+
+/* Returns the index of x , if not exsist return -1 */
+int bitset_container_get_index(const bitset_container_t *container, uint16_t 
x);
+
+/* Returns the index of the first value equal or larger than x, or -1 */
+int bitset_container_index_equalorlarger(const bitset_container_t *container,
+                                         uint16_t x);
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_BITSET_H_ */
+/* end file include/roaring/containers/bitset.h */
+/* begin file include/roaring/containers/run.h */
+/*
+ * run.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_RUN_H_
+#define INCLUDE_CONTAINERS_RUN_H_
+
+
+// Include other headers after roaring_types.h
+#include <assert.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <string.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+
+// Note: in pure C++ code, you should avoid putting `using` in header files
+using api::roaring_iterator;
+using api::roaring_iterator64;
+
+namespace internal {
+#endif
+
+/* struct rle16_s - run length pair
+ *
+ * @value:  start position of the run
+ * @length: length of the run is `length + 1`
+ *
+ * An RLE pair {v, l} would represent the integers between the interval
+ * [v, v+l+1], e.g. {3, 2} = [3, 4, 5].
+ */
+struct rle16_s {
+    uint16_t value;
+    uint16_t length;
+};
+
+typedef struct rle16_s rle16_t;
+
+#ifdef __cplusplus
+#define CROARING_MAKE_RLE16(val, len) \
+    { (uint16_t)(val), (uint16_t)(len) }  // no tagged structs until c++20
+#else
+#define CROARING_MAKE_RLE16(val, len) \
+    (rle16_t) { .value = (uint16_t)(val), .length = (uint16_t)(len) }
+#endif
+
+/* struct run_container_s - run container bitmap
+ *
+ * @n_runs:   number of rle_t pairs in `runs`.
+ * @capacity: capacity in rle_t pairs `runs` can hold.
+ * @runs:     pairs of rle_t.
+ */
+STRUCT_CONTAINER(run_container_s) {
+    int32_t n_runs;
+    int32_t capacity;
+    rle16_t *runs;
+};
+
+typedef struct run_container_s run_container_t;
+
+#define CAST_run(c) CAST(run_container_t *, c)  // safer downcast
+#define const_CAST_run(c) CAST(const run_container_t *, c)
+#define movable_CAST_run(c) movable_CAST(run_container_t **, c)
+
+/* Create a new run container. Return NULL in case of failure. */
+run_container_t *run_container_create(void);
+
+/* Create a new run container with given capacity. Return NULL in case of
+ * failure. */
+run_container_t *run_container_create_given_capacity(int32_t size);
+
+/*
+ * Shrink the capacity to the actual size, return the number of bytes saved.
+ */
+int run_container_shrink_to_fit(run_container_t *src);
+
+/* Free memory owned by `run'. */
+void run_container_free(run_container_t *run);
+
+/* Duplicate container */
+run_container_t *run_container_clone(const run_container_t *src);
+
+/*
+ * Effectively deletes the value at index index, repacking data.
+ */
+static inline void recoverRoomAtIndex(run_container_t *run, uint16_t index) {
+    memmove(run->runs + index, run->runs + (1 + index),
+            (run->n_runs - index - 1) * sizeof(rle16_t));
+    run->n_runs--;
+}
+
+/**
+ * Good old binary search through rle data
+ */
+inline int32_t interleavedBinarySearch(const rle16_t *array, int32_t lenarray,
+                                       uint16_t ikey) {
+    int32_t low = 0;
+    int32_t high = lenarray - 1;
+    while (low <= high) {
+        int32_t middleIndex = (low + high) >> 1;
+        uint16_t middleValue = array[middleIndex].value;
+        if (middleValue < ikey) {
+            low = middleIndex + 1;
+        } else if (middleValue > ikey) {
+            high = middleIndex - 1;
+        } else {
+            return middleIndex;
+        }
+    }
+    return -(low + 1);
+}
+
+/*
+ * Returns index of the run which contains $ikey
+ */
+static inline int32_t rle16_find_run(const rle16_t *array, int32_t lenarray,
+                                     uint16_t ikey) {
+    int32_t low = 0;
+    int32_t high = lenarray - 1;
+    while (low <= high) {
+        int32_t middleIndex = (low + high) >> 1;
+        uint16_t min = array[middleIndex].value;
+        uint16_t max = array[middleIndex].value + array[middleIndex].length;
+        if (ikey > max) {
+            low = middleIndex + 1;
+        } else if (ikey < min) {
+            high = middleIndex - 1;
+        } else {
+            return middleIndex;
+        }
+    }
+    return -(low + 1);
+}
+
+/**
+ * Returns number of runs which can'be be merged with the key because they
+ * are less than the key.
+ * Note that [5,6,7,8] can be merged with the key 9 and won't be counted.
+ */
+static inline int32_t rle16_count_less(const rle16_t *array, int32_t lenarray,
+                                       uint16_t key) {
+    if (lenarray == 0) return 0;
+    int32_t low = 0;
+    int32_t high = lenarray - 1;
+    while (low <= high) {
+        int32_t middleIndex = (low + high) >> 1;
+        uint16_t min_value = array[middleIndex].value;
+        uint16_t max_value =
+            array[middleIndex].value + array[middleIndex].length;
+        if (max_value + UINT32_C(1) < key) {  // uint32 arithmetic
+            low = middleIndex + 1;
+        } else if (key < min_value) {
+            high = middleIndex - 1;
+        } else {
+            return middleIndex;
+        }
+    }
+    return low;
+}
+
+static inline int32_t rle16_count_greater(const rle16_t *array,
+                                          int32_t lenarray, uint16_t key) {
+    if (lenarray == 0) return 0;
+    int32_t low = 0;
+    int32_t high = lenarray - 1;
+    while (low <= high) {
+        int32_t middleIndex = (low + high) >> 1;
+        uint16_t min_value = array[middleIndex].value;
+        uint16_t max_value =
+            array[middleIndex].value + array[middleIndex].length;
+        if (max_value < key) {
+            low = middleIndex + 1;
+        } else if (key + UINT32_C(1) < min_value) {  // uint32 arithmetic
+            high = middleIndex - 1;
+        } else {
+            return lenarray - (middleIndex + 1);
+        }
+    }
+    return lenarray - low;
+}
+
+/**
+ * increase capacity to at least min. Whether the
+ * existing data needs to be copied over depends on copy. If "copy" is false,
+ * then the new content will be uninitialized, otherwise a copy is made.
+ */
+void run_container_grow(run_container_t *run, int32_t min, bool copy);
+
+/**
+ * Moves the data so that we can write data at index
+ */
+static inline void makeRoomAtIndex(run_container_t *run, uint16_t index) {
+    /* This function calls realloc + memmove sequentially to move by one index.
+     * Potentially copying twice the array.
+     */
+    if (run->n_runs + 1 > run->capacity)
+        run_container_grow(run, run->n_runs + 1, true);
+    memmove(run->runs + 1 + index, run->runs + index,
+            (run->n_runs - index) * sizeof(rle16_t));
+    run->n_runs++;
+}
+
+/* Add `pos' to `run'. Returns true if `pos' was not present. */
+bool run_container_add(run_container_t *run, uint16_t pos);
+
+/* Remove `pos' from `run'. Returns true if `pos' was present. */
+static inline bool run_container_remove(run_container_t *run, uint16_t pos) {
+    int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
+    if (index >= 0) {
+        int32_t le = run->runs[index].length;
+        if (le == 0) {
+            recoverRoomAtIndex(run, (uint16_t)index);
+        } else {
+            run->runs[index].value++;
+            run->runs[index].length--;
+        }
+        return true;
+    }
+    index = -index - 2;  // points to preceding value, possibly -1
+    if (index >= 0) {    // possible match
+        int32_t offset = pos - run->runs[index].value;
+        int32_t le = run->runs[index].length;
+        if (offset < le) {
+            // need to break in two
+            run->runs[index].length = (uint16_t)(offset - 1);
+            // need to insert
+            uint16_t newvalue = pos + 1;
+            int32_t newlength = le - offset - 1;
+            makeRoomAtIndex(run, (uint16_t)(index + 1));
+            run->runs[index + 1].value = newvalue;
+            run->runs[index + 1].length = (uint16_t)newlength;
+            return true;
+
+        } else if (offset == le) {
+            run->runs[index].length--;
+            return true;
+        }
+    }
+    // no match
+    return false;
+}
+
+/* Check whether `pos' is present in `run'.  */
+inline bool run_container_contains(const run_container_t *run, uint16_t pos) {
+    int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
+    if (index >= 0) return true;
+    index = -index - 2;  // points to preceding value, possibly -1
+    if (index != -1) {   // possible match
+        int32_t offset = pos - run->runs[index].value;
+        int32_t le = run->runs[index].length;
+        if (offset <= le) return true;
+    }
+    return false;
+}
+
+/*
+ * Check whether all positions in a range of positions from pos_start 
(included)
+ * to pos_end (excluded) is present in `run'.
+ */
+static inline bool run_container_contains_range(const run_container_t *run,
+                                                uint32_t pos_start,
+                                                uint32_t pos_end) {
+    uint32_t count = 0;
+    int32_t index =
+        interleavedBinarySearch(run->runs, run->n_runs, (uint16_t)pos_start);
+    if (index < 0) {
+        index = -index - 2;
+        if ((index == -1) ||
+            ((pos_start - run->runs[index].value) > run->runs[index].length)) {
+            return false;
+        }
+    }
+    for (int32_t i = index; i < run->n_runs; ++i) {
+        const uint32_t stop = run->runs[i].value + run->runs[i].length;
+        if (run->runs[i].value >= pos_end) break;
+        if (stop >= pos_end) {
+            count += (((pos_end - run->runs[i].value) > 0)
+                          ? (pos_end - run->runs[i].value)
+                          : 0);
+            break;
+        }
+        const uint32_t min = (stop - pos_start) > 0 ? (stop - pos_start) : 0;
+        count += (min < run->runs[i].length) ? min : run->runs[i].length;
+    }
+    return count >= (pos_end - pos_start - 1);
+}
+
+/* Get the cardinality of `run'. Requires an actual computation. */
+int run_container_cardinality(const run_container_t *run);
+
+/* Card > 0?, see run_container_empty for the reverse */
+static inline bool run_container_nonzero_cardinality(
+    const run_container_t *run) {
+    return run->n_runs > 0;  // runs never empty
+}
+
+/* Card == 0?, see run_container_nonzero_cardinality for the reverse */
+static inline bool run_container_empty(const run_container_t *run) {
+    return run->n_runs == 0;  // runs never empty
+}
+
+/* Copy one container into another. We assume that they are distinct. */
+void run_container_copy(const run_container_t *src, run_container_t *dst);
+
+/**
+ * Append run described by vl to the run container, possibly merging.
+ * It is assumed that the run would be inserted at the end of the container, no
+ * check is made.
+ * It is assumed that the run container has the necessary capacity: caller is
+ * responsible for checking memory capacity.
+ *
+ *
+ * This is not a safe function, it is meant for performance: use with care.
+ */
+static inline void run_container_append(run_container_t *run, rle16_t vl,
+                                        rle16_t *previousrl) {
+    const uint32_t previousend = previousrl->value + previousrl->length;
+    if (vl.value > previousend + 1) {  // we add a new one
+        run->runs[run->n_runs] = vl;
+        run->n_runs++;
+        *previousrl = vl;
+    } else {
+        uint32_t newend = vl.value + vl.length + UINT32_C(1);
+        if (newend > previousend) {  // we merge
+            previousrl->length = (uint16_t)(newend - 1 - previousrl->value);
+            run->runs[run->n_runs - 1] = *previousrl;
+        }
+    }
+}
+
+/**
+ * Like run_container_append but it is assumed that the content of run is 
empty.
+ */
+static inline rle16_t run_container_append_first(run_container_t *run,
+                                                 rle16_t vl) {
+    run->runs[run->n_runs] = vl;
+    run->n_runs++;
+    return vl;
+}
+
+/**
+ * append a single value  given by val to the run container, possibly merging.
+ * It is assumed that the value would be inserted at the end of the container,
+ * no check is made.
+ * It is assumed that the run container has the necessary capacity: caller is
+ * responsible for checking memory capacity.
+ *
+ * This is not a safe function, it is meant for performance: use with care.
+ */
+static inline void run_container_append_value(run_container_t *run,
+                                              uint16_t val,
+                                              rle16_t *previousrl) {
+    const uint32_t previousend = previousrl->value + previousrl->length;
+    if (val > previousend + 1) {  // we add a new one
+        *previousrl = CROARING_MAKE_RLE16(val, 0);
+        run->runs[run->n_runs] = *previousrl;
+        run->n_runs++;
+    } else if (val == previousend + 1) {  // we merge
+        previousrl->length++;
+        run->runs[run->n_runs - 1] = *previousrl;
+    }
+}
+
+/**
+ * Like run_container_append_value but it is assumed that the content of run is
+ * empty.
+ */
+static inline rle16_t run_container_append_value_first(run_container_t *run,
+                                                       uint16_t val) {
+    rle16_t newrle = CROARING_MAKE_RLE16(val, 0);
+    run->runs[run->n_runs] = newrle;
+    run->n_runs++;
+    return newrle;
+}
+
+/* Check whether the container spans the whole chunk (cardinality = 1<<16).
+ * This check can be done in constant time (inexpensive). */
+static inline bool run_container_is_full(const run_container_t *run) {
+    rle16_t vl = run->runs[0];
+    return (run->n_runs == 1) && (vl.value == 0) && (vl.length == 0xFFFF);
+}
+
+/* Compute the union of `src_1' and `src_2' and write the result to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void run_container_union(const run_container_t *src_1,
+                         const run_container_t *src_2, run_container_t *dst);
+
+/* Compute the union of `src_1' and `src_2' and write the result to `src_1' */
+void run_container_union_inplace(run_container_t *src_1,
+                                 const run_container_t *src_2);
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+void run_container_intersection(const run_container_t *src_1,
+                                const run_container_t *src_2,
+                                run_container_t *dst);
+
+/* Compute the size of the intersection of src_1 and src_2 . */
+int run_container_intersection_cardinality(const run_container_t *src_1,
+                                           const run_container_t *src_2);
+
+/* Check whether src_1 and src_2 intersect. */
+bool run_container_intersect(const run_container_t *src_1,
+                             const run_container_t *src_2);
+
+/* Compute the symmetric difference of `src_1' and `src_2' and write the result
+ * to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void run_container_xor(const run_container_t *src_1,
+                       const run_container_t *src_2, run_container_t *dst);
+
+/*
+ * Write out the 16-bit integers contained in this container as a list of 
32-bit
+ * integers using base
+ * as the starting value (it might be expected that base has zeros in its 16
+ * least significant bits).
+ * The function returns the number of values written.
+ * The caller is responsible for allocating enough memory in out.
+ */
+int run_container_to_uint32_array(void *vout, const run_container_t *cont,
+                                  uint32_t base);
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void run_container_printf(const run_container_t *v);
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit
+ * integers starting at base.
+ */
+void run_container_printf_as_uint32_array(const run_container_t *v,
+                                          uint32_t base);
+
+bool run_container_validate(const run_container_t *run, const char **reason);
+
+/**
+ * Return the serialized size in bytes of a container having "num_runs" runs.
+ */
+static inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs) 
{
+    return sizeof(uint16_t) +
+           sizeof(rle16_t) * num_runs;  // each run requires 2 2-byte entries.
+}
+
+bool run_container_iterate(const run_container_t *cont, uint32_t base,
+                           roaring_iterator iterator, void *ptr);
+bool run_container_iterate64(const run_container_t *cont, uint32_t base,
+                             roaring_iterator64 iterator, uint64_t high_bits,
+                             void *ptr);
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes written should be 
run_container_size_in_bytes(container).
+ */
+int32_t run_container_write(const run_container_t *container, char *buf);
+
+/**
+ * Reads the instance from buf, outputs how many bytes were read.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes read should be 
bitset_container_size_in_bytes(container).
+ * The cardinality parameter is provided for consistency with other containers,
+ * but
+ * it might be effectively ignored..
+ */
+int32_t run_container_read(int32_t cardinality, run_container_t *container,
+                           const char *buf);
+
+/**
+ * Return the serialized size in bytes of a container (see 
run_container_write).
+ * This is meant to be compatible with the Java and Go versions of Roaring.
+ */
+ALLOW_UNALIGNED
+static inline int32_t run_container_size_in_bytes(
+    const run_container_t *container) {
+    return run_container_serialized_size_in_bytes(container->n_runs);
+}
+
+/**
+ * Return true if the two containers have the same content.
+ */
+ALLOW_UNALIGNED
+static inline bool run_container_equals(const run_container_t *container1,
+                                        const run_container_t *container2) {
+    if (container1->n_runs != container2->n_runs) {
+        return false;
+    }
+    return memequals(container1->runs, container2->runs,
+                     container1->n_runs * sizeof(rle16_t));
+}
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool run_container_is_subset(const run_container_t *container1,
+                             const run_container_t *container2);
+
+/**
+ * Used in a start-finish scan that appends segments, for XOR and NOT
+ */
+
+void run_container_smart_append_exclusive(run_container_t *src,
+                                          const uint16_t start,
+                                          const uint16_t length);
+
+/**
+ * The new container consists of a single run [start,stop).
+ * It is required that stop>start, the caller is responsability for this check.
+ * It is required that stop <= (1<<16), the caller is responsability for this
+ * check. The cardinality of the created container is stop - start. Returns 
NULL
+ * on failure
+ */
+static inline run_container_t *run_container_create_range(uint32_t start,
+                                                          uint32_t stop) {
+    run_container_t *rc = run_container_create_given_capacity(1);
+    if (rc) {
+        rle16_t r;
+        r.value = (uint16_t)start;
+        r.length = (uint16_t)(stop - start - 1);
+        run_container_append_first(rc, r);
+    }
+    return rc;
+}
+
+/**
+ * If the element of given rank is in this container, supposing that the first
+ * element has rank start_rank, then the function returns true and sets element
+ * accordingly.
+ * Otherwise, it returns false and update start_rank.
+ */
+bool run_container_select(const run_container_t *container,
+                          uint32_t *start_rank, uint32_t rank,
+                          uint32_t *element);
+
+/* Compute the difference of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+
+void run_container_andnot(const run_container_t *src_1,
+                          const run_container_t *src_2, run_container_t *dst);
+
+void run_container_offset(const run_container_t *c, container_t **loc,
+                          container_t **hic, uint16_t offset);
+
+/* Returns the smallest value (assumes not empty) */
+inline uint16_t run_container_minimum(const run_container_t *run) {
+    if (run->n_runs == 0) return 0;
+    return run->runs[0].value;
+}
+
+/* Returns the largest value (assumes not empty) */
+inline uint16_t run_container_maximum(const run_container_t *run) {
+    if (run->n_runs == 0) return 0;
+    return run->runs[run->n_runs - 1].value + run->runs[run->n_runs - 
1].length;
+}
+
+/* Returns the number of values equal or smaller than x */
+int run_container_rank(const run_container_t *arr, uint16_t x);
+
+/* bulk version of run_container_rank(); return number of consumed elements */
+uint32_t run_container_rank_many(const run_container_t *arr,
+                                 uint64_t start_rank, const uint32_t *begin,
+                                 const uint32_t *end, uint64_t *ans);
+
+/* Returns the index of x, if not exsist return -1 */
+int run_container_get_index(const run_container_t *arr, uint16_t x);
+
+/* Returns the index of the first run containing a value at least as large as 
x,
+ * or -1 */
+inline int run_container_index_equalorlarger(const run_container_t *arr,
+                                             uint16_t x) {
+    int32_t index = interleavedBinarySearch(arr->runs, arr->n_runs, x);
+    if (index >= 0) return index;
+    index = -index - 2;  // points to preceding run, possibly -1
+    if (index != -1) {   // possible match
+        int32_t offset = x - arr->runs[index].value;
+        int32_t le = arr->runs[index].length;
+        if (offset <= le) return index;
+    }
+    index += 1;
+    if (index < arr->n_runs) {
+        return index;
+    }
+    return -1;
+}
+
+/*
+ * Add all values in range [min, max] using hint.
+ */
+static inline void run_container_add_range_nruns(run_container_t *run,
+                                                 uint32_t min, uint32_t max,
+                                                 int32_t nruns_less,
+                                                 int32_t nruns_greater) {
+    int32_t nruns_common = run->n_runs - nruns_less - nruns_greater;
+    if (nruns_common == 0) {
+        makeRoomAtIndex(run, (uint16_t)nruns_less);
+        run->runs[nruns_less].value = (uint16_t)min;
+        run->runs[nruns_less].length = (uint16_t)(max - min);
+    } else {
+        uint32_t common_min = run->runs[nruns_less].value;
+        uint32_t common_max = run->runs[nruns_less + nruns_common - 1].value +
+                              run->runs[nruns_less + nruns_common - 1].length;
+        uint32_t result_min = (common_min < min) ? common_min : min;
+        uint32_t result_max = (common_max > max) ? common_max : max;
+
+        run->runs[nruns_less].value = (uint16_t)result_min;
+        run->runs[nruns_less].length = (uint16_t)(result_max - result_min);
+
+        memmove(&(run->runs[nruns_less + 1]),
+                &(run->runs[run->n_runs - nruns_greater]),
+                nruns_greater * sizeof(rle16_t));
+        run->n_runs = nruns_less + 1 + nruns_greater;
+    }
+}
+
+/**
+ * Add all values in range [min, max]. This function is currently unused
+ * and left as documentation.
+ */
+/*static inline void run_container_add_range(run_container_t* run,
+                                           uint32_t min, uint32_t max) {
+    int32_t nruns_greater = rle16_count_greater(run->runs, run->n_runs, max);
+    int32_t nruns_less = rle16_count_less(run->runs, run->n_runs -
+nruns_greater, min); run_container_add_range_nruns(run, min, max, nruns_less,
+nruns_greater);
+}*/
+
+/**
+ * Shifts last $count elements either left (distance < 0) or right (distance >
+ * 0)
+ */
+static inline void run_container_shift_tail(run_container_t *run, int32_t 
count,
+                                            int32_t distance) {
+    if (distance > 0) {
+        if (run->capacity < count + distance) {
+            run_container_grow(run, count + distance, true);
+        }
+    }
+    int32_t srcpos = run->n_runs - count;
+    int32_t dstpos = srcpos + distance;
+    memmove(&(run->runs[dstpos]), &(run->runs[srcpos]),
+            sizeof(rle16_t) * count);
+    run->n_runs += distance;
+}
+
+/**
+ * Remove all elements in range [min, max]
+ */
+static inline void run_container_remove_range(run_container_t *run,
+                                              uint32_t min, uint32_t max) {
+    int32_t first = rle16_find_run(run->runs, run->n_runs, (uint16_t)min);
+    int32_t last = rle16_find_run(run->runs, run->n_runs, (uint16_t)max);
+
+    if (first >= 0 && min > run->runs[first].value &&
+        max < ((uint32_t)run->runs[first].value +
+               (uint32_t)run->runs[first].length)) {
+        // split this run into two adjacent runs
+
+        // right subinterval
+        makeRoomAtIndex(run, (uint16_t)(first + 1));
+        run->runs[first + 1].value = (uint16_t)(max + 1);
+        run->runs[first + 1].length =
+            (uint16_t)((run->runs[first].value + run->runs[first].length) -
+                       (max + 1));
+
+        // left subinterval
+        run->runs[first].length =
+            (uint16_t)((min - 1) - run->runs[first].value);
+
+        return;
+    }
+
+    // update left-most partial run
+    if (first >= 0) {
+        if (min > run->runs[first].value) {
+            run->runs[first].length =
+                (uint16_t)((min - 1) - run->runs[first].value);
+            first++;
+        }
+    } else {
+        first = -first - 1;
+    }
+
+    // update right-most run
+    if (last >= 0) {
+        uint16_t run_max = run->runs[last].value + run->runs[last].length;
+        if (run_max > max) {
+            run->runs[last].value = (uint16_t)(max + 1);
+            run->runs[last].length = (uint16_t)(run_max - (max + 1));
+            last--;
+        }
+    } else {
+        last = (-last - 1) - 1;
+    }
+
+    // remove intermediate runs
+    if (first <= last) {
+        run_container_shift_tail(run, run->n_runs - (last + 1),
+                                 -(last - first + 1));
+    }
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_RUN_H_ */
+/* end file include/roaring/containers/run.h */
+/* begin file include/roaring/containers/convert.h */
+/*
+ * convert.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_CONVERT_H_
+#define INCLUDE_CONTAINERS_CONVERT_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Convert an array into a bitset. The input container is not freed or 
modified.
+ */
+bitset_container_t *bitset_container_from_array(const array_container_t *arr);
+
+/* Convert a run into a bitset. The input container is not freed or modified. 
*/
+bitset_container_t *bitset_container_from_run(const run_container_t *arr);
+
+/* Convert a run into an array. The input container is not freed or modified. 
*/
+array_container_t *array_container_from_run(const run_container_t *arr);
+
+/* Convert a bitset into an array. The input container is not freed or 
modified.
+ */
+array_container_t *array_container_from_bitset(const bitset_container_t *bits);
+
+/* Convert an array into a run. The input container is not freed or modified.
+ */
+run_container_t *run_container_from_array(const array_container_t *c);
+
+/* convert a run into either an array or a bitset
+ * might free the container. This does not free the input run container. */
+container_t *convert_to_bitset_or_array_container(run_container_t *rc,
+                                                  int32_t card,
+                                                  uint8_t *resulttype);
+
+/* convert containers to and from runcontainers, as is most space efficient.
+ * The container might be freed. */
+container_t *convert_run_optimize(container_t *c, uint8_t typecode_original,
+                                  uint8_t *typecode_after);
+
+/* converts a run container to either an array or a bitset, IF it saves space.
+ */
+/* If a conversion occurs, the caller is responsible to free the original
+ * container and
+ * he becomes reponsible to free the new one. */
+container_t *convert_run_to_efficient_container(run_container_t *c,
+                                                uint8_t *typecode_after);
+
+// like convert_run_to_efficient_container but frees the old result if needed
+container_t *convert_run_to_efficient_container_and_free(
+    run_container_t *c, uint8_t *typecode_after);
+
+/**
+ * Create new container which is a union of run container and
+ * range [min, max]. Caller is responsible for freeing run container.
+ */
+container_t *container_from_run_range(const run_container_t *run, uint32_t min,
+                                      uint32_t max, uint8_t *typecode_after);
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_CONVERT_H_ */
+/* end file include/roaring/containers/convert.h */
+/* begin file include/roaring/containers/mixed_equal.h */
+/*
+ * mixed_equal.h
+ *
+ */
+
+#ifndef CONTAINERS_MIXED_EQUAL_H_
+#define CONTAINERS_MIXED_EQUAL_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/**
+ * Return true if the two containers have the same content.
+ */
+bool array_container_equal_bitset(const array_container_t* container1,
+                                  const bitset_container_t* container2);
+
+/**
+ * Return true if the two containers have the same content.
+ */
+bool run_container_equals_array(const run_container_t* container1,
+                                const array_container_t* container2);
+/**
+ * Return true if the two containers have the same content.
+ */
+bool run_container_equals_bitset(const run_container_t* container1,
+                                 const bitset_container_t* container2);
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* CONTAINERS_MIXED_EQUAL_H_ */
+/* end file include/roaring/containers/mixed_equal.h */
+/* begin file include/roaring/containers/mixed_subset.h */
+/*
+ * mixed_subset.h
+ *
+ */
+
+#ifndef CONTAINERS_MIXED_SUBSET_H_
+#define CONTAINERS_MIXED_SUBSET_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool array_container_is_subset_bitset(const array_container_t* container1,
+                                      const bitset_container_t* container2);
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool run_container_is_subset_array(const run_container_t* container1,
+                                   const array_container_t* container2);
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool array_container_is_subset_run(const array_container_t* container1,
+                                   const run_container_t* container2);
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool run_container_is_subset_bitset(const run_container_t* container1,
+                                    const bitset_container_t* container2);
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool bitset_container_is_subset_run(const bitset_container_t* container1,
+                                    const run_container_t* container2);
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* CONTAINERS_MIXED_SUBSET_H_ */
+/* end file include/roaring/containers/mixed_subset.h */
+/* begin file include/roaring/containers/mixed_andnot.h */
+/*
+ * mixed_andnot.h
+ */
+#ifndef INCLUDE_CONTAINERS_MIXED_ANDNOT_H_
+#define INCLUDE_CONTAINERS_MIXED_ANDNOT_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst, a valid array container that could be the same as dst.*/
+void array_bitset_container_andnot(const array_container_t *src_1,
+                                   const bitset_container_t *src_2,
+                                   array_container_t *dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * src_1 */
+
+void array_bitset_container_iandnot(array_container_t *src_1,
+                                    const bitset_container_t *src_2);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst, which does not initially have a valid container.
+ * Return true for a bitset result; false for array
+ */
+
+bool bitset_array_container_andnot(const bitset_container_t *src_1,
+                                   const array_container_t *src_2,
+                                   container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_array_container_iandnot(bitset_container_t *src_1,
+                                    const array_container_t *src_2,
+                                    container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_andnot(const run_container_t *src_1,
+                                 const bitset_container_t *src_2,
+                                 container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_iandnot(run_container_t *src_1,
+                                  const bitset_container_t *src_2,
+                                  container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset").  dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool bitset_run_container_andnot(const bitset_container_t *src_1,
+                                 const run_container_t *src_2,
+                                 container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_run_container_iandnot(bitset_container_t *src_1,
+                                  const run_container_t *src_2,
+                                  container_t **dst);
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any type of container.
+ */
+
+int run_array_container_andnot(const run_container_t *src_1,
+                               const array_container_t *src_2,
+                               container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+int run_array_container_iandnot(run_container_t *src_1,
+                                const array_container_t *src_2,
+                                container_t **dst);
+
+/* dst must be a valid array container, allowed to be src_1 */
+
+void array_run_container_andnot(const array_container_t *src_1,
+                                const run_container_t *src_2,
+                                array_container_t *dst);
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+void array_run_container_iandnot(array_container_t *src_1,
+                                 const run_container_t *src_2);
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int run_run_container_andnot(const run_container_t *src_1,
+                             const run_container_t *src_2, container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+int run_run_container_iandnot(run_container_t *src_1,
+                              const run_container_t *src_2, container_t **dst);
+
+/*
+ * dst is a valid array container and may be the same as src_1
+ */
+
+void array_array_container_andnot(const array_container_t *src_1,
+                                  const array_container_t *src_2,
+                                  array_container_t *dst);
+
+/* inplace array-array andnot will always be able to reuse the space of
+ * src_1 */
+void array_array_container_iandnot(array_container_t *src_1,
+                                   const array_container_t *src_2);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). Return value is
+ * "dst is a bitset"
+ */
+
+bool bitset_bitset_container_andnot(const bitset_container_t *src_1,
+                                    const bitset_container_t *src_2,
+                                    container_t **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_bitset_container_iandnot(bitset_container_t *src_1,
+                                     const bitset_container_t *src_2,
+                                     container_t **dst);
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif
+/* end file include/roaring/containers/mixed_andnot.h */
+/* begin file include/roaring/containers/mixed_intersection.h */
+/*
+ * mixed_intersection.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_
+#define INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_
+
+/* These functions appear to exclude cases where the
+ * inputs have the same type and the output is guaranteed
+ * to have the same type as the inputs.  Eg, array intersection
+ */
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be equal to src_1. We assume that dst is a
+ * valid container. */
+void array_bitset_container_intersection(const array_container_t *src_1,
+                                         const bitset_container_t *src_2,
+                                         array_container_t *dst);
+
+/* Compute the size of the intersection of src_1 and src_2. */
+int array_bitset_container_intersection_cardinality(
+    const array_container_t *src_1, const bitset_container_t *src_2);
+
+/* Checking whether src_1 and src_2 intersect. */
+bool array_bitset_container_intersect(const array_container_t *src_1,
+                                      const bitset_container_t *src_2);
+
+/*
+ * Compute the intersection between src_1 and src_2 and write the result
+ * to *dst. If the return function is true, the result is a bitset_container_t
+ * otherwise is a array_container_t. We assume that dst is not pre-allocated. 
In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_bitset_container_intersection(const bitset_container_t *src_1,
+                                          const bitset_container_t *src_2,
+                                          container_t **dst);
+
+/* Compute the intersection between src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be equal to src_1. We assume that dst is a
+ * valid container. */
+void array_run_container_intersection(const array_container_t *src_1,
+                                      const run_container_t *src_2,
+                                      array_container_t *dst);
+
+/* Compute the intersection between src_1 and src_2 and write the result to
+ * *dst. If the result is true then the result is a bitset_container_t
+ * otherwise is a array_container_t.
+ * If *dst == src_2, then an in-place intersection is attempted
+ **/
+bool run_bitset_container_intersection(const run_container_t *src_1,
+                                       const bitset_container_t *src_2,
+                                       container_t **dst);
+
+/* Compute the size of the intersection between src_1 and src_2 . */
+int array_run_container_intersection_cardinality(const array_container_t 
*src_1,
+                                                 const run_container_t *src_2);
+
+/* Compute the size of the intersection  between src_1 and src_2
+ **/
+int run_bitset_container_intersection_cardinality(
+    const run_container_t *src_1, const bitset_container_t *src_2);
+
+/* Check that src_1 and src_2 intersect. */
+bool array_run_container_intersect(const array_container_t *src_1,
+                                   const run_container_t *src_2);
+
+/* Check that src_1 and src_2 intersect.
+ **/
+bool run_bitset_container_intersect(const run_container_t *src_1,
+                                    const bitset_container_t *src_2);
+
+/*
+ * Same as bitset_bitset_container_intersection except that if the output is to
+ * be a
+ * bitset_container_t, then src_1 is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_bitset_container_intersection_inplace(
+    bitset_container_t *src_1, const bitset_container_t *src_2,
+    container_t **dst);
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_ */
+/* end file include/roaring/containers/mixed_intersection.h */
+/* begin file include/roaring/containers/mixed_negation.h */
+/*
+ * mixed_negation.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_MIXED_NEGATION_H_
+#define INCLUDE_CONTAINERS_MIXED_NEGATION_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Negation across the entire range of the container.
+ * Compute the  negation of src  and write the result
+ * to *dst. The complement of a
+ * sufficiently sparse set will always be dense and a hence a bitmap
+ * We assume that dst is pre-allocated and a valid bitset container
+ * There can be no in-place version.
+ */
+void array_container_negation(const array_container_t *src,
+                              bitset_container_t *dst);
+
+/* Negation across the entire range of the container
+ * Compute the  negation of src  and write the result
+ * to *dst.  A true return value indicates a bitset result,
+ * otherwise the result is an array container.
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_container_negation(const bitset_container_t *src,
+                               container_t **dst);
+
+/* inplace version */
+/*
+ * Same as bitset_container_negation except that if the output is to
+ * be a
+ * bitset_container_t, then src is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_container_negation_inplace(bitset_container_t *src,
+                                       container_t **dst);
+
+/* Negation across the entire range of container
+ * Compute the  negation of src  and write the result
+ * to *dst.
+ * Return values are the *_TYPECODES as defined * in containers.h
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+int run_container_negation(const run_container_t *src, container_t **dst);
+
+/*
+ * Same as run_container_negation except that if the output is to
+ * be a
+ * run_container_t, and has the capacity to hold the result,
+ * then src is modified and no allocation is made.
+ * In all cases, the result is in *dst.
+ */
+int run_container_negation_inplace(run_container_t *src, container_t **dst);
+
+/* Negation across a range of the container.
+ * Compute the  negation of src  and write the result
+ * to *dst. Returns true if the result is a bitset container
+ * and false for an array container.  *dst is not preallocated.
+ */
+bool array_container_negation_range(const array_container_t *src,
+                                    const int range_start, const int range_end,
+                                    container_t **dst);
+
+/* Even when the result would fit, it is unclear how to make an
+ * inplace version without inefficient copying.  Thus this routine
+ * may be a wrapper for the non-in-place version
+ */
+bool array_container_negation_range_inplace(array_container_t *src,
+                                            const int range_start,
+                                            const int range_end,
+                                            container_t **dst);
+
+/* Negation across a range of the container
+ * Compute the  negation of src  and write the result
+ * to *dst.  A true return value indicates a bitset result,
+ * otherwise the result is an array container.
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_container_negation_range(const bitset_container_t *src,
+                                     const int range_start, const int 
range_end,
+                                     container_t **dst);
+
+/* inplace version */
+/*
+ * Same as bitset_container_negation except that if the output is to
+ * be a
+ * bitset_container_t, then src is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_container_negation_range_inplace(bitset_container_t *src,
+                                             const int range_start,
+                                             const int range_end,
+                                             container_t **dst);
+
+/* Negation across a range of container
+ * Compute the  negation of src  and write the result
+ * to *dst.  Return values are the *_TYPECODES as defined * in containers.h
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+int run_container_negation_range(const run_container_t *src,
+                                 const int range_start, const int range_end,
+                                 container_t **dst);
+
+/*
+ * Same as run_container_negation except that if the output is to
+ * be a
+ * run_container_t, and has the capacity to hold the result,
+ * then src is modified and no allocation is made.
+ * In all cases, the result is in *dst.
+ */
+int run_container_negation_range_inplace(run_container_t *src,
+                                         const int range_start,
+                                         const int range_end,
+                                         container_t **dst);
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_MIXED_NEGATION_H_ */
+/* end file include/roaring/containers/mixed_negation.h */
+/* begin file include/roaring/containers/mixed_union.h */
+/*
+ * mixed_intersection.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_MIXED_UNION_H_
+#define INCLUDE_CONTAINERS_MIXED_UNION_H_
+
+/* These functions appear to exclude cases where the
+ * inputs have the same type and the output is guaranteed
+ * to have the same type as the inputs.  Eg, bitset unions
+ */
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst.   */
+void array_bitset_container_union(const array_container_t *src_1,
+                                  const bitset_container_t *src_2,
+                                  bitset_container_t *dst);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst.  This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */
+void array_bitset_container_lazy_union(const array_container_t *src_1,
+                                       const bitset_container_t *src_2,
+                                       bitset_container_t *dst);
+
+/*
+ * Compute the union between src_1 and src_2 and write the result
+ * to *dst. If the return function is true, the result is a bitset_container_t
+ * otherwise is a array_container_t. We assume that dst is not pre-allocated. 
In
+ * case of failure, *dst will be NULL.
+ */
+bool array_array_container_union(const array_container_t *src_1,
+                                 const array_container_t *src_2,
+                                 container_t **dst);
+
+/*
+ * Compute the union between src_1 and src_2 and write the result
+ * to *dst if it cannot be written to src_1. If the return function is true,
+ * the result is a bitset_container_t
+ * otherwise is a array_container_t. When the result is an array_container_t, 
it
+ * it either written to src_1 (if *dst is null) or to *dst.
+ * If the result is a bitset_container_t and *dst is null, then there was a
+ * failure.
+ */
+bool array_array_container_inplace_union(array_container_t *src_1,
+                                         const array_container_t *src_2,
+                                         container_t **dst);
+
+/*
+ * Same as array_array_container_union except that it will more eagerly produce
+ * a bitset.
+ */
+bool array_array_container_lazy_union(const array_container_t *src_1,
+                                      const array_container_t *src_2,
+                                      container_t **dst);
+
+/*
+ * Same as array_array_container_inplace_union except that it will more eagerly
+ * produce a bitset.
+ */
+bool array_array_container_lazy_inplace_union(array_container_t *src_1,
+                                              const array_container_t *src_2,
+                                              container_t **dst);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. We assume that dst is a
+ * valid container. The result might need to be further converted to array or
+ * bitset container,
+ * the caller is responsible for the eventual conversion. */
+void array_run_container_union(const array_container_t *src_1,
+                               const run_container_t *src_2,
+                               run_container_t *dst);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * src2. The result might need to be further converted to array or
+ * bitset container,
+ * the caller is responsible for the eventual conversion. */
+void array_run_container_inplace_union(const array_container_t *src_1,
+                                       run_container_t *src_2);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be src_2.
+ * If run_container_is_full(src_1) is true, you must not be calling this
+ *function.
+ **/
+void run_bitset_container_union(const run_container_t *src_1,
+                                const bitset_container_t *src_2,
+                                bitset_container_t *dst);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be src_2.  This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY).
+ * If run_container_is_full(src_1) is true, you must not be calling this
+ * function.
+ * */
+void run_bitset_container_lazy_union(const run_container_t *src_1,
+                                     const bitset_container_t *src_2,
+                                     bitset_container_t *dst);
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif /* INCLUDE_CONTAINERS_MIXED_UNION_H_ */
+/* end file include/roaring/containers/mixed_union.h */
+/* begin file include/roaring/containers/mixed_xor.h */
+/*
+ * mixed_xor.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_MIXED_XOR_H_
+#define INCLUDE_CONTAINERS_MIXED_XOR_H_
+
+/* These functions appear to exclude cases where the
+ * inputs have the same type and the output is guaranteed
+ * to have the same type as the inputs.  Eg, bitset unions
+ */
+
+/*
+ * Java implementation (as of May 2016) for array_run, run_run
+ * and  bitset_run don't do anything different for inplace.
+ * (They are not truly in place.)
+ */
+
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially).
+ * Result is true iff dst is a bitset  */
+bool array_bitset_container_xor(const array_container_t *src_1,
+                                const bitset_container_t *src_2,
+                                container_t **dst);
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst.  This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY).
+ */
+
+void array_bitset_container_lazy_xor(const array_container_t *src_1,
+                                     const bitset_container_t *src_2,
+                                     bitset_container_t *dst);
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially). Return value is
+ * "dst is a bitset"
+ */
+
+bool bitset_bitset_container_xor(const bitset_container_t *src_1,
+                                 const bitset_container_t *src_2,
+                                 container_t **dst);
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_xor(const run_container_t *src_1,
+                              const bitset_container_t *src_2,
+                              container_t **dst);
+
+/* lazy xor.  Dst is initialized and may be equal to src_2.
+ *  Result is left as a bitset container, even if actual
+ *  cardinality would dictate an array container.
+ */
+
+void run_bitset_container_lazy_xor(const run_container_t *src_1,
+                                   const bitset_container_t *src_2,
+                                   bitset_container_t *dst);
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int array_run_container_xor(const array_container_t *src_1,
+                            const run_container_t *src_2, container_t **dst);
+
+/* dst does not initially have a valid container.  Creates either
+ * an array or a bitset container, indicated by return code
+ */
+
+bool array_array_container_xor(const array_container_t *src_1,
+                               const array_container_t *src_2,
+                               container_t **dst);
+
+/* dst does not initially have a valid container.  Creates either
+ * an array or a bitset container, indicated by return code.
+ * A bitset container will not have a valid cardinality and the
+ * container type might not be correct for the actual cardinality
+ */
+
+bool array_array_container_lazy_xor(const array_container_t *src_1,
+                                    const array_container_t *src_2,
+                                    container_t **dst);
+
+/* Dst is a valid run container. (Can it be src_2? Let's say not.)
+ * Leaves result as run container, even if other options are
+ * smaller.
+ */
+
+void array_run_container_lazy_xor(const array_container_t *src_1,
+                                  const run_container_t *src_2,
+                                  run_container_t *dst);
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int run_run_container_xor(const run_container_t *src_1,
+                          const run_container_t *src_2, container_t **dst);
+
+/* INPLACE versions (initial implementation may not exploit all inplace
+ * opportunities (if any...)
+ */
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_array_container_ixor(bitset_container_t *src_1,
+                                 const array_container_t *src_2,
+                                 container_t **dst);
+
+bool bitset_bitset_container_ixor(bitset_container_t *src_1,
+                                  const bitset_container_t *src_2,
+                                  container_t **dst);
+
+bool array_bitset_container_ixor(array_container_t *src_1,
+                                 const bitset_container_t *src_2,
+                                 container_t **dst);
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_ixor(run_container_t *src_1,
+                               const bitset_container_t *src_2,
+                               container_t **dst);
+
+bool bitset_run_container_ixor(bitset_container_t *src_1,
+                               const run_container_t *src_2, container_t 
**dst);
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int array_run_container_ixor(array_container_t *src_1,
+                             const run_container_t *src_2, container_t **dst);
+
+int run_array_container_ixor(run_container_t *src_1,
+                             const array_container_t *src_2, container_t 
**dst);
+
+bool array_array_container_ixor(array_container_t *src_1,
+                                const array_container_t *src_2,
+                                container_t **dst);
+
+int run_run_container_ixor(run_container_t *src_1, const run_container_t 
*src_2,
+                           container_t **dst);
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif
+/* end file include/roaring/containers/mixed_xor.h */
+/* begin file include/roaring/containers/containers.h */
+#ifndef CONTAINERS_CONTAINERS_H
+#define CONTAINERS_CONTAINERS_H
+
+#include <assert.h>
+#include <stdbool.h>
+#include <stdio.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+// would enum be possible or better?
+
+/**
+ * The switch case statements follow
+ * BITSET_CONTAINER_TYPE -- ARRAY_CONTAINER_TYPE -- RUN_CONTAINER_TYPE
+ * so it makes more sense to number them 1, 2, 3 (in the vague hope that the
+ * compiler might exploit this ordering).
+ */
+
+#define BITSET_CONTAINER_TYPE 1
+#define ARRAY_CONTAINER_TYPE 2
+#define RUN_CONTAINER_TYPE 3
+#define SHARED_CONTAINER_TYPE 4
+
+/**
+ * Macros for pairing container type codes, suitable for switch statements.
+ * Use PAIR_CONTAINER_TYPES() for the switch, CONTAINER_PAIR() for the cases:
+ *
+ *     switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+ *        case CONTAINER_PAIR(BITSET,ARRAY):
+ *        ...
+ *     }
+ */
+#define PAIR_CONTAINER_TYPES(type1, type2) (4 * (type1) + (type2))
+
+#define CONTAINER_PAIR(name1, name2) \
+    (4 * (name1##_CONTAINER_TYPE) + (name2##_CONTAINER_TYPE))
+
+/**
+ * A shared container is a wrapper around a container
+ * with reference counting.
+ */
+STRUCT_CONTAINER(shared_container_s) {
+    container_t *container;
+    uint8_t typecode;
+    croaring_refcount_t counter;  // to be managed atomically
+};
+
+typedef struct shared_container_s shared_container_t;
+
+#define CAST_shared(c) CAST(shared_container_t *, c)  // safer downcast
+#define const_CAST_shared(c) CAST(const shared_container_t *, c)
+#define movable_CAST_shared(c) movable_CAST(shared_container_t **, c)
+
+/*
+ * With copy_on_write = true
+ *  Create a new shared container if the typecode is not SHARED_CONTAINER_TYPE,
+ * otherwise, increase the count
+ * If copy_on_write = false, then clone.
+ * Return NULL in case of failure.
+ **/
+container_t *get_copy_of_container(container_t *container, uint8_t *typecode,
+                                   bool copy_on_write);
+
+/* Frees a shared container (actually decrement its counter and only frees when
+ * the counter falls to zero). */
+void shared_container_free(shared_container_t *container);
+
+/* extract a copy from the shared container, freeing the shared container if
+there is just one instance left,
+clone instances when the counter is higher than one
+*/
+container_t *shared_container_extract_copy(shared_container_t *container,
+                                           uint8_t *typecode);
+
+/* access to container underneath */
+static inline const container_t *container_unwrap_shared(
+    const container_t *candidate_shared_container, uint8_t *type) {
+    if (*type == SHARED_CONTAINER_TYPE) {
+        *type = const_CAST_shared(candidate_shared_container)->typecode;
+        assert(*type != SHARED_CONTAINER_TYPE);
+        return const_CAST_shared(candidate_shared_container)->container;
+    } else {
+        return candidate_shared_container;
+    }
+}
+
+/* access to container underneath */
+static inline container_t *container_mutable_unwrap_shared(container_t *c,
+                                                           uint8_t *type) {
+    if (*type == SHARED_CONTAINER_TYPE) {  // the passed in container is shared
+        *type = CAST_shared(c)->typecode;
+        assert(*type != SHARED_CONTAINER_TYPE);
+        return CAST_shared(c)->container;  // return the enclosed container
+    } else {
+        return c;  // wasn't shared, so return as-is
+    }
+}
+
+/* access to container underneath and queries its type */
+static inline uint8_t get_container_type(const container_t *c, uint8_t type) {
+    if (type == SHARED_CONTAINER_TYPE) {
+        return const_CAST_shared(c)->typecode;
+    } else {
+        return type;
+    }
+}
+
+/**
+ * Copies a container, requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation. If the container is not shared, then it is
+ * physically cloned. Sharable containers are not cloneable.
+ */
+container_t *container_clone(const container_t *container, uint8_t typecode);
+
+/* access to container underneath, cloning it if needed */
+static inline container_t *get_writable_copy_if_shared(container_t *c,
+                                                       uint8_t *type) {
+    if (*type == SHARED_CONTAINER_TYPE) {  // shared, return enclosed container
+        return shared_container_extract_copy(CAST_shared(c), type);
+    } else {
+        return c;  // not shared, so return as-is
+    }
+}
+
+/**
+ * End of shared container code
+ */
+
+static const char *container_names[] = {"bitset", "array", "run", "shared"};
+static const char *shared_container_names[] = {
+    "bitset (shared)", "array (shared)", "run (shared)"};
+
+// no matter what the initial container was, convert it to a bitset
+// if a new container is produced, caller responsible for freeing the previous
+// one
+// container should not be a shared container
+static inline bitset_container_t *container_to_bitset(container_t *c,
+                                                      uint8_t typecode) {
+    bitset_container_t *result = NULL;
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            return CAST_bitset(c);  // nothing to do
+        case ARRAY_CONTAINER_TYPE:
+            result = bitset_container_from_array(CAST_array(c));
+            return result;
+        case RUN_CONTAINER_TYPE:
+            result = bitset_container_from_run(CAST_run(c));
+            return result;
+        case SHARED_CONTAINER_TYPE:
+            assert(false);
+            roaring_unreachable;
+    }
+    assert(false);
+    roaring_unreachable;
+    return 0;  // unreached
+}
+
+/**
+ * Get the container name from the typecode
+ * (unused at time of writing)
+ */
+/*static inline const char *get_container_name(uint8_t typecode) {
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            return container_names[0];
+        case ARRAY_CONTAINER_TYPE:
+            return container_names[1];
+        case RUN_CONTAINER_TYPE:
+            return container_names[2];
+        case SHARED_CONTAINER_TYPE:
+            return container_names[3];
+        default:
+            assert(false);
+            roaring_unreachable;
+            return "unknown";
+    }
+}*/
+
+static inline const char *get_full_container_name(const container_t *c,
+                                                  uint8_t typecode) {
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            return container_names[0];
+        case ARRAY_CONTAINER_TYPE:
+            return container_names[1];
+        case RUN_CONTAINER_TYPE:
+            return container_names[2];
+        case SHARED_CONTAINER_TYPE:
+            switch (const_CAST_shared(c)->typecode) {
+                case BITSET_CONTAINER_TYPE:
+                    return shared_container_names[0];
+                case ARRAY_CONTAINER_TYPE:
+                    return shared_container_names[1];
+                case RUN_CONTAINER_TYPE:
+                    return shared_container_names[2];
+                default:
+                    assert(false);
+                    roaring_unreachable;
+                    return "unknown";
+            }
+            break;
+        default:
+            assert(false);
+            roaring_unreachable;
+            return "unknown";
+    }
+    roaring_unreachable;
+    return NULL;
+}
+
+/**
+ * Get the container cardinality (number of elements), requires a  typecode
+ */
+static inline int container_get_cardinality(const container_t *c,
+                                            uint8_t typecode) {
+    c = container_unwrap_shared(c, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_cardinality(const_CAST_bitset(c));
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_cardinality(const_CAST_array(c));
+        case RUN_CONTAINER_TYPE:
+            return run_container_cardinality(const_CAST_run(c));
+    }
+    assert(false);
+    roaring_unreachable;
+    return 0;  // unreached
+}
+
+// returns true if a container is known to be full. Note that a lazy bitset
+// container
+// might be full without us knowing
+static inline bool container_is_full(const container_t *c, uint8_t typecode) {
+    c = container_unwrap_shared(c, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_cardinality(const_CAST_bitset(c)) ==
+                   (1 << 16);
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_cardinality(const_CAST_array(c)) ==
+                   (1 << 16);
+        case RUN_CONTAINER_TYPE:
+            return run_container_is_full(const_CAST_run(c));
+    }
+    assert(false);
+    roaring_unreachable;
+    return 0;  // unreached
+}
+
+static inline int container_shrink_to_fit(container_t *c, uint8_t type) {
+    c = container_mutable_unwrap_shared(c, &type);
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            return 0;  // no shrinking possible
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_shrink_to_fit(CAST_array(c));
+        case RUN_CONTAINER_TYPE:
+            return run_container_shrink_to_fit(CAST_run(c));
+    }
+    assert(false);
+    roaring_unreachable;
+    return 0;  // unreached
+}
+
+/**
+ * make a container with a run of ones
+ */
+/* initially always use a run container, even if an array might be
+ * marginally
+ * smaller */
+static inline container_t *container_range_of_ones(uint32_t range_start,
+                                                   uint32_t range_end,
+                                                   uint8_t *result_type) {
+    assert(range_end >= range_start);
+    uint64_t cardinality = range_end - range_start + 1;
+    if (cardinality <= 2) {
+        *result_type = ARRAY_CONTAINER_TYPE;
+        return array_container_create_range(range_start, range_end);
+    } else {
+        *result_type = RUN_CONTAINER_TYPE;
+        return run_container_create_range(range_start, range_end);
+    }
+}
+
+/*  Create a container with all the values between in [min,max) at a
+    distance k*step from min. */
+static inline container_t *container_from_range(uint8_t *type, uint32_t min,
+                                                uint32_t max, uint16_t step) {
+    if (step == 0) return NULL;  // being paranoid
+    if (step == 1) {
+        return container_range_of_ones(min, max, type);
+        // Note: the result is not always a run (need to check the cardinality)
+        //*type = RUN_CONTAINER_TYPE;
+        // return run_container_create_range(min, max);
+    }
+    int size = (max - min + step - 1) / step;
+    if (size <= DEFAULT_MAX_SIZE) {  // array container
+        *type = ARRAY_CONTAINER_TYPE;
+        array_container_t *array = array_container_create_given_capacity(size);
+        array_container_add_from_range(array, min, max, step);
+        assert(array->cardinality == size);
+        return array;
+    } else {  // bitset container
+        *type = BITSET_CONTAINER_TYPE;
+        bitset_container_t *bitset = bitset_container_create();
+        bitset_container_add_from_range(bitset, min, max, step);
+        assert(bitset->cardinality == size);
+        return bitset;
+    }
+}
+
+/**
+ * "repair" the container after lazy operations.
+ */
+static inline container_t *container_repair_after_lazy(container_t *c,
+                                                       uint8_t *type) {
+    c = get_writable_copy_if_shared(c, type);  // !!! unnecessary cloning
+    container_t *result = NULL;
+    switch (*type) {
+        case BITSET_CONTAINER_TYPE: {
+            bitset_container_t *bc = CAST_bitset(c);
+            bc->cardinality = bitset_container_compute_cardinality(bc);
+            if (bc->cardinality <= DEFAULT_MAX_SIZE) {
+                result = array_container_from_bitset(bc);
+                bitset_container_free(bc);
+                *type = ARRAY_CONTAINER_TYPE;
+                return result;
+            }
+            return c;
+        }
+        case ARRAY_CONTAINER_TYPE:
+            return c;  // nothing to do
+        case RUN_CONTAINER_TYPE:
+            return convert_run_to_efficient_container_and_free(CAST_run(c),
+                                                               type);
+        case SHARED_CONTAINER_TYPE:
+            assert(false);
+    }
+    assert(false);
+    roaring_unreachable;
+    return 0;  // unreached
+}
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes written should be
+ * container_write(container, buf).
+ *
+ */
+static inline int32_t container_write(const container_t *c, uint8_t typecode,
+                                      char *buf) {
+    c = container_unwrap_shared(c, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_write(const_CAST_bitset(c), buf);
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_write(const_CAST_array(c), buf);
+        case RUN_CONTAINER_TYPE:
+            return run_container_write(const_CAST_run(c), buf);
+    }
+    assert(false);
+    roaring_unreachable;
+    return 0;  // unreached
+}
+
+/**
+ * Get the container size in bytes under portable serialization (see
+ * container_write), requires a
+ * typecode
+ */
+static inline int32_t container_size_in_bytes(const container_t *c,
+                                              uint8_t typecode) {
+    c = container_unwrap_shared(c, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_size_in_bytes(const_CAST_bitset(c));
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_size_in_bytes(const_CAST_array(c));
+        case RUN_CONTAINER_TYPE:
+            return run_container_size_in_bytes(const_CAST_run(c));
+    }
+    assert(false);
+    roaring_unreachable;
+    return 0;  // unreached
+}
+
+/**
+ * print the container (useful for debugging), requires a  typecode
+ */
+void container_printf(const container_t *container, uint8_t typecode);
+
+/**
+ * print the content of the container as a comma-separated list of 32-bit 
values
+ * starting at base, requires a  typecode
+ */
+void container_printf_as_uint32_array(const container_t *container,
+                                      uint8_t typecode, uint32_t base);
+
+bool container_internal_validate(const container_t *container, uint8_t 
typecode,
+                                 const char **reason);
+
+/**
+ * Checks whether a container is not empty, requires a  typecode
+ */
+static inline bool container_nonzero_cardinality(const container_t *c,
+                                                 uint8_t typecode) {
+    c = container_unwrap_shared(c, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_const_nonzero_cardinality(
+                const_CAST_bitset(c));
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_nonzero_cardinality(const_CAST_array(c));
+        case RUN_CONTAINER_TYPE:
+            return run_container_nonzero_cardinality(const_CAST_run(c));
+    }
+    assert(false);
+    roaring_unreachable;
+    return 0;  // unreached
+}
+
+/**
+ * Recover memory from a container, requires a  typecode
+ */
+void container_free(container_t *container, uint8_t typecode);
+
+/**
+ * Convert a container to an array of values, requires a  typecode as well as a
+ * "base" (most significant values)
+ * Returns number of ints added.
+ */
+static inline int container_to_uint32_array(uint32_t *output,
+                                            const container_t *c,
+                                            uint8_t typecode, uint32_t base) {
+    c = container_unwrap_shared(c, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_to_uint32_array(output,
+                                                    const_CAST_bitset(c), 
base);
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_to_uint32_array(output, const_CAST_array(c),
+                                                   base);
+        case RUN_CONTAINER_TYPE:
+            return run_container_to_uint32_array(output, const_CAST_run(c),
+                                                 base);
+    }
+    assert(false);
+    roaring_unreachable;
+    return 0;  // unreached
+}
+
+/**
+ * Add a value to a container, requires a  typecode, fills in new_typecode and
+ * return (possibly different) container.
+ * This function may allocate a new container, and caller is responsible for
+ * memory deallocation
+ */
+static inline container_t *container_add(
+    container_t *c, uint16_t val,
+    uint8_t typecode,  // !!! should be second argument?
+    uint8_t *new_typecode) {
+    c = get_writable_copy_if_shared(c, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            bitset_container_set(CAST_bitset(c), val);
+            *new_typecode = BITSET_CONTAINER_TYPE;
+            return c;
+        case ARRAY_CONTAINER_TYPE: {
+            array_container_t *ac = CAST_array(c);
+            if (array_container_try_add(ac, val, DEFAULT_MAX_SIZE) != -1) {
+                *new_typecode = ARRAY_CONTAINER_TYPE;
+                return ac;
+            } else {
+                bitset_container_t *bitset = bitset_container_from_array(ac);
+                bitset_container_add(bitset, val);
+                *new_typecode = BITSET_CONTAINER_TYPE;
+                return bitset;
+            }
+        } break;
+        case RUN_CONTAINER_TYPE:
+            // per Java, no container type adjustments are done (revisit?)
+            run_container_add(CAST_run(c), val);
+            *new_typecode = RUN_CONTAINER_TYPE;
+            return c;
+        default:
+            assert(false);
+            roaring_unreachable;
+            return NULL;
+    }
+}
+
+/**
+ * Remove a value from a container, requires a  typecode, fills in new_typecode
+ * and
+ * return (possibly different) container.
+ * This function may allocate a new container, and caller is responsible for
+ * memory deallocation
+ */
+static inline container_t *container_remove(
+    container_t *c, uint16_t val,
+    uint8_t typecode,  // !!! should be second argument?
+    uint8_t *new_typecode) {
+    c = get_writable_copy_if_shared(c, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            if (bitset_container_remove(CAST_bitset(c), val)) {
+                int card = bitset_container_cardinality(CAST_bitset(c));
+                if (card <= DEFAULT_MAX_SIZE) {
+                    *new_typecode = ARRAY_CONTAINER_TYPE;
+                    return array_container_from_bitset(CAST_bitset(c));
+                }
+            }
+            *new_typecode = typecode;
+            return c;
+        case ARRAY_CONTAINER_TYPE:
+            *new_typecode = typecode;
+            array_container_remove(CAST_array(c), val);
+            return c;
+        case RUN_CONTAINER_TYPE:
+            // per Java, no container type adjustments are done (revisit?)
+            run_container_remove(CAST_run(c), val);
+            *new_typecode = RUN_CONTAINER_TYPE;
+            return c;
+        default:
+            assert(false);
+            roaring_unreachable;
+            return NULL;
+    }
+}
+
+/**
+ * Check whether a value is in a container, requires a  typecode
+ */
+static inline bool container_contains(
+    const container_t *c, uint16_t val,
+    uint8_t typecode  // !!! should be second argument?
+) {
+    c = container_unwrap_shared(c, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_get(const_CAST_bitset(c), val);
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_contains(const_CAST_array(c), val);
+        case RUN_CONTAINER_TYPE:
+            return run_container_contains(const_CAST_run(c), val);
+        default:
+            assert(false);
+            roaring_unreachable;
+            return false;
+    }
+}
+
+/**
+ * Check whether a range of values from range_start (included) to range_end
+ * (excluded) is in a container, requires a typecode
+ */
+static inline bool container_contains_range(
+    const container_t *c, uint32_t range_start, uint32_t range_end,
+    uint8_t typecode  // !!! should be second argument?
+) {
+    c = container_unwrap_shared(c, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_get_range(const_CAST_bitset(c), 
range_start,
+                                              range_end);
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_contains_range(const_CAST_array(c),
+                                                  range_start, range_end);
+        case RUN_CONTAINER_TYPE:
+            return run_container_contains_range(const_CAST_run(c), range_start,
+                                                range_end);
+        default:
+            assert(false);
+            roaring_unreachable;
+            return false;
+    }
+}
+
+/**
+ * Returns true if the two containers have the same content. Note that
+ * two containers having different types can be "equal" in this sense.
+ */
+static inline bool container_equals(const container_t *c1, uint8_t type1,
+                                    const container_t *c2, uint8_t type2) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            return bitset_container_equals(const_CAST_bitset(c1),
+                                           const_CAST_bitset(c2));
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            return run_container_equals_bitset(const_CAST_run(c2),
+                                               const_CAST_bitset(c1));
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            return run_container_equals_bitset(const_CAST_run(c1),
+                                               const_CAST_bitset(c2));
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            // java would always return false?
+            return array_container_equal_bitset(const_CAST_array(c2),
+                                                const_CAST_bitset(c1));
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            // java would always return false?
+            return array_container_equal_bitset(const_CAST_array(c1),
+                                                const_CAST_bitset(c2));
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            return run_container_equals_array(const_CAST_run(c2),
+                                              const_CAST_array(c1));
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            return run_container_equals_array(const_CAST_run(c1),
+                                              const_CAST_array(c2));
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            return array_container_equals(const_CAST_array(c1),
+                                          const_CAST_array(c2));
+
+        case CONTAINER_PAIR(RUN, RUN):
+            return run_container_equals(const_CAST_run(c1), 
const_CAST_run(c2));
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return false;
+    }
+}
+
+/**
+ * Returns true if the container c1 is a subset of the container c2. Note that
+ * c1 can be a subset of c2 even if they have a different type.
+ */
+static inline bool container_is_subset(const container_t *c1, uint8_t type1,
+                                       const container_t *c2, uint8_t type2) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            return bitset_container_is_subset(const_CAST_bitset(c1),
+                                              const_CAST_bitset(c2));
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            return bitset_container_is_subset_run(const_CAST_bitset(c1),
+                                                  const_CAST_run(c2));
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            return run_container_is_subset_bitset(const_CAST_run(c1),
+                                                  const_CAST_bitset(c2));
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            return false;  // by construction, size(c1) > size(c2)
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            return array_container_is_subset_bitset(const_CAST_array(c1),
+                                                    const_CAST_bitset(c2));
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            return array_container_is_subset_run(const_CAST_array(c1),
+                                                 const_CAST_run(c2));
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            return run_container_is_subset_array(const_CAST_run(c1),
+                                                 const_CAST_array(c2));
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            return array_container_is_subset(const_CAST_array(c1),
+                                             const_CAST_array(c2));
+
+        case CONTAINER_PAIR(RUN, RUN):
+            return run_container_is_subset(const_CAST_run(c1),
+                                           const_CAST_run(c2));
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return false;
+    }
+}
+
+// macro-izations possibilities for generic non-inplace binary-op dispatch
+
+/**
+ * Compute intersection between two containers, generate a new container 
(having
+ * type result_type), requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ */
+static inline container_t *container_and(const container_t *c1, uint8_t type1,
+                                         const container_t *c2, uint8_t type2,
+                                         uint8_t *result_type) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    container_t *result = NULL;
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            *result_type =
+                bitset_bitset_container_intersection(
+                    const_CAST_bitset(c1), const_CAST_bitset(c2), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            result = array_container_create();
+            array_container_intersection(
+                const_CAST_array(c1), const_CAST_array(c2), 
CAST_array(result));
+            *result_type = ARRAY_CONTAINER_TYPE;  // never bitset
+            return result;
+
+        case CONTAINER_PAIR(RUN, RUN):
+            result = run_container_create();
+            run_container_intersection(const_CAST_run(c1), const_CAST_run(c2),
+                                       CAST_run(result));
+            return 
convert_run_to_efficient_container_and_free(CAST_run(result),
+                                                               result_type);
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            result = array_container_create();
+            array_bitset_container_intersection(const_CAST_array(c2),
+                                                const_CAST_bitset(c1),
+                                                CAST_array(result));
+            *result_type = ARRAY_CONTAINER_TYPE;  // never bitset
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            result = array_container_create();
+            *result_type = ARRAY_CONTAINER_TYPE;  // never bitset
+            array_bitset_container_intersection(const_CAST_array(c1),
+                                                const_CAST_bitset(c2),
+                                                CAST_array(result));
+            return result;
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            *result_type =
+                run_bitset_container_intersection(
+                    const_CAST_run(c2), const_CAST_bitset(c1), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            *result_type =
+                run_bitset_container_intersection(
+                    const_CAST_run(c1), const_CAST_bitset(c2), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            result = array_container_create();
+            *result_type = ARRAY_CONTAINER_TYPE;  // never bitset
+            array_run_container_intersection(
+                const_CAST_array(c1), const_CAST_run(c2), CAST_array(result));
+            return result;
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            result = array_container_create();
+            *result_type = ARRAY_CONTAINER_TYPE;  // never bitset
+            array_run_container_intersection(
+                const_CAST_array(c2), const_CAST_run(c1), CAST_array(result));
+            return result;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return NULL;
+    }
+}
+
+/**
+ * Compute the size of the intersection between two containers.
+ */
+static inline int container_and_cardinality(const container_t *c1,
+                                            uint8_t type1,
+                                            const container_t *c2,
+                                            uint8_t type2) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            return bitset_container_and_justcard(const_CAST_bitset(c1),
+                                                 const_CAST_bitset(c2));
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            return array_container_intersection_cardinality(
+                const_CAST_array(c1), const_CAST_array(c2));
+
+        case CONTAINER_PAIR(RUN, RUN):
+            return run_container_intersection_cardinality(const_CAST_run(c1),
+                                                          const_CAST_run(c2));
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            return array_bitset_container_intersection_cardinality(
+                const_CAST_array(c2), const_CAST_bitset(c1));
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            return array_bitset_container_intersection_cardinality(
+                const_CAST_array(c1), const_CAST_bitset(c2));
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            return run_bitset_container_intersection_cardinality(
+                const_CAST_run(c2), const_CAST_bitset(c1));
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            return run_bitset_container_intersection_cardinality(
+                const_CAST_run(c1), const_CAST_bitset(c2));
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            return array_run_container_intersection_cardinality(
+                const_CAST_array(c1), const_CAST_run(c2));
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            return array_run_container_intersection_cardinality(
+                const_CAST_array(c2), const_CAST_run(c1));
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return 0;
+    }
+}
+
+/**
+ * Check whether two containers intersect.
+ */
+static inline bool container_intersect(const container_t *c1, uint8_t type1,
+                                       const container_t *c2, uint8_t type2) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            return bitset_container_intersect(const_CAST_bitset(c1),
+                                              const_CAST_bitset(c2));
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            return array_container_intersect(const_CAST_array(c1),
+                                             const_CAST_array(c2));
+
+        case CONTAINER_PAIR(RUN, RUN):
+            return run_container_intersect(const_CAST_run(c1),
+                                           const_CAST_run(c2));
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            return array_bitset_container_intersect(const_CAST_array(c2),
+                                                    const_CAST_bitset(c1));
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            return array_bitset_container_intersect(const_CAST_array(c1),
+                                                    const_CAST_bitset(c2));
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            return run_bitset_container_intersect(const_CAST_run(c2),
+                                                  const_CAST_bitset(c1));
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            return run_bitset_container_intersect(const_CAST_run(c1),
+                                                  const_CAST_bitset(c2));
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            return array_run_container_intersect(const_CAST_array(c1),
+                                                 const_CAST_run(c2));
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            return array_run_container_intersect(const_CAST_array(c2),
+                                                 const_CAST_run(c1));
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return 0;
+    }
+}
+
+/**
+ * Compute intersection between two containers, with result in the first
+ container if possible. If the returned pointer is identical to c1,
+ then the container has been modified. If the returned pointer is different
+ from c1, then a new container has been created and the caller is responsible
+ for freeing it.
+ The type of the first container may change. Returns the modified
+ (and possibly new) container.
+*/
+static inline container_t *container_iand(container_t *c1, uint8_t type1,
+                                          const container_t *c2, uint8_t type2,
+                                          uint8_t *result_type) {
+    c1 = get_writable_copy_if_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    container_t *result = NULL;
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            *result_type = bitset_bitset_container_intersection_inplace(
+                               CAST_bitset(c1), const_CAST_bitset(c2), &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            array_container_intersection_inplace(CAST_array(c1),
+                                                 const_CAST_array(c2));
+            *result_type = ARRAY_CONTAINER_TYPE;
+            return c1;
+
+        case CONTAINER_PAIR(RUN, RUN):
+            result = run_container_create();
+            run_container_intersection(const_CAST_run(c1), const_CAST_run(c2),
+                                       CAST_run(result));
+            // as of January 2016, Java code used non-in-place intersection for
+            // two runcontainers
+            return 
convert_run_to_efficient_container_and_free(CAST_run(result),
+                                                               result_type);
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            // c1 is a bitmap so no inplace possible
+            result = array_container_create();
+            array_bitset_container_intersection(const_CAST_array(c2),
+                                                const_CAST_bitset(c1),
+                                                CAST_array(result));
+            *result_type = ARRAY_CONTAINER_TYPE;  // never bitset
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            *result_type = ARRAY_CONTAINER_TYPE;  // never bitset
+            array_bitset_container_intersection(
+                const_CAST_array(c1), const_CAST_bitset(c2),
+                CAST_array(c1));  // result is allowed to be same as c1
+            return c1;
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            // will attempt in-place computation
+            *result_type = run_bitset_container_intersection(
+                               const_CAST_run(c2), const_CAST_bitset(c1), &c1)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            return c1;
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            *result_type =
+                run_bitset_container_intersection(
+                    const_CAST_run(c1), const_CAST_bitset(c2), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            result = array_container_create();
+            *result_type = ARRAY_CONTAINER_TYPE;  // never bitset
+            array_run_container_intersection(
+                const_CAST_array(c1), const_CAST_run(c2), CAST_array(result));
+            return result;
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            result = array_container_create();
+            *result_type = ARRAY_CONTAINER_TYPE;  // never bitset
+            array_run_container_intersection(
+                const_CAST_array(c2), const_CAST_run(c1), CAST_array(result));
+            return result;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return NULL;
+    }
+}
+
+/**
+ * Compute union between two containers, generate a new container (having type
+ * result_type), requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ */
+static inline container_t *container_or(const container_t *c1, uint8_t type1,
+                                        const container_t *c2, uint8_t type2,
+                                        uint8_t *result_type) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    container_t *result = NULL;
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            result = bitset_container_create();
+            bitset_container_or(const_CAST_bitset(c1), const_CAST_bitset(c2),
+                                CAST_bitset(result));
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            *result_type =
+                array_array_container_union(const_CAST_array(c1),
+                                            const_CAST_array(c2), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(RUN, RUN):
+            result = run_container_create();
+            run_container_union(const_CAST_run(c1), const_CAST_run(c2),
+                                CAST_run(result));
+            *result_type = RUN_CONTAINER_TYPE;
+            // todo: could be optimized since will never convert to array
+            result = convert_run_to_efficient_container_and_free(
+                CAST_run(result), result_type);
+            return result;
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            result = bitset_container_create();
+            array_bitset_container_union(const_CAST_array(c2),
+                                         const_CAST_bitset(c1),
+                                         CAST_bitset(result));
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            result = bitset_container_create();
+            array_bitset_container_union(const_CAST_array(c1),
+                                         const_CAST_bitset(c2),
+                                         CAST_bitset(result));
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            if (run_container_is_full(const_CAST_run(c2))) {
+                result = run_container_create();
+                *result_type = RUN_CONTAINER_TYPE;
+                run_container_copy(const_CAST_run(c2), CAST_run(result));
+                return result;
+            }
+            result = bitset_container_create();
+            run_bitset_container_union(
+                const_CAST_run(c2), const_CAST_bitset(c1), 
CAST_bitset(result));
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            if (run_container_is_full(const_CAST_run(c1))) {
+                result = run_container_create();
+                *result_type = RUN_CONTAINER_TYPE;
+                run_container_copy(const_CAST_run(c1), CAST_run(result));
+                return result;
+            }
+            result = bitset_container_create();
+            run_bitset_container_union(
+                const_CAST_run(c1), const_CAST_bitset(c2), 
CAST_bitset(result));
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            result = run_container_create();
+            array_run_container_union(const_CAST_array(c1), const_CAST_run(c2),
+                                      CAST_run(result));
+            result = convert_run_to_efficient_container_and_free(
+                CAST_run(result), result_type);
+            return result;
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            result = run_container_create();
+            array_run_container_union(const_CAST_array(c2), const_CAST_run(c1),
+                                      CAST_run(result));
+            result = convert_run_to_efficient_container_and_free(
+                CAST_run(result), result_type);
+            return result;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return NULL;  // unreached
+    }
+}
+
+/**
+ * Compute union between two containers, generate a new container (having type
+ * result_type), requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ *
+ * This lazy version delays some operations such as the maintenance of the
+ * cardinality. It requires repair later on the generated containers.
+ */
+static inline container_t *container_lazy_or(const container_t *c1,
+                                             uint8_t type1,
+                                             const container_t *c2,
+                                             uint8_t type2,
+                                             uint8_t *result_type) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    container_t *result = NULL;
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            result = bitset_container_create();
+            bitset_container_or_nocard(const_CAST_bitset(c1),
+                                       const_CAST_bitset(c2),
+                                       CAST_bitset(result));  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            *result_type =
+                array_array_container_lazy_union(const_CAST_array(c1),
+                                                 const_CAST_array(c2), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(RUN, RUN):
+            result = run_container_create();
+            run_container_union(const_CAST_run(c1), const_CAST_run(c2),
+                                CAST_run(result));
+            *result_type = RUN_CONTAINER_TYPE;
+            // we are being lazy
+            result = convert_run_to_efficient_container_and_free(
+                CAST_run(result), result_type);
+            return result;
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            result = bitset_container_create();
+            array_bitset_container_lazy_union(const_CAST_array(c2),
+                                              const_CAST_bitset(c1),
+                                              CAST_bitset(result));  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            result = bitset_container_create();
+            array_bitset_container_lazy_union(const_CAST_array(c1),
+                                              const_CAST_bitset(c2),
+                                              CAST_bitset(result));  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            if (run_container_is_full(const_CAST_run(c2))) {
+                result = run_container_create();
+                *result_type = RUN_CONTAINER_TYPE;
+                run_container_copy(const_CAST_run(c2), CAST_run(result));
+                return result;
+            }
+            result = bitset_container_create();
+            run_bitset_container_lazy_union(const_CAST_run(c2),
+                                            const_CAST_bitset(c1),
+                                            CAST_bitset(result));  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            if (run_container_is_full(const_CAST_run(c1))) {
+                result = run_container_create();
+                *result_type = RUN_CONTAINER_TYPE;
+                run_container_copy(const_CAST_run(c1), CAST_run(result));
+                return result;
+            }
+            result = bitset_container_create();
+            run_bitset_container_lazy_union(const_CAST_run(c1),
+                                            const_CAST_bitset(c2),
+                                            CAST_bitset(result));  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            result = run_container_create();
+            array_run_container_union(const_CAST_array(c1), const_CAST_run(c2),
+                                      CAST_run(result));
+            *result_type = RUN_CONTAINER_TYPE;
+            // next line skipped since we are lazy
+            // result = convert_run_to_efficient_container(result, 
result_type);
+            return result;
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            result = run_container_create();
+            array_run_container_union(const_CAST_array(c2), const_CAST_run(c1),
+                                      CAST_run(result));  // TODO make lazy
+            *result_type = RUN_CONTAINER_TYPE;
+            // next line skipped since we are lazy
+            // result = convert_run_to_efficient_container(result, 
result_type);
+            return result;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return NULL;  // unreached
+    }
+}
+
+/**
+ * Compute the union between two containers, with result in the first 
container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created and the caller is responsible for freeing it.
+ * The type of the first container may change. Returns the modified
+ * (and possibly new) container
+ */
+static inline container_t *container_ior(container_t *c1, uint8_t type1,
+                                         const container_t *c2, uint8_t type2,
+                                         uint8_t *result_type) {
+    c1 = get_writable_copy_if_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    container_t *result = NULL;
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            bitset_container_or(const_CAST_bitset(c1), const_CAST_bitset(c2),
+                                CAST_bitset(c1));
+#ifdef OR_BITSET_CONVERSION_TO_FULL
+            if (CAST_bitset(c1)->cardinality == (1 << 16)) {  // we convert
+                result = run_container_create_range(0, (1 << 16));
+                *result_type = RUN_CONTAINER_TYPE;
+                return result;
+            }
+#endif
+            *result_type = BITSET_CONTAINER_TYPE;
+            return c1;
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            *result_type = array_array_container_inplace_union(
+                               CAST_array(c1), const_CAST_array(c2), &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            if ((result == NULL) && (*result_type == ARRAY_CONTAINER_TYPE)) {
+                return c1;  // the computation was done in-place!
+            }
+            return result;
+
+        case CONTAINER_PAIR(RUN, RUN):
+            run_container_union_inplace(CAST_run(c1), const_CAST_run(c2));
+            return convert_run_to_efficient_container(CAST_run(c1),
+                                                      result_type);
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            array_bitset_container_union(
+                const_CAST_array(c2), const_CAST_bitset(c1), CAST_bitset(c1));
+            *result_type = BITSET_CONTAINER_TYPE;  // never array
+            return c1;
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            // c1 is an array, so no in-place possible
+            result = bitset_container_create();
+            *result_type = BITSET_CONTAINER_TYPE;
+            array_bitset_container_union(const_CAST_array(c1),
+                                         const_CAST_bitset(c2),
+                                         CAST_bitset(result));
+            return result;
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            if (run_container_is_full(const_CAST_run(c2))) {
+                result = run_container_create();
+                *result_type = RUN_CONTAINER_TYPE;
+                run_container_copy(const_CAST_run(c2), CAST_run(result));
+                return result;
+            }
+            run_bitset_container_union(const_CAST_run(c2),
+                                       const_CAST_bitset(c1),
+                                       CAST_bitset(c1));  // allowed
+            *result_type = BITSET_CONTAINER_TYPE;
+            return c1;
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            if (run_container_is_full(const_CAST_run(c1))) {
+                *result_type = RUN_CONTAINER_TYPE;
+                return c1;
+            }
+            result = bitset_container_create();
+            run_bitset_container_union(
+                const_CAST_run(c1), const_CAST_bitset(c2), 
CAST_bitset(result));
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            result = run_container_create();
+            array_run_container_union(const_CAST_array(c1), const_CAST_run(c2),
+                                      CAST_run(result));
+            result = convert_run_to_efficient_container_and_free(
+                CAST_run(result), result_type);
+            return result;
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            array_run_container_inplace_union(const_CAST_array(c2),
+                                              CAST_run(c1));
+            c1 = convert_run_to_efficient_container(CAST_run(c1), result_type);
+            return c1;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return NULL;
+    }
+}
+
+/**
+ * Compute the union between two containers, with result in the first 
container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created and the caller is responsible for freeing it.
+ * The type of the first container may change. Returns the modified
+ * (and possibly new) container
+ *
+ * This lazy version delays some operations such as the maintenance of the
+ * cardinality. It requires repair later on the generated containers.
+ */
+static inline container_t *container_lazy_ior(container_t *c1, uint8_t type1,
+                                              const container_t *c2,
+                                              uint8_t type2,
+                                              uint8_t *result_type) {
+    assert(type1 != SHARED_CONTAINER_TYPE);
+    // c1 = get_writable_copy_if_shared(c1,&type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    container_t *result = NULL;
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+#ifdef LAZY_OR_BITSET_CONVERSION_TO_FULL
+            // if we have two bitsets, we might as well compute the cardinality
+            bitset_container_or(const_CAST_bitset(c1), const_CAST_bitset(c2),
+                                CAST_bitset(c1));
+            // it is possible that two bitsets can lead to a full container
+            if (CAST_bitset(c1)->cardinality == (1 << 16)) {  // we convert
+                result = run_container_create_range(0, (1 << 16));
+                *result_type = RUN_CONTAINER_TYPE;
+                return result;
+            }
+#else
+            bitset_container_or_nocard(const_CAST_bitset(c1),
+                                       const_CAST_bitset(c2), CAST_bitset(c1));
+
+#endif
+            *result_type = BITSET_CONTAINER_TYPE;
+            return c1;
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            *result_type = array_array_container_lazy_inplace_union(
+                               CAST_array(c1), const_CAST_array(c2), &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            if ((result == NULL) && (*result_type == ARRAY_CONTAINER_TYPE)) {
+                return c1;  // the computation was done in-place!
+            }
+            return result;
+
+        case CONTAINER_PAIR(RUN, RUN):
+            run_container_union_inplace(CAST_run(c1), const_CAST_run(c2));
+            *result_type = RUN_CONTAINER_TYPE;
+            return convert_run_to_efficient_container(CAST_run(c1),
+                                                      result_type);
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            array_bitset_container_lazy_union(const_CAST_array(c2),
+                                              const_CAST_bitset(c1),
+                                              CAST_bitset(c1));  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE;                // never array
+            return c1;
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            // c1 is an array, so no in-place possible
+            result = bitset_container_create();
+            *result_type = BITSET_CONTAINER_TYPE;
+            array_bitset_container_lazy_union(const_CAST_array(c1),
+                                              const_CAST_bitset(c2),
+                                              CAST_bitset(result));  // is lazy
+            return result;
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            if (run_container_is_full(const_CAST_run(c2))) {
+                result = run_container_create();
+                *result_type = RUN_CONTAINER_TYPE;
+                run_container_copy(const_CAST_run(c2), CAST_run(result));
+                return result;
+            }
+            run_bitset_container_lazy_union(
+                const_CAST_run(c2), const_CAST_bitset(c1),
+                CAST_bitset(c1));  // allowed //  lazy
+            *result_type = BITSET_CONTAINER_TYPE;
+            return c1;
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            if (run_container_is_full(const_CAST_run(c1))) {
+                *result_type = RUN_CONTAINER_TYPE;
+                return c1;
+            }
+            result = bitset_container_create();
+            run_bitset_container_lazy_union(const_CAST_run(c1),
+                                            const_CAST_bitset(c2),
+                                            CAST_bitset(result));  //  lazy
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            result = run_container_create();
+            array_run_container_union(const_CAST_array(c1), const_CAST_run(c2),
+                                      CAST_run(result));
+            *result_type = RUN_CONTAINER_TYPE;
+            // next line skipped since we are lazy
+            // result = convert_run_to_efficient_container_and_free(result,
+            // result_type);
+            return result;
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            array_run_container_inplace_union(const_CAST_array(c2),
+                                              CAST_run(c1));
+            *result_type = RUN_CONTAINER_TYPE;
+            // next line skipped since we are lazy
+            // result = convert_run_to_efficient_container_and_free(result,
+            // result_type);
+            return c1;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return NULL;
+    }
+}
+
+/**
+ * Compute symmetric difference (xor) between two containers, generate a new
+ * container (having type result_type), requires a typecode. This allocates new
+ * memory, caller is responsible for deallocation.
+ */
+static inline container_t *container_xor(const container_t *c1, uint8_t type1,
+                                         const container_t *c2, uint8_t type2,
+                                         uint8_t *result_type) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    container_t *result = NULL;
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            *result_type =
+                bitset_bitset_container_xor(const_CAST_bitset(c1),
+                                            const_CAST_bitset(c2), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            *result_type =
+                array_array_container_xor(const_CAST_array(c1),
+                                          const_CAST_array(c2), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(RUN, RUN):
+            *result_type = (uint8_t)run_run_container_xor(
+                const_CAST_run(c1), const_CAST_run(c2), &result);
+            return result;
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            *result_type =
+                array_bitset_container_xor(const_CAST_array(c2),
+                                           const_CAST_bitset(c1), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            *result_type =
+                array_bitset_container_xor(const_CAST_array(c1),
+                                           const_CAST_bitset(c2), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            *result_type =
+                run_bitset_container_xor(const_CAST_run(c2),
+                                         const_CAST_bitset(c1), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            *result_type =
+                run_bitset_container_xor(const_CAST_run(c1),
+                                         const_CAST_bitset(c2), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            *result_type = (uint8_t)array_run_container_xor(
+                const_CAST_array(c1), const_CAST_run(c2), &result);
+            return result;
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            *result_type = (uint8_t)array_run_container_xor(
+                const_CAST_array(c2), const_CAST_run(c1), &result);
+            return result;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return NULL;  // unreached
+    }
+}
+
+/* Applies an offset to the non-empty container 'c'.
+ * The results are stored in new containers returned via 'lo' and 'hi', for the
+ * low and high halves of the result (where the low half matches the original
+ * key and the high one corresponds to values for the following key). Either 
one
+ * of 'lo' and 'hi' are allowed to be 'NULL', but not both. Whenever one of 
them
+ * is not 'NULL', it should point to a 'NULL' container. Whenever one of them 
is
+ * 'NULL' the shifted elements for that part will not be computed. If either of
+ * the resulting containers turns out to be empty, the pointed container will
+ * remain 'NULL'.
+ */
+static inline void container_add_offset(const container_t *c, uint8_t type,
+                                        container_t **lo, container_t **hi,
+                                        uint16_t offset) {
+    assert(offset != 0);
+    assert(container_nonzero_cardinality(c, type));
+    assert(lo != NULL || hi != NULL);
+    assert(lo == NULL || *lo == NULL);
+    assert(hi == NULL || *hi == NULL);
+
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            bitset_container_offset(const_CAST_bitset(c), lo, hi, offset);
+            break;
+        case ARRAY_CONTAINER_TYPE:
+            array_container_offset(const_CAST_array(c), lo, hi, offset);
+            break;
+        case RUN_CONTAINER_TYPE:
+            run_container_offset(const_CAST_run(c), lo, hi, offset);
+            break;
+        default:
+            assert(false);
+            roaring_unreachable;
+            break;
+    }
+}
+
+/**
+ * Compute xor between two containers, generate a new container (having type
+ * result_type), requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ *
+ * This lazy version delays some operations such as the maintenance of the
+ * cardinality. It requires repair later on the generated containers.
+ */
+static inline container_t *container_lazy_xor(const container_t *c1,
+                                              uint8_t type1,
+                                              const container_t *c2,
+                                              uint8_t type2,
+                                              uint8_t *result_type) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    container_t *result = NULL;
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            result = bitset_container_create();
+            bitset_container_xor_nocard(const_CAST_bitset(c1),
+                                        const_CAST_bitset(c2),
+                                        CAST_bitset(result));  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            *result_type =
+                array_array_container_lazy_xor(const_CAST_array(c1),
+                                               const_CAST_array(c2), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(RUN, RUN):
+            // nothing special done yet.
+            *result_type = (uint8_t)run_run_container_xor(
+                const_CAST_run(c1), const_CAST_run(c2), &result);
+            return result;
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            result = bitset_container_create();
+            *result_type = BITSET_CONTAINER_TYPE;
+            array_bitset_container_lazy_xor(const_CAST_array(c2),
+                                            const_CAST_bitset(c1),
+                                            CAST_bitset(result));
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            result = bitset_container_create();
+            *result_type = BITSET_CONTAINER_TYPE;
+            array_bitset_container_lazy_xor(const_CAST_array(c1),
+                                            const_CAST_bitset(c2),
+                                            CAST_bitset(result));
+            return result;
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            result = bitset_container_create();
+            run_bitset_container_lazy_xor(
+                const_CAST_run(c2), const_CAST_bitset(c1), 
CAST_bitset(result));
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            result = bitset_container_create();
+            run_bitset_container_lazy_xor(
+                const_CAST_run(c1), const_CAST_bitset(c2), 
CAST_bitset(result));
+            *result_type = BITSET_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            result = run_container_create();
+            array_run_container_lazy_xor(const_CAST_array(c1),
+                                         const_CAST_run(c2), CAST_run(result));
+            *result_type = RUN_CONTAINER_TYPE;
+            // next line skipped since we are lazy
+            // result = convert_run_to_efficient_container(result, 
result_type);
+            return result;
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            result = run_container_create();
+            array_run_container_lazy_xor(const_CAST_array(c2),
+                                         const_CAST_run(c1), CAST_run(result));
+            *result_type = RUN_CONTAINER_TYPE;
+            // next line skipped since we are lazy
+            // result = convert_run_to_efficient_container(result, 
result_type);
+            return result;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return NULL;  // unreached
+    }
+}
+
+/**
+ * Compute the xor between two containers, with result in the first container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created. The original container is freed by container_ixor.
+ * The type of the first container may change. Returns the modified (and
+ * possibly new) container.
+ */
+static inline container_t *container_ixor(container_t *c1, uint8_t type1,
+                                          const container_t *c2, uint8_t type2,
+                                          uint8_t *result_type) {
+    c1 = get_writable_copy_if_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    container_t *result = NULL;
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            *result_type = bitset_bitset_container_ixor(
+                               CAST_bitset(c1), const_CAST_bitset(c2), &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            *result_type = array_array_container_ixor(
+                               CAST_array(c1), const_CAST_array(c2), &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(RUN, RUN):
+            *result_type = (uint8_t)run_run_container_ixor(
+                CAST_run(c1), const_CAST_run(c2), &result);
+            return result;
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            *result_type = bitset_array_container_ixor(
+                               CAST_bitset(c1), const_CAST_array(c2), &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            *result_type = array_bitset_container_ixor(
+                               CAST_array(c1), const_CAST_bitset(c2), &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            *result_type = bitset_run_container_ixor(
+                               CAST_bitset(c1), const_CAST_run(c2), &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+
+            return result;
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            *result_type = run_bitset_container_ixor(
+                               CAST_run(c1), const_CAST_bitset(c2), &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            *result_type = (uint8_t)array_run_container_ixor(
+                CAST_array(c1), const_CAST_run(c2), &result);
+            return result;
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            *result_type = (uint8_t)run_array_container_ixor(
+                CAST_run(c1), const_CAST_array(c2), &result);
+            return result;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return NULL;
+    }
+}
+
+/**
+ * Compute the xor between two containers, with result in the first container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created and the caller is responsible for freeing it.
+ * The type of the first container may change. Returns the modified
+ * (and possibly new) container
+ *
+ * This lazy version delays some operations such as the maintenance of the
+ * cardinality. It requires repair later on the generated containers.
+ */
+static inline container_t *container_lazy_ixor(container_t *c1, uint8_t type1,
+                                               const container_t *c2,
+                                               uint8_t type2,
+                                               uint8_t *result_type) {
+    assert(type1 != SHARED_CONTAINER_TYPE);
+    // c1 = get_writable_copy_if_shared(c1,&type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            bitset_container_xor_nocard(CAST_bitset(c1), const_CAST_bitset(c2),
+                                        CAST_bitset(c1));  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE;
+            return c1;
+
+        // TODO: other cases being lazy, esp. when we know inplace not likely
+        // could see the corresponding code for union
+        default:
+            // we may have a dirty bitset (without a precomputed cardinality)
+            // and calling container_ixor on it might be unsafe.
+            if (type1 == BITSET_CONTAINER_TYPE) {
+                bitset_container_t *bc = CAST_bitset(c1);
+                if (bc->cardinality == BITSET_UNKNOWN_CARDINALITY) {
+                    bc->cardinality = bitset_container_compute_cardinality(bc);
+                }
+            }
+            return container_ixor(c1, type1, c2, type2, result_type);
+    }
+}
+
+/**
+ * Compute difference (andnot) between two containers, generate a new
+ * container (having type result_type), requires a typecode. This allocates new
+ * memory, caller is responsible for deallocation.
+ */
+static inline container_t *container_andnot(const container_t *c1,
+                                            uint8_t type1,
+                                            const container_t *c2,
+                                            uint8_t type2,
+                                            uint8_t *result_type) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    container_t *result = NULL;
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            *result_type =
+                bitset_bitset_container_andnot(const_CAST_bitset(c1),
+                                               const_CAST_bitset(c2), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            result = array_container_create();
+            array_array_container_andnot(
+                const_CAST_array(c1), const_CAST_array(c2), 
CAST_array(result));
+            *result_type = ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(RUN, RUN):
+            if (run_container_is_full(const_CAST_run(c2))) {
+                result = array_container_create();
+                *result_type = ARRAY_CONTAINER_TYPE;
+                return result;
+            }
+            *result_type = (uint8_t)run_run_container_andnot(
+                const_CAST_run(c1), const_CAST_run(c2), &result);
+            return result;
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            *result_type =
+                bitset_array_container_andnot(const_CAST_bitset(c1),
+                                              const_CAST_array(c2), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            result = array_container_create();
+            array_bitset_container_andnot(const_CAST_array(c1),
+                                          const_CAST_bitset(c2),
+                                          CAST_array(result));
+            *result_type = ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            if (run_container_is_full(const_CAST_run(c2))) {
+                result = array_container_create();
+                *result_type = ARRAY_CONTAINER_TYPE;
+                return result;
+            }
+            *result_type =
+                bitset_run_container_andnot(const_CAST_bitset(c1),
+                                            const_CAST_run(c2), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            *result_type =
+                run_bitset_container_andnot(const_CAST_run(c1),
+                                            const_CAST_bitset(c2), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            if (run_container_is_full(const_CAST_run(c2))) {
+                result = array_container_create();
+                *result_type = ARRAY_CONTAINER_TYPE;
+                return result;
+            }
+            result = array_container_create();
+            array_run_container_andnot(const_CAST_array(c1), 
const_CAST_run(c2),
+                                       CAST_array(result));
+            *result_type = ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            *result_type = (uint8_t)run_array_container_andnot(
+                const_CAST_run(c1), const_CAST_array(c2), &result);
+            return result;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return NULL;  // unreached
+    }
+}
+
+/**
+ * Compute the andnot between two containers, with result in the first
+ * container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created. The original container is freed by container_iandnot.
+ * The type of the first container may change. Returns the modified (and
+ * possibly new) container.
+ */
+static inline container_t *container_iandnot(container_t *c1, uint8_t type1,
+                                             const container_t *c2,
+                                             uint8_t type2,
+                                             uint8_t *result_type) {
+    c1 = get_writable_copy_if_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    container_t *result = NULL;
+    switch (PAIR_CONTAINER_TYPES(type1, type2)) {
+        case CONTAINER_PAIR(BITSET, BITSET):
+            *result_type = bitset_bitset_container_iandnot(
+                               CAST_bitset(c1), const_CAST_bitset(c2), &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, ARRAY):
+            array_array_container_iandnot(CAST_array(c1), 
const_CAST_array(c2));
+            *result_type = ARRAY_CONTAINER_TYPE;
+            return c1;
+
+        case CONTAINER_PAIR(RUN, RUN):
+            *result_type = (uint8_t)run_run_container_iandnot(
+                CAST_run(c1), const_CAST_run(c2), &result);
+            return result;
+
+        case CONTAINER_PAIR(BITSET, ARRAY):
+            *result_type = bitset_array_container_iandnot(
+                               CAST_bitset(c1), const_CAST_array(c2), &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, BITSET):
+            *result_type = ARRAY_CONTAINER_TYPE;
+            array_bitset_container_iandnot(CAST_array(c1),
+                                           const_CAST_bitset(c2));
+            return c1;
+
+        case CONTAINER_PAIR(BITSET, RUN):
+            *result_type = bitset_run_container_iandnot(
+                               CAST_bitset(c1), const_CAST_run(c2), &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(RUN, BITSET):
+            *result_type = run_bitset_container_iandnot(
+                               CAST_run(c1), const_CAST_bitset(c2), &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY, RUN):
+            *result_type = ARRAY_CONTAINER_TYPE;
+            array_run_container_iandnot(CAST_array(c1), const_CAST_run(c2));
+            return c1;
+
+        case CONTAINER_PAIR(RUN, ARRAY):
+            *result_type = (uint8_t)run_array_container_iandnot(
+                CAST_run(c1), const_CAST_array(c2), &result);
+            return result;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+            return NULL;
+    }
+}
+
+/**
+ * Visit all values x of the container once, passing (base+x,ptr)
+ * to iterator. You need to specify a container and its type.
+ * Returns true if the iteration should continue.
+ */
+static inline bool container_iterate(const container_t *c, uint8_t type,
+                                     uint32_t base, roaring_iterator iterator,
+                                     void *ptr) {
+    c = container_unwrap_shared(c, &type);
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_iterate(const_CAST_bitset(c), base,
+                                            iterator, ptr);
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_iterate(const_CAST_array(c), base, iterator,
+                                           ptr);
+        case RUN_CONTAINER_TYPE:
+            return run_container_iterate(const_CAST_run(c), base, iterator,
+                                         ptr);
+        default:
+            assert(false);
+            roaring_unreachable;
+    }
+    assert(false);
+    roaring_unreachable;
+    return false;
+}
+
+static inline bool container_iterate64(const container_t *c, uint8_t type,
+                                       uint32_t base,
+                                       roaring_iterator64 iterator,
+                                       uint64_t high_bits, void *ptr) {
+    c = container_unwrap_shared(c, &type);
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_iterate64(const_CAST_bitset(c), base,
+                                              iterator, high_bits, ptr);
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_iterate64(const_CAST_array(c), base,
+                                             iterator, high_bits, ptr);
+        case RUN_CONTAINER_TYPE:
+            return run_container_iterate64(const_CAST_run(c), base, iterator,
+                                           high_bits, ptr);
+        default:
+            assert(false);
+            roaring_unreachable;
+    }
+    assert(false);
+    roaring_unreachable;
+    return false;
+}
+
+static inline container_t *container_not(const container_t *c, uint8_t type,
+                                         uint8_t *result_type) {
+    c = container_unwrap_shared(c, &type);
+    container_t *result = NULL;
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            *result_type =
+                bitset_container_negation(const_CAST_bitset(c), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+        case ARRAY_CONTAINER_TYPE:
+            result = bitset_container_create();
+            *result_type = BITSET_CONTAINER_TYPE;
+            array_container_negation(const_CAST_array(c), CAST_bitset(result));
+            return result;
+        case RUN_CONTAINER_TYPE:
+            *result_type =
+                (uint8_t)run_container_negation(const_CAST_run(c), &result);
+            return result;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+    }
+    assert(false);
+    roaring_unreachable;
+    return NULL;
+}
+
+static inline container_t *container_not_range(const container_t *c,
+                                               uint8_t type,
+                                               uint32_t range_start,
+                                               uint32_t range_end,
+                                               uint8_t *result_type) {
+    c = container_unwrap_shared(c, &type);
+    container_t *result = NULL;
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            *result_type =
+                bitset_container_negation_range(const_CAST_bitset(c),
+                                                range_start, range_end, 
&result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+        case ARRAY_CONTAINER_TYPE:
+            *result_type =
+                array_container_negation_range(const_CAST_array(c), 
range_start,
+                                               range_end, &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+        case RUN_CONTAINER_TYPE:
+            *result_type = (uint8_t)run_container_negation_range(
+                const_CAST_run(c), range_start, range_end, &result);
+            return result;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+    }
+    assert(false);
+    roaring_unreachable;
+    return NULL;
+}
+
+static inline container_t *container_inot(container_t *c, uint8_t type,
+                                          uint8_t *result_type) {
+    c = get_writable_copy_if_shared(c, &type);
+    container_t *result = NULL;
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            *result_type =
+                bitset_container_negation_inplace(CAST_bitset(c), &result)
+                    ? BITSET_CONTAINER_TYPE
+                    : ARRAY_CONTAINER_TYPE;
+            return result;
+        case ARRAY_CONTAINER_TYPE:
+            // will never be inplace
+            result = bitset_container_create();
+            *result_type = BITSET_CONTAINER_TYPE;
+            array_container_negation(CAST_array(c), CAST_bitset(result));
+            array_container_free(CAST_array(c));
+            return result;
+        case RUN_CONTAINER_TYPE:
+            *result_type =
+                (uint8_t)run_container_negation_inplace(CAST_run(c), &result);
+            return result;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+    }
+    assert(false);
+    roaring_unreachable;
+    return NULL;
+}
+
+static inline container_t *container_inot_range(container_t *c, uint8_t type,
+                                                uint32_t range_start,
+                                                uint32_t range_end,
+                                                uint8_t *result_type) {
+    c = get_writable_copy_if_shared(c, &type);
+    container_t *result = NULL;
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            *result_type = bitset_container_negation_range_inplace(
+                               CAST_bitset(c), range_start, range_end, &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            return result;
+        case ARRAY_CONTAINER_TYPE:
+            *result_type = array_container_negation_range_inplace(
+                               CAST_array(c), range_start, range_end, &result)
+                               ? BITSET_CONTAINER_TYPE
+                               : ARRAY_CONTAINER_TYPE;
+            return result;
+        case RUN_CONTAINER_TYPE:
+            *result_type = (uint8_t)run_container_negation_range_inplace(
+                CAST_run(c), range_start, range_end, &result);
+            return result;
+
+        default:
+            assert(false);
+            roaring_unreachable;
+    }
+    assert(false);
+    roaring_unreachable;
+    return NULL;
+}
+
+/**
+ * If the element of given rank is in this container, supposing that
+ * the first
+ * element has rank start_rank, then the function returns true and
+ * sets element
+ * accordingly.
+ * Otherwise, it returns false and update start_rank.
+ */
+static inline bool container_select(const container_t *c, uint8_t type,
+                                    uint32_t *start_rank, uint32_t rank,
+                                    uint32_t *element) {
+    c = container_unwrap_shared(c, &type);
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_select(const_CAST_bitset(c), start_rank,
+                                           rank, element);
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_select(const_CAST_array(c), start_rank, 
rank,
+                                          element);
+        case RUN_CONTAINER_TYPE:
+            return run_container_select(const_CAST_run(c), start_rank, rank,
+                                        element);
+        default:
+            assert(false);
+            roaring_unreachable;
+    }
+    assert(false);
+    roaring_unreachable;
+    return false;
+}
+
+static inline uint16_t container_maximum(const container_t *c, uint8_t type) {
+    c = container_unwrap_shared(c, &type);
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_maximum(const_CAST_bitset(c));
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_maximum(const_CAST_array(c));
+        case RUN_CONTAINER_TYPE:
+            return run_container_maximum(const_CAST_run(c));
+        default:
+            assert(false);
+            roaring_unreachable;
+    }
+    assert(false);
+    roaring_unreachable;
+    return false;
+}
+
+static inline uint16_t container_minimum(const container_t *c, uint8_t type) {
+    c = container_unwrap_shared(c, &type);
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_minimum(const_CAST_bitset(c));
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_minimum(const_CAST_array(c));
+        case RUN_CONTAINER_TYPE:
+            return run_container_minimum(const_CAST_run(c));
+        default:
+            assert(false);
+            roaring_unreachable;
+    }
+    assert(false);
+    roaring_unreachable;
+    return false;
+}
+
+// number of values smaller or equal to x
+static inline int container_rank(const container_t *c, uint8_t type,
+                                 uint16_t x) {
+    c = container_unwrap_shared(c, &type);
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_rank(const_CAST_bitset(c), x);
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_rank(const_CAST_array(c), x);
+        case RUN_CONTAINER_TYPE:
+            return run_container_rank(const_CAST_run(c), x);
+        default:
+            assert(false);
+            roaring_unreachable;
+    }
+    assert(false);
+    roaring_unreachable;
+    return false;
+}
+
+// bulk version of container_rank(); return number of consumed elements
+static inline uint32_t container_rank_many(const container_t *c, uint8_t type,
+                                           uint64_t start_rank,
+                                           const uint32_t *begin,
+                                           const uint32_t *end, uint64_t *ans) 
{
+    c = container_unwrap_shared(c, &type);
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_rank_many(const_CAST_bitset(c), start_rank,
+                                              begin, end, ans);
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_rank_many(const_CAST_array(c), start_rank,
+                                             begin, end, ans);
+        case RUN_CONTAINER_TYPE:
+            return run_container_rank_many(const_CAST_run(c), start_rank, 
begin,
+                                           end, ans);
+        default:
+            assert(false);
+            roaring_unreachable;
+    }
+    assert(false);
+    roaring_unreachable;
+    return 0;
+}
+
+// return the index of x, if not exsist return -1
+static inline int container_get_index(const container_t *c, uint8_t type,
+                                      uint16_t x) {
+    c = container_unwrap_shared(c, &type);
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_get_index(const_CAST_bitset(c), x);
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_get_index(const_CAST_array(c), x);
+        case RUN_CONTAINER_TYPE:
+            return run_container_get_index(const_CAST_run(c), x);
+        default:
+            assert(false);
+            roaring_unreachable;
+    }
+    assert(false);
+    roaring_unreachable;
+    return false;
+}
+
+/**
+ * Add all values in range [min, max] to a given container.
+ *
+ * If the returned pointer is different from $container, then a new container
+ * has been created and the caller is responsible for freeing it.
+ * The type of the first container may change. Returns the modified
+ * (and possibly new) container.
+ */
+static inline container_t *container_add_range(container_t *c, uint8_t type,
+                                               uint32_t min, uint32_t max,
+                                               uint8_t *result_type) {
+    // NB: when selecting new container type, we perform only inexpensive 
checks
+    switch (type) {
+        case BITSET_CONTAINER_TYPE: {
+            bitset_container_t *bitset = CAST_bitset(c);
+
+            int32_t union_cardinality = 0;
+            union_cardinality += bitset->cardinality;
+            union_cardinality += max - min + 1;
+            union_cardinality -=
+                bitset_lenrange_cardinality(bitset->words, min, max - min);
+
+            if (union_cardinality == INT32_C(0x10000)) {
+                *result_type = RUN_CONTAINER_TYPE;
+                return run_container_create_range(0, INT32_C(0x10000));
+            } else {
+                *result_type = BITSET_CONTAINER_TYPE;
+                bitset_set_lenrange(bitset->words, min, max - min);
+                bitset->cardinality = union_cardinality;
+                return bitset;
+            }
+        }
+        case ARRAY_CONTAINER_TYPE: {
+            array_container_t *array = CAST_array(c);
+
+            int32_t nvals_greater =
+                count_greater(array->array, array->cardinality, (uint16_t)max);
+            int32_t nvals_less =
+                count_less(array->array, array->cardinality - nvals_greater,
+                           (uint16_t)min);
+            int32_t union_cardinality =
+                nvals_less + (max - min + 1) + nvals_greater;
+
+            if (union_cardinality == INT32_C(0x10000)) {
+                *result_type = RUN_CONTAINER_TYPE;
+                return run_container_create_range(0, INT32_C(0x10000));
+            } else if (union_cardinality <= DEFAULT_MAX_SIZE) {
+                *result_type = ARRAY_CONTAINER_TYPE;
+                array_container_add_range_nvals(array, min, max, nvals_less,
+                                                nvals_greater);
+                return array;
+            } else {
+                *result_type = BITSET_CONTAINER_TYPE;
+                bitset_container_t *bitset = 
bitset_container_from_array(array);
+                bitset_set_lenrange(bitset->words, min, max - min);
+                bitset->cardinality = union_cardinality;
+                return bitset;
+            }
+        }
+        case RUN_CONTAINER_TYPE: {
+            run_container_t *run = CAST_run(c);
+
+            int32_t nruns_greater =
+                rle16_count_greater(run->runs, run->n_runs, (uint16_t)max);
+            int32_t nruns_less = rle16_count_less(
+                run->runs, run->n_runs - nruns_greater, (uint16_t)min);
+
+            int32_t run_size_bytes =
+                (nruns_less + 1 + nruns_greater) * sizeof(rle16_t);
+            int32_t bitset_size_bytes =
+                BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+
+            if (run_size_bytes <= bitset_size_bytes) {
+                run_container_add_range_nruns(run, min, max, nruns_less,
+                                              nruns_greater);
+                *result_type = RUN_CONTAINER_TYPE;
+                return run;
+            } else {
+                return container_from_run_range(run, min, max, result_type);
+            }
+        }
+        default:
+            roaring_unreachable;
+    }
+}
+
+/*
+ * Removes all elements in range [min, max].
+ * Returns one of:
+ *   - NULL if no elements left
+ *   - pointer to the original container
+ *   - pointer to a newly-allocated container (if it is more efficient)
+ *
+ * If the returned pointer is different from $container, then a new container
+ * has been created and the caller is responsible for freeing the original
+ * container.
+ */
+static inline container_t *container_remove_range(container_t *c, uint8_t type,
+                                                  uint32_t min, uint32_t max,
+                                                  uint8_t *result_type) {
+    switch (type) {
+        case BITSET_CONTAINER_TYPE: {
+            bitset_container_t *bitset = CAST_bitset(c);
+
+            int32_t result_cardinality =
+                bitset->cardinality -
+                bitset_lenrange_cardinality(bitset->words, min, max - min);
+
+            if (result_cardinality == 0) {
+                return NULL;
+            } else if (result_cardinality <= DEFAULT_MAX_SIZE) {
+                *result_type = ARRAY_CONTAINER_TYPE;
+                bitset_reset_range(bitset->words, min, max + 1);
+                bitset->cardinality = result_cardinality;
+                return array_container_from_bitset(bitset);
+            } else {
+                *result_type = BITSET_CONTAINER_TYPE;
+                bitset_reset_range(bitset->words, min, max + 1);
+                bitset->cardinality = result_cardinality;
+                return bitset;
+            }
+        }
+        case ARRAY_CONTAINER_TYPE: {
+            array_container_t *array = CAST_array(c);
+
+            int32_t nvals_greater =
+                count_greater(array->array, array->cardinality, (uint16_t)max);
+            int32_t nvals_less =
+                count_less(array->array, array->cardinality - nvals_greater,
+                           (uint16_t)min);
+            int32_t result_cardinality = nvals_less + nvals_greater;
+
+            if (result_cardinality == 0) {
+                return NULL;
+            } else {
+                *result_type = ARRAY_CONTAINER_TYPE;
+                array_container_remove_range(
+                    array, nvals_less, array->cardinality - 
result_cardinality);
+                return array;
+            }
+        }
+        case RUN_CONTAINER_TYPE: {
+            run_container_t *run = CAST_run(c);
+
+            if (run->n_runs == 0) {
+                return NULL;
+            }
+            if (min <= run_container_minimum(run) &&
+                max >= run_container_maximum(run)) {
+                return NULL;
+            }
+
+            run_container_remove_range(run, min, max);
+            return convert_run_to_efficient_container(run, result_type);
+        }
+        default:
+            roaring_unreachable;
+    }
+}
+
+#ifdef __cplusplus
+using api::roaring_container_iterator_t;
+#endif
+
+/**
+ * Initializes the iterator at the first entry in the container.
+ */
+roaring_container_iterator_t container_init_iterator(const container_t *c,
+                                                     uint8_t typecode,
+                                                     uint16_t *value);
+
+/**
+ * Initializes the iterator at the last entry in the container.
+ */
+roaring_container_iterator_t container_init_iterator_last(const container_t *c,
+                                                          uint8_t typecode,
+                                                          uint16_t *value);
+
+/**
+ * Moves the iterator to the next entry. Returns true and sets `value` if a
+ * value is present.
+ */
+bool container_iterator_next(const container_t *c, uint8_t typecode,
+                             roaring_container_iterator_t *it, uint16_t 
*value);
+
+/**
+ * Moves the iterator to the previous entry. Returns true and sets `value` if a
+ * value is present.
+ */
+bool container_iterator_prev(const container_t *c, uint8_t typecode,
+                             roaring_container_iterator_t *it, uint16_t 
*value);
+
+/**
+ * Moves the iterator to the smallest entry that is greater than or equal to
+ * `val`. Returns true and sets `value_out` if a value is present. `value_out`
+ * should be initialized to a value.
+ */
+bool container_iterator_lower_bound(const container_t *c, uint8_t typecode,
+                                    roaring_container_iterator_t *it,
+                                    uint16_t *value_out, uint16_t val);
+
+/**
+ * Reads up to `count` entries from the container, and writes them into `buf`
+ * as `high16 | entry`. Returns true and sets `value_out` if a value is present
+ * after reading the entries. Sets `consumed` to the number of values read.
+ * `count` should be greater than zero.
+ */
+bool container_iterator_read_into_uint32(const container_t *c, uint8_t 
typecode,
+                                         roaring_container_iterator_t *it,
+                                         uint32_t high16, uint32_t *buf,
+                                         uint32_t count, uint32_t *consumed,
+                                         uint16_t *value_out);
+
+/**
+ * Reads up to `count` entries from the container, and writes them into `buf`
+ * as `high48 | entry`. Returns true and sets `value_out` if a value is present
+ * after reading the entries. Sets `consumed` to the number of values read.
+ * `count` should be greater than zero.
+ */
+bool container_iterator_read_into_uint64(const container_t *c, uint8_t 
typecode,
+                                         roaring_container_iterator_t *it,
+                                         uint64_t high48, uint64_t *buf,
+                                         uint32_t count, uint32_t *consumed,
+                                         uint16_t *value_out);
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#endif
+/* end file include/roaring/containers/containers.h */
+/* begin file include/roaring/roaring_array.h */
+#ifndef INCLUDE_ROARING_ARRAY_H
+#define INCLUDE_ROARING_ARRAY_H
+
+#include <assert.h>
+#include <stdbool.h>
+#include <stdint.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+
+// Note: in pure C++ code, you should avoid putting `using` in header files
+using api::roaring_array_t;
+
+namespace internal {
+#endif
+
+enum {
+    SERIAL_COOKIE_NO_RUNCONTAINER = 12346,
+    SERIAL_COOKIE = 12347,
+    FROZEN_COOKIE = 13766,
+    NO_OFFSET_THRESHOLD = 4
+};
+
+/**
+ * Create a new roaring array
+ */
+roaring_array_t *ra_create(void);
+
+/**
+ * Initialize an existing roaring array with the specified capacity (in number
+ * of containers)
+ */
+bool ra_init_with_capacity(roaring_array_t *new_ra, uint32_t cap);
+
+/**
+ * Initialize with zero capacity
+ */
+void ra_init(roaring_array_t *t);
+
+/**
+ * Copies this roaring array, we assume that dest is not initialized
+ */
+bool ra_copy(const roaring_array_t *source, roaring_array_t *dest,
+             bool copy_on_write);
+
+/*
+ * Shrinks the capacity, returns the number of bytes saved.
+ */
+int ra_shrink_to_fit(roaring_array_t *ra);
+
+/**
+ * Copies this roaring array, we assume that dest is initialized
+ */
+bool ra_overwrite(const roaring_array_t *source, roaring_array_t *dest,
+                  bool copy_on_write);
+
+/**
+ * Frees the memory used by a roaring array
+ */
+void ra_clear(roaring_array_t *r);
+
+/**
+ * Frees the memory used by a roaring array, but does not free the containers
+ */
+void ra_clear_without_containers(roaring_array_t *r);
+
+/**
+ * Frees just the containers
+ */
+void ra_clear_containers(roaring_array_t *ra);
+
+/**
+ * Get the index corresponding to a 16-bit key
+ */
+inline int32_t ra_get_index(const roaring_array_t *ra, uint16_t x) {
+    if ((ra->size == 0) || ra->keys[ra->size - 1] == x) return ra->size - 1;
+    return binarySearch(ra->keys, (int32_t)ra->size, x);
+}
+
+/**
+ * Retrieves the container at index i, filling in the typecode
+ */
+inline container_t *ra_get_container_at_index(const roaring_array_t *ra,
+                                              uint16_t i, uint8_t *typecode) {
+    *typecode = ra->typecodes[i];
+    return ra->containers[i];
+}
+
+/**
+ * Retrieves the key at index i
+ */
+inline uint16_t ra_get_key_at_index(const roaring_array_t *ra, uint16_t i) {
+    return ra->keys[i];
+}
+
+/**
+ * Add a new key-value pair at index i
+ */
+void ra_insert_new_key_value_at(roaring_array_t *ra, int32_t i, uint16_t key,
+                                container_t *c, uint8_t typecode);
+
+/**
+ * Append a new key-value pair
+ */
+void ra_append(roaring_array_t *ra, uint16_t key, container_t *c,
+               uint8_t typecode);
+
+/**
+ * Append a new key-value pair to ra, cloning (in COW sense) a value from sa
+ * at index index
+ */
+void ra_append_copy(roaring_array_t *ra, const roaring_array_t *sa,
+                    uint16_t index, bool copy_on_write);
+
+/**
+ * Append new key-value pairs to ra, cloning (in COW sense)  values from sa
+ * at indexes
+ * [start_index, end_index)
+ */
+void ra_append_copy_range(roaring_array_t *ra, const roaring_array_t *sa,
+                          int32_t start_index, int32_t end_index,
+                          bool copy_on_write);
+
+/** appends from sa to ra, ending with the greatest key that is
+ * is less or equal stopping_key
+ */
+void ra_append_copies_until(roaring_array_t *ra, const roaring_array_t *sa,
+                            uint16_t stopping_key, bool copy_on_write);
+
+/** appends from sa to ra, starting with the smallest key that is
+ * is strictly greater than before_start
+ */
+
+void ra_append_copies_after(roaring_array_t *ra, const roaring_array_t *sa,
+                            uint16_t before_start, bool copy_on_write);
+
+/**
+ * Move the key-value pairs to ra from sa at indexes
+ * [start_index, end_index), old array should not be freed
+ * (use ra_clear_without_containers)
+ **/
+void ra_append_move_range(roaring_array_t *ra, roaring_array_t *sa,
+                          int32_t start_index, int32_t end_index);
+/**
+ * Append new key-value pairs to ra,  from sa at indexes
+ * [start_index, end_index)
+ */
+void ra_append_range(roaring_array_t *ra, roaring_array_t *sa,
+                     int32_t start_index, int32_t end_index,
+                     bool copy_on_write);
+
+/**
+ * Set the container at the corresponding index using the specified
+ * typecode.
+ */
+inline void ra_set_container_at_index(const roaring_array_t *ra, int32_t i,
+                                      container_t *c, uint8_t typecode) {
+    assert(i < ra->size);
+    ra->containers[i] = c;
+    ra->typecodes[i] = typecode;
+}
+
+container_t *ra_get_container(roaring_array_t *ra, uint16_t x,
+                              uint8_t *typecode);
+
+/**
+ * If needed, increase the capacity of the array so that it can fit k values
+ * (at
+ * least);
+ */
+bool extend_array(roaring_array_t *ra, int32_t k);
+
+inline int32_t ra_get_size(const roaring_array_t *ra) { return ra->size; }
+
+static inline int32_t ra_advance_until(const roaring_array_t *ra, uint16_t x,
+                                       int32_t pos) {
+    return advanceUntil(ra->keys, pos, ra->size, x);
+}
+
+int32_t ra_advance_until_freeing(roaring_array_t *ra, uint16_t x, int32_t pos);
+
+void ra_downsize(roaring_array_t *ra, int32_t new_length);
+
+inline void ra_replace_key_and_container_at_index(roaring_array_t *ra,
+                                                  int32_t i, uint16_t key,
+                                                  container_t *c,
+                                                  uint8_t typecode) {
+    assert(i < ra->size);
+
+    ra->keys[i] = key;
+    ra->containers[i] = c;
+    ra->typecodes[i] = typecode;
+}
+
+// write set bits to an array
+void ra_to_uint32_array(const roaring_array_t *ra, uint32_t *ans);
+
+bool ra_range_uint32_array(const roaring_array_t *ra, size_t offset,
+                           size_t limit, uint32_t *ans);
+
+/**
+ * write a bitmap to a buffer. This is meant to be compatible with
+ * the
+ * Java and Go versions. Return the size in bytes of the serialized
+ * output (which should be ra_portable_size_in_bytes(ra)).
+ */
+size_t ra_portable_serialize(const roaring_array_t *ra, char *buf);
+
+/**
+ * read a bitmap from a serialized version. This is meant to be compatible
+ * with the Java and Go versions.
+ * maxbytes  indicates how many bytes available from buf.
+ * When the function returns true, roaring_array_t is populated with the data
+ * and *readbytes indicates how many bytes were read. In all cases, if the
+ * function returns true, then maxbytes >= *readbytes.
+ */
+bool ra_portable_deserialize(roaring_array_t *ra, const char *buf,
+                             const size_t maxbytes, size_t *readbytes);
+
+/**
+ * Quickly checks whether there is a serialized bitmap at the pointer,
+ * not exceeding size "maxbytes" in bytes. This function does not allocate
+ * memory dynamically.
+ *
+ * This function returns 0 if and only if no valid bitmap is found.
+ * Otherwise, it returns how many bytes are occupied by the bitmap data.
+ */
+size_t ra_portable_deserialize_size(const char *buf, const size_t maxbytes);
+
+/**
+ * How many bytes are required to serialize this bitmap (meant to be
+ * compatible
+ * with Java and Go versions)
+ */
+size_t ra_portable_size_in_bytes(const roaring_array_t *ra);
+
+/**
+ * return true if it contains at least one run container.
+ */
+bool ra_has_run_container(const roaring_array_t *ra);
+
+/**
+ * Size of the header when serializing (meant to be compatible
+ * with Java and Go versions)
+ */
+uint32_t ra_portable_header_size(const roaring_array_t *ra);
+
+/**
+ * If the container at the index i is share, unshare it (creating a local
+ * copy if needed).
+ */
+static inline void ra_unshare_container_at_index(roaring_array_t *ra,
+                                                 uint16_t i) {
+    assert(i < ra->size);
+    ra->containers[i] =
+        get_writable_copy_if_shared(ra->containers[i], &ra->typecodes[i]);
+}
+
+/**
+ * remove at index i, sliding over all entries after i
+ */
+void ra_remove_at_index(roaring_array_t *ra, int32_t i);
+
+/**
+ * clears all containers, sets the size at 0 and shrinks the memory usage.
+ */
+void ra_reset(roaring_array_t *ra);
+
+/**
+ * remove at index i, sliding over all entries after i. Free removed container.
+ */
+void ra_remove_at_index_and_free(roaring_array_t *ra, int32_t i);
+
+/**
+ * remove a chunk of indices, sliding over entries after it
+ */
+// void ra_remove_index_range(roaring_array_t *ra, int32_t begin, int32_t end);
+
+// used in inplace andNot only, to slide left the containers from
+// the mutated RoaringBitmap that are after the largest container of
+// the argument RoaringBitmap.  It is followed by a call to resize.
+//
+void ra_copy_range(roaring_array_t *ra, uint32_t begin, uint32_t end,
+                   uint32_t new_begin);
+
+/**
+ * Shifts rightmost $count containers to the left (distance < 0) or
+ * to the right (distance > 0).
+ * Allocates memory if necessary.
+ * This function doesn't free or create new containers.
+ * Caller is responsible for that.
+ */
+void ra_shift_tail(roaring_array_t *ra, int32_t count, int32_t distance);
+
+#ifdef __cplusplus
+}  // namespace internal
+}
+}  // extern "C" { namespace roaring {
+#endif
+
+#endif
+/* end file include/roaring/roaring_array.h */
+/* begin file include/roaring/art/art.h */
+#ifndef ART_ART_H
+#define ART_ART_H
+
+#include <stdbool.h>
+#include <stddef.h>
+#include <stdint.h>
+
+/*
+ * This file contains an implementation of an Adaptive Radix Tree as described
+ * in https://db.in.tum.de/~leis/papers/ART.pdf.
+ *
+ * The ART contains the keys in _byte lexographical_ order.
+ *
+ * Other features:
+ *  * Fixed 48 bit key length: all keys are assumed to be be 48 bits in size.
+ *    This allows us to put the key and key prefixes directly in nodes, 
reducing
+ *    indirection at no additional memory overhead.
+ *  * Key compression: the only inner nodes created are at points where key
+ *    chunks _differ_. This means that if there are two entries with different
+ *    high 48 bits, then there is only one inner node containing the common key
+ *    prefix, and two leaves.
+ *  * Intrusive leaves: the leaf struct is included in user values. This 
removes
+ *    a layer of indirection.
+ */
+
+// Fixed length of keys in the ART. All keys are assumed to be of this length.
+#define ART_KEY_BYTES 6
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+typedef uint8_t art_key_chunk_t;
+typedef struct art_node_s art_node_t;
+
+/**
+ * Wrapper to allow an empty tree.
+ */
+typedef struct art_s {
+    art_node_t *root;
+} art_t;
+
+/**
+ * Values inserted into the tree have to be cast-able to art_val_t. This
+ * improves performance by reducing indirection.
+ *
+ * NOTE: Value pointers must be unique! This is because each value struct
+ * contains the key corresponding to the value.
+ */
+typedef struct art_val_s {
+    art_key_chunk_t key[ART_KEY_BYTES];
+} art_val_t;
+
+/**
+ * Compares two keys, returns their relative order:
+ *  * Key 1 <  key 2: returns a negative value
+ *  * Key 1 == key 2: returns 0
+ *  * Key 1 >  key 2: returns a positive value
+ */
+int art_compare_keys(const art_key_chunk_t key1[],
+                     const art_key_chunk_t key2[]);
+
+/**
+ * Inserts the given key and value.
+ */
+void art_insert(art_t *art, const art_key_chunk_t *key, art_val_t *val);
+
+/**
+ * Returns the value erased, NULL if not found.
+ */
+art_val_t *art_erase(art_t *art, const art_key_chunk_t *key);
+
+/**
+ * Returns the value associated with the given key, NULL if not found.
+ */
+art_val_t *art_find(const art_t *art, const art_key_chunk_t *key);
+
+/**
+ * Returns true if the ART is empty.
+ */
+bool art_is_empty(const art_t *art);
+
+/**
+ * Frees the nodes of the ART except the values, which the user is expected to
+ * free.
+ */
+void art_free(art_t *art);
+
+/**
+ * Returns the size in bytes of the ART. Includes size of pointers to values,
+ * but not the values themselves.
+ */
+size_t art_size_in_bytes(const art_t *art);
+
+/**
+ * Prints the ART using printf, useful for debugging.
+ */
+void art_printf(const art_t *art);
+
+/**
+ * Callback for validating the value stored in a leaf.
+ *
+ * Should return true if the value is valid, false otherwise
+ * If false is returned, `*reason` should be set to a static string describing
+ * the reason for the failure.
+ */
+typedef bool (*art_validate_cb_t)(const art_val_t *val, const char **reason);
+
+/**
+ * Validate the ART tree, ensuring it is internally consistent.
+ */
+bool art_internal_validate(const art_t *art, const char **reason,
+                           art_validate_cb_t validate_cb);
+
+/**
+ * ART-internal iterator bookkeeping. Users should treat this as an opaque 
type.
+ */
+typedef struct art_iterator_frame_s {
+    art_node_t *node;
+    uint8_t index_in_node;
+} art_iterator_frame_t;
+
+/**
+ * Users should only access `key` and `value` in iterators. The iterator is
+ * valid when `value != NULL`.
+ */
+typedef struct art_iterator_s {
+    art_key_chunk_t key[ART_KEY_BYTES];
+    art_val_t *value;
+
+    uint8_t depth;  // Key depth
+    uint8_t frame;  // Node depth
+
+    // State for each node in the ART the iterator has travelled from the root.
+    // This is `ART_KEY_BYTES + 1` because it includes state for the leaf too.
+    art_iterator_frame_t frames[ART_KEY_BYTES + 1];
+} art_iterator_t;
+
+/**
+ * Creates an iterator initialzed to the first or last entry in the ART,
+ * depending on `first`. The iterator is not valid if there are no entries in
+ * the ART.
+ */
+art_iterator_t art_init_iterator(const art_t *art, bool first);
+
+/**
+ * Returns an initialized iterator positioned at a key equal to or greater than
+ * the given key, if it exists.
+ */
+art_iterator_t art_lower_bound(const art_t *art, const art_key_chunk_t *key);
+
+/**
+ * Returns an initialized iterator positioned at a key greater than the given
+ * key, if it exists.
+ */
+art_iterator_t art_upper_bound(const art_t *art, const art_key_chunk_t *key);
+
+/**
+ * The following iterator movement functions return true if a new entry was
+ * encountered.
+ */
+bool art_iterator_move(art_iterator_t *iterator, bool forward);
+bool art_iterator_next(art_iterator_t *iterator);
+bool art_iterator_prev(art_iterator_t *iterator);
+
+/**
+ * Moves the iterator forward to a key equal to or greater than the given key.
+ */
+bool art_iterator_lower_bound(art_iterator_t *iterator,
+                              const art_key_chunk_t *key);
+
+/**
+ * Insert the value and positions the iterator at the key.
+ */
+void art_iterator_insert(art_t *art, art_iterator_t *iterator,
+                         const art_key_chunk_t *key, art_val_t *val);
+
+/**
+ * Erase the value pointed at by the iterator. Moves the iterator to the next
+ * leaf. Returns the value erased or NULL if nothing was erased.
+ */
+art_val_t *art_iterator_erase(art_t *art, art_iterator_t *iterator);
+
+#ifdef __cplusplus
+}  // extern "C"
+}  // namespace roaring
+}  // namespace internal
+#endif
+
+#endif
+/* end file include/roaring/art/art.h */
+/* begin file src/array_util.c */
+#include <assert.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif  // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#ifdef __cplusplus
+using namespace ::roaring::internal;
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+extern inline int32_t binarySearch(const uint16_t *array, int32_t lenarray,
+                                   uint16_t ikey);
+
+#if CROARING_IS_X64
+// used by intersect_vector16
+ALIGNED(0x1000)
+static const uint8_t shuffle_mask16[] = {
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    6,    7,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,    0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    6,    7,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    6,    7,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    6,    7,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    6,    7,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    6,    7,    0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    8,    9,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    8,    9,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    8,    9,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    8,    9,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    6,    7,    8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,    8,    9,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,
+    8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    6,    7,    8,    9,    0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,    8,    9,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    6,    7,    8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    6,    7,    8,    9,    0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    6,    7,
+    8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 10,   11,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    10,   11,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    6,    7,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    6,    7,    10,   11,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    6,    7,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    6,    7,    10,   11,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    6,    7,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    8,    9,    10,   11,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    8,    9,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    8,    9,    10,   11,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    8,    9,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    8,    9,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    6,    7,    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,    8,    9,    10,   11,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    6,    7,    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    6,    7,    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    6,    7,    8,    9,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    6,    7,    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    6,    7,    8,    9,    10,   11,
+    0xFF, 0xFF, 0xFF, 0xFF, 12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    6,    7,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    6,    7,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    6,    7,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    6,    7,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    6,    7,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 8,    9,    12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    8,    9,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    8,    9,    12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    8,    9,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    8,    9,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,
+    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    6,    7,    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    6,    7,    8,    9,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,
+    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    6,    7,    8,    9,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    6,    7,    8,    9,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    6,    7,    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    10,   11,   12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    10,   11,   12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    6,    7,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,    10,   11,   12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    6,    7,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    6,    7,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    6,    7,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    6,    7,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    6,    7,    10,   11,   12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 8,    9,    10,   11,   12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    8,    9,
+    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    8,    9,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    8,    9,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    8,    9,
+    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    8,    9,    10,   11,   12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    8,    9,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    8,    9,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    6,    7,    8,    9,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,    8,    9,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,
+    8,    9,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    6,    7,    8,    9,    10,   11,   12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,    8,    9,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    6,    7,    8,    9,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    6,    7,    8,    9,    10,   11,   12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    6,    7,
+    8,    9,    10,   11,   12,   13,   0xFF, 0xFF, 14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    6,    7,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    6,    7,    14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    6,    7,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    6,    7,    14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    6,    7,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    8,    9,    14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    8,    9,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    8,    9,    14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    8,    9,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    8,    9,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    6,    7,    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,    8,    9,    14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    6,    7,    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    6,    7,    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    6,    7,    8,    9,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    6,    7,    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    6,    7,    8,    9,    14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    10,   11,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    10,   11,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    6,    7,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,
+    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    6,    7,    10,   11,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    6,    7,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    6,    7,    10,   11,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    6,    7,
+    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 8,    9,    10,   11,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    8,    9,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    8,    9,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    8,    9,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    8,    9,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    8,    9,    10,   11,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    8,    9,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    8,    9,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    8,    9,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,
+    8,    9,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    6,    7,    8,    9,    10,   11,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    6,    7,    8,    9,
+    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,
+    8,    9,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    6,    7,    8,    9,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    6,    7,    8,    9,
+    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    6,    7,    8,    9,    10,   11,   14,   15,   0xFF, 0xFF,
+    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    12,   13,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    12,   13,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    6,    7,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,    12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    6,    7,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    6,    7,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    6,    7,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    6,    7,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    6,    7,    12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 8,    9,    12,   13,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    8,    9,
+    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    8,    9,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    8,    9,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    8,    9,
+    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    8,    9,    12,   13,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    8,    9,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    8,    9,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    6,    7,    8,    9,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,    8,    9,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,
+    8,    9,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    6,    7,    8,    9,    12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,    8,    9,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    6,    7,    8,    9,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    6,    7,    8,    9,    12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    6,    7,
+    8,    9,    12,   13,   14,   15,   0xFF, 0xFF, 10,   11,   12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    10,   11,   12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    6,    7,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    6,    7,    10,   11,
+    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    6,    7,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    6,    7,    10,   11,
+    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    6,    7,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF,
+    8,    9,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    8,    9,    10,   11,   12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    8,    9,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    8,    9,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    8,    9,    10,   11,   12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    8,    9,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    8,    9,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    8,    9,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 6,    7,    8,    9,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    6,    7,    8,    9,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,    8,    9,    10,   11,
+    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    6,    7,    8,    9,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF,
+    4,    5,    6,    7,    8,    9,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    6,    7,    8,    9,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 2,    3,    4,    5,
+    6,    7,    8,    9,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    6,    7,    8,    9,    10,   11,
+    12,   13,   14,   15};
+
+/**
+ * From Schlegel et al., Fast Sorted-Set Intersection using SIMD Instructions
+ * Optimized by D. Lemire on May 3rd 2013
+ */
+CROARING_TARGET_AVX2
+int32_t intersect_vector16(const uint16_t *__restrict__ A, size_t s_a,
+                           const uint16_t *__restrict__ B, size_t s_b,
+                           uint16_t *C) {
+    size_t count = 0;
+    size_t i_a = 0, i_b = 0;
+    const int vectorlength = sizeof(__m128i) / sizeof(uint16_t);
+    const size_t st_a = (s_a / vectorlength) * vectorlength;
+    const size_t st_b = (s_b / vectorlength) * vectorlength;
+    __m128i v_a, v_b;
+    if ((i_a < st_a) && (i_b < st_b)) {
+        v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+        v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+        while ((A[i_a] == 0) || (B[i_b] == 0)) {
+            const __m128i res_v = _mm_cmpestrm(
+                v_b, vectorlength, v_a, vectorlength,
+                _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+            const int r = _mm_extract_epi32(res_v, 0);
+            __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16 + 
r);
+            __m128i p = _mm_shuffle_epi8(v_a, sm16);
+            _mm_storeu_si128((__m128i *)&C[count], p);  // can overflow
+            count += _mm_popcnt_u32(r);
+            const uint16_t a_max = A[i_a + vectorlength - 1];
+            const uint16_t b_max = B[i_b + vectorlength - 1];
+            if (a_max <= b_max) {
+                i_a += vectorlength;
+                if (i_a == st_a) break;
+                v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+            }
+            if (b_max <= a_max) {
+                i_b += vectorlength;
+                if (i_b == st_b) break;
+                v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+            }
+        }
+        if ((i_a < st_a) && (i_b < st_b))
+            while (true) {
+                const __m128i res_v = _mm_cmpistrm(
+                    v_b, v_a,
+                    _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+                const int r = _mm_extract_epi32(res_v, 0);
+                __m128i sm16 =
+                    _mm_loadu_si128((const __m128i *)shuffle_mask16 + r);
+                __m128i p = _mm_shuffle_epi8(v_a, sm16);
+                _mm_storeu_si128((__m128i *)&C[count], p);  // can overflow
+                count += _mm_popcnt_u32(r);
+                const uint16_t a_max = A[i_a + vectorlength - 1];
+                const uint16_t b_max = B[i_b + vectorlength - 1];
+                if (a_max <= b_max) {
+                    i_a += vectorlength;
+                    if (i_a == st_a) break;
+                    v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+                }
+                if (b_max <= a_max) {
+                    i_b += vectorlength;
+                    if (i_b == st_b) break;
+                    v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+                }
+            }
+    }
+    // intersect the tail using scalar intersection
+    while (i_a < s_a && i_b < s_b) {
+        uint16_t a = A[i_a];
+        uint16_t b = B[i_b];
+        if (a < b) {
+            i_a++;
+        } else if (b < a) {
+            i_b++;
+        } else {
+            C[count] = a;  //==b;
+            count++;
+            i_a++;
+            i_b++;
+        }
+    }
+    return (int32_t)count;
+}
+
+ALLOW_UNALIGNED
+int array_container_to_uint32_array_vector16(void *vout, const uint16_t *array,
+                                             size_t cardinality,
+                                             uint32_t base) {
+    int outpos = 0;
+    uint32_t *out = (uint32_t *)vout;
+    size_t i = 0;
+    for (; i + sizeof(__m128i) / sizeof(uint16_t) <= cardinality;
+         i += sizeof(__m128i) / sizeof(uint16_t)) {
+        __m128i vinput = _mm_loadu_si128((const __m128i *)(array + i));
+        __m256i voutput = _mm256_add_epi32(_mm256_cvtepu16_epi32(vinput),
+                                           _mm256_set1_epi32(base));
+        _mm256_storeu_si256((__m256i *)(out + outpos), voutput);
+        outpos += sizeof(__m256i) / sizeof(uint32_t);
+    }
+    for (; i < cardinality; ++i) {
+        const uint32_t val = base + array[i];
+        memcpy(out + outpos, &val,
+               sizeof(uint32_t));  // should be compiled as a MOV on x64
+        outpos++;
+    }
+    return outpos;
+}
+
+int32_t intersect_vector16_inplace(uint16_t *__restrict__ A, size_t s_a,
+                                   const uint16_t *__restrict__ B, size_t s_b) 
{
+    size_t count = 0;
+    size_t i_a = 0, i_b = 0;
+    const int vectorlength = sizeof(__m128i) / sizeof(uint16_t);
+    const size_t st_a = (s_a / vectorlength) * vectorlength;
+    const size_t st_b = (s_b / vectorlength) * vectorlength;
+    __m128i v_a, v_b;
+    if ((i_a < st_a) && (i_b < st_b)) {
+        v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+        v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+        __m128i tmp[2] = {_mm_setzero_si128()};
+        size_t tmp_count = 0;
+        while ((A[i_a] == 0) || (B[i_b] == 0)) {
+            const __m128i res_v = _mm_cmpestrm(
+                v_b, vectorlength, v_a, vectorlength,
+                _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+            const int r = _mm_extract_epi32(res_v, 0);
+            __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16 + 
r);
+            __m128i p = _mm_shuffle_epi8(v_a, sm16);
+            _mm_storeu_si128((__m128i *)&((uint16_t *)tmp)[tmp_count], p);
+            tmp_count += _mm_popcnt_u32(r);
+            const uint16_t a_max = A[i_a + vectorlength - 1];
+            const uint16_t b_max = B[i_b + vectorlength - 1];
+            if (a_max <= b_max) {
+                _mm_storeu_si128((__m128i *)&A[count], tmp[0]);
+                _mm_storeu_si128(tmp, _mm_setzero_si128());
+                count += tmp_count;
+                tmp_count = 0;
+                i_a += vectorlength;
+                if (i_a == st_a) break;
+                v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+            }
+            if (b_max <= a_max) {
+                i_b += vectorlength;
+                if (i_b == st_b) break;
+                v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+            }
+        }
+        if ((i_a < st_a) && (i_b < st_b)) {
+            while (true) {
+                const __m128i res_v = _mm_cmpistrm(
+                    v_b, v_a,
+                    _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+                const int r = _mm_extract_epi32(res_v, 0);
+                __m128i sm16 =
+                    _mm_loadu_si128((const __m128i *)shuffle_mask16 + r);
+                __m128i p = _mm_shuffle_epi8(v_a, sm16);
+                _mm_storeu_si128((__m128i *)&((uint16_t *)tmp)[tmp_count], p);
+                tmp_count += _mm_popcnt_u32(r);
+                const uint16_t a_max = A[i_a + vectorlength - 1];
+                const uint16_t b_max = B[i_b + vectorlength - 1];
+                if (a_max <= b_max) {
+                    _mm_storeu_si128((__m128i *)&A[count], tmp[0]);
+                    _mm_storeu_si128(tmp, _mm_setzero_si128());
+                    count += tmp_count;
+                    tmp_count = 0;
+                    i_a += vectorlength;
+                    if (i_a == st_a) break;
+                    v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+                }
+                if (b_max <= a_max) {
+                    i_b += vectorlength;
+                    if (i_b == st_b) break;
+                    v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+                }
+            }
+        }
+        // tmp_count <= 8, so this does not affect efficiency so much
+        for (size_t i = 0; i < tmp_count; i++) {
+            A[count] = ((uint16_t *)tmp)[i];
+            count++;
+        }
+        i_a += tmp_count;  // We can at least jump pass $tmp_count elements in 
A
+    }
+    // intersect the tail using scalar intersection
+    while (i_a < s_a && i_b < s_b) {
+        uint16_t a = A[i_a];
+        uint16_t b = B[i_b];
+        if (a < b) {
+            i_a++;
+        } else if (b < a) {
+            i_b++;
+        } else {
+            A[count] = a;  //==b;
+            count++;
+            i_a++;
+            i_b++;
+        }
+    }
+    return (int32_t)count;
+}
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+int32_t intersect_vector16_cardinality(const uint16_t *__restrict__ A,
+                                       size_t s_a,
+                                       const uint16_t *__restrict__ B,
+                                       size_t s_b) {
+    size_t count = 0;
+    size_t i_a = 0, i_b = 0;
+    const int vectorlength = sizeof(__m128i) / sizeof(uint16_t);
+    const size_t st_a = (s_a / vectorlength) * vectorlength;
+    const size_t st_b = (s_b / vectorlength) * vectorlength;
+    __m128i v_a, v_b;
+    if ((i_a < st_a) && (i_b < st_b)) {
+        v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+        v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+        while ((A[i_a] == 0) || (B[i_b] == 0)) {
+            const __m128i res_v = _mm_cmpestrm(
+                v_b, vectorlength, v_a, vectorlength,
+                _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+            const int r = _mm_extract_epi32(res_v, 0);
+            count += _mm_popcnt_u32(r);
+            const uint16_t a_max = A[i_a + vectorlength - 1];
+            const uint16_t b_max = B[i_b + vectorlength - 1];
+            if (a_max <= b_max) {
+                i_a += vectorlength;
+                if (i_a == st_a) break;
+                v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+            }
+            if (b_max <= a_max) {
+                i_b += vectorlength;
+                if (i_b == st_b) break;
+                v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+            }
+        }
+        if ((i_a < st_a) && (i_b < st_b))
+            while (true) {
+                const __m128i res_v = _mm_cmpistrm(
+                    v_b, v_a,
+                    _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+                const int r = _mm_extract_epi32(res_v, 0);
+                count += _mm_popcnt_u32(r);
+                const uint16_t a_max = A[i_a + vectorlength - 1];
+                const uint16_t b_max = B[i_b + vectorlength - 1];
+                if (a_max <= b_max) {
+                    i_a += vectorlength;
+                    if (i_a == st_a) break;
+                    v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+                }
+                if (b_max <= a_max) {
+                    i_b += vectorlength;
+                    if (i_b == st_b) break;
+                    v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+                }
+            }
+    }
+    // intersect the tail using scalar intersection
+    while (i_a < s_a && i_b < s_b) {
+        uint16_t a = A[i_a];
+        uint16_t b = B[i_b];
+        if (a < b) {
+            i_a++;
+        } else if (b < a) {
+            i_b++;
+        } else {
+            count++;
+            i_a++;
+            i_b++;
+        }
+    }
+    return (int32_t)count;
+}
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+/////////
+// Warning:
+// This function may not be safe if A == C or B == C.
+/////////
+int32_t difference_vector16(const uint16_t *__restrict__ A, size_t s_a,
+                            const uint16_t *__restrict__ B, size_t s_b,
+                            uint16_t *C) {
+    // we handle the degenerate case
+    if (s_a == 0) return 0;
+    if (s_b == 0) {
+        if (A != C) memcpy(C, A, sizeof(uint16_t) * s_a);
+        return (int32_t)s_a;
+    }
+    // handle the leading zeroes, it is messy but it allows us to use the fast
+    // _mm_cmpistrm instrinsic safely
+    int32_t count = 0;
+    if ((A[0] == 0) || (B[0] == 0)) {
+        if ((A[0] == 0) && (B[0] == 0)) {
+            A++;
+            s_a--;
+            B++;
+            s_b--;
+        } else if (A[0] == 0) {
+            C[count++] = 0;
+            A++;
+            s_a--;
+        } else {
+            B++;
+            s_b--;
+        }
+    }
+    // at this point, we have two non-empty arrays, made of non-zero
+    // increasing values.
+    size_t i_a = 0, i_b = 0;
+    const size_t vectorlength = sizeof(__m128i) / sizeof(uint16_t);
+    const size_t st_a = (s_a / vectorlength) * vectorlength;
+    const size_t st_b = (s_b / vectorlength) * vectorlength;
+    if ((i_a < st_a) && (i_b < st_b)) {  // this is the vectorized code path
+        __m128i v_a, v_b;                //, v_bmax;
+        // we load a vector from A and a vector from B
+        v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+        v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+        // we have a runningmask which indicates which values from A have been
+        // spotted in B, these don't get written out.
+        __m128i runningmask_a_found_in_b = _mm_setzero_si128();
+        /****
+         * start of the main vectorized loop
+         *****/
+        while (true) {
+            // afoundinb will contain a mask indicate for each entry in A
+            // whether it is seen
+            // in B
+            const __m128i a_found_in_b = _mm_cmpistrm(
+                v_b, v_a,
+                _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+            runningmask_a_found_in_b =
+                _mm_or_si128(runningmask_a_found_in_b, a_found_in_b);
+            // we always compare the last values of A and B
+            const uint16_t a_max = A[i_a + vectorlength - 1];
+            const uint16_t b_max = B[i_b + vectorlength - 1];
+            if (a_max <= b_max) {
+                // Ok. In this code path, we are ready to write our v_a
+                // because there is no need to read more from B, they will
+                // all be large values.
+                const int bitmask_belongs_to_difference =
+                    _mm_extract_epi32(runningmask_a_found_in_b, 0) ^ 0xFF;
+                /*** next few lines are probably expensive *****/
+                __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16 
+
+                                               bitmask_belongs_to_difference);
+                __m128i p = _mm_shuffle_epi8(v_a, sm16);
+                _mm_storeu_si128((__m128i *)&C[count], p);  // can overflow
+                count += _mm_popcnt_u32(bitmask_belongs_to_difference);
+                // we advance a
+                i_a += vectorlength;
+                if (i_a == st_a)  // no more
+                    break;
+                runningmask_a_found_in_b = _mm_setzero_si128();
+                v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+            }
+            if (b_max <= a_max) {
+                // in this code path, the current v_b has become useless
+                i_b += vectorlength;
+                if (i_b == st_b) break;
+                v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+            }
+        }
+        // at this point, either we have i_a == st_a, which is the end of the
+        // vectorized processing,
+        // or we have i_b == st_b,  and we are not done processing the 
vector...
+        // so we need to finish it off.
+        if (i_a < st_a) {        // we have unfinished business...
+            uint16_t buffer[8];  // buffer to do a masked load
+            memset(buffer, 0, 8 * sizeof(uint16_t));
+            memcpy(buffer, B + i_b, (s_b - i_b) * sizeof(uint16_t));
+            v_b = _mm_lddqu_si128((__m128i *)buffer);
+            const __m128i a_found_in_b = _mm_cmpistrm(
+                v_b, v_a,
+                _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+            runningmask_a_found_in_b =
+                _mm_or_si128(runningmask_a_found_in_b, a_found_in_b);
+            const int bitmask_belongs_to_difference =
+                _mm_extract_epi32(runningmask_a_found_in_b, 0) ^ 0xFF;
+            __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16 +
+                                           bitmask_belongs_to_difference);
+            __m128i p = _mm_shuffle_epi8(v_a, sm16);
+            _mm_storeu_si128((__m128i *)&C[count], p);  // can overflow
+            count += _mm_popcnt_u32(bitmask_belongs_to_difference);
+            i_a += vectorlength;
+        }
+        // at this point we should have i_a == st_a and i_b == st_b
+    }
+    // do the tail using scalar code
+    while (i_a < s_a && i_b < s_b) {
+        uint16_t a = A[i_a];
+        uint16_t b = B[i_b];
+        if (b < a) {
+            i_b++;
+        } else if (a < b) {
+            C[count] = a;
+            count++;
+            i_a++;
+        } else {  //==
+            i_a++;
+            i_b++;
+        }
+    }
+    if (i_a < s_a) {
+        if (C == A) {
+            assert((size_t)count <= i_a);
+            if ((size_t)count < i_a) {
+                memmove(C + count, A + i_a, sizeof(uint16_t) * (s_a - i_a));
+            }
+        } else {
+            for (size_t i = 0; i < (s_a - i_a); i++) {
+                C[count + i] = A[i + i_a];
+            }
+        }
+        count += (int32_t)(s_a - i_a);
+    }
+    return count;
+}
+CROARING_UNTARGET_AVX2
+#endif  // CROARING_IS_X64
+
+/**
+ * Branchless binary search going after 4 values at once.
+ * Assumes that array is sorted.
+ * You have that array[*index1] >= target1, array[*index12] >= target2, ...
+ * except when *index1 = n, in which case you know that all values in array are
+ * smaller than target1, and so forth.
+ * It has logarithmic complexity.
+ */
+static void binarySearch4(const uint16_t *array, int32_t n, uint16_t target1,
+                          uint16_t target2, uint16_t target3, uint16_t target4,
+                          int32_t *index1, int32_t *index2, int32_t *index3,
+                          int32_t *index4) {
+    const uint16_t *base1 = array;
+    const uint16_t *base2 = array;
+    const uint16_t *base3 = array;
+    const uint16_t *base4 = array;
+    if (n == 0) return;
+    while (n > 1) {
+        int32_t half = n >> 1;
+        base1 = (base1[half] < target1) ? &base1[half] : base1;
+        base2 = (base2[half] < target2) ? &base2[half] : base2;
+        base3 = (base3[half] < target3) ? &base3[half] : base3;
+        base4 = (base4[half] < target4) ? &base4[half] : base4;
+        n -= half;
+    }
+    *index1 = (int32_t)((*base1 < target1) + base1 - array);
+    *index2 = (int32_t)((*base2 < target2) + base2 - array);
+    *index3 = (int32_t)((*base3 < target3) + base3 - array);
+    *index4 = (int32_t)((*base4 < target4) + base4 - array);
+}
+
+/**
+ * Branchless binary search going after 2 values at once.
+ * Assumes that array is sorted.
+ * You have that array[*index1] >= target1, array[*index12] >= target2.
+ * except when *index1 = n, in which case you know that all values in array are
+ * smaller than target1, and so forth.
+ * It has logarithmic complexity.
+ */
+static void binarySearch2(const uint16_t *array, int32_t n, uint16_t target1,
+                          uint16_t target2, int32_t *index1, int32_t *index2) {
+    const uint16_t *base1 = array;
+    const uint16_t *base2 = array;
+    if (n == 0) return;
+    while (n > 1) {
+        int32_t half = n >> 1;
+        base1 = (base1[half] < target1) ? &base1[half] : base1;
+        base2 = (base2[half] < target2) ? &base2[half] : base2;
+        n -= half;
+    }
+    *index1 = (int32_t)((*base1 < target1) + base1 - array);
+    *index2 = (int32_t)((*base2 < target2) + base2 - array);
+}
+
+/* Computes the intersection between one small and one large set of uint16_t.
+ * Stores the result into buffer and return the number of elements.
+ * Processes the small set in blocks of 4 values calling binarySearch4
+ * and binarySearch2. This approach can be slightly superior to a conventional
+ * galloping search in some instances.
+ */
+int32_t intersect_skewed_uint16(const uint16_t *small, size_t size_s,
+                                const uint16_t *large, size_t size_l,
+                                uint16_t *buffer) {
+    size_t pos = 0, idx_l = 0, idx_s = 0;
+
+    if (0 == size_s) {
+        return 0;
+    }
+    int32_t index1 = 0, index2 = 0, index3 = 0, index4 = 0;
+    while ((idx_s + 4 <= size_s) && (idx_l < size_l)) {
+        uint16_t target1 = small[idx_s];
+        uint16_t target2 = small[idx_s + 1];
+        uint16_t target3 = small[idx_s + 2];
+        uint16_t target4 = small[idx_s + 3];
+        binarySearch4(large + idx_l, (int32_t)(size_l - idx_l), target1,
+                      target2, target3, target4, &index1, &index2, &index3,
+                      &index4);
+        if ((index1 + idx_l < size_l) && (large[idx_l + index1] == target1)) {
+            buffer[pos++] = target1;
+        }
+        if ((index2 + idx_l < size_l) && (large[idx_l + index2] == target2)) {
+            buffer[pos++] = target2;
+        }
+        if ((index3 + idx_l < size_l) && (large[idx_l + index3] == target3)) {
+            buffer[pos++] = target3;
+        }
+        if ((index4 + idx_l < size_l) && (large[idx_l + index4] == target4)) {
+            buffer[pos++] = target4;
+        }
+        idx_s += 4;
+        idx_l += index4;
+    }
+    if ((idx_s + 2 <= size_s) && (idx_l < size_l)) {
+        uint16_t target1 = small[idx_s];
+        uint16_t target2 = small[idx_s + 1];
+        binarySearch2(large + idx_l, (int32_t)(size_l - idx_l), target1,
+                      target2, &index1, &index2);
+        if ((index1 + idx_l < size_l) && (large[idx_l + index1] == target1)) {
+            buffer[pos++] = target1;
+        }
+        if ((index2 + idx_l < size_l) && (large[idx_l + index2] == target2)) {
+            buffer[pos++] = target2;
+        }
+        idx_s += 2;
+        idx_l += index2;
+    }
+    if ((idx_s < size_s) && (idx_l < size_l)) {
+        uint16_t val_s = small[idx_s];
+        int32_t index =
+            binarySearch(large + idx_l, (int32_t)(size_l - idx_l), val_s);
+        if (index >= 0) buffer[pos++] = val_s;
+    }
+    return (int32_t)pos;
+}
+
+// TODO: this could be accelerated, possibly, by using binarySearch4 as above.
+int32_t intersect_skewed_uint16_cardinality(const uint16_t *small,
+                                            size_t size_s,
+                                            const uint16_t *large,
+                                            size_t size_l) {
+    size_t pos = 0, idx_l = 0, idx_s = 0;
+
+    if (0 == size_s) {
+        return 0;
+    }
+
+    uint16_t val_l = large[idx_l], val_s = small[idx_s];
+
+    while (true) {
+        if (val_l < val_s) {
+            idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, 
val_s);
+            if (idx_l == size_l) break;
+            val_l = large[idx_l];
+        } else if (val_s < val_l) {
+            idx_s++;
+            if (idx_s == size_s) break;
+            val_s = small[idx_s];
+        } else {
+            pos++;
+            idx_s++;
+            if (idx_s == size_s) break;
+            val_s = small[idx_s];
+            idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, 
val_s);
+            if (idx_l == size_l) break;
+            val_l = large[idx_l];
+        }
+    }
+
+    return (int32_t)pos;
+}
+
+bool intersect_skewed_uint16_nonempty(const uint16_t *small, size_t size_s,
+                                      const uint16_t *large, size_t size_l) {
+    size_t idx_l = 0, idx_s = 0;
+
+    if (0 == size_s) {
+        return false;
+    }
+
+    uint16_t val_l = large[idx_l], val_s = small[idx_s];
+
+    while (true) {
+        if (val_l < val_s) {
+            idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, 
val_s);
+            if (idx_l == size_l) break;
+            val_l = large[idx_l];
+        } else if (val_s < val_l) {
+            idx_s++;
+            if (idx_s == size_s) break;
+            val_s = small[idx_s];
+        } else {
+            return true;
+        }
+    }
+
+    return false;
+}
+
+/**
+ * Generic intersection function.
+ */
+int32_t intersect_uint16(const uint16_t *A, const size_t lenA,
+                         const uint16_t *B, const size_t lenB, uint16_t *out) {
+    const uint16_t *initout = out;
+    if (lenA == 0 || lenB == 0) return 0;
+    const uint16_t *endA = A + lenA;
+    const uint16_t *endB = B + lenB;
+
+    while (1) {
+        while (*A < *B) {
+        SKIP_FIRST_COMPARE:
+            if (++A == endA) return (int32_t)(out - initout);
+        }
+        while (*A > *B) {
+            if (++B == endB) return (int32_t)(out - initout);
+        }
+        if (*A == *B) {
+            *out++ = *A;
+            if (++A == endA || ++B == endB) return (int32_t)(out - initout);
+        } else {
+            goto SKIP_FIRST_COMPARE;
+        }
+    }
+    // return (int32_t)(out - initout);  // NOTREACHED
+}
+
+int32_t intersect_uint16_cardinality(const uint16_t *A, const size_t lenA,
+                                     const uint16_t *B, const size_t lenB) {
+    int32_t answer = 0;
+    if (lenA == 0 || lenB == 0) return 0;
+    const uint16_t *endA = A + lenA;
+    const uint16_t *endB = B + lenB;
+
+    while (1) {
+        while (*A < *B) {
+        SKIP_FIRST_COMPARE:
+            if (++A == endA) return answer;
+        }
+        while (*A > *B) {
+            if (++B == endB) return answer;
+        }
+        if (*A == *B) {
+            ++answer;
+            if (++A == endA || ++B == endB) return answer;
+        } else {
+            goto SKIP_FIRST_COMPARE;
+        }
+    }
+    // return answer;  // NOTREACHED
+}
+
+bool intersect_uint16_nonempty(const uint16_t *A, const size_t lenA,
+                               const uint16_t *B, const size_t lenB) {
+    if (lenA == 0 || lenB == 0) return 0;
+    const uint16_t *endA = A + lenA;
+    const uint16_t *endB = B + lenB;
+
+    while (1) {
+        while (*A < *B) {
+        SKIP_FIRST_COMPARE:
+            if (++A == endA) return false;
+        }
+        while (*A > *B) {
+            if (++B == endB) return false;
+        }
+        if (*A == *B) {
+            return true;
+        } else {
+            goto SKIP_FIRST_COMPARE;
+        }
+    }
+    return false;  // NOTREACHED
+}
+
+/**
+ * Generic intersection function.
+ */
+size_t intersection_uint32(const uint32_t *A, const size_t lenA,
+                           const uint32_t *B, const size_t lenB,
+                           uint32_t *out) {
+    const uint32_t *initout = out;
+    if (lenA == 0 || lenB == 0) return 0;
+    const uint32_t *endA = A + lenA;
+    const uint32_t *endB = B + lenB;
+
+    while (1) {
+        while (*A < *B) {
+        SKIP_FIRST_COMPARE:
+            if (++A == endA) return (out - initout);
+        }
+        while (*A > *B) {
+            if (++B == endB) return (out - initout);
+        }
+        if (*A == *B) {
+            *out++ = *A;
+            if (++A == endA || ++B == endB) return (out - initout);
+        } else {
+            goto SKIP_FIRST_COMPARE;
+        }
+    }
+    // return (out - initout);  // NOTREACHED
+}
+
+size_t intersection_uint32_card(const uint32_t *A, const size_t lenA,
+                                const uint32_t *B, const size_t lenB) {
+    if (lenA == 0 || lenB == 0) return 0;
+    size_t card = 0;
+    const uint32_t *endA = A + lenA;
+    const uint32_t *endB = B + lenB;
+
+    while (1) {
+        while (*A < *B) {
+        SKIP_FIRST_COMPARE:
+            if (++A == endA) return card;
+        }
+        while (*A > *B) {
+            if (++B == endB) return card;
+        }
+        if (*A == *B) {
+            card++;
+            if (++A == endA || ++B == endB) return card;
+        } else {
+            goto SKIP_FIRST_COMPARE;
+        }
+    }
+    // return card;  // NOTREACHED
+}
+
+// can one vectorize the computation of the union? (Update: Yes! See
+// union_vector16).
+
+size_t union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t 
*set_2,
+                    size_t size_2, uint16_t *buffer) {
+    size_t pos = 0, idx_1 = 0, idx_2 = 0;
+
+    if (0 == size_2) {
+        memmove(buffer, set_1, size_1 * sizeof(uint16_t));
+        return size_1;
+    }
+    if (0 == size_1) {
+        memmove(buffer, set_2, size_2 * sizeof(uint16_t));
+        return size_2;
+    }
+
+    uint16_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
+
+    while (true) {
+        if (val_1 < val_2) {
+            buffer[pos++] = val_1;
+            ++idx_1;
+            if (idx_1 >= size_1) break;
+            val_1 = set_1[idx_1];
+        } else if (val_2 < val_1) {
+            buffer[pos++] = val_2;
+            ++idx_2;
+            if (idx_2 >= size_2) break;
+            val_2 = set_2[idx_2];
+        } else {
+            buffer[pos++] = val_1;
+            ++idx_1;
+            ++idx_2;
+            if (idx_1 >= size_1 || idx_2 >= size_2) break;
+            val_1 = set_1[idx_1];
+            val_2 = set_2[idx_2];
+        }
+    }
+
+    if (idx_1 < size_1) {
+        const size_t n_elems = size_1 - idx_1;
+        memmove(buffer + pos, set_1 + idx_1, n_elems * sizeof(uint16_t));
+        pos += n_elems;
+    } else if (idx_2 < size_2) {
+        const size_t n_elems = size_2 - idx_2;
+        memmove(buffer + pos, set_2 + idx_2, n_elems * sizeof(uint16_t));
+        pos += n_elems;
+    }
+
+    return pos;
+}
+
+int difference_uint16(const uint16_t *a1, int length1, const uint16_t *a2,
+                      int length2, uint16_t *a_out) {
+    int out_card = 0;
+    int k1 = 0, k2 = 0;
+    if (length1 == 0) return 0;
+    if (length2 == 0) {
+        if (a1 != a_out) memcpy(a_out, a1, sizeof(uint16_t) * length1);
+        return length1;
+    }
+    uint16_t s1 = a1[k1];
+    uint16_t s2 = a2[k2];
+    while (true) {
+        if (s1 < s2) {
+            a_out[out_card++] = s1;
+            ++k1;
+            if (k1 >= length1) {
+                break;
+            }
+            s1 = a1[k1];
+        } else if (s1 == s2) {
+            ++k1;
+            ++k2;
+            if (k1 >= length1) {
+                break;
+            }
+            if (k2 >= length2) {
+                memmove(a_out + out_card, a1 + k1,
+                        sizeof(uint16_t) * (length1 - k1));
+                return out_card + length1 - k1;
+            }
+            s1 = a1[k1];
+            s2 = a2[k2];
+        } else {  // if (val1>val2)
+            ++k2;
+            if (k2 >= length2) {
+                memmove(a_out + out_card, a1 + k1,
+                        sizeof(uint16_t) * (length1 - k1));
+                return out_card + length1 - k1;
+            }
+            s2 = a2[k2];
+        }
+    }
+    return out_card;
+}
+
+int32_t xor_uint16(const uint16_t *array_1, int32_t card_1,
+                   const uint16_t *array_2, int32_t card_2, uint16_t *out) {
+    int32_t pos1 = 0, pos2 = 0, pos_out = 0;
+    while (pos1 < card_1 && pos2 < card_2) {
+        const uint16_t v1 = array_1[pos1];
+        const uint16_t v2 = array_2[pos2];
+        if (v1 == v2) {
+            ++pos1;
+            ++pos2;
+            continue;
+        }
+        if (v1 < v2) {
+            out[pos_out++] = v1;
+            ++pos1;
+        } else {
+            out[pos_out++] = v2;
+            ++pos2;
+        }
+    }
+    if (pos1 < card_1) {
+        const size_t n_elems = card_1 - pos1;
+        memcpy(out + pos_out, array_1 + pos1, n_elems * sizeof(uint16_t));
+        pos_out += (int32_t)n_elems;
+    } else if (pos2 < card_2) {
+        const size_t n_elems = card_2 - pos2;
+        memcpy(out + pos_out, array_2 + pos2, n_elems * sizeof(uint16_t));
+        pos_out += (int32_t)n_elems;
+    }
+    return pos_out;
+}
+
+#if CROARING_IS_X64
+
+/***
+ * start of the SIMD 16-bit union code
+ *
+ */
+CROARING_TARGET_AVX2
+
+// Assuming that vInput1 and vInput2 are sorted, produces a sorted output going
+// from vecMin all the way to vecMax
+// developed originally for merge sort using SIMD instructions.
+// Standard merge. See, e.g., Inoue and Taura, SIMD- and Cache-Friendly
+// Algorithm for Sorting an Array of Structures
+static inline void sse_merge(const __m128i *vInput1,
+                             const __m128i *vInput2,              // input 1 & 
2
+                             __m128i *vecMin, __m128i *vecMax) {  // output
+    __m128i vecTmp;
+    vecTmp = _mm_min_epu16(*vInput1, *vInput2);
+    *vecMax = _mm_max_epu16(*vInput1, *vInput2);
+    vecTmp = _mm_alignr_epi8(vecTmp, vecTmp, 2);
+    *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+    *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+    vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+    *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+    *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+    vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+    *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+    *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+    vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+    *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+    *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+    vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+    *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+    *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+    vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+    *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+    *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+    vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+    *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+    *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+    *vecMin = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+}
+CROARING_UNTARGET_AVX2
+// used by store_unique, generated by simdunion.py
+static uint8_t uniqshuf[] = {
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,
+    0xc,  0xd,  0xe,  0xf,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,
+    0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0x8,  0x9,
+    0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,
+    0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x8,  0x9,  0xa,  0xb,
+    0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x8,  0x9,
+    0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x8,  0x9,
+    0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,
+    0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,  0xa,  0xb,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0xa,  0xb,
+    0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0xa,  0xb,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0xa,  0xb,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0xa,  0xb,
+    0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,
+    0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,
+    0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,
+    0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x8,  0x9,
+    0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8,  0x9,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x6,  0x7,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0x6,  0x7,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,
+    0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x6,  0x7,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,
+    0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0x8,  0x9,
+    0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0x8,  0x9,  0xa,  0xb,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x8,  0x9,  0xa,  0xb,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x8,  0x9,
+    0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0xa,  0xb,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,
+    0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,  0xa,  0xb,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,
+    0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x6,  0x7,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0xa,  0xb,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xa,  0xb,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x6,  0x7,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0x8,  0x9,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,
+    0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x6,  0x7,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x8,  0x9,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x8,  0x9,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x8,  0x9,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x6,  0x7,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x6,  0x7,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x6,  0x7,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,
+    0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,
+    0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,
+    0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x8,  0x9,
+    0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8,  0x9,  0xa,  0xb,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xa,  0xb,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0xa,  0xb,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,
+    0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0xa,  0xb,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0xa,  0xb,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0xa,  0xb,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,
+    0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0x8,  0x9,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0x8,  0x9,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x8,  0x9,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x8,  0x9,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x6,  0x7,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,  0xc,  0xd,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x6,  0x7,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xc,  0xd,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,
+    0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0x8,  0x9,
+    0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,
+    0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x8,  0x9,  0xa,  0xb,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x8,  0x9,
+    0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x8,  0x9,
+    0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,
+    0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x6,  0x7,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x6,  0x7,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x6,  0x7,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,  0xa,  0xb,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0xa,  0xb,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0xa,  0xb,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0xa,  0xb,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0xa,  0xb,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,
+    0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,
+    0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x6,  0x7,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x8,  0x9,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8,  0x9,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x6,  0x7,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0x6,  0x7,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x6,  0x7,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF};
+CROARING_TARGET_AVX2
+// write vector new, while omitting repeated values assuming that previously
+// written vector was "old"
+static inline int store_unique(__m128i old, __m128i newval, uint16_t *output) {
+    __m128i vecTmp = _mm_alignr_epi8(newval, old, 16 - 2);
+    // lots of high latency instructions follow (optimize?)
+    int M = _mm_movemask_epi8(
+        _mm_packs_epi16(_mm_cmpeq_epi16(vecTmp, newval), _mm_setzero_si128()));
+    int numberofnewvalues = 8 - _mm_popcnt_u32(M);
+    __m128i key = _mm_lddqu_si128((const __m128i *)uniqshuf + M);
+    __m128i val = _mm_shuffle_epi8(newval, key);
+    _mm_storeu_si128((__m128i *)output, val);
+    return numberofnewvalues;
+}
+CROARING_UNTARGET_AVX2
+
+// working in-place, this function overwrites the repeated values
+// could be avoided?
+static inline uint32_t unique(uint16_t *out, uint32_t len) {
+    uint32_t pos = 1;
+    for (uint32_t i = 1; i < len; ++i) {
+        if (out[i] != out[i - 1]) {
+            out[pos++] = out[i];
+        }
+    }
+    return pos;
+}
+
+// use with qsort, could be avoided
+static int uint16_compare(const void *a, const void *b) {
+    return (*(uint16_t *)a - *(uint16_t *)b);
+}
+
+CROARING_TARGET_AVX2
+// a one-pass SSE union algorithm
+// This function may not be safe if array1 == output or array2 == output.
+uint32_t union_vector16(const uint16_t *__restrict__ array1, uint32_t length1,
+                        const uint16_t *__restrict__ array2, uint32_t length2,
+                        uint16_t *__restrict__ output) {
+    if ((length1 < 8) || (length2 < 8)) {
+        return (uint32_t)union_uint16(array1, length1, array2, length2, 
output);
+    }
+    __m128i vA, vB, V, vecMin, vecMax;
+    __m128i laststore;
+    uint16_t *initoutput = output;
+    uint32_t len1 = length1 / 8;
+    uint32_t len2 = length2 / 8;
+    uint32_t pos1 = 0;
+    uint32_t pos2 = 0;
+    // we start the machine
+    vA = _mm_lddqu_si128((const __m128i *)array1 + pos1);
+    pos1++;
+    vB = _mm_lddqu_si128((const __m128i *)array2 + pos2);
+    pos2++;
+    sse_merge(&vA, &vB, &vecMin, &vecMax);
+    laststore = _mm_set1_epi16(-1);
+    output += store_unique(laststore, vecMin, output);
+    laststore = vecMin;
+    if ((pos1 < len1) && (pos2 < len2)) {
+        uint16_t curA, curB;
+        curA = array1[8 * pos1];
+        curB = array2[8 * pos2];
+        while (true) {
+            if (curA <= curB) {
+                V = _mm_lddqu_si128((const __m128i *)array1 + pos1);
+                pos1++;
+                if (pos1 < len1) {
+                    curA = array1[8 * pos1];
+                } else {
+                    break;
+                }
+            } else {
+                V = _mm_lddqu_si128((const __m128i *)array2 + pos2);
+                pos2++;
+                if (pos2 < len2) {
+                    curB = array2[8 * pos2];
+                } else {
+                    break;
+                }
+            }
+            sse_merge(&V, &vecMax, &vecMin, &vecMax);
+            output += store_unique(laststore, vecMin, output);
+            laststore = vecMin;
+        }
+        sse_merge(&V, &vecMax, &vecMin, &vecMax);
+        output += store_unique(laststore, vecMin, output);
+        laststore = vecMin;
+    }
+    // we finish the rest off using a scalar algorithm
+    // could be improved?
+    //
+    // copy the small end on a tmp buffer
+    uint32_t len = (uint32_t)(output - initoutput);
+    uint16_t buffer[16];
+    uint32_t leftoversize = store_unique(laststore, vecMax, buffer);
+    if (pos1 == len1) {
+        memcpy(buffer + leftoversize, array1 + 8 * pos1,
+               (length1 - 8 * len1) * sizeof(uint16_t));
+        leftoversize += length1 - 8 * len1;
+        qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
+
+        leftoversize = unique(buffer, leftoversize);
+        len += (uint32_t)union_uint16(buffer, leftoversize, array2 + 8 * pos2,
+                                      length2 - 8 * pos2, output);
+    } else {
+        memcpy(buffer + leftoversize, array2 + 8 * pos2,
+               (length2 - 8 * len2) * sizeof(uint16_t));
+        leftoversize += length2 - 8 * len2;
+        qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
+        leftoversize = unique(buffer, leftoversize);
+        len += (uint32_t)union_uint16(buffer, leftoversize, array1 + 8 * pos1,
+                                      length1 - 8 * pos1, output);
+    }
+    return len;
+}
+CROARING_UNTARGET_AVX2
+
+/**
+ * End of the SIMD 16-bit union code
+ *
+ */
+
+/**
+ * Start of SIMD 16-bit XOR code
+ */
+
+CROARING_TARGET_AVX2
+// write vector new, while omitting repeated values assuming that previously
+// written vector was "old"
+static inline int store_unique_xor(__m128i old, __m128i newval,
+                                   uint16_t *output) {
+    __m128i vecTmp1 = _mm_alignr_epi8(newval, old, 16 - 4);
+    __m128i vecTmp2 = _mm_alignr_epi8(newval, old, 16 - 2);
+    __m128i equalleft = _mm_cmpeq_epi16(vecTmp2, vecTmp1);
+    __m128i equalright = _mm_cmpeq_epi16(vecTmp2, newval);
+    __m128i equalleftoright = _mm_or_si128(equalleft, equalright);
+    int M = _mm_movemask_epi8(
+        _mm_packs_epi16(equalleftoright, _mm_setzero_si128()));
+    int numberofnewvalues = 8 - _mm_popcnt_u32(M);
+    __m128i key = _mm_lddqu_si128((const __m128i *)uniqshuf + M);
+    __m128i val = _mm_shuffle_epi8(vecTmp2, key);
+    _mm_storeu_si128((__m128i *)output, val);
+    return numberofnewvalues;
+}
+CROARING_UNTARGET_AVX2
+
+// working in-place, this function overwrites the repeated values
+// could be avoided? Warning: assumes len > 0
+static inline uint32_t unique_xor(uint16_t *out, uint32_t len) {
+    uint32_t pos = 1;
+    for (uint32_t i = 1; i < len; ++i) {
+        if (out[i] != out[i - 1]) {
+            out[pos++] = out[i];
+        } else
+            pos--;  // if it is identical to previous, delete it
+    }
+    return pos;
+}
+CROARING_TARGET_AVX2
+// a one-pass SSE xor algorithm
+uint32_t xor_vector16(const uint16_t *__restrict__ array1, uint32_t length1,
+                      const uint16_t *__restrict__ array2, uint32_t length2,
+                      uint16_t *__restrict__ output) {
+    if ((length1 < 8) || (length2 < 8)) {
+        return xor_uint16(array1, length1, array2, length2, output);
+    }
+    __m128i vA, vB, V, vecMin, vecMax;
+    __m128i laststore;
+    uint16_t *initoutput = output;
+    uint32_t len1 = length1 / 8;
+    uint32_t len2 = length2 / 8;
+    uint32_t pos1 = 0;
+    uint32_t pos2 = 0;
+    // we start the machine
+    vA = _mm_lddqu_si128((const __m128i *)array1 + pos1);
+    pos1++;
+    vB = _mm_lddqu_si128((const __m128i *)array2 + pos2);
+    pos2++;
+    sse_merge(&vA, &vB, &vecMin, &vecMax);
+    laststore = _mm_set1_epi16(-1);
+    uint16_t buffer[17];
+    output += store_unique_xor(laststore, vecMin, output);
+
+    laststore = vecMin;
+    if ((pos1 < len1) && (pos2 < len2)) {
+        uint16_t curA, curB;
+        curA = array1[8 * pos1];
+        curB = array2[8 * pos2];
+        while (true) {
+            if (curA <= curB) {
+                V = _mm_lddqu_si128((const __m128i *)array1 + pos1);
+                pos1++;
+                if (pos1 < len1) {
+                    curA = array1[8 * pos1];
+                } else {
+                    break;
+                }
+            } else {
+                V = _mm_lddqu_si128((const __m128i *)array2 + pos2);
+                pos2++;
+                if (pos2 < len2) {
+                    curB = array2[8 * pos2];
+                } else {
+                    break;
+                }
+            }
+            sse_merge(&V, &vecMax, &vecMin, &vecMax);
+            // conditionally stores the last value of laststore as well as all
+            // but the
+            // last value of vecMin
+            output += store_unique_xor(laststore, vecMin, output);
+            laststore = vecMin;
+        }
+        sse_merge(&V, &vecMax, &vecMin, &vecMax);
+        // conditionally stores the last value of laststore as well as all but
+        // the
+        // last value of vecMin
+        output += store_unique_xor(laststore, vecMin, output);
+        laststore = vecMin;
+    }
+    uint32_t len = (uint32_t)(output - initoutput);
+
+    // we finish the rest off using a scalar algorithm
+    // could be improved?
+    // conditionally stores the last value of laststore as well as all but the
+    // last value of vecMax,
+    // we store to "buffer"
+    int leftoversize = store_unique_xor(laststore, vecMax, buffer);
+    uint16_t vec7 = (uint16_t)_mm_extract_epi16(vecMax, 7);
+    uint16_t vec6 = (uint16_t)_mm_extract_epi16(vecMax, 6);
+    if (vec7 != vec6) buffer[leftoversize++] = vec7;
+    if (pos1 == len1) {
+        memcpy(buffer + leftoversize, array1 + 8 * pos1,
+               (length1 - 8 * len1) * sizeof(uint16_t));
+        leftoversize += length1 - 8 * len1;
+        if (leftoversize == 0) {  // trivial case
+            memcpy(output, array2 + 8 * pos2,
+                   (length2 - 8 * pos2) * sizeof(uint16_t));
+            len += (length2 - 8 * pos2);
+        } else {
+            qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
+            leftoversize = unique_xor(buffer, leftoversize);
+            len += xor_uint16(buffer, leftoversize, array2 + 8 * pos2,
+                              length2 - 8 * pos2, output);
+        }
+    } else {
+        memcpy(buffer + leftoversize, array2 + 8 * pos2,
+               (length2 - 8 * len2) * sizeof(uint16_t));
+        leftoversize += length2 - 8 * len2;
+        if (leftoversize == 0) {  // trivial case
+            memcpy(output, array1 + 8 * pos1,
+                   (length1 - 8 * pos1) * sizeof(uint16_t));
+            len += (length1 - 8 * pos1);
+        } else {
+            qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
+            leftoversize = unique_xor(buffer, leftoversize);
+            len += xor_uint16(buffer, leftoversize, array1 + 8 * pos1,
+                              length1 - 8 * pos1, output);
+        }
+    }
+    return len;
+}
+CROARING_UNTARGET_AVX2
+/**
+ * End of SIMD 16-bit XOR code
+ */
+
+#endif  // CROARING_IS_X64
+
+size_t union_uint32(const uint32_t *set_1, size_t size_1, const uint32_t 
*set_2,
+                    size_t size_2, uint32_t *buffer) {
+    size_t pos = 0, idx_1 = 0, idx_2 = 0;
+
+    if (0 == size_2) {
+        memmove(buffer, set_1, size_1 * sizeof(uint32_t));
+        return size_1;
+    }
+    if (0 == size_1) {
+        memmove(buffer, set_2, size_2 * sizeof(uint32_t));
+        return size_2;
+    }
+
+    uint32_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
+
+    while (true) {
+        if (val_1 < val_2) {
+            buffer[pos++] = val_1;
+            ++idx_1;
+            if (idx_1 >= size_1) break;
+            val_1 = set_1[idx_1];
+        } else if (val_2 < val_1) {
+            buffer[pos++] = val_2;
+            ++idx_2;
+            if (idx_2 >= size_2) break;
+            val_2 = set_2[idx_2];
+        } else {
+            buffer[pos++] = val_1;
+            ++idx_1;
+            ++idx_2;
+            if (idx_1 >= size_1 || idx_2 >= size_2) break;
+            val_1 = set_1[idx_1];
+            val_2 = set_2[idx_2];
+        }
+    }
+
+    if (idx_1 < size_1) {
+        const size_t n_elems = size_1 - idx_1;
+        memmove(buffer + pos, set_1 + idx_1, n_elems * sizeof(uint32_t));
+        pos += n_elems;
+    } else if (idx_2 < size_2) {
+        const size_t n_elems = size_2 - idx_2;
+        memmove(buffer + pos, set_2 + idx_2, n_elems * sizeof(uint32_t));
+        pos += n_elems;
+    }
+
+    return pos;
+}
+
+size_t union_uint32_card(const uint32_t *set_1, size_t size_1,
+                         const uint32_t *set_2, size_t size_2) {
+    size_t pos = 0, idx_1 = 0, idx_2 = 0;
+
+    if (0 == size_2) {
+        return size_1;
+    }
+    if (0 == size_1) {
+        return size_2;
+    }
+
+    uint32_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
+
+    while (true) {
+        if (val_1 < val_2) {
+            ++idx_1;
+            ++pos;
+            if (idx_1 >= size_1) break;
+            val_1 = set_1[idx_1];
+        } else if (val_2 < val_1) {
+            ++idx_2;
+            ++pos;
+            if (idx_2 >= size_2) break;
+            val_2 = set_2[idx_2];
+        } else {
+            ++idx_1;
+            ++idx_2;
+            ++pos;
+            if (idx_1 >= size_1 || idx_2 >= size_2) break;
+            val_1 = set_1[idx_1];
+            val_2 = set_2[idx_2];
+        }
+    }
+
+    if (idx_1 < size_1) {
+        const size_t n_elems = size_1 - idx_1;
+        pos += n_elems;
+    } else if (idx_2 < size_2) {
+        const size_t n_elems = size_2 - idx_2;
+        pos += n_elems;
+    }
+    return pos;
+}
+
+size_t fast_union_uint16(const uint16_t *set_1, size_t size_1,
+                         const uint16_t *set_2, size_t size_2,
+                         uint16_t *buffer) {
+#if CROARING_IS_X64
+    if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+        // compute union with smallest array first
+        if (size_1 < size_2) {
+            return union_vector16(set_1, (uint32_t)size_1, set_2,
+                                  (uint32_t)size_2, buffer);
+        } else {
+            return union_vector16(set_2, (uint32_t)size_2, set_1,
+                                  (uint32_t)size_1, buffer);
+        }
+    } else {
+        // compute union with smallest array first
+        if (size_1 < size_2) {
+            return union_uint16(set_1, size_1, set_2, size_2, buffer);
+        } else {
+            return union_uint16(set_2, size_2, set_1, size_1, buffer);
+        }
+    }
+#else
+    // compute union with smallest array first
+    if (size_1 < size_2) {
+        return union_uint16(set_1, size_1, set_2, size_2, buffer);
+    } else {
+        return union_uint16(set_2, size_2, set_1, size_1, buffer);
+    }
+#endif
+}
+#if CROARING_IS_X64
+#if CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX512
+static inline bool _avx512_memequals(const void *s1, const void *s2, size_t n) 
{
+    const uint8_t *ptr1 = (const uint8_t *)s1;
+    const uint8_t *ptr2 = (const uint8_t *)s2;
+    const uint8_t *end1 = ptr1 + n;
+    const uint8_t *end8 = ptr1 + ((n >> 3) << 3);
+    const uint8_t *end32 = ptr1 + ((n >> 5) << 5);
+    const uint8_t *end64 = ptr1 + ((n >> 6) << 6);
+
+    while (ptr1 < end64) {
+        __m512i r1 = _mm512_loadu_si512((const __m512i *)ptr1);
+        __m512i r2 = _mm512_loadu_si512((const __m512i *)ptr2);
+
+        uint64_t mask = _mm512_cmpeq_epi8_mask(r1, r2);
+
+        if (mask != UINT64_MAX) {
+            return false;
+        }
+
+        ptr1 += 64;
+        ptr2 += 64;
+    }
+
+    while (ptr1 < end32) {
+        __m256i r1 = _mm256_loadu_si256((const __m256i *)ptr1);
+        __m256i r2 = _mm256_loadu_si256((const __m256i *)ptr2);
+        int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2));
+        if ((uint32_t)mask != UINT32_MAX) {
+            return false;
+        }
+        ptr1 += 32;
+        ptr2 += 32;
+    }
+
+    while (ptr1 < end8) {
+        uint64_t v1, v2;
+        memcpy(&v1, ptr1, sizeof(uint64_t));
+        memcpy(&v2, ptr2, sizeof(uint64_t));
+        if (v1 != v2) {
+            return false;
+        }
+        ptr1 += 8;
+        ptr2 += 8;
+    }
+
+    while (ptr1 < end1) {
+        if (*ptr1 != *ptr2) {
+            return false;
+        }
+        ptr1++;
+        ptr2++;
+    }
+
+    return true;
+}
+CROARING_UNTARGET_AVX512
+#endif  // CROARING_COMPILER_SUPPORTS_AVX512
+
+CROARING_TARGET_AVX2
+static inline bool _avx2_memequals(const void *s1, const void *s2, size_t n) {
+    const uint8_t *ptr1 = (const uint8_t *)s1;
+    const uint8_t *ptr2 = (const uint8_t *)s2;
+    const uint8_t *end1 = ptr1 + n;
+    const uint8_t *end8 = ptr1 + n / 8 * 8;
+    const uint8_t *end32 = ptr1 + n / 32 * 32;
+
+    while (ptr1 < end32) {
+        __m256i r1 = _mm256_loadu_si256((const __m256i *)ptr1);
+        __m256i r2 = _mm256_loadu_si256((const __m256i *)ptr2);
+        int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2));
+        if ((uint32_t)mask != UINT32_MAX) {
+            return false;
+        }
+        ptr1 += 32;
+        ptr2 += 32;
+    }
+
+    while (ptr1 < end8) {
+        uint64_t v1, v2;
+        memcpy(&v1, ptr1, sizeof(uint64_t));
+        memcpy(&v2, ptr2, sizeof(uint64_t));
+        if (v1 != v2) {
+            return false;
+        }
+        ptr1 += 8;
+        ptr2 += 8;
+    }
+
+    while (ptr1 < end1) {
+        if (*ptr1 != *ptr2) {
+            return false;
+        }
+        ptr1++;
+        ptr2++;
+    }
+
+    return true;
+}
+CROARING_UNTARGET_AVX2
+#endif
+
+bool memequals(const void *s1, const void *s2, size_t n) {
+    if (n == 0) {
+        return true;
+    }
+#if CROARING_IS_X64
+    int support = croaring_hardware_support();
+#if CROARING_COMPILER_SUPPORTS_AVX512
+    if (support & ROARING_SUPPORTS_AVX512) {
+        return _avx512_memequals(s1, s2, n);
+    } else
+#endif  // CROARING_COMPILER_SUPPORTS_AVX512
+        if (support & ROARING_SUPPORTS_AVX2) {
+            return _avx2_memequals(s1, s2, n);
+        } else {
+            return memcmp(s1, s2, n) == 0;
+        }
+#else
+    return memcmp(s1, s2, n) == 0;
+#endif
+}
+
+#if CROARING_IS_X64
+#if CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX512
+ALLOW_UNALIGNED
+int avx512_array_container_to_uint32_array(void *vout, const uint16_t *array,
+                                           size_t cardinality, uint32_t base) {
+    int outpos = 0;
+    uint32_t *out = (uint32_t *)vout;
+    size_t i = 0;
+    for (; i + sizeof(__m256i) / sizeof(uint16_t) <= cardinality;
+         i += sizeof(__m256i) / sizeof(uint16_t)) {
+        __m256i vinput = _mm256_loadu_si256((const __m256i *)(array + i));
+        __m512i voutput = _mm512_add_epi32(_mm512_cvtepu16_epi32(vinput),
+                                           _mm512_set1_epi32(base));
+        _mm512_storeu_si512((__m512i *)(out + outpos), voutput);
+        outpos += sizeof(__m512i) / sizeof(uint32_t);
+    }
+    for (; i < cardinality; ++i) {
+        const uint32_t val = base + array[i];
+        memcpy(out + outpos, &val,
+               sizeof(uint32_t));  // should be compiled as a MOV on x64
+        outpos++;
+    }
+    return outpos;
+}
+CROARING_UNTARGET_AVX512
+#endif  // #if CROARING_COMPILER_SUPPORTS_AVX512
+#endif  // #if CROARING_IS_X64
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic pop
+#endif/* end file src/array_util.c */
+/* begin file src/art/art.c */
+#include <assert.h>
+#include <stdio.h>
+#include <string.h>
+
+
+#define CROARING_ART_NODE4_TYPE 0
+#define CROARING_ART_NODE16_TYPE 1
+#define CROARING_ART_NODE48_TYPE 2
+#define CROARING_ART_NODE256_TYPE 3
+#define CROARING_ART_NUM_TYPES 4
+
+// Node48 placeholder value to indicate no child is present at this key index.
+#define CROARING_ART_NODE48_EMPTY_VAL 48
+
+// We use the least significant bit of node pointers to indicate whether a node
+// is a leaf or an inner node. This is never surfaced to the user.
+//
+// Using pointer tagging to indicate leaves not only saves a bit of memory by
+// sparing the typecode, but also allows us to use an intrusive leaf struct.
+// Using an intrusive leaf struct leaves leaf allocation up to the user. Upon
+// deallocation of the ART, we know not to free the leaves without having to
+// dereference the leaf pointers.
+//
+// All internal operations on leaves should use CROARING_CAST_LEAF before using
+// the leaf. The only places that use CROARING_SET_LEAF are locations where a
+// field is directly assigned to a leaf pointer. After using CROARING_SET_LEAF,
+// the leaf should be treated as a node of unknown type.
+#define CROARING_IS_LEAF(p) (((uintptr_t)(p) & 1))
+#define CROARING_SET_LEAF(p) ((art_node_t *)((uintptr_t)(p) | 1))
+#define CROARING_CAST_LEAF(p) ((art_leaf_t *)((void *)((uintptr_t)(p) & ~1)))
+
+#define CROARING_NODE48_AVAILABLE_CHILDREN_MASK ((UINT64_C(1) << 48) - 1)
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+typedef uint8_t art_typecode_t;
+
+// Aliasing with a "leaf" naming so that its purpose is clearer in the context
+// of the trie internals.
+typedef art_val_t art_leaf_t;
+
+typedef struct art_internal_validate_s {
+    const char **reason;
+    art_validate_cb_t validate_cb;
+
+    int depth;
+    art_key_chunk_t current_key[ART_KEY_BYTES];
+} art_internal_validate_t;
+
+// Set the reason message, and return false for convenience.
+static inline bool art_validate_fail(const art_internal_validate_t *validate,
+                                     const char *msg) {
+    *validate->reason = msg;
+    return false;
+}
+
+// Inner node, with prefix.
+//
+// We use a fixed-length array as a pointer would be larger than the array.
+typedef struct art_inner_node_s {
+    art_typecode_t typecode;
+    uint8_t prefix_size;
+    uint8_t prefix[ART_KEY_BYTES - 1];
+} art_inner_node_t;
+
+// Inner node types.
+
+// Node4: key[i] corresponds with children[i]. Keys are sorted.
+typedef struct art_node4_s {
+    art_inner_node_t base;
+    uint8_t count;
+    uint8_t keys[4];
+    art_node_t *children[4];
+} art_node4_t;
+
+// Node16: key[i] corresponds with children[i]. Keys are sorted.
+typedef struct art_node16_s {
+    art_inner_node_t base;
+    uint8_t count;
+    uint8_t keys[16];
+    art_node_t *children[16];
+} art_node16_t;
+
+// Node48: key[i] corresponds with children[key[i]] if key[i] !=
+// CROARING_ART_NODE48_EMPTY_VAL. Keys are naturally sorted due to direct
+// indexing.
+typedef struct art_node48_s {
+    art_inner_node_t base;
+    uint8_t count;
+    // Bitset where the ith bit is set if children[i] is available
+    // Because there are at most 48 children, only the bottom 48 bits are used.
+    uint64_t available_children;
+    uint8_t keys[256];
+    art_node_t *children[48];
+} art_node48_t;
+
+// Node256: children[i] is directly indexed by key chunk. A child is present if
+// children[i] != NULL.
+typedef struct art_node256_s {
+    art_inner_node_t base;
+    uint16_t count;
+    art_node_t *children[256];
+} art_node256_t;
+
+// Helper struct to refer to a child within a node at a specific index.
+typedef struct art_indexed_child_s {
+    art_node_t *child;
+    uint8_t index;
+    art_key_chunk_t key_chunk;
+} art_indexed_child_t;
+
+static inline bool art_is_leaf(const art_node_t *node) {
+    return CROARING_IS_LEAF(node);
+}
+
+static void art_leaf_populate(art_leaf_t *leaf, const art_key_chunk_t key[]) {
+    memcpy(leaf->key, key, ART_KEY_BYTES);
+}
+
+static inline uint8_t art_get_type(const art_inner_node_t *node) {
+    return node->typecode;
+}
+
+static inline void art_init_inner_node(art_inner_node_t *node,
+                                       art_typecode_t typecode,
+                                       const art_key_chunk_t prefix[],
+                                       uint8_t prefix_size) {
+    node->typecode = typecode;
+    node->prefix_size = prefix_size;
+    memcpy(node->prefix, prefix, prefix_size * sizeof(art_key_chunk_t));
+}
+
+static void art_free_node(art_node_t *node);
+
+// ===================== Start of node-specific functions 
======================
+
+static art_node4_t *art_node4_create(const art_key_chunk_t prefix[],
+                                     uint8_t prefix_size);
+static art_node16_t *art_node16_create(const art_key_chunk_t prefix[],
+                                       uint8_t prefix_size);
+static art_node48_t *art_node48_create(const art_key_chunk_t prefix[],
+                                       uint8_t prefix_size);
+static art_node256_t *art_node256_create(const art_key_chunk_t prefix[],
+                                         uint8_t prefix_size);
+
+static art_node_t *art_node4_insert(art_node4_t *node, art_node_t *child,
+                                    uint8_t key);
+static art_node_t *art_node16_insert(art_node16_t *node, art_node_t *child,
+                                     uint8_t key);
+static art_node_t *art_node48_insert(art_node48_t *node, art_node_t *child,
+                                     uint8_t key);
+static art_node_t *art_node256_insert(art_node256_t *node, art_node_t *child,
+                                      uint8_t key);
+
+static art_node4_t *art_node4_create(const art_key_chunk_t prefix[],
+                                     uint8_t prefix_size) {
+    art_node4_t *node = (art_node4_t *)roaring_malloc(sizeof(art_node4_t));
+    art_init_inner_node(&node->base, CROARING_ART_NODE4_TYPE, prefix,
+                        prefix_size);
+    node->count = 0;
+    return node;
+}
+
+static void art_free_node4(art_node4_t *node) {
+    for (size_t i = 0; i < node->count; ++i) {
+        art_free_node(node->children[i]);
+    }
+    roaring_free(node);
+}
+
+static inline art_node_t *art_node4_find_child(const art_node4_t *node,
+                                               art_key_chunk_t key) {
+    for (size_t i = 0; i < node->count; ++i) {
+        if (node->keys[i] == key) {
+            return node->children[i];
+        }
+    }
+    return NULL;
+}
+
+static art_node_t *art_node4_insert(art_node4_t *node, art_node_t *child,
+                                    uint8_t key) {
+    if (node->count < 4) {
+        size_t idx = 0;
+        for (; idx < node->count; ++idx) {
+            if (node->keys[idx] > key) {
+                break;
+            }
+        }
+        size_t after = node->count - idx;
+        // Shift other keys to maintain sorted order.
+        memmove(node->keys + idx + 1, node->keys + idx,
+                after * sizeof(art_key_chunk_t));
+        memmove(node->children + idx + 1, node->children + idx,
+                after * sizeof(art_node_t *));
+
+        node->children[idx] = child;
+        node->keys[idx] = key;
+        node->count++;
+        return (art_node_t *)node;
+    }
+    art_node16_t *new_node =
+        art_node16_create(node->base.prefix, node->base.prefix_size);
+    // Instead of calling insert, this could be specialized to 2x memcpy and
+    // setting the count.
+    for (size_t i = 0; i < 4; ++i) {
+        art_node16_insert(new_node, node->children[i], node->keys[i]);
+    }
+    roaring_free(node);
+    return art_node16_insert(new_node, child, key);
+}
+
+static inline art_node_t *art_node4_erase(art_node4_t *node,
+                                          art_key_chunk_t key_chunk) {
+    int idx = -1;
+    for (size_t i = 0; i < node->count; ++i) {
+        if (node->keys[i] == key_chunk) {
+            idx = i;
+        }
+    }
+    if (idx == -1) {
+        return (art_node_t *)node;
+    }
+    if (node->count == 2) {
+        // Only one child remains after erasing, so compress the path by
+        // removing this node.
+        uint8_t other_idx = idx ^ 1;
+        art_node_t *remaining_child = node->children[other_idx];
+        art_key_chunk_t remaining_child_key = node->keys[other_idx];
+        if (!art_is_leaf(remaining_child)) {
+            // Correct the prefix of the child node.
+            art_inner_node_t *inner_node = (art_inner_node_t *)remaining_child;
+            memmove(inner_node->prefix + node->base.prefix_size + 1,
+                    inner_node->prefix, inner_node->prefix_size);
+            memcpy(inner_node->prefix, node->base.prefix,
+                   node->base.prefix_size);
+            inner_node->prefix[node->base.prefix_size] = remaining_child_key;
+            inner_node->prefix_size += node->base.prefix_size + 1;
+        }
+        roaring_free(node);
+        return remaining_child;
+    }
+    // Shift other keys to maintain sorted order.
+    size_t after_next = node->count - idx - 1;
+    memmove(node->keys + idx, node->keys + idx + 1,
+            after_next * sizeof(art_key_chunk_t));
+    memmove(node->children + idx, node->children + idx + 1,
+            after_next * sizeof(art_node_t *));
+    node->count--;
+    return (art_node_t *)node;
+}
+
+static inline void art_node4_replace(art_node4_t *node,
+                                     art_key_chunk_t key_chunk,
+                                     art_node_t *new_child) {
+    for (size_t i = 0; i < node->count; ++i) {
+        if (node->keys[i] == key_chunk) {
+            node->children[i] = new_child;
+            return;
+        }
+    }
+}
+
+static inline art_indexed_child_t art_node4_next_child(const art_node4_t *node,
+                                                       int index) {
+    art_indexed_child_t indexed_child;
+    index++;
+    if (index >= node->count) {
+        indexed_child.child = NULL;
+        return indexed_child;
+    }
+    indexed_child.index = index;
+    indexed_child.child = node->children[index];
+    indexed_child.key_chunk = node->keys[index];
+    return indexed_child;
+}
+
+static inline art_indexed_child_t art_node4_prev_child(const art_node4_t *node,
+                                                       int index) {
+    if (index > node->count) {
+        index = node->count;
+    }
+    index--;
+    art_indexed_child_t indexed_child;
+    if (index < 0) {
+        indexed_child.child = NULL;
+        return indexed_child;
+    }
+    indexed_child.index = index;
+    indexed_child.child = node->children[index];
+    indexed_child.key_chunk = node->keys[index];
+    return indexed_child;
+}
+
+static inline art_indexed_child_t art_node4_child_at(const art_node4_t *node,
+                                                     int index) {
+    art_indexed_child_t indexed_child;
+    if (index < 0 || index >= node->count) {
+        indexed_child.child = NULL;
+        return indexed_child;
+    }
+    indexed_child.index = index;
+    indexed_child.child = node->children[index];
+    indexed_child.key_chunk = node->keys[index];
+    return indexed_child;
+}
+
+static inline art_indexed_child_t art_node4_lower_bound(
+    art_node4_t *node, art_key_chunk_t key_chunk) {
+    art_indexed_child_t indexed_child;
+    for (size_t i = 0; i < node->count; ++i) {
+        if (node->keys[i] >= key_chunk) {
+            indexed_child.index = i;
+            indexed_child.child = node->children[i];
+            indexed_child.key_chunk = node->keys[i];
+            return indexed_child;
+        }
+    }
+    indexed_child.child = NULL;
+    return indexed_child;
+}
+
+static bool art_internal_validate_at(const art_node_t *node,
+                                     art_internal_validate_t validator);
+
+static bool art_node4_internal_validate(const art_node4_t *node,
+                                        art_internal_validate_t validator) {
+    if (node->count == 0) {
+        return art_validate_fail(&validator, "Node4 has no children");
+    }
+    if (node->count > 4) {
+        return art_validate_fail(&validator, "Node4 has too many children");
+    }
+    if (node->count == 1) {
+        return art_validate_fail(
+            &validator, "Node4 and child node should have been combined");
+    }
+    validator.depth++;
+    for (int i = 0; i < node->count; ++i) {
+        if (i > 0) {
+            if (node->keys[i - 1] >= node->keys[i]) {
+                return art_validate_fail(
+                    &validator, "Node4 keys are not strictly increasing");
+            }
+        }
+        for (int j = i + 1; j < node->count; ++j) {
+            if (node->children[i] == node->children[j]) {
+                return art_validate_fail(&validator,
+                                         "Node4 has duplicate children");
+            }
+        }
+        validator.current_key[validator.depth - 1] = node->keys[i];
+        if (!art_internal_validate_at(node->children[i], validator)) {
+            return false;
+        }
+    }
+    return true;
+}
+
+static art_node16_t *art_node16_create(const art_key_chunk_t prefix[],
+                                       uint8_t prefix_size) {
+    art_node16_t *node = (art_node16_t *)roaring_malloc(sizeof(art_node16_t));
+    art_init_inner_node(&node->base, CROARING_ART_NODE16_TYPE, prefix,
+                        prefix_size);
+    node->count = 0;
+    return node;
+}
+
+static void art_free_node16(art_node16_t *node) {
+    for (size_t i = 0; i < node->count; ++i) {
+        art_free_node(node->children[i]);
+    }
+    roaring_free(node);
+}
+
+static inline art_node_t *art_node16_find_child(const art_node16_t *node,
+                                                art_key_chunk_t key) {
+    for (size_t i = 0; i < node->count; ++i) {
+        if (node->keys[i] == key) {
+            return node->children[i];
+        }
+    }
+    return NULL;
+}
+
+static art_node_t *art_node16_insert(art_node16_t *node, art_node_t *child,
+                                     uint8_t key) {
+    if (node->count < 16) {
+        size_t idx = 0;
+        for (; idx < node->count; ++idx) {
+            if (node->keys[idx] > key) {
+                break;
+            }
+        }
+        size_t after = node->count - idx;
+        // Shift other keys to maintain sorted order.
+        memmove(node->keys + idx + 1, node->keys + idx,
+                after * sizeof(art_key_chunk_t));
+        memmove(node->children + idx + 1, node->children + idx,
+                after * sizeof(art_node_t *));
+
+        node->children[idx] = child;
+        node->keys[idx] = key;
+        node->count++;
+        return (art_node_t *)node;
+    }
+    art_node48_t *new_node =
+        art_node48_create(node->base.prefix, node->base.prefix_size);
+    for (size_t i = 0; i < 16; ++i) {
+        art_node48_insert(new_node, node->children[i], node->keys[i]);
+    }
+    roaring_free(node);
+    return art_node48_insert(new_node, child, key);
+}
+
+static inline art_node_t *art_node16_erase(art_node16_t *node,
+                                           uint8_t key_chunk) {
+    for (size_t i = 0; i < node->count; ++i) {
+        if (node->keys[i] == key_chunk) {
+            // Shift other keys to maintain sorted order.
+            size_t after_next = node->count - i - 1;
+            memmove(node->keys + i, node->keys + i + 1,
+                    after_next * sizeof(key_chunk));
+            memmove(node->children + i, node->children + i + 1,
+                    after_next * sizeof(art_node_t *));
+            node->count--;
+            break;
+        }
+    }
+    if (node->count > 4) {
+        return (art_node_t *)node;
+    }
+    art_node4_t *new_node =
+        art_node4_create(node->base.prefix, node->base.prefix_size);
+    // Instead of calling insert, this could be specialized to 2x memcpy and
+    // setting the count.
+    for (size_t i = 0; i < 4; ++i) {
+        art_node4_insert(new_node, node->children[i], node->keys[i]);
+    }
+    roaring_free(node);
+    return (art_node_t *)new_node;
+}
+
+static inline void art_node16_replace(art_node16_t *node,
+                                      art_key_chunk_t key_chunk,
+                                      art_node_t *new_child) {
+    for (uint8_t i = 0; i < node->count; ++i) {
+        if (node->keys[i] == key_chunk) {
+            node->children[i] = new_child;
+            return;
+        }
+    }
+}
+
+static inline art_indexed_child_t art_node16_next_child(
+    const art_node16_t *node, int index) {
+    art_indexed_child_t indexed_child;
+    index++;
+    if (index >= node->count) {
+        indexed_child.child = NULL;
+        return indexed_child;
+    }
+    indexed_child.index = index;
+    indexed_child.child = node->children[index];
+    indexed_child.key_chunk = node->keys[index];
+    return indexed_child;
+}
+
+static inline art_indexed_child_t art_node16_prev_child(
+    const art_node16_t *node, int index) {
+    if (index > node->count) {
+        index = node->count;
+    }
+    index--;
+    art_indexed_child_t indexed_child;
+    if (index < 0) {
+        indexed_child.child = NULL;
+        return indexed_child;
+    }
+    indexed_child.index = index;
+    indexed_child.child = node->children[index];
+    indexed_child.key_chunk = node->keys[index];
+    return indexed_child;
+}
+
+static inline art_indexed_child_t art_node16_child_at(const art_node16_t *node,
+                                                      int index) {
+    art_indexed_child_t indexed_child;
+    if (index < 0 || index >= node->count) {
+        indexed_child.child = NULL;
+        return indexed_child;
+    }
+    indexed_child.index = index;
+    indexed_child.child = node->children[index];
+    indexed_child.key_chunk = node->keys[index];
+    return indexed_child;
+}
+
+static inline art_indexed_child_t art_node16_lower_bound(
+    art_node16_t *node, art_key_chunk_t key_chunk) {
+    art_indexed_child_t indexed_child;
+    for (size_t i = 0; i < node->count; ++i) {
+        if (node->keys[i] >= key_chunk) {
+            indexed_child.index = i;
+            indexed_child.child = node->children[i];
+            indexed_child.key_chunk = node->keys[i];
+            return indexed_child;
+        }
+    }
+    indexed_child.child = NULL;
+    return indexed_child;
+}
+
+static bool art_node16_internal_validate(const art_node16_t *node,
+                                         art_internal_validate_t validator) {
+    if (node->count <= 4) {
+        return art_validate_fail(&validator, "Node16 has too few children");
+    }
+    if (node->count > 16) {
+        return art_validate_fail(&validator, "Node16 has too many children");
+    }
+    validator.depth++;
+    for (int i = 0; i < node->count; ++i) {
+        if (i > 0) {
+            if (node->keys[i - 1] >= node->keys[i]) {
+                return art_validate_fail(
+                    &validator, "Node16 keys are not strictly increasing");
+            }
+        }
+        for (int j = i + 1; j < node->count; ++j) {
+            if (node->children[i] == node->children[j]) {
+                return art_validate_fail(&validator,
+                                         "Node16 has duplicate children");
+            }
+        }
+        validator.current_key[validator.depth - 1] = node->keys[i];
+        if (!art_internal_validate_at(node->children[i], validator)) {
+            return false;
+        }
+    }
+    return true;
+}
+
+static art_node48_t *art_node48_create(const art_key_chunk_t prefix[],
+                                       uint8_t prefix_size) {
+    art_node48_t *node = (art_node48_t *)roaring_malloc(sizeof(art_node48_t));
+    art_init_inner_node(&node->base, CROARING_ART_NODE48_TYPE, prefix,
+                        prefix_size);
+    node->count = 0;
+    node->available_children = CROARING_NODE48_AVAILABLE_CHILDREN_MASK;
+    for (size_t i = 0; i < 256; ++i) {
+        node->keys[i] = CROARING_ART_NODE48_EMPTY_VAL;
+    }
+    return node;
+}
+
+static void art_free_node48(art_node48_t *node) {
+    uint64_t used_children =
+        (node->available_children) ^ CROARING_NODE48_AVAILABLE_CHILDREN_MASK;
+    while (used_children != 0) {
+        // We checked above that used_children is not zero
+        uint8_t child_idx = roaring_trailing_zeroes(used_children);
+        art_free_node(node->children[child_idx]);
+        used_children &= ~(UINT64_C(1) << child_idx);
+    }
+    roaring_free(node);
+}
+
+static inline art_node_t *art_node48_find_child(const art_node48_t *node,
+                                                art_key_chunk_t key) {
+    uint8_t val_idx = node->keys[key];
+    if (val_idx != CROARING_ART_NODE48_EMPTY_VAL) {
+        return node->children[val_idx];
+    }
+    return NULL;
+}
+
+static art_node_t *art_node48_insert(art_node48_t *node, art_node_t *child,
+                                     uint8_t key) {
+    if (node->count < 48) {
+        // node->available_children is only zero when the node is full (count 
==
+        // 48), we just checked count < 48
+        uint8_t val_idx = roaring_trailing_zeroes(node->available_children);
+        node->keys[key] = val_idx;
+        node->children[val_idx] = child;
+        node->count++;
+        node->available_children &= ~(UINT64_C(1) << val_idx);
+        return (art_node_t *)node;
+    }
+    art_node256_t *new_node =
+        art_node256_create(node->base.prefix, node->base.prefix_size);
+    for (size_t i = 0; i < 256; ++i) {
+        uint8_t val_idx = node->keys[i];
+        if (val_idx != CROARING_ART_NODE48_EMPTY_VAL) {
+            art_node256_insert(new_node, node->children[val_idx], i);
+        }
+    }
+    roaring_free(node);
+    return art_node256_insert(new_node, child, key);
+}
+
+static inline art_node_t *art_node48_erase(art_node48_t *node,
+                                           uint8_t key_chunk) {
+    uint8_t val_idx = node->keys[key_chunk];
+    if (val_idx == CROARING_ART_NODE48_EMPTY_VAL) {
+        return (art_node_t *)node;
+    }
+    node->keys[key_chunk] = CROARING_ART_NODE48_EMPTY_VAL;
+    node->available_children |= UINT64_C(1) << val_idx;
+    node->count--;
+    if (node->count > 16) {
+        return (art_node_t *)node;
+    }
+
+    art_node16_t *new_node =
+        art_node16_create(node->base.prefix, node->base.prefix_size);
+    for (size_t i = 0; i < 256; ++i) {
+        val_idx = node->keys[i];
+        if (val_idx != CROARING_ART_NODE48_EMPTY_VAL) {
+            art_node16_insert(new_node, node->children[val_idx], i);
+        }
+    }
+    roaring_free(node);
+    return (art_node_t *)new_node;
+}
+
+static inline void art_node48_replace(art_node48_t *node,
+                                      art_key_chunk_t key_chunk,
+                                      art_node_t *new_child) {
+    uint8_t val_idx = node->keys[key_chunk];
+    assert(val_idx != CROARING_ART_NODE48_EMPTY_VAL);
+    node->children[val_idx] = new_child;
+}
+
+static inline art_indexed_child_t art_node48_next_child(
+    const art_node48_t *node, int index) {
+    art_indexed_child_t indexed_child;
+    index++;
+    for (size_t i = index; i < 256; ++i) {
+        if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
+            indexed_child.index = i;
+            indexed_child.child = node->children[node->keys[i]];
+            indexed_child.key_chunk = i;
+            return indexed_child;
+        }
+    }
+    indexed_child.child = NULL;
+    return indexed_child;
+}
+
+static inline art_indexed_child_t art_node48_prev_child(
+    const art_node48_t *node, int index) {
+    if (index > 256) {
+        index = 256;
+    }
+    index--;
+    art_indexed_child_t indexed_child;
+    for (int i = index; i >= 0; --i) {
+        if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
+            indexed_child.index = i;
+            indexed_child.child = node->children[node->keys[i]];
+            indexed_child.key_chunk = i;
+            return indexed_child;
+        }
+    }
+    indexed_child.child = NULL;
+    return indexed_child;
+}
+
+static inline art_indexed_child_t art_node48_child_at(const art_node48_t *node,
+                                                      int index) {
+    art_indexed_child_t indexed_child;
+    if (index < 0 || index >= 256) {
+        indexed_child.child = NULL;
+        return indexed_child;
+    }
+    indexed_child.index = index;
+    indexed_child.child = node->children[node->keys[index]];
+    indexed_child.key_chunk = index;
+    return indexed_child;
+}
+
+static inline art_indexed_child_t art_node48_lower_bound(
+    art_node48_t *node, art_key_chunk_t key_chunk) {
+    art_indexed_child_t indexed_child;
+    for (size_t i = key_chunk; i < 256; ++i) {
+        if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
+            indexed_child.index = i;
+            indexed_child.child = node->children[node->keys[i]];
+            indexed_child.key_chunk = i;
+            return indexed_child;
+        }
+    }
+    indexed_child.child = NULL;
+    return indexed_child;
+}
+
+static bool art_node48_internal_validate(const art_node48_t *node,
+                                         art_internal_validate_t validator) {
+    if (node->count <= 16) {
+        return art_validate_fail(&validator, "Node48 has too few children");
+    }
+    if (node->count > 48) {
+        return art_validate_fail(&validator, "Node48 has too many children");
+    }
+    uint64_t used_children = 0;
+    for (int i = 0; i < 256; ++i) {
+        uint8_t child_idx = node->keys[i];
+        if (child_idx != CROARING_ART_NODE48_EMPTY_VAL) {
+            if (used_children & (UINT64_C(1) << child_idx)) {
+                return art_validate_fail(
+                    &validator, "Node48 keys point to the same child index");
+            }
+
+            art_node_t *child = node->children[child_idx];
+            if (child == NULL) {
+                return art_validate_fail(&validator, "Node48 has a NULL 
child");
+            }
+            used_children |= UINT64_C(1) << child_idx;
+        }
+    }
+    uint64_t expected_used_children =
+        (node->available_children) ^ CROARING_NODE48_AVAILABLE_CHILDREN_MASK;
+    if (used_children != expected_used_children) {
+        return art_validate_fail(
+            &validator,
+            "Node48 available_children does not match actual children");
+    }
+    while (used_children != 0) {
+        uint8_t child_idx = roaring_trailing_zeroes(used_children);
+        used_children &= used_children - 1;
+
+        uint64_t other_children = used_children;
+        while (other_children != 0) {
+            uint8_t other_child_idx = roaring_trailing_zeroes(other_children);
+            if (node->children[child_idx] == node->children[other_child_idx]) {
+                return art_validate_fail(&validator,
+                                         "Node48 has duplicate children");
+            }
+            other_children &= other_children - 1;
+        }
+    }
+
+    validator.depth++;
+    for (int i = 0; i < 256; ++i) {
+        if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
+            validator.current_key[validator.depth - 1] = i;
+            if (!art_internal_validate_at(node->children[node->keys[i]],
+                                          validator)) {
+                return false;
+            }
+        }
+    }
+    return true;
+}
+
+static art_node256_t *art_node256_create(const art_key_chunk_t prefix[],
+                                         uint8_t prefix_size) {
+    art_node256_t *node =
+        (art_node256_t *)roaring_malloc(sizeof(art_node256_t));
+    art_init_inner_node(&node->base, CROARING_ART_NODE256_TYPE, prefix,
+                        prefix_size);
+    node->count = 0;
+    for (size_t i = 0; i < 256; ++i) {
+        node->children[i] = NULL;
+    }
+    return node;
+}
+
+static void art_free_node256(art_node256_t *node) {
+    for (size_t i = 0; i < 256; ++i) {
+        if (node->children[i] != NULL) {
+            art_free_node(node->children[i]);
+        }
+    }
+    roaring_free(node);
+}
+
+static inline art_node_t *art_node256_find_child(const art_node256_t *node,
+                                                 art_key_chunk_t key) {
+    return node->children[key];
+}
+
+static art_node_t *art_node256_insert(art_node256_t *node, art_node_t *child,
+                                      uint8_t key) {
+    node->children[key] = child;
+    node->count++;
+    return (art_node_t *)node;
+}
+
+static inline art_node_t *art_node256_erase(art_node256_t *node,
+                                            uint8_t key_chunk) {
+    node->children[key_chunk] = NULL;
+    node->count--;
+    if (node->count > 48) {
+        return (art_node_t *)node;
+    }
+
+    art_node48_t *new_node =
+        art_node48_create(node->base.prefix, node->base.prefix_size);
+    for (size_t i = 0; i < 256; ++i) {
+        if (node->children[i] != NULL) {
+            art_node48_insert(new_node, node->children[i], i);
+        }
+    }
+    roaring_free(node);
+    return (art_node_t *)new_node;
+}
+
+static inline void art_node256_replace(art_node256_t *node,
+                                       art_key_chunk_t key_chunk,
+                                       art_node_t *new_child) {
+    node->children[key_chunk] = new_child;
+}
+
+static inline art_indexed_child_t art_node256_next_child(
+    const art_node256_t *node, int index) {
+    art_indexed_child_t indexed_child;
+    index++;
+    for (size_t i = index; i < 256; ++i) {
+        if (node->children[i] != NULL) {
+            indexed_child.index = i;
+            indexed_child.child = node->children[i];
+            indexed_child.key_chunk = i;
+            return indexed_child;
+        }
+    }
+    indexed_child.child = NULL;
+    return indexed_child;
+}
+
+static inline art_indexed_child_t art_node256_prev_child(
+    const art_node256_t *node, int index) {
+    if (index > 256) {
+        index = 256;
+    }
+    index--;
+    art_indexed_child_t indexed_child;
+    for (int i = index; i >= 0; --i) {
+        if (node->children[i] != NULL) {
+            indexed_child.index = i;
+            indexed_child.child = node->children[i];
+            indexed_child.key_chunk = i;
+            return indexed_child;
+        }
+    }
+    indexed_child.child = NULL;
+    return indexed_child;
+}
+
+static inline art_indexed_child_t art_node256_child_at(
+    const art_node256_t *node, int index) {
+    art_indexed_child_t indexed_child;
+    if (index < 0 || index >= 256) {
+        indexed_child.child = NULL;
+        return indexed_child;
+    }
+    indexed_child.index = index;
+    indexed_child.child = node->children[index];
+    indexed_child.key_chunk = index;
+    return indexed_child;
+}
+
+static inline art_indexed_child_t art_node256_lower_bound(
+    art_node256_t *node, art_key_chunk_t key_chunk) {
+    art_indexed_child_t indexed_child;
+    for (size_t i = key_chunk; i < 256; ++i) {
+        if (node->children[i] != NULL) {
+            indexed_child.index = i;
+            indexed_child.child = node->children[i];
+            indexed_child.key_chunk = i;
+            return indexed_child;
+        }
+    }
+    indexed_child.child = NULL;
+    return indexed_child;
+}
+
+static bool art_node256_internal_validate(const art_node256_t *node,
+                                          art_internal_validate_t validator) {
+    if (node->count <= 48) {
+        return art_validate_fail(&validator, "Node256 has too few children");
+    }
+    if (node->count > 256) {
+        return art_validate_fail(&validator, "Node256 has too many children");
+    }
+    validator.depth++;
+    int actual_count = 0;
+    for (int i = 0; i < 256; ++i) {
+        if (node->children[i] != NULL) {
+            actual_count++;
+
+            for (int j = i + 1; j < 256; ++j) {
+                if (node->children[i] == node->children[j]) {
+                    return art_validate_fail(&validator,
+                                             "Node256 has duplicate children");
+                }
+            }
+
+            validator.current_key[validator.depth - 1] = i;
+            if (!art_internal_validate_at(node->children[i], validator)) {
+                return false;
+            }
+        }
+    }
+    if (actual_count != node->count) {
+        return art_validate_fail(
+            &validator, "Node256 count does not match actual children");
+    }
+    return true;
+}
+
+// Finds the child with the given key chunk in the inner node, returns NULL if
+// no such child is found.
+static art_node_t *art_find_child(const art_inner_node_t *node,
+                                  art_key_chunk_t key_chunk) {
+    switch (art_get_type(node)) {
+        case CROARING_ART_NODE4_TYPE:
+            return art_node4_find_child((art_node4_t *)node, key_chunk);
+        case CROARING_ART_NODE16_TYPE:
+            return art_node16_find_child((art_node16_t *)node, key_chunk);
+        case CROARING_ART_NODE48_TYPE:
+            return art_node48_find_child((art_node48_t *)node, key_chunk);
+        case CROARING_ART_NODE256_TYPE:
+            return art_node256_find_child((art_node256_t *)node, key_chunk);
+        default:
+            assert(false);
+            return NULL;
+    }
+}
+
+// Replaces the child with the given key chunk in the inner node.
+static void art_replace(art_inner_node_t *node, art_key_chunk_t key_chunk,
+                        art_node_t *new_child) {
+    switch (art_get_type(node)) {
+        case CROARING_ART_NODE4_TYPE:
+            art_node4_replace((art_node4_t *)node, key_chunk, new_child);
+            break;
+        case CROARING_ART_NODE16_TYPE:
+            art_node16_replace((art_node16_t *)node, key_chunk, new_child);
+            break;
+        case CROARING_ART_NODE48_TYPE:
+            art_node48_replace((art_node48_t *)node, key_chunk, new_child);
+            break;
+        case CROARING_ART_NODE256_TYPE:
+            art_node256_replace((art_node256_t *)node, key_chunk, new_child);
+            break;
+        default:
+            assert(false);
+    }
+}
+
+// Erases the child with the given key chunk from the inner node, returns the
+// updated node (the same as the initial node if it was not shrunk).
+static art_node_t *art_node_erase(art_inner_node_t *node,
+                                  art_key_chunk_t key_chunk) {
+    switch (art_get_type(node)) {
+        case CROARING_ART_NODE4_TYPE:
+            return art_node4_erase((art_node4_t *)node, key_chunk);
+        case CROARING_ART_NODE16_TYPE:
+            return art_node16_erase((art_node16_t *)node, key_chunk);
+        case CROARING_ART_NODE48_TYPE:
+            return art_node48_erase((art_node48_t *)node, key_chunk);
+        case CROARING_ART_NODE256_TYPE:
+            return art_node256_erase((art_node256_t *)node, key_chunk);
+        default:
+            assert(false);
+            return NULL;
+    }
+}
+
+// Inserts the leaf with the given key chunk in the inner node, returns a
+// pointer to the (possibly expanded) node.
+static art_node_t *art_node_insert_leaf(art_inner_node_t *node,
+                                        art_key_chunk_t key_chunk,
+                                        art_leaf_t *leaf) {
+    art_node_t *child = (art_node_t *)(CROARING_SET_LEAF(leaf));
+    switch (art_get_type(node)) {
+        case CROARING_ART_NODE4_TYPE:
+            return art_node4_insert((art_node4_t *)node, child, key_chunk);
+        case CROARING_ART_NODE16_TYPE:
+            return art_node16_insert((art_node16_t *)node, child, key_chunk);
+        case CROARING_ART_NODE48_TYPE:
+            return art_node48_insert((art_node48_t *)node, child, key_chunk);
+        case CROARING_ART_NODE256_TYPE:
+            return art_node256_insert((art_node256_t *)node, child, key_chunk);
+        default:
+            assert(false);
+            return NULL;
+    }
+}
+
+// Frees the node and its children. Leaves are freed by the user.
+static void art_free_node(art_node_t *node) {
+    if (art_is_leaf(node)) {
+        // We leave it up to the user to free leaves.
+        return;
+    }
+    switch (art_get_type((art_inner_node_t *)node)) {
+        case CROARING_ART_NODE4_TYPE:
+            art_free_node4((art_node4_t *)node);
+            break;
+        case CROARING_ART_NODE16_TYPE:
+            art_free_node16((art_node16_t *)node);
+            break;
+        case CROARING_ART_NODE48_TYPE:
+            art_free_node48((art_node48_t *)node);
+            break;
+        case CROARING_ART_NODE256_TYPE:
+            art_free_node256((art_node256_t *)node);
+            break;
+        default:
+            assert(false);
+    }
+}
+
+// Returns the next child in key order, or NULL if called on a leaf.
+// Provided index may be in the range [-1, 255].
+static art_indexed_child_t art_node_next_child(const art_node_t *node,
+                                               int index) {
+    if (art_is_leaf(node)) {
+        art_indexed_child_t indexed_child;
+        indexed_child.child = NULL;
+        return indexed_child;
+    }
+    switch (art_get_type((art_inner_node_t *)node)) {
+        case CROARING_ART_NODE4_TYPE:
+            return art_node4_next_child((art_node4_t *)node, index);
+        case CROARING_ART_NODE16_TYPE:
+            return art_node16_next_child((art_node16_t *)node, index);
+        case CROARING_ART_NODE48_TYPE:
+            return art_node48_next_child((art_node48_t *)node, index);
+        case CROARING_ART_NODE256_TYPE:
+            return art_node256_next_child((art_node256_t *)node, index);
+        default:
+            assert(false);
+            return (art_indexed_child_t){0, 0, 0};
+    }
+}
+
+// Returns the previous child in key order, or NULL if called on a leaf.
+// Provided index may be in the range [0, 256].
+static art_indexed_child_t art_node_prev_child(const art_node_t *node,
+                                               int index) {
+    if (art_is_leaf(node)) {
+        art_indexed_child_t indexed_child;
+        indexed_child.child = NULL;
+        return indexed_child;
+    }
+    switch (art_get_type((art_inner_node_t *)node)) {
+        case CROARING_ART_NODE4_TYPE:
+            return art_node4_prev_child((art_node4_t *)node, index);
+        case CROARING_ART_NODE16_TYPE:
+            return art_node16_prev_child((art_node16_t *)node, index);
+        case CROARING_ART_NODE48_TYPE:
+            return art_node48_prev_child((art_node48_t *)node, index);
+        case CROARING_ART_NODE256_TYPE:
+            return art_node256_prev_child((art_node256_t *)node, index);
+        default:
+            assert(false);
+            return (art_indexed_child_t){0, 0, 0};
+    }
+}
+
+// Returns the child found at the provided index, or NULL if called on a leaf.
+// Provided index is only valid if returned by art_node_(next|prev)_child.
+static art_indexed_child_t art_node_child_at(const art_node_t *node,
+                                             int index) {
+    if (art_is_leaf(node)) {
+        art_indexed_child_t indexed_child;
+        indexed_child.child = NULL;
+        return indexed_child;
+    }
+    switch (art_get_type((art_inner_node_t *)node)) {
+        case CROARING_ART_NODE4_TYPE:
+            return art_node4_child_at((art_node4_t *)node, index);
+        case CROARING_ART_NODE16_TYPE:
+            return art_node16_child_at((art_node16_t *)node, index);
+        case CROARING_ART_NODE48_TYPE:
+            return art_node48_child_at((art_node48_t *)node, index);
+        case CROARING_ART_NODE256_TYPE:
+            return art_node256_child_at((art_node256_t *)node, index);
+        default:
+            assert(false);
+            return (art_indexed_child_t){0, 0, 0};
+    }
+}
+
+// Returns the child with the smallest key equal to or greater than the given
+// key chunk, NULL if called on a leaf or no such child was found.
+static art_indexed_child_t art_node_lower_bound(const art_node_t *node,
+                                                art_key_chunk_t key_chunk) {
+    if (art_is_leaf(node)) {
+        art_indexed_child_t indexed_child;
+        indexed_child.child = NULL;
+        return indexed_child;
+    }
+    switch (art_get_type((art_inner_node_t *)node)) {
+        case CROARING_ART_NODE4_TYPE:
+            return art_node4_lower_bound((art_node4_t *)node, key_chunk);
+        case CROARING_ART_NODE16_TYPE:
+            return art_node16_lower_bound((art_node16_t *)node, key_chunk);
+        case CROARING_ART_NODE48_TYPE:
+            return art_node48_lower_bound((art_node48_t *)node, key_chunk);
+        case CROARING_ART_NODE256_TYPE:
+            return art_node256_lower_bound((art_node256_t *)node, key_chunk);
+        default:
+            assert(false);
+            return (art_indexed_child_t){0, 0, 0};
+    }
+}
+
+// ====================== End of node-specific functions 
=======================
+
+// Compares the given ranges of two keys, returns their relative order:
+// * Key range 1 <  key range 2: a negative value
+// * Key range 1 == key range 2: 0
+// * Key range 1 >  key range 2: a positive value
+static inline int art_compare_prefix(const art_key_chunk_t key1[],
+                                     uint8_t key1_from,
+                                     const art_key_chunk_t key2[],
+                                     uint8_t key2_from, uint8_t length) {
+    return memcmp(key1 + key1_from, key2 + key2_from, length);
+}
+
+// Compares two keys in full, see art_compare_prefix.
+int art_compare_keys(const art_key_chunk_t key1[],
+                     const art_key_chunk_t key2[]) {
+    return art_compare_prefix(key1, 0, key2, 0, ART_KEY_BYTES);
+}
+
+// Returns the length of the common prefix between two key ranges.
+static uint8_t art_common_prefix(const art_key_chunk_t key1[],
+                                 uint8_t key1_from, uint8_t key1_to,
+                                 const art_key_chunk_t key2[],
+                                 uint8_t key2_from, uint8_t key2_to) {
+    uint8_t min_len = key1_to - key1_from;
+    uint8_t key2_len = key2_to - key2_from;
+    if (key2_len < min_len) {
+        min_len = key2_len;
+    }
+    uint8_t offset = 0;
+    for (; offset < min_len; ++offset) {
+        if (key1[key1_from + offset] != key2[key2_from + offset]) {
+            return offset;
+        }
+    }
+    return offset;
+}
+
+// Returns a pointer to the rootmost node where the value was inserted, may not
+// be equal to `node`.
+static art_node_t *art_insert_at(art_node_t *node, const art_key_chunk_t key[],
+                                 uint8_t depth, art_leaf_t *new_leaf) {
+    if (art_is_leaf(node)) {
+        art_leaf_t *leaf = CROARING_CAST_LEAF(node);
+        uint8_t common_prefix = art_common_prefix(
+            leaf->key, depth, ART_KEY_BYTES, key, depth, ART_KEY_BYTES);
+
+        // Previously this was a leaf, create an inner node instead and add 
both
+        // the existing and new leaf to it.
+        art_node_t *new_node =
+            (art_node_t *)art_node4_create(key + depth, common_prefix);
+
+        new_node = art_node_insert_leaf((art_inner_node_t *)new_node,
+                                        leaf->key[depth + common_prefix], 
leaf);
+        new_node = art_node_insert_leaf((art_inner_node_t *)new_node,
+                                        key[depth + common_prefix], new_leaf);
+
+        // The new inner node is now the rootmost node.
+        return new_node;
+    }
+    art_inner_node_t *inner_node = (art_inner_node_t *)node;
+    // Not a leaf: inner node
+    uint8_t common_prefix =
+        art_common_prefix(inner_node->prefix, 0, inner_node->prefix_size, key,
+                          depth, ART_KEY_BYTES);
+    if (common_prefix != inner_node->prefix_size) {
+        // Partial prefix match.  Create a new internal node to hold the common
+        // prefix.
+        art_node4_t *node4 =
+            art_node4_create(inner_node->prefix, common_prefix);
+
+        // Make the existing internal node a child of the new internal node.
+        node4 = (art_node4_t *)art_node4_insert(
+            node4, node, inner_node->prefix[common_prefix]);
+
+        // Correct the prefix of the moved internal node, trimming off the 
chunk
+        // inserted into the new internal node.
+        inner_node->prefix_size = inner_node->prefix_size - common_prefix - 1;
+        if (inner_node->prefix_size > 0) {
+            // Move the remaining prefix to the correct position.
+            memmove(inner_node->prefix, inner_node->prefix + common_prefix + 1,
+                    inner_node->prefix_size);
+        }
+
+        // Insert the value in the new internal node.
+        return art_node_insert_leaf(&node4->base, key[common_prefix + depth],
+                                    new_leaf);
+    }
+    // Prefix matches entirely or node has no prefix. Look for an existing
+    // child.
+    art_key_chunk_t key_chunk = key[depth + common_prefix];
+    art_node_t *child = art_find_child(inner_node, key_chunk);
+    if (child != NULL) {
+        art_node_t *new_child =
+            art_insert_at(child, key, depth + common_prefix + 1, new_leaf);
+        if (new_child != child) {
+            // Node type changed.
+            art_replace(inner_node, key_chunk, new_child);
+        }
+        return node;
+    }
+    return art_node_insert_leaf(inner_node, key_chunk, new_leaf);
+}
+
+// Erase helper struct.
+typedef struct art_erase_result_s {
+    // The rootmost node where the value was erased, may not be equal to 
`node`.
+    // If no value was removed, this is null.
+    art_node_t *rootmost_node;
+
+    // Value removed, null if not removed.
+    art_val_t *value_erased;
+} art_erase_result_t;
+
+// Searches for the given key starting at `node`, erases it if found.
+static art_erase_result_t art_erase_at(art_node_t *node,
+                                       const art_key_chunk_t *key,
+                                       uint8_t depth) {
+    art_erase_result_t result;
+    result.rootmost_node = NULL;
+    result.value_erased = NULL;
+
+    if (art_is_leaf(node)) {
+        art_leaf_t *leaf = CROARING_CAST_LEAF(node);
+        uint8_t common_prefix = art_common_prefix(leaf->key, 0, ART_KEY_BYTES,
+                                                  key, 0, ART_KEY_BYTES);
+        if (common_prefix != ART_KEY_BYTES) {
+            // Leaf key mismatch.
+            return result;
+        }
+        result.value_erased = (art_val_t *)leaf;
+        return result;
+    }
+    art_inner_node_t *inner_node = (art_inner_node_t *)node;
+    uint8_t common_prefix =
+        art_common_prefix(inner_node->prefix, 0, inner_node->prefix_size, key,
+                          depth, ART_KEY_BYTES);
+    if (common_prefix != inner_node->prefix_size) {
+        // Prefix mismatch.
+        return result;
+    }
+    art_key_chunk_t key_chunk = key[depth + common_prefix];
+    art_node_t *child = art_find_child(inner_node, key_chunk);
+    if (child == NULL) {
+        // No child with key chunk.
+        return result;
+    }
+    // Try to erase the key further down. Skip the key chunk associated with 
the
+    // child in the node.
+    art_erase_result_t child_result =
+        art_erase_at(child, key, depth + common_prefix + 1);
+    if (child_result.value_erased == NULL) {
+        return result;
+    }
+    result.value_erased = child_result.value_erased;
+    result.rootmost_node = node;
+    if (child_result.rootmost_node == NULL) {
+        // Child node was fully erased, erase it from this node's children.
+        result.rootmost_node = art_node_erase(inner_node, key_chunk);
+    } else if (child_result.rootmost_node != child) {
+        // Child node was not fully erased, update the pointer to it in this
+        // node.
+        art_replace(inner_node, key_chunk, child_result.rootmost_node);
+    }
+    return result;
+}
+
+// Searches for the given key starting at `node`, returns NULL if the key was
+// not found.
+static art_val_t *art_find_at(const art_node_t *node,
+                              const art_key_chunk_t *key, uint8_t depth) {
+    while (!art_is_leaf(node)) {
+        art_inner_node_t *inner_node = (art_inner_node_t *)node;
+        uint8_t common_prefix =
+            art_common_prefix(inner_node->prefix, 0, inner_node->prefix_size,
+                              key, depth, ART_KEY_BYTES);
+        if (common_prefix != inner_node->prefix_size) {
+            return NULL;
+        }
+        art_node_t *child =
+            art_find_child(inner_node, key[depth + inner_node->prefix_size]);
+        if (child == NULL) {
+            return NULL;
+        }
+        node = child;
+        // Include both the prefix and the child key chunk in the depth.
+        depth += inner_node->prefix_size + 1;
+    }
+    art_leaf_t *leaf = CROARING_CAST_LEAF(node);
+    if (depth >= ART_KEY_BYTES) {
+        return (art_val_t *)leaf;
+    }
+    uint8_t common_prefix =
+        art_common_prefix(leaf->key, 0, ART_KEY_BYTES, key, 0, ART_KEY_BYTES);
+    if (common_prefix == ART_KEY_BYTES) {
+        return (art_val_t *)leaf;
+    }
+    return NULL;
+}
+
+// Returns the size in bytes of the subtrie.
+size_t art_size_in_bytes_at(const art_node_t *node) {
+    if (art_is_leaf(node)) {
+        return 0;
+    }
+    size_t size = 0;
+    switch (art_get_type((art_inner_node_t *)node)) {
+        case CROARING_ART_NODE4_TYPE: {
+            size += sizeof(art_node4_t);
+        } break;
+        case CROARING_ART_NODE16_TYPE: {
+            size += sizeof(art_node16_t);
+        } break;
+        case CROARING_ART_NODE48_TYPE: {
+            size += sizeof(art_node48_t);
+        } break;
+        case CROARING_ART_NODE256_TYPE: {
+            size += sizeof(art_node256_t);
+        } break;
+        default:
+            assert(false);
+            break;
+    }
+    art_indexed_child_t indexed_child = art_node_next_child(node, -1);
+    while (indexed_child.child != NULL) {
+        size += art_size_in_bytes_at(indexed_child.child);
+        indexed_child = art_node_next_child(node, indexed_child.index);
+    }
+    return size;
+}
+
+static void art_node_print_type(const art_node_t *node) {
+    if (art_is_leaf(node)) {
+        printf("Leaf");
+        return;
+    }
+    switch (art_get_type((art_inner_node_t *)node)) {
+        case CROARING_ART_NODE4_TYPE:
+            printf("Node4");
+            return;
+        case CROARING_ART_NODE16_TYPE:
+            printf("Node16");
+            return;
+        case CROARING_ART_NODE48_TYPE:
+            printf("Node48");
+            return;
+        case CROARING_ART_NODE256_TYPE:
+            printf("Node256");
+            return;
+        default:
+            assert(false);
+            return;
+    }
+}
+
+void art_node_printf(const art_node_t *node, uint8_t depth) {
+    if (art_is_leaf(node)) {
+        printf("{ type: Leaf, key: ");
+        art_leaf_t *leaf = CROARING_CAST_LEAF(node);
+        for (size_t i = 0; i < ART_KEY_BYTES; ++i) {
+            printf("%02x", leaf->key[i]);
+        }
+        printf(" }\n");
+        return;
+    }
+    printf("{\n");
+    depth++;
+
+    printf("%*s", depth, "");
+    printf("type: ");
+    art_node_print_type(node);
+    printf("\n");
+
+    art_inner_node_t *inner_node = (art_inner_node_t *)node;
+    printf("%*s", depth, "");
+    printf("prefix_size: %d\n", inner_node->prefix_size);
+
+    printf("%*s", depth, "");
+    printf("prefix: ");
+    for (uint8_t i = 0; i < inner_node->prefix_size; ++i) {
+        printf("%02x", inner_node->prefix[i]);
+    }
+    printf("\n");
+
+    switch (art_get_type(inner_node)) {
+        case CROARING_ART_NODE4_TYPE: {
+            art_node4_t *node4 = (art_node4_t *)node;
+            for (uint8_t i = 0; i < node4->count; ++i) {
+                printf("%*s", depth, "");
+                printf("key: %02x ", node4->keys[i]);
+                art_node_printf(node4->children[i], depth);
+            }
+        } break;
+        case CROARING_ART_NODE16_TYPE: {
+            art_node16_t *node16 = (art_node16_t *)node;
+            for (uint8_t i = 0; i < node16->count; ++i) {
+                printf("%*s", depth, "");
+                printf("key: %02x ", node16->keys[i]);
+                art_node_printf(node16->children[i], depth);
+            }
+        } break;
+        case CROARING_ART_NODE48_TYPE: {
+            art_node48_t *node48 = (art_node48_t *)node;
+            for (int i = 0; i < 256; ++i) {
+                if (node48->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
+                    printf("%*s", depth, "");
+                    printf("key: %02x ", i);
+                    printf("child: %02x ", node48->keys[i]);
+                    art_node_printf(node48->children[node48->keys[i]], depth);
+                }
+            }
+        } break;
+        case CROARING_ART_NODE256_TYPE: {
+            art_node256_t *node256 = (art_node256_t *)node;
+            for (int i = 0; i < 256; ++i) {
+                if (node256->children[i] != NULL) {
+                    printf("%*s", depth, "");
+                    printf("key: %02x ", i);
+                    art_node_printf(node256->children[i], depth);
+                }
+            }
+        } break;
+        default:
+            assert(false);
+            break;
+    }
+    depth--;
+    printf("%*s", depth, "");
+    printf("}\n");
+}
+
+void art_insert(art_t *art, const art_key_chunk_t *key, art_val_t *val) {
+    art_leaf_t *leaf = (art_leaf_t *)val;
+    art_leaf_populate(leaf, key);
+    if (art->root == NULL) {
+        art->root = (art_node_t *)CROARING_SET_LEAF(leaf);
+        return;
+    }
+    art->root = art_insert_at(art->root, key, 0, leaf);
+}
+
+art_val_t *art_erase(art_t *art, const art_key_chunk_t *key) {
+    if (art->root == NULL) {
+        return NULL;
+    }
+    art_erase_result_t result = art_erase_at(art->root, key, 0);
+    if (result.value_erased == NULL) {
+        return NULL;
+    }
+    art->root = result.rootmost_node;
+    return result.value_erased;
+}
+
+art_val_t *art_find(const art_t *art, const art_key_chunk_t *key) {
+    if (art->root == NULL) {
+        return NULL;
+    }
+    return art_find_at(art->root, key, 0);
+}
+
+bool art_is_empty(const art_t *art) { return art->root == NULL; }
+
+void art_free(art_t *art) {
+    if (art->root == NULL) {
+        return;
+    }
+    art_free_node(art->root);
+}
+
+size_t art_size_in_bytes(const art_t *art) {
+    size_t size = sizeof(art_t);
+    if (art->root != NULL) {
+        size += art_size_in_bytes_at(art->root);
+    }
+    return size;
+}
+
+void art_printf(const art_t *art) {
+    if (art->root == NULL) {
+        return;
+    }
+    art_node_printf(art->root, 0);
+}
+
+// Returns the current node that the iterator is positioned at.
+static inline art_node_t *art_iterator_node(art_iterator_t *iterator) {
+    return iterator->frames[iterator->frame].node;
+}
+
+// Sets the iterator key and value to the leaf's key and value. Always returns
+// true for convenience.
+static inline bool art_iterator_valid_loc(art_iterator_t *iterator,
+                                          art_leaf_t *leaf) {
+    iterator->frames[iterator->frame].node = CROARING_SET_LEAF(leaf);
+    iterator->frames[iterator->frame].index_in_node = 0;
+    memcpy(iterator->key, leaf->key, ART_KEY_BYTES);
+    iterator->value = (art_val_t *)leaf;
+    return true;
+}
+
+// Invalidates the iterator key and value. Always returns false for 
convenience.
+static inline bool art_iterator_invalid_loc(art_iterator_t *iterator) {
+    memset(iterator->key, 0, ART_KEY_BYTES);
+    iterator->value = NULL;
+    return false;
+}
+
+// Moves the iterator one level down in the tree, given a node at the current
+// level and the index of the child that we're going down to.
+//
+// Note: does not set the index at the new level.
+static void art_iterator_down(art_iterator_t *iterator,
+                              const art_inner_node_t *node,
+                              uint8_t index_in_node) {
+    iterator->frames[iterator->frame].node = (art_node_t *)node;
+    iterator->frames[iterator->frame].index_in_node = index_in_node;
+    iterator->frame++;
+    art_indexed_child_t indexed_child =
+        art_node_child_at((art_node_t *)node, index_in_node);
+    assert(indexed_child.child != NULL);
+    iterator->frames[iterator->frame].node = indexed_child.child;
+    iterator->depth += node->prefix_size + 1;
+}
+
+// Moves the iterator to the next/previous child of the current node. Returns
+// the child moved to, or NULL if there is no neighboring child.
+static art_node_t *art_iterator_neighbor_child(
+    art_iterator_t *iterator, const art_inner_node_t *inner_node,
+    bool forward) {
+    art_iterator_frame_t frame = iterator->frames[iterator->frame];
+    art_indexed_child_t indexed_child;
+    if (forward) {
+        indexed_child = art_node_next_child(frame.node, frame.index_in_node);
+    } else {
+        indexed_child = art_node_prev_child(frame.node, frame.index_in_node);
+    }
+    if (indexed_child.child != NULL) {
+        art_iterator_down(iterator, inner_node, indexed_child.index);
+    }
+    return indexed_child.child;
+}
+
+// Moves the iterator one level up in the tree, returns false if not possible.
+static bool art_iterator_up(art_iterator_t *iterator) {
+    if (iterator->frame == 0) {
+        return false;
+    }
+    iterator->frame--;
+    // We went up, so we are at an inner node.
+    iterator->depth -=
+        ((art_inner_node_t *)art_iterator_node(iterator))->prefix_size + 1;
+    return true;
+}
+
+// Moves the iterator one level, followed by a move to the next / previous 
leaf.
+// Sets the status of the iterator.
+static bool art_iterator_up_and_move(art_iterator_t *iterator, bool forward) {
+    if (!art_iterator_up(iterator)) {
+        // We're at the root.
+        return art_iterator_invalid_loc(iterator);
+    }
+    return art_iterator_move(iterator, forward);
+}
+
+// Initializes the iterator at the first / last leaf of the given node.
+// Returns true for convenience.
+static bool art_node_init_iterator(const art_node_t *node,
+                                   art_iterator_t *iterator, bool first) {
+    while (!art_is_leaf(node)) {
+        art_indexed_child_t indexed_child;
+        if (first) {
+            indexed_child = art_node_next_child(node, -1);
+        } else {
+            indexed_child = art_node_prev_child(node, 256);
+        }
+        art_iterator_down(iterator, (art_inner_node_t *)node,
+                          indexed_child.index);
+        node = indexed_child.child;
+    }
+    // We're at a leaf.
+    iterator->frames[iterator->frame].node = (art_node_t *)node;
+    iterator->frames[iterator->frame].index_in_node = 0;  // Should not matter.
+    return art_iterator_valid_loc(iterator, CROARING_CAST_LEAF(node));
+}
+
+bool art_iterator_move(art_iterator_t *iterator, bool forward) {
+    if (art_is_leaf(art_iterator_node(iterator))) {
+        bool went_up = art_iterator_up(iterator);
+        if (!went_up) {
+            // This leaf is the root, we're done.
+            return art_iterator_invalid_loc(iterator);
+        }
+    }
+    // Advance within inner node.
+    art_node_t *neighbor_child = art_iterator_neighbor_child(
+        iterator, (art_inner_node_t *)art_iterator_node(iterator), forward);
+    if (neighbor_child != NULL) {
+        // There is another child at this level, go down to the first or last
+        // leaf.
+        return art_node_init_iterator(neighbor_child, iterator, forward);
+    }
+    // No more children at this level, go up.
+    return art_iterator_up_and_move(iterator, forward);
+}
+
+// Assumes the iterator is positioned at a node with an equal prefix path up to
+// the depth of the iterator.
+static bool art_node_iterator_lower_bound(const art_node_t *node,
+                                          art_iterator_t *iterator,
+                                          const art_key_chunk_t key[]) {
+    while (!art_is_leaf(node)) {
+        art_inner_node_t *inner_node = (art_inner_node_t *)node;
+        int prefix_comparison =
+            art_compare_prefix(inner_node->prefix, 0, key, iterator->depth,
+                               inner_node->prefix_size);
+        if (prefix_comparison < 0) {
+            // Prefix so far has been equal, but we've found a smaller key.
+            // Since we take the lower bound within each node, we can return 
the
+            // next leaf.
+            return art_iterator_up_and_move(iterator, true);
+        } else if (prefix_comparison > 0) {
+            // No key equal to the key we're looking for, return the first 
leaf.
+            return art_node_init_iterator(node, iterator, true);
+        }
+        // Prefix is equal, move to lower bound child.
+        art_key_chunk_t key_chunk =
+            key[iterator->depth + inner_node->prefix_size];
+        art_indexed_child_t indexed_child =
+            art_node_lower_bound(node, key_chunk);
+        if (indexed_child.child == NULL) {
+            // Only smaller keys among children.
+            return art_iterator_up_and_move(iterator, true);
+        }
+        if (indexed_child.key_chunk > key_chunk) {
+            // Only larger children, return the first larger child.
+            art_iterator_down(iterator, inner_node, indexed_child.index);
+            return art_node_init_iterator(indexed_child.child, iterator, true);
+        }
+        // We found a child with an equal prefix.
+        art_iterator_down(iterator, inner_node, indexed_child.index);
+        node = indexed_child.child;
+    }
+    art_leaf_t *leaf = CROARING_CAST_LEAF(node);
+    if (art_compare_keys(leaf->key, key) >= 0) {
+        // Leaf has an equal or larger key.
+        return art_iterator_valid_loc(iterator, leaf);
+    }
+    // Leaf has an equal prefix, but the full key is smaller. Move to the next
+    // leaf.
+    return art_iterator_up_and_move(iterator, true);
+}
+
+art_iterator_t art_init_iterator(const art_t *art, bool first) {
+    art_iterator_t iterator = CROARING_ZERO_INITIALIZER;
+    if (art->root == NULL) {
+        return iterator;
+    }
+    art_node_init_iterator(art->root, &iterator, first);
+    return iterator;
+}
+
+bool art_iterator_next(art_iterator_t *iterator) {
+    return art_iterator_move(iterator, true);
+}
+
+bool art_iterator_prev(art_iterator_t *iterator) {
+    return art_iterator_move(iterator, false);
+}
+
+bool art_iterator_lower_bound(art_iterator_t *iterator,
+                              const art_key_chunk_t *key) {
+    if (iterator->value == NULL) {
+        // We're beyond the end / start of the ART so the iterator does not 
have
+        // a valid key. Start from the root.
+        iterator->frame = 0;
+        iterator->depth = 0;
+        art_node_t *root = art_iterator_node(iterator);
+        if (root == NULL) {
+            return false;
+        }
+        return art_node_iterator_lower_bound(root, iterator, key);
+    }
+    int compare_result =
+        art_compare_prefix(iterator->key, 0, key, 0, ART_KEY_BYTES);
+    // Move up until we have an equal prefix, after which we can do a normal
+    // lower bound search.
+    while (compare_result != 0) {
+        if (!art_iterator_up(iterator)) {
+            if (compare_result < 0) {
+                // Only smaller keys found.
+                return art_iterator_invalid_loc(iterator);
+            } else {
+                return art_node_init_iterator(art_iterator_node(iterator),
+                                              iterator, true);
+            }
+        }
+        // Since we're only moving up, we can keep comparing against the
+        // iterator key.
+        art_inner_node_t *inner_node =
+            (art_inner_node_t *)art_iterator_node(iterator);
+        compare_result =
+            art_compare_prefix(iterator->key, 0, key, 0,
+                               iterator->depth + inner_node->prefix_size);
+    }
+    if (compare_result > 0) {
+        return art_node_init_iterator(art_iterator_node(iterator), iterator,
+                                      true);
+    }
+    return art_node_iterator_lower_bound(art_iterator_node(iterator), iterator,
+                                         key);
+}
+
+art_iterator_t art_lower_bound(const art_t *art, const art_key_chunk_t *key) {
+    art_iterator_t iterator = CROARING_ZERO_INITIALIZER;
+    if (art->root != NULL) {
+        art_node_iterator_lower_bound(art->root, &iterator, key);
+    }
+    return iterator;
+}
+
+art_iterator_t art_upper_bound(const art_t *art, const art_key_chunk_t *key) {
+    art_iterator_t iterator = CROARING_ZERO_INITIALIZER;
+    if (art->root != NULL) {
+        if (art_node_iterator_lower_bound(art->root, &iterator, key) &&
+            art_compare_keys(iterator.key, key) == 0) {
+            art_iterator_next(&iterator);
+        }
+    }
+    return iterator;
+}
+
+void art_iterator_insert(art_t *art, art_iterator_t *iterator,
+                         const art_key_chunk_t *key, art_val_t *val) {
+    // TODO: This can likely be faster.
+    art_insert(art, key, val);
+    assert(art->root != NULL);
+    iterator->frame = 0;
+    iterator->depth = 0;
+    art_node_iterator_lower_bound(art->root, iterator, key);
+}
+
+// TODO: consider keeping `art_t *art` in the iterator.
+art_val_t *art_iterator_erase(art_t *art, art_iterator_t *iterator) {
+    if (iterator->value == NULL) {
+        return NULL;
+    }
+    art_key_chunk_t initial_key[ART_KEY_BYTES];
+    memcpy(initial_key, iterator->key, ART_KEY_BYTES);
+
+    art_val_t *value_erased = iterator->value;
+    bool went_up = art_iterator_up(iterator);
+    if (!went_up) {
+        // We're erasing the root.
+        art->root = NULL;
+        art_iterator_invalid_loc(iterator);
+        return value_erased;
+    }
+
+    // Erase the leaf.
+    art_inner_node_t *parent_node =
+        (art_inner_node_t *)art_iterator_node(iterator);
+    art_key_chunk_t key_chunk_in_parent =
+        iterator->key[iterator->depth + parent_node->prefix_size];
+    art_node_t *new_parent_node =
+        art_node_erase(parent_node, key_chunk_in_parent);
+
+    if (new_parent_node != ((art_node_t *)parent_node)) {
+        // Replace the pointer to the inner node we erased from in its
+        // parent (it may be a leaf now).
+        iterator->frames[iterator->frame].node = new_parent_node;
+        went_up = art_iterator_up(iterator);
+        if (went_up) {
+            art_inner_node_t *grandparent_node =
+                (art_inner_node_t *)art_iterator_node(iterator);
+            art_key_chunk_t key_chunk_in_grandparent =
+                iterator->key[iterator->depth + grandparent_node->prefix_size];
+            art_replace(grandparent_node, key_chunk_in_grandparent,
+                        new_parent_node);
+        } else {
+            // We were already at the rootmost node.
+            art->root = new_parent_node;
+        }
+    }
+
+    iterator->frame = 0;
+    iterator->depth = 0;
+    // Do a lower bound search for the initial key, which will find the first
+    // greater key if it exists. This can likely be mildly faster if we instead
+    // start from the current position.
+    art_node_iterator_lower_bound(art->root, iterator, initial_key);
+    return value_erased;
+}
+
+static bool art_internal_validate_at(const art_node_t *node,
+                                     art_internal_validate_t validator) {
+    if (node == NULL) {
+        return art_validate_fail(&validator, "node is null");
+    }
+    if (art_is_leaf(node)) {
+        art_leaf_t *leaf = CROARING_CAST_LEAF(node);
+        if (art_compare_prefix(leaf->key, 0, validator.current_key, 0,
+                               validator.depth) != 0) {
+            return art_validate_fail(
+                &validator,
+                "leaf key does not match its position's prefix in the tree");
+        }
+        if (validator.validate_cb != NULL &&
+            !validator.validate_cb(leaf, validator.reason)) {
+            if (*validator.reason == NULL) {
+                *validator.reason = "leaf validation failed";
+            }
+            return false;
+        }
+    } else {
+        art_inner_node_t *inner_node = (art_inner_node_t *)node;
+
+        if (validator.depth + inner_node->prefix_size + 1 > ART_KEY_BYTES) {
+            return art_validate_fail(&validator,
+                                     "node has too much prefix at given 
depth");
+        }
+        memcpy(validator.current_key + validator.depth, inner_node->prefix,
+               inner_node->prefix_size);
+        validator.depth += inner_node->prefix_size;
+
+        switch (inner_node->typecode) {
+            case CROARING_ART_NODE4_TYPE:
+                if (!art_node4_internal_validate((art_node4_t *)inner_node,
+                                                 validator)) {
+                    return false;
+                }
+                break;
+            case CROARING_ART_NODE16_TYPE:
+                if (!art_node16_internal_validate((art_node16_t *)inner_node,
+                                                  validator)) {
+                    return false;
+                }
+                break;
+            case CROARING_ART_NODE48_TYPE:
+                if (!art_node48_internal_validate((art_node48_t *)inner_node,
+                                                  validator)) {
+                    return false;
+                }
+                break;
+            case CROARING_ART_NODE256_TYPE:
+                if (!art_node256_internal_validate((art_node256_t *)inner_node,
+                                                   validator)) {
+                    return false;
+                }
+                break;
+            default:
+                return art_validate_fail(&validator, "invalid node type");
+        }
+    }
+    return true;
+}
+
+bool art_internal_validate(const art_t *art, const char **reason,
+                           art_validate_cb_t validate_cb) {
+    const char *reason_local;
+    if (reason == NULL) {
+        // Always allow assigning through *reason
+        reason = &reason_local;
+    }
+    *reason = NULL;
+    if (art->root == NULL) {
+        return true;
+    }
+    art_internal_validate_t validator = {
+        .reason = reason,
+        .validate_cb = validate_cb,
+        .depth = 0,
+        .current_key = {0},
+    };
+    return art_internal_validate_at(art->root, validator);
+}
+
+#ifdef __cplusplus
+}  // extern "C"
+}  // namespace roaring
+}  // namespace internal
+#endif
+/* end file src/art/art.c */
+/* begin file src/bitset.c */
+#include <limits.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+extern inline void bitset_print(const bitset_t *b);
+extern inline bool bitset_for_each(const bitset_t *b, bitset_iterator iterator,
+                                   void *ptr);
+extern inline size_t bitset_next_set_bits(const bitset_t *bitset,
+                                          size_t *buffer, size_t capacity,
+                                          size_t *startfrom);
+extern inline void bitset_set_to_value(bitset_t *bitset, size_t i, bool flag);
+extern inline bool bitset_next_set_bit(const bitset_t *bitset, size_t *i);
+extern inline void bitset_set(bitset_t *bitset, size_t i);
+extern inline bool bitset_get(const bitset_t *bitset, size_t i);
+extern inline size_t bitset_size_in_words(const bitset_t *bitset);
+extern inline size_t bitset_size_in_bits(const bitset_t *bitset);
+extern inline size_t bitset_size_in_bytes(const bitset_t *bitset);
+
+/* Create a new bitset. Return NULL in case of failure. */
+bitset_t *bitset_create(void) {
+    bitset_t *bitset = NULL;
+    /* Allocate the bitset itself. */
+    if ((bitset = (bitset_t *)roaring_malloc(sizeof(bitset_t))) == NULL) {
+        return NULL;
+    }
+    bitset->array = NULL;
+    bitset->arraysize = 0;
+    bitset->capacity = 0;
+    return bitset;
+}
+
+/* Create a new bitset able to contain size bits. Return NULL in case of
+ * failure. */
+bitset_t *bitset_create_with_capacity(size_t size) {
+    bitset_t *bitset = NULL;
+    /* Allocate the bitset itself. */
+    if ((bitset = (bitset_t *)roaring_malloc(sizeof(bitset_t))) == NULL) {
+        return NULL;
+    }
+    bitset->arraysize =
+        (size + sizeof(uint64_t) * 8 - 1) / (sizeof(uint64_t) * 8);
+    bitset->capacity = bitset->arraysize;
+    if ((bitset->array = (uint64_t *)roaring_calloc(
+             bitset->arraysize, sizeof(uint64_t))) == NULL) {
+        roaring_free(bitset);
+        return NULL;
+    }
+    return bitset;
+}
+
+/* Create a copy */
+bitset_t *bitset_copy(const bitset_t *bitset) {
+    bitset_t *copy = NULL;
+    /* Allocate the bitset itself. */
+    if ((copy = (bitset_t *)roaring_malloc(sizeof(bitset_t))) == NULL) {
+        return NULL;
+    }
+    memcpy(copy, bitset, sizeof(bitset_t));
+    copy->capacity = copy->arraysize;
+    if ((copy->array = (uint64_t *)roaring_malloc(sizeof(uint64_t) *
+                                                  bitset->arraysize)) == NULL) 
{
+        roaring_free(copy);
+        return NULL;
+    }
+    memcpy(copy->array, bitset->array, sizeof(uint64_t) * bitset->arraysize);
+    return copy;
+}
+
+void bitset_clear(bitset_t *bitset) {
+    memset(bitset->array, 0, sizeof(uint64_t) * bitset->arraysize);
+}
+
+void bitset_fill(bitset_t *bitset) {
+    memset(bitset->array, 0xff, sizeof(uint64_t) * bitset->arraysize);
+}
+
+void bitset_shift_left(bitset_t *bitset, size_t s) {
+    size_t extra_words = s / 64;
+    int inword_shift = s % 64;
+    size_t as = bitset->arraysize;
+    if (inword_shift == 0) {
+        bitset_resize(bitset, as + extra_words, false);
+        // could be done with a memmove
+        for (size_t i = as + extra_words; i > extra_words; i--) {
+            bitset->array[i - 1] = bitset->array[i - 1 - extra_words];
+        }
+    } else {
+        bitset_resize(bitset, as + extra_words + 1, true);
+        bitset->array[as + extra_words] =
+            bitset->array[as - 1] >> (64 - inword_shift);
+        for (size_t i = as + extra_words; i >= extra_words + 2; i--) {
+            bitset->array[i - 1] =
+                (bitset->array[i - 1 - extra_words] << inword_shift) |
+                (bitset->array[i - 2 - extra_words] >> (64 - inword_shift));
+        }
+        bitset->array[extra_words] = bitset->array[0] << inword_shift;
+    }
+    for (size_t i = 0; i < extra_words; i++) {
+        bitset->array[i] = 0;
+    }
+}
+
+void bitset_shift_right(bitset_t *bitset, size_t s) {
+    size_t extra_words = s / 64;
+    int inword_shift = s % 64;
+    size_t as = bitset->arraysize;
+    if (inword_shift == 0) {
+        // could be done with a memmove
+        for (size_t i = 0; i < as - extra_words; i++) {
+            bitset->array[i] = bitset->array[i + extra_words];
+        }
+        bitset_resize(bitset, as - extra_words, false);
+
+    } else {
+        for (size_t i = 0; i + extra_words + 1 < as; i++) {
+            bitset->array[i] =
+                (bitset->array[i + extra_words] >> inword_shift) |
+                (bitset->array[i + extra_words + 1] << (64 - inword_shift));
+        }
+        bitset->array[as - extra_words - 1] =
+            (bitset->array[as - 1] >> inword_shift);
+        bitset_resize(bitset, as - extra_words, false);
+    }
+}
+
+/* Free memory. */
+void bitset_free(bitset_t *bitset) {
+    if (bitset == NULL) {
+        return;
+    }
+    roaring_free(bitset->array);
+    roaring_free(bitset);
+}
+
+/* Resize the bitset so that it can support newarraysize * 64 bits. Return true
+ * in case of success, false for failure. */
+bool bitset_resize(bitset_t *bitset, size_t newarraysize, bool padwithzeroes) {
+    if (newarraysize > SIZE_MAX / 64) {
+        return false;
+    }
+    size_t smallest =
+        newarraysize < bitset->arraysize ? newarraysize : bitset->arraysize;
+    if (bitset->capacity < newarraysize) {
+        uint64_t *newarray;
+        size_t newcapacity = bitset->capacity;
+        if (newcapacity == 0) {
+            newcapacity = 1;
+        }
+        while (newcapacity < newarraysize) {
+            newcapacity *= 2;
+        }
+        if ((newarray = (uint64_t *)roaring_realloc(
+                 bitset->array, sizeof(uint64_t) * newcapacity)) == NULL) {
+            return false;
+        }
+        bitset->capacity = newcapacity;
+        bitset->array = newarray;
+    }
+    if (padwithzeroes && (newarraysize > smallest))
+        memset(bitset->array + smallest, 0,
+               sizeof(uint64_t) * (newarraysize - smallest));
+    bitset->arraysize = newarraysize;
+    return true;  // success!
+}
+
+size_t bitset_count(const bitset_t *bitset) {
+    size_t card = 0;
+    size_t k = 0;
+    for (; k + 7 < bitset->arraysize; k += 8) {
+        card += roaring_hamming(bitset->array[k]);
+        card += roaring_hamming(bitset->array[k + 1]);
+        card += roaring_hamming(bitset->array[k + 2]);
+        card += roaring_hamming(bitset->array[k + 3]);
+        card += roaring_hamming(bitset->array[k + 4]);
+        card += roaring_hamming(bitset->array[k + 5]);
+        card += roaring_hamming(bitset->array[k + 6]);
+        card += roaring_hamming(bitset->array[k + 7]);
+    }
+    for (; k + 3 < bitset->arraysize; k += 4) {
+        card += roaring_hamming(bitset->array[k]);
+        card += roaring_hamming(bitset->array[k + 1]);
+        card += roaring_hamming(bitset->array[k + 2]);
+        card += roaring_hamming(bitset->array[k + 3]);
+    }
+    for (; k < bitset->arraysize; k++) {
+        card += roaring_hamming(bitset->array[k]);
+    }
+    return card;
+}
+
+bool bitset_inplace_union(bitset_t *CROARING_CBITSET_RESTRICT b1,
+                          const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+    size_t minlength =
+        b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+    for (size_t k = 0; k < minlength; ++k) {
+        b1->array[k] |= b2->array[k];
+    }
+    if (b2->arraysize > b1->arraysize) {
+        size_t oldsize = b1->arraysize;
+        if (!bitset_resize(b1, b2->arraysize, false)) return false;
+        memcpy(b1->array + oldsize, b2->array + oldsize,
+               (b2->arraysize - oldsize) * sizeof(uint64_t));
+    }
+    return true;
+}
+
+bool bitset_empty(const bitset_t *bitset) {
+    for (size_t k = 0; k < bitset->arraysize; k++) {
+        if (bitset->array[k] != 0) {
+            return false;
+        }
+    }
+    return true;
+}
+
+size_t bitset_minimum(const bitset_t *bitset) {
+    for (size_t k = 0; k < bitset->arraysize; k++) {
+        uint64_t w = bitset->array[k];
+        if (w != 0) {
+            return roaring_trailing_zeroes(w) + k * 64;
+        }
+    }
+    return SIZE_MAX;
+}
+
+bool bitset_grow(bitset_t *bitset, size_t newarraysize) {
+    if (newarraysize < bitset->arraysize) {
+        return false;
+    }
+    if (newarraysize > SIZE_MAX / 64) {
+        return false;
+    }
+    if (bitset->capacity < newarraysize) {
+        uint64_t *newarray;
+        size_t newcapacity = (UINT64_C(0xFFFFFFFFFFFFFFFF) >>
+                              roaring_leading_zeroes(newarraysize)) +
+                             1;
+        while (newcapacity < newarraysize) {
+            newcapacity *= 2;
+        }
+        if ((newarray = (uint64_t *)roaring_realloc(
+                 bitset->array, sizeof(uint64_t) * newcapacity)) == NULL) {
+            return false;
+        }
+        bitset->capacity = newcapacity;
+        bitset->array = newarray;
+    }
+    memset(bitset->array + bitset->arraysize, 0,
+           sizeof(uint64_t) * (newarraysize - bitset->arraysize));
+    bitset->arraysize = newarraysize;
+    return true;  // success!
+}
+
+size_t bitset_maximum(const bitset_t *bitset) {
+    for (size_t k = bitset->arraysize; k > 0; k--) {
+        uint64_t w = bitset->array[k - 1];
+        if (w != 0) {
+            return 63 - roaring_leading_zeroes(w) + (k - 1) * 64;
+        }
+    }
+    return 0;
+}
+
+/* Returns true if bitsets share no common elements, false otherwise.
+ *
+ * Performs early-out if common element found. */
+bool bitsets_disjoint(const bitset_t *CROARING_CBITSET_RESTRICT b1,
+                      const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+    size_t minlength =
+        b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+
+    for (size_t k = 0; k < minlength; k++) {
+        if ((b1->array[k] & b2->array[k]) != 0) return false;
+    }
+    return true;
+}
+
+/* Returns true if bitsets contain at least 1 common element, false if they are
+ * disjoint.
+ *
+ * Performs early-out if common element found. */
+bool bitsets_intersect(const bitset_t *CROARING_CBITSET_RESTRICT b1,
+                       const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+    size_t minlength =
+        b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+
+    for (size_t k = 0; k < minlength; k++) {
+        if ((b1->array[k] & b2->array[k]) != 0) return true;
+    }
+    return false;
+}
+
+/* Returns true if b has any bits set in or after b->array[starting_loc]. */
+static bool any_bits_set(const bitset_t *b, size_t starting_loc) {
+    if (starting_loc >= b->arraysize) {
+        return false;
+    }
+    for (size_t k = starting_loc; k < b->arraysize; k++) {
+        if (b->array[k] != 0) return true;
+    }
+    return false;
+}
+
+/* Returns true if b1 has all of b2's bits set.
+ *
+ * Performs early out if a bit is found in b2 that is not found in b1. */
+bool bitset_contains_all(const bitset_t *CROARING_CBITSET_RESTRICT b1,
+                         const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+    size_t min_size = b1->arraysize;
+    if (b1->arraysize > b2->arraysize) {
+        min_size = b2->arraysize;
+    }
+    for (size_t k = 0; k < min_size; k++) {
+        if ((b1->array[k] & b2->array[k]) != b2->array[k]) {
+            return false;
+        }
+    }
+    if (b2->arraysize > b1->arraysize) {
+        /* Need to check if b2 has any bits set beyond b1's array */
+        return !any_bits_set(b2, b1->arraysize);
+    }
+    return true;
+}
+
+size_t bitset_union_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
+                          const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+    size_t answer = 0;
+    size_t minlength =
+        b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+    size_t k = 0;
+    for (; k + 3 < minlength; k += 4) {
+        answer += roaring_hamming(b1->array[k] | b2->array[k]);
+        answer += roaring_hamming(b1->array[k + 1] | b2->array[k + 1]);
+        answer += roaring_hamming(b1->array[k + 2] | b2->array[k + 2]);
+        answer += roaring_hamming(b1->array[k + 3] | b2->array[k + 3]);
+    }
+    for (; k < minlength; ++k) {
+        answer += roaring_hamming(b1->array[k] | b2->array[k]);
+    }
+    if (b2->arraysize > b1->arraysize) {
+        // k is equal to b1->arraysize
+        for (; k + 3 < b2->arraysize; k += 4) {
+            answer += roaring_hamming(b2->array[k]);
+            answer += roaring_hamming(b2->array[k + 1]);
+            answer += roaring_hamming(b2->array[k + 2]);
+            answer += roaring_hamming(b2->array[k + 3]);
+        }
+        for (; k < b2->arraysize; ++k) {
+            answer += roaring_hamming(b2->array[k]);
+        }
+    } else {
+        // k is equal to b2->arraysize
+        for (; k + 3 < b1->arraysize; k += 4) {
+            answer += roaring_hamming(b1->array[k]);
+            answer += roaring_hamming(b1->array[k + 1]);
+            answer += roaring_hamming(b1->array[k + 2]);
+            answer += roaring_hamming(b1->array[k + 3]);
+        }
+        for (; k < b1->arraysize; ++k) {
+            answer += roaring_hamming(b1->array[k]);
+        }
+    }
+    return answer;
+}
+
+void bitset_inplace_intersection(bitset_t *CROARING_CBITSET_RESTRICT b1,
+                                 const bitset_t *CROARING_CBITSET_RESTRICT b2) 
{
+    size_t minlength =
+        b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+    size_t k = 0;
+    for (; k < minlength; ++k) {
+        b1->array[k] &= b2->array[k];
+    }
+    for (; k < b1->arraysize; ++k) {
+        b1->array[k] = 0;  // memset could, maybe, be a tiny bit faster
+    }
+}
+
+size_t bitset_intersection_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
+                                 const bitset_t *CROARING_CBITSET_RESTRICT b2) 
{
+    size_t answer = 0;
+    size_t minlength =
+        b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+    for (size_t k = 0; k < minlength; ++k) {
+        answer += roaring_hamming(b1->array[k] & b2->array[k]);
+    }
+    return answer;
+}
+
+void bitset_inplace_difference(bitset_t *CROARING_CBITSET_RESTRICT b1,
+                               const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+    size_t minlength =
+        b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+    size_t k = 0;
+    for (; k < minlength; ++k) {
+        b1->array[k] &= ~(b2->array[k]);
+    }
+}
+
+size_t bitset_difference_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
+                               const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+    size_t minlength =
+        b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+    size_t k = 0;
+    size_t answer = 0;
+    for (; k < minlength; ++k) {
+        answer += roaring_hamming(b1->array[k] & ~(b2->array[k]));
+    }
+    for (; k < b1->arraysize; ++k) {
+        answer += roaring_hamming(b1->array[k]);
+    }
+    return answer;
+}
+
+bool bitset_inplace_symmetric_difference(
+    bitset_t *CROARING_CBITSET_RESTRICT b1,
+    const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+    size_t minlength =
+        b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+    size_t k = 0;
+    for (; k < minlength; ++k) {
+        b1->array[k] ^= b2->array[k];
+    }
+    if (b2->arraysize > b1->arraysize) {
+        size_t oldsize = b1->arraysize;
+        if (!bitset_resize(b1, b2->arraysize, false)) return false;
+        memcpy(b1->array + oldsize, b2->array + oldsize,
+               (b2->arraysize - oldsize) * sizeof(uint64_t));
+    }
+    return true;
+}
+
+size_t bitset_symmetric_difference_count(
+    const bitset_t *CROARING_CBITSET_RESTRICT b1,
+    const bitset_t *CROARING_CBITSET_RESTRICT b2) {
+    size_t minlength =
+        b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
+    size_t k = 0;
+    size_t answer = 0;
+    for (; k < minlength; ++k) {
+        answer += roaring_hamming(b1->array[k] ^ b2->array[k]);
+    }
+    if (b2->arraysize > b1->arraysize) {
+        for (; k < b2->arraysize; ++k) {
+            answer += roaring_hamming(b2->array[k]);
+        }
+    } else {
+        for (; k < b1->arraysize; ++k) {
+            answer += roaring_hamming(b1->array[k]);
+        }
+    }
+    return answer;
+}
+
+bool bitset_trim(bitset_t *bitset) {
+    size_t newsize = bitset->arraysize;
+    while (newsize > 0) {
+        if (bitset->array[newsize - 1] == 0)
+            newsize -= 1;
+        else
+            break;
+    }
+    if (bitset->capacity == newsize) return true;  // nothing to do
+    uint64_t *newarray;
+    if ((newarray = (uint64_t *)roaring_realloc(
+             bitset->array, sizeof(uint64_t) * newsize)) == NULL) {
+        return false;
+    }
+    bitset->array = newarray;
+    bitset->capacity = newsize;
+    bitset->arraysize = newsize;
+    return true;
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/bitset.c */
+/* begin file src/bitset_util.c */
+#include <assert.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif  // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#ifdef __cplusplus
+using namespace ::roaring::internal;
+extern "C" {
+namespace roaring {
+namespace api {
+#endif
+
+#if CROARING_IS_X64
+static uint8_t lengthTable[256] = {
+    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4,
+    2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4,
+    2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,
+    4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5,
+    3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,
+    4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+    4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8};
+#endif
+
+#if CROARING_IS_X64
+ALIGNED(32)
+static uint32_t vecDecodeTable[256][8] = {
+    {0, 0, 0, 0, 0, 0, 0, 0}, /* 0x00 (00000000) */
+    {1, 0, 0, 0, 0, 0, 0, 0}, /* 0x01 (00000001) */
+    {2, 0, 0, 0, 0, 0, 0, 0}, /* 0x02 (00000010) */
+    {1, 2, 0, 0, 0, 0, 0, 0}, /* 0x03 (00000011) */
+    {3, 0, 0, 0, 0, 0, 0, 0}, /* 0x04 (00000100) */
+    {1, 3, 0, 0, 0, 0, 0, 0}, /* 0x05 (00000101) */
+    {2, 3, 0, 0, 0, 0, 0, 0}, /* 0x06 (00000110) */
+    {1, 2, 3, 0, 0, 0, 0, 0}, /* 0x07 (00000111) */
+    {4, 0, 0, 0, 0, 0, 0, 0}, /* 0x08 (00001000) */
+    {1, 4, 0, 0, 0, 0, 0, 0}, /* 0x09 (00001001) */
+    {2, 4, 0, 0, 0, 0, 0, 0}, /* 0x0A (00001010) */
+    {1, 2, 4, 0, 0, 0, 0, 0}, /* 0x0B (00001011) */
+    {3, 4, 0, 0, 0, 0, 0, 0}, /* 0x0C (00001100) */
+    {1, 3, 4, 0, 0, 0, 0, 0}, /* 0x0D (00001101) */
+    {2, 3, 4, 0, 0, 0, 0, 0}, /* 0x0E (00001110) */
+    {1, 2, 3, 4, 0, 0, 0, 0}, /* 0x0F (00001111) */
+    {5, 0, 0, 0, 0, 0, 0, 0}, /* 0x10 (00010000) */
+    {1, 5, 0, 0, 0, 0, 0, 0}, /* 0x11 (00010001) */
+    {2, 5, 0, 0, 0, 0, 0, 0}, /* 0x12 (00010010) */
+    {1, 2, 5, 0, 0, 0, 0, 0}, /* 0x13 (00010011) */
+    {3, 5, 0, 0, 0, 0, 0, 0}, /* 0x14 (00010100) */
+    {1, 3, 5, 0, 0, 0, 0, 0}, /* 0x15 (00010101) */
+    {2, 3, 5, 0, 0, 0, 0, 0}, /* 0x16 (00010110) */
+    {1, 2, 3, 5, 0, 0, 0, 0}, /* 0x17 (00010111) */
+    {4, 5, 0, 0, 0, 0, 0, 0}, /* 0x18 (00011000) */
+    {1, 4, 5, 0, 0, 0, 0, 0}, /* 0x19 (00011001) */
+    {2, 4, 5, 0, 0, 0, 0, 0}, /* 0x1A (00011010) */
+    {1, 2, 4, 5, 0, 0, 0, 0}, /* 0x1B (00011011) */
+    {3, 4, 5, 0, 0, 0, 0, 0}, /* 0x1C (00011100) */
+    {1, 3, 4, 5, 0, 0, 0, 0}, /* 0x1D (00011101) */
+    {2, 3, 4, 5, 0, 0, 0, 0}, /* 0x1E (00011110) */
+    {1, 2, 3, 4, 5, 0, 0, 0}, /* 0x1F (00011111) */
+    {6, 0, 0, 0, 0, 0, 0, 0}, /* 0x20 (00100000) */
+    {1, 6, 0, 0, 0, 0, 0, 0}, /* 0x21 (00100001) */
+    {2, 6, 0, 0, 0, 0, 0, 0}, /* 0x22 (00100010) */
+    {1, 2, 6, 0, 0, 0, 0, 0}, /* 0x23 (00100011) */
+    {3, 6, 0, 0, 0, 0, 0, 0}, /* 0x24 (00100100) */
+    {1, 3, 6, 0, 0, 0, 0, 0}, /* 0x25 (00100101) */
+    {2, 3, 6, 0, 0, 0, 0, 0}, /* 0x26 (00100110) */
+    {1, 2, 3, 6, 0, 0, 0, 0}, /* 0x27 (00100111) */
+    {4, 6, 0, 0, 0, 0, 0, 0}, /* 0x28 (00101000) */
+    {1, 4, 6, 0, 0, 0, 0, 0}, /* 0x29 (00101001) */
+    {2, 4, 6, 0, 0, 0, 0, 0}, /* 0x2A (00101010) */
+    {1, 2, 4, 6, 0, 0, 0, 0}, /* 0x2B (00101011) */
+    {3, 4, 6, 0, 0, 0, 0, 0}, /* 0x2C (00101100) */
+    {1, 3, 4, 6, 0, 0, 0, 0}, /* 0x2D (00101101) */
+    {2, 3, 4, 6, 0, 0, 0, 0}, /* 0x2E (00101110) */
+    {1, 2, 3, 4, 6, 0, 0, 0}, /* 0x2F (00101111) */
+    {5, 6, 0, 0, 0, 0, 0, 0}, /* 0x30 (00110000) */
+    {1, 5, 6, 0, 0, 0, 0, 0}, /* 0x31 (00110001) */
+    {2, 5, 6, 0, 0, 0, 0, 0}, /* 0x32 (00110010) */
+    {1, 2, 5, 6, 0, 0, 0, 0}, /* 0x33 (00110011) */
+    {3, 5, 6, 0, 0, 0, 0, 0}, /* 0x34 (00110100) */
+    {1, 3, 5, 6, 0, 0, 0, 0}, /* 0x35 (00110101) */
+    {2, 3, 5, 6, 0, 0, 0, 0}, /* 0x36 (00110110) */
+    {1, 2, 3, 5, 6, 0, 0, 0}, /* 0x37 (00110111) */
+    {4, 5, 6, 0, 0, 0, 0, 0}, /* 0x38 (00111000) */
+    {1, 4, 5, 6, 0, 0, 0, 0}, /* 0x39 (00111001) */
+    {2, 4, 5, 6, 0, 0, 0, 0}, /* 0x3A (00111010) */
+    {1, 2, 4, 5, 6, 0, 0, 0}, /* 0x3B (00111011) */
+    {3, 4, 5, 6, 0, 0, 0, 0}, /* 0x3C (00111100) */
+    {1, 3, 4, 5, 6, 0, 0, 0}, /* 0x3D (00111101) */
+    {2, 3, 4, 5, 6, 0, 0, 0}, /* 0x3E (00111110) */
+    {1, 2, 3, 4, 5, 6, 0, 0}, /* 0x3F (00111111) */
+    {7, 0, 0, 0, 0, 0, 0, 0}, /* 0x40 (01000000) */
+    {1, 7, 0, 0, 0, 0, 0, 0}, /* 0x41 (01000001) */
+    {2, 7, 0, 0, 0, 0, 0, 0}, /* 0x42 (01000010) */
+    {1, 2, 7, 0, 0, 0, 0, 0}, /* 0x43 (01000011) */
+    {3, 7, 0, 0, 0, 0, 0, 0}, /* 0x44 (01000100) */
+    {1, 3, 7, 0, 0, 0, 0, 0}, /* 0x45 (01000101) */
+    {2, 3, 7, 0, 0, 0, 0, 0}, /* 0x46 (01000110) */
+    {1, 2, 3, 7, 0, 0, 0, 0}, /* 0x47 (01000111) */
+    {4, 7, 0, 0, 0, 0, 0, 0}, /* 0x48 (01001000) */
+    {1, 4, 7, 0, 0, 0, 0, 0}, /* 0x49 (01001001) */
+    {2, 4, 7, 0, 0, 0, 0, 0}, /* 0x4A (01001010) */
+    {1, 2, 4, 7, 0, 0, 0, 0}, /* 0x4B (01001011) */
+    {3, 4, 7, 0, 0, 0, 0, 0}, /* 0x4C (01001100) */
+    {1, 3, 4, 7, 0, 0, 0, 0}, /* 0x4D (01001101) */
+    {2, 3, 4, 7, 0, 0, 0, 0}, /* 0x4E (01001110) */
+    {1, 2, 3, 4, 7, 0, 0, 0}, /* 0x4F (01001111) */
+    {5, 7, 0, 0, 0, 0, 0, 0}, /* 0x50 (01010000) */
+    {1, 5, 7, 0, 0, 0, 0, 0}, /* 0x51 (01010001) */
+    {2, 5, 7, 0, 0, 0, 0, 0}, /* 0x52 (01010010) */
+    {1, 2, 5, 7, 0, 0, 0, 0}, /* 0x53 (01010011) */
+    {3, 5, 7, 0, 0, 0, 0, 0}, /* 0x54 (01010100) */
+    {1, 3, 5, 7, 0, 0, 0, 0}, /* 0x55 (01010101) */
+    {2, 3, 5, 7, 0, 0, 0, 0}, /* 0x56 (01010110) */
+    {1, 2, 3, 5, 7, 0, 0, 0}, /* 0x57 (01010111) */
+    {4, 5, 7, 0, 0, 0, 0, 0}, /* 0x58 (01011000) */
+    {1, 4, 5, 7, 0, 0, 0, 0}, /* 0x59 (01011001) */
+    {2, 4, 5, 7, 0, 0, 0, 0}, /* 0x5A (01011010) */
+    {1, 2, 4, 5, 7, 0, 0, 0}, /* 0x5B (01011011) */
+    {3, 4, 5, 7, 0, 0, 0, 0}, /* 0x5C (01011100) */
+    {1, 3, 4, 5, 7, 0, 0, 0}, /* 0x5D (01011101) */
+    {2, 3, 4, 5, 7, 0, 0, 0}, /* 0x5E (01011110) */
+    {1, 2, 3, 4, 5, 7, 0, 0}, /* 0x5F (01011111) */
+    {6, 7, 0, 0, 0, 0, 0, 0}, /* 0x60 (01100000) */
+    {1, 6, 7, 0, 0, 0, 0, 0}, /* 0x61 (01100001) */
+    {2, 6, 7, 0, 0, 0, 0, 0}, /* 0x62 (01100010) */
+    {1, 2, 6, 7, 0, 0, 0, 0}, /* 0x63 (01100011) */
+    {3, 6, 7, 0, 0, 0, 0, 0}, /* 0x64 (01100100) */
+    {1, 3, 6, 7, 0, 0, 0, 0}, /* 0x65 (01100101) */
+    {2, 3, 6, 7, 0, 0, 0, 0}, /* 0x66 (01100110) */
+    {1, 2, 3, 6, 7, 0, 0, 0}, /* 0x67 (01100111) */
+    {4, 6, 7, 0, 0, 0, 0, 0}, /* 0x68 (01101000) */
+    {1, 4, 6, 7, 0, 0, 0, 0}, /* 0x69 (01101001) */
+    {2, 4, 6, 7, 0, 0, 0, 0}, /* 0x6A (01101010) */
+    {1, 2, 4, 6, 7, 0, 0, 0}, /* 0x6B (01101011) */
+    {3, 4, 6, 7, 0, 0, 0, 0}, /* 0x6C (01101100) */
+    {1, 3, 4, 6, 7, 0, 0, 0}, /* 0x6D (01101101) */
+    {2, 3, 4, 6, 7, 0, 0, 0}, /* 0x6E (01101110) */
+    {1, 2, 3, 4, 6, 7, 0, 0}, /* 0x6F (01101111) */
+    {5, 6, 7, 0, 0, 0, 0, 0}, /* 0x70 (01110000) */
+    {1, 5, 6, 7, 0, 0, 0, 0}, /* 0x71 (01110001) */
+    {2, 5, 6, 7, 0, 0, 0, 0}, /* 0x72 (01110010) */
+    {1, 2, 5, 6, 7, 0, 0, 0}, /* 0x73 (01110011) */
+    {3, 5, 6, 7, 0, 0, 0, 0}, /* 0x74 (01110100) */
+    {1, 3, 5, 6, 7, 0, 0, 0}, /* 0x75 (01110101) */
+    {2, 3, 5, 6, 7, 0, 0, 0}, /* 0x76 (01110110) */
+    {1, 2, 3, 5, 6, 7, 0, 0}, /* 0x77 (01110111) */
+    {4, 5, 6, 7, 0, 0, 0, 0}, /* 0x78 (01111000) */
+    {1, 4, 5, 6, 7, 0, 0, 0}, /* 0x79 (01111001) */
+    {2, 4, 5, 6, 7, 0, 0, 0}, /* 0x7A (01111010) */
+    {1, 2, 4, 5, 6, 7, 0, 0}, /* 0x7B (01111011) */
+    {3, 4, 5, 6, 7, 0, 0, 0}, /* 0x7C (01111100) */
+    {1, 3, 4, 5, 6, 7, 0, 0}, /* 0x7D (01111101) */
+    {2, 3, 4, 5, 6, 7, 0, 0}, /* 0x7E (01111110) */
+    {1, 2, 3, 4, 5, 6, 7, 0}, /* 0x7F (01111111) */
+    {8, 0, 0, 0, 0, 0, 0, 0}, /* 0x80 (10000000) */
+    {1, 8, 0, 0, 0, 0, 0, 0}, /* 0x81 (10000001) */
+    {2, 8, 0, 0, 0, 0, 0, 0}, /* 0x82 (10000010) */
+    {1, 2, 8, 0, 0, 0, 0, 0}, /* 0x83 (10000011) */
+    {3, 8, 0, 0, 0, 0, 0, 0}, /* 0x84 (10000100) */
+    {1, 3, 8, 0, 0, 0, 0, 0}, /* 0x85 (10000101) */
+    {2, 3, 8, 0, 0, 0, 0, 0}, /* 0x86 (10000110) */
+    {1, 2, 3, 8, 0, 0, 0, 0}, /* 0x87 (10000111) */
+    {4, 8, 0, 0, 0, 0, 0, 0}, /* 0x88 (10001000) */
+    {1, 4, 8, 0, 0, 0, 0, 0}, /* 0x89 (10001001) */
+    {2, 4, 8, 0, 0, 0, 0, 0}, /* 0x8A (10001010) */
+    {1, 2, 4, 8, 0, 0, 0, 0}, /* 0x8B (10001011) */
+    {3, 4, 8, 0, 0, 0, 0, 0}, /* 0x8C (10001100) */
+    {1, 3, 4, 8, 0, 0, 0, 0}, /* 0x8D (10001101) */
+    {2, 3, 4, 8, 0, 0, 0, 0}, /* 0x8E (10001110) */
+    {1, 2, 3, 4, 8, 0, 0, 0}, /* 0x8F (10001111) */
+    {5, 8, 0, 0, 0, 0, 0, 0}, /* 0x90 (10010000) */
+    {1, 5, 8, 0, 0, 0, 0, 0}, /* 0x91 (10010001) */
+    {2, 5, 8, 0, 0, 0, 0, 0}, /* 0x92 (10010010) */
+    {1, 2, 5, 8, 0, 0, 0, 0}, /* 0x93 (10010011) */
+    {3, 5, 8, 0, 0, 0, 0, 0}, /* 0x94 (10010100) */
+    {1, 3, 5, 8, 0, 0, 0, 0}, /* 0x95 (10010101) */
+    {2, 3, 5, 8, 0, 0, 0, 0}, /* 0x96 (10010110) */
+    {1, 2, 3, 5, 8, 0, 0, 0}, /* 0x97 (10010111) */
+    {4, 5, 8, 0, 0, 0, 0, 0}, /* 0x98 (10011000) */
+    {1, 4, 5, 8, 0, 0, 0, 0}, /* 0x99 (10011001) */
+    {2, 4, 5, 8, 0, 0, 0, 0}, /* 0x9A (10011010) */
+    {1, 2, 4, 5, 8, 0, 0, 0}, /* 0x9B (10011011) */
+    {3, 4, 5, 8, 0, 0, 0, 0}, /* 0x9C (10011100) */
+    {1, 3, 4, 5, 8, 0, 0, 0}, /* 0x9D (10011101) */
+    {2, 3, 4, 5, 8, 0, 0, 0}, /* 0x9E (10011110) */
+    {1, 2, 3, 4, 5, 8, 0, 0}, /* 0x9F (10011111) */
+    {6, 8, 0, 0, 0, 0, 0, 0}, /* 0xA0 (10100000) */
+    {1, 6, 8, 0, 0, 0, 0, 0}, /* 0xA1 (10100001) */
+    {2, 6, 8, 0, 0, 0, 0, 0}, /* 0xA2 (10100010) */
+    {1, 2, 6, 8, 0, 0, 0, 0}, /* 0xA3 (10100011) */
+    {3, 6, 8, 0, 0, 0, 0, 0}, /* 0xA4 (10100100) */
+    {1, 3, 6, 8, 0, 0, 0, 0}, /* 0xA5 (10100101) */
+    {2, 3, 6, 8, 0, 0, 0, 0}, /* 0xA6 (10100110) */
+    {1, 2, 3, 6, 8, 0, 0, 0}, /* 0xA7 (10100111) */
+    {4, 6, 8, 0, 0, 0, 0, 0}, /* 0xA8 (10101000) */
+    {1, 4, 6, 8, 0, 0, 0, 0}, /* 0xA9 (10101001) */
+    {2, 4, 6, 8, 0, 0, 0, 0}, /* 0xAA (10101010) */
+    {1, 2, 4, 6, 8, 0, 0, 0}, /* 0xAB (10101011) */
+    {3, 4, 6, 8, 0, 0, 0, 0}, /* 0xAC (10101100) */
+    {1, 3, 4, 6, 8, 0, 0, 0}, /* 0xAD (10101101) */
+    {2, 3, 4, 6, 8, 0, 0, 0}, /* 0xAE (10101110) */
+    {1, 2, 3, 4, 6, 8, 0, 0}, /* 0xAF (10101111) */
+    {5, 6, 8, 0, 0, 0, 0, 0}, /* 0xB0 (10110000) */
+    {1, 5, 6, 8, 0, 0, 0, 0}, /* 0xB1 (10110001) */
+    {2, 5, 6, 8, 0, 0, 0, 0}, /* 0xB2 (10110010) */
+    {1, 2, 5, 6, 8, 0, 0, 0}, /* 0xB3 (10110011) */
+    {3, 5, 6, 8, 0, 0, 0, 0}, /* 0xB4 (10110100) */
+    {1, 3, 5, 6, 8, 0, 0, 0}, /* 0xB5 (10110101) */
+    {2, 3, 5, 6, 8, 0, 0, 0}, /* 0xB6 (10110110) */
+    {1, 2, 3, 5, 6, 8, 0, 0}, /* 0xB7 (10110111) */
+    {4, 5, 6, 8, 0, 0, 0, 0}, /* 0xB8 (10111000) */
+    {1, 4, 5, 6, 8, 0, 0, 0}, /* 0xB9 (10111001) */
+    {2, 4, 5, 6, 8, 0, 0, 0}, /* 0xBA (10111010) */
+    {1, 2, 4, 5, 6, 8, 0, 0}, /* 0xBB (10111011) */
+    {3, 4, 5, 6, 8, 0, 0, 0}, /* 0xBC (10111100) */
+    {1, 3, 4, 5, 6, 8, 0, 0}, /* 0xBD (10111101) */
+    {2, 3, 4, 5, 6, 8, 0, 0}, /* 0xBE (10111110) */
+    {1, 2, 3, 4, 5, 6, 8, 0}, /* 0xBF (10111111) */
+    {7, 8, 0, 0, 0, 0, 0, 0}, /* 0xC0 (11000000) */
+    {1, 7, 8, 0, 0, 0, 0, 0}, /* 0xC1 (11000001) */
+    {2, 7, 8, 0, 0, 0, 0, 0}, /* 0xC2 (11000010) */
+    {1, 2, 7, 8, 0, 0, 0, 0}, /* 0xC3 (11000011) */
+    {3, 7, 8, 0, 0, 0, 0, 0}, /* 0xC4 (11000100) */
+    {1, 3, 7, 8, 0, 0, 0, 0}, /* 0xC5 (11000101) */
+    {2, 3, 7, 8, 0, 0, 0, 0}, /* 0xC6 (11000110) */
+    {1, 2, 3, 7, 8, 0, 0, 0}, /* 0xC7 (11000111) */
+    {4, 7, 8, 0, 0, 0, 0, 0}, /* 0xC8 (11001000) */
+    {1, 4, 7, 8, 0, 0, 0, 0}, /* 0xC9 (11001001) */
+    {2, 4, 7, 8, 0, 0, 0, 0}, /* 0xCA (11001010) */
+    {1, 2, 4, 7, 8, 0, 0, 0}, /* 0xCB (11001011) */
+    {3, 4, 7, 8, 0, 0, 0, 0}, /* 0xCC (11001100) */
+    {1, 3, 4, 7, 8, 0, 0, 0}, /* 0xCD (11001101) */
+    {2, 3, 4, 7, 8, 0, 0, 0}, /* 0xCE (11001110) */
+    {1, 2, 3, 4, 7, 8, 0, 0}, /* 0xCF (11001111) */
+    {5, 7, 8, 0, 0, 0, 0, 0}, /* 0xD0 (11010000) */
+    {1, 5, 7, 8, 0, 0, 0, 0}, /* 0xD1 (11010001) */
+    {2, 5, 7, 8, 0, 0, 0, 0}, /* 0xD2 (11010010) */
+    {1, 2, 5, 7, 8, 0, 0, 0}, /* 0xD3 (11010011) */
+    {3, 5, 7, 8, 0, 0, 0, 0}, /* 0xD4 (11010100) */
+    {1, 3, 5, 7, 8, 0, 0, 0}, /* 0xD5 (11010101) */
+    {2, 3, 5, 7, 8, 0, 0, 0}, /* 0xD6 (11010110) */
+    {1, 2, 3, 5, 7, 8, 0, 0}, /* 0xD7 (11010111) */
+    {4, 5, 7, 8, 0, 0, 0, 0}, /* 0xD8 (11011000) */
+    {1, 4, 5, 7, 8, 0, 0, 0}, /* 0xD9 (11011001) */
+    {2, 4, 5, 7, 8, 0, 0, 0}, /* 0xDA (11011010) */
+    {1, 2, 4, 5, 7, 8, 0, 0}, /* 0xDB (11011011) */
+    {3, 4, 5, 7, 8, 0, 0, 0}, /* 0xDC (11011100) */
+    {1, 3, 4, 5, 7, 8, 0, 0}, /* 0xDD (11011101) */
+    {2, 3, 4, 5, 7, 8, 0, 0}, /* 0xDE (11011110) */
+    {1, 2, 3, 4, 5, 7, 8, 0}, /* 0xDF (11011111) */
+    {6, 7, 8, 0, 0, 0, 0, 0}, /* 0xE0 (11100000) */
+    {1, 6, 7, 8, 0, 0, 0, 0}, /* 0xE1 (11100001) */
+    {2, 6, 7, 8, 0, 0, 0, 0}, /* 0xE2 (11100010) */
+    {1, 2, 6, 7, 8, 0, 0, 0}, /* 0xE3 (11100011) */
+    {3, 6, 7, 8, 0, 0, 0, 0}, /* 0xE4 (11100100) */
+    {1, 3, 6, 7, 8, 0, 0, 0}, /* 0xE5 (11100101) */
+    {2, 3, 6, 7, 8, 0, 0, 0}, /* 0xE6 (11100110) */
+    {1, 2, 3, 6, 7, 8, 0, 0}, /* 0xE7 (11100111) */
+    {4, 6, 7, 8, 0, 0, 0, 0}, /* 0xE8 (11101000) */
+    {1, 4, 6, 7, 8, 0, 0, 0}, /* 0xE9 (11101001) */
+    {2, 4, 6, 7, 8, 0, 0, 0}, /* 0xEA (11101010) */
+    {1, 2, 4, 6, 7, 8, 0, 0}, /* 0xEB (11101011) */
+    {3, 4, 6, 7, 8, 0, 0, 0}, /* 0xEC (11101100) */
+    {1, 3, 4, 6, 7, 8, 0, 0}, /* 0xED (11101101) */
+    {2, 3, 4, 6, 7, 8, 0, 0}, /* 0xEE (11101110) */
+    {1, 2, 3, 4, 6, 7, 8, 0}, /* 0xEF (11101111) */
+    {5, 6, 7, 8, 0, 0, 0, 0}, /* 0xF0 (11110000) */
+    {1, 5, 6, 7, 8, 0, 0, 0}, /* 0xF1 (11110001) */
+    {2, 5, 6, 7, 8, 0, 0, 0}, /* 0xF2 (11110010) */
+    {1, 2, 5, 6, 7, 8, 0, 0}, /* 0xF3 (11110011) */
+    {3, 5, 6, 7, 8, 0, 0, 0}, /* 0xF4 (11110100) */
+    {1, 3, 5, 6, 7, 8, 0, 0}, /* 0xF5 (11110101) */
+    {2, 3, 5, 6, 7, 8, 0, 0}, /* 0xF6 (11110110) */
+    {1, 2, 3, 5, 6, 7, 8, 0}, /* 0xF7 (11110111) */
+    {4, 5, 6, 7, 8, 0, 0, 0}, /* 0xF8 (11111000) */
+    {1, 4, 5, 6, 7, 8, 0, 0}, /* 0xF9 (11111001) */
+    {2, 4, 5, 6, 7, 8, 0, 0}, /* 0xFA (11111010) */
+    {1, 2, 4, 5, 6, 7, 8, 0}, /* 0xFB (11111011) */
+    {3, 4, 5, 6, 7, 8, 0, 0}, /* 0xFC (11111100) */
+    {1, 3, 4, 5, 6, 7, 8, 0}, /* 0xFD (11111101) */
+    {2, 3, 4, 5, 6, 7, 8, 0}, /* 0xFE (11111110) */
+    {1, 2, 3, 4, 5, 6, 7, 8}  /* 0xFF (11111111) */
+};
+
+#endif  // #if CROARING_IS_X64
+
+#if CROARING_IS_X64
+// same as vecDecodeTable but in 16 bits
+ALIGNED(32)
+static uint16_t vecDecodeTable_uint16[256][8] = {
+    {0, 0, 0, 0, 0, 0, 0, 0}, /* 0x00 (00000000) */
+    {1, 0, 0, 0, 0, 0, 0, 0}, /* 0x01 (00000001) */
+    {2, 0, 0, 0, 0, 0, 0, 0}, /* 0x02 (00000010) */
+    {1, 2, 0, 0, 0, 0, 0, 0}, /* 0x03 (00000011) */
+    {3, 0, 0, 0, 0, 0, 0, 0}, /* 0x04 (00000100) */
+    {1, 3, 0, 0, 0, 0, 0, 0}, /* 0x05 (00000101) */
+    {2, 3, 0, 0, 0, 0, 0, 0}, /* 0x06 (00000110) */
+    {1, 2, 3, 0, 0, 0, 0, 0}, /* 0x07 (00000111) */
+    {4, 0, 0, 0, 0, 0, 0, 0}, /* 0x08 (00001000) */
+    {1, 4, 0, 0, 0, 0, 0, 0}, /* 0x09 (00001001) */
+    {2, 4, 0, 0, 0, 0, 0, 0}, /* 0x0A (00001010) */
+    {1, 2, 4, 0, 0, 0, 0, 0}, /* 0x0B (00001011) */
+    {3, 4, 0, 0, 0, 0, 0, 0}, /* 0x0C (00001100) */
+    {1, 3, 4, 0, 0, 0, 0, 0}, /* 0x0D (00001101) */
+    {2, 3, 4, 0, 0, 0, 0, 0}, /* 0x0E (00001110) */
+    {1, 2, 3, 4, 0, 0, 0, 0}, /* 0x0F (00001111) */
+    {5, 0, 0, 0, 0, 0, 0, 0}, /* 0x10 (00010000) */
+    {1, 5, 0, 0, 0, 0, 0, 0}, /* 0x11 (00010001) */
+    {2, 5, 0, 0, 0, 0, 0, 0}, /* 0x12 (00010010) */
+    {1, 2, 5, 0, 0, 0, 0, 0}, /* 0x13 (00010011) */
+    {3, 5, 0, 0, 0, 0, 0, 0}, /* 0x14 (00010100) */
+    {1, 3, 5, 0, 0, 0, 0, 0}, /* 0x15 (00010101) */
+    {2, 3, 5, 0, 0, 0, 0, 0}, /* 0x16 (00010110) */
+    {1, 2, 3, 5, 0, 0, 0, 0}, /* 0x17 (00010111) */
+    {4, 5, 0, 0, 0, 0, 0, 0}, /* 0x18 (00011000) */
+    {1, 4, 5, 0, 0, 0, 0, 0}, /* 0x19 (00011001) */
+    {2, 4, 5, 0, 0, 0, 0, 0}, /* 0x1A (00011010) */
+    {1, 2, 4, 5, 0, 0, 0, 0}, /* 0x1B (00011011) */
+    {3, 4, 5, 0, 0, 0, 0, 0}, /* 0x1C (00011100) */
+    {1, 3, 4, 5, 0, 0, 0, 0}, /* 0x1D (00011101) */
+    {2, 3, 4, 5, 0, 0, 0, 0}, /* 0x1E (00011110) */
+    {1, 2, 3, 4, 5, 0, 0, 0}, /* 0x1F (00011111) */
+    {6, 0, 0, 0, 0, 0, 0, 0}, /* 0x20 (00100000) */
+    {1, 6, 0, 0, 0, 0, 0, 0}, /* 0x21 (00100001) */
+    {2, 6, 0, 0, 0, 0, 0, 0}, /* 0x22 (00100010) */
+    {1, 2, 6, 0, 0, 0, 0, 0}, /* 0x23 (00100011) */
+    {3, 6, 0, 0, 0, 0, 0, 0}, /* 0x24 (00100100) */
+    {1, 3, 6, 0, 0, 0, 0, 0}, /* 0x25 (00100101) */
+    {2, 3, 6, 0, 0, 0, 0, 0}, /* 0x26 (00100110) */
+    {1, 2, 3, 6, 0, 0, 0, 0}, /* 0x27 (00100111) */
+    {4, 6, 0, 0, 0, 0, 0, 0}, /* 0x28 (00101000) */
+    {1, 4, 6, 0, 0, 0, 0, 0}, /* 0x29 (00101001) */
+    {2, 4, 6, 0, 0, 0, 0, 0}, /* 0x2A (00101010) */
+    {1, 2, 4, 6, 0, 0, 0, 0}, /* 0x2B (00101011) */
+    {3, 4, 6, 0, 0, 0, 0, 0}, /* 0x2C (00101100) */
+    {1, 3, 4, 6, 0, 0, 0, 0}, /* 0x2D (00101101) */
+    {2, 3, 4, 6, 0, 0, 0, 0}, /* 0x2E (00101110) */
+    {1, 2, 3, 4, 6, 0, 0, 0}, /* 0x2F (00101111) */
+    {5, 6, 0, 0, 0, 0, 0, 0}, /* 0x30 (00110000) */
+    {1, 5, 6, 0, 0, 0, 0, 0}, /* 0x31 (00110001) */
+    {2, 5, 6, 0, 0, 0, 0, 0}, /* 0x32 (00110010) */
+    {1, 2, 5, 6, 0, 0, 0, 0}, /* 0x33 (00110011) */
+    {3, 5, 6, 0, 0, 0, 0, 0}, /* 0x34 (00110100) */
+    {1, 3, 5, 6, 0, 0, 0, 0}, /* 0x35 (00110101) */
+    {2, 3, 5, 6, 0, 0, 0, 0}, /* 0x36 (00110110) */
+    {1, 2, 3, 5, 6, 0, 0, 0}, /* 0x37 (00110111) */
+    {4, 5, 6, 0, 0, 0, 0, 0}, /* 0x38 (00111000) */
+    {1, 4, 5, 6, 0, 0, 0, 0}, /* 0x39 (00111001) */
+    {2, 4, 5, 6, 0, 0, 0, 0}, /* 0x3A (00111010) */
+    {1, 2, 4, 5, 6, 0, 0, 0}, /* 0x3B (00111011) */
+    {3, 4, 5, 6, 0, 0, 0, 0}, /* 0x3C (00111100) */
+    {1, 3, 4, 5, 6, 0, 0, 0}, /* 0x3D (00111101) */
+    {2, 3, 4, 5, 6, 0, 0, 0}, /* 0x3E (00111110) */
+    {1, 2, 3, 4, 5, 6, 0, 0}, /* 0x3F (00111111) */
+    {7, 0, 0, 0, 0, 0, 0, 0}, /* 0x40 (01000000) */
+    {1, 7, 0, 0, 0, 0, 0, 0}, /* 0x41 (01000001) */
+    {2, 7, 0, 0, 0, 0, 0, 0}, /* 0x42 (01000010) */
+    {1, 2, 7, 0, 0, 0, 0, 0}, /* 0x43 (01000011) */
+    {3, 7, 0, 0, 0, 0, 0, 0}, /* 0x44 (01000100) */
+    {1, 3, 7, 0, 0, 0, 0, 0}, /* 0x45 (01000101) */
+    {2, 3, 7, 0, 0, 0, 0, 0}, /* 0x46 (01000110) */
+    {1, 2, 3, 7, 0, 0, 0, 0}, /* 0x47 (01000111) */
+    {4, 7, 0, 0, 0, 0, 0, 0}, /* 0x48 (01001000) */
+    {1, 4, 7, 0, 0, 0, 0, 0}, /* 0x49 (01001001) */
+    {2, 4, 7, 0, 0, 0, 0, 0}, /* 0x4A (01001010) */
+    {1, 2, 4, 7, 0, 0, 0, 0}, /* 0x4B (01001011) */
+    {3, 4, 7, 0, 0, 0, 0, 0}, /* 0x4C (01001100) */
+    {1, 3, 4, 7, 0, 0, 0, 0}, /* 0x4D (01001101) */
+    {2, 3, 4, 7, 0, 0, 0, 0}, /* 0x4E (01001110) */
+    {1, 2, 3, 4, 7, 0, 0, 0}, /* 0x4F (01001111) */
+    {5, 7, 0, 0, 0, 0, 0, 0}, /* 0x50 (01010000) */
+    {1, 5, 7, 0, 0, 0, 0, 0}, /* 0x51 (01010001) */
+    {2, 5, 7, 0, 0, 0, 0, 0}, /* 0x52 (01010010) */
+    {1, 2, 5, 7, 0, 0, 0, 0}, /* 0x53 (01010011) */
+    {3, 5, 7, 0, 0, 0, 0, 0}, /* 0x54 (01010100) */
+    {1, 3, 5, 7, 0, 0, 0, 0}, /* 0x55 (01010101) */
+    {2, 3, 5, 7, 0, 0, 0, 0}, /* 0x56 (01010110) */
+    {1, 2, 3, 5, 7, 0, 0, 0}, /* 0x57 (01010111) */
+    {4, 5, 7, 0, 0, 0, 0, 0}, /* 0x58 (01011000) */
+    {1, 4, 5, 7, 0, 0, 0, 0}, /* 0x59 (01011001) */
+    {2, 4, 5, 7, 0, 0, 0, 0}, /* 0x5A (01011010) */
+    {1, 2, 4, 5, 7, 0, 0, 0}, /* 0x5B (01011011) */
+    {3, 4, 5, 7, 0, 0, 0, 0}, /* 0x5C (01011100) */
+    {1, 3, 4, 5, 7, 0, 0, 0}, /* 0x5D (01011101) */
+    {2, 3, 4, 5, 7, 0, 0, 0}, /* 0x5E (01011110) */
+    {1, 2, 3, 4, 5, 7, 0, 0}, /* 0x5F (01011111) */
+    {6, 7, 0, 0, 0, 0, 0, 0}, /* 0x60 (01100000) */
+    {1, 6, 7, 0, 0, 0, 0, 0}, /* 0x61 (01100001) */
+    {2, 6, 7, 0, 0, 0, 0, 0}, /* 0x62 (01100010) */
+    {1, 2, 6, 7, 0, 0, 0, 0}, /* 0x63 (01100011) */
+    {3, 6, 7, 0, 0, 0, 0, 0}, /* 0x64 (01100100) */
+    {1, 3, 6, 7, 0, 0, 0, 0}, /* 0x65 (01100101) */
+    {2, 3, 6, 7, 0, 0, 0, 0}, /* 0x66 (01100110) */
+    {1, 2, 3, 6, 7, 0, 0, 0}, /* 0x67 (01100111) */
+    {4, 6, 7, 0, 0, 0, 0, 0}, /* 0x68 (01101000) */
+    {1, 4, 6, 7, 0, 0, 0, 0}, /* 0x69 (01101001) */
+    {2, 4, 6, 7, 0, 0, 0, 0}, /* 0x6A (01101010) */
+    {1, 2, 4, 6, 7, 0, 0, 0}, /* 0x6B (01101011) */
+    {3, 4, 6, 7, 0, 0, 0, 0}, /* 0x6C (01101100) */
+    {1, 3, 4, 6, 7, 0, 0, 0}, /* 0x6D (01101101) */
+    {2, 3, 4, 6, 7, 0, 0, 0}, /* 0x6E (01101110) */
+    {1, 2, 3, 4, 6, 7, 0, 0}, /* 0x6F (01101111) */
+    {5, 6, 7, 0, 0, 0, 0, 0}, /* 0x70 (01110000) */
+    {1, 5, 6, 7, 0, 0, 0, 0}, /* 0x71 (01110001) */
+    {2, 5, 6, 7, 0, 0, 0, 0}, /* 0x72 (01110010) */
+    {1, 2, 5, 6, 7, 0, 0, 0}, /* 0x73 (01110011) */
+    {3, 5, 6, 7, 0, 0, 0, 0}, /* 0x74 (01110100) */
+    {1, 3, 5, 6, 7, 0, 0, 0}, /* 0x75 (01110101) */
+    {2, 3, 5, 6, 7, 0, 0, 0}, /* 0x76 (01110110) */
+    {1, 2, 3, 5, 6, 7, 0, 0}, /* 0x77 (01110111) */
+    {4, 5, 6, 7, 0, 0, 0, 0}, /* 0x78 (01111000) */
+    {1, 4, 5, 6, 7, 0, 0, 0}, /* 0x79 (01111001) */
+    {2, 4, 5, 6, 7, 0, 0, 0}, /* 0x7A (01111010) */
+    {1, 2, 4, 5, 6, 7, 0, 0}, /* 0x7B (01111011) */
+    {3, 4, 5, 6, 7, 0, 0, 0}, /* 0x7C (01111100) */
+    {1, 3, 4, 5, 6, 7, 0, 0}, /* 0x7D (01111101) */
+    {2, 3, 4, 5, 6, 7, 0, 0}, /* 0x7E (01111110) */
+    {1, 2, 3, 4, 5, 6, 7, 0}, /* 0x7F (01111111) */
+    {8, 0, 0, 0, 0, 0, 0, 0}, /* 0x80 (10000000) */
+    {1, 8, 0, 0, 0, 0, 0, 0}, /* 0x81 (10000001) */
+    {2, 8, 0, 0, 0, 0, 0, 0}, /* 0x82 (10000010) */
+    {1, 2, 8, 0, 0, 0, 0, 0}, /* 0x83 (10000011) */
+    {3, 8, 0, 0, 0, 0, 0, 0}, /* 0x84 (10000100) */
+    {1, 3, 8, 0, 0, 0, 0, 0}, /* 0x85 (10000101) */
+    {2, 3, 8, 0, 0, 0, 0, 0}, /* 0x86 (10000110) */
+    {1, 2, 3, 8, 0, 0, 0, 0}, /* 0x87 (10000111) */
+    {4, 8, 0, 0, 0, 0, 0, 0}, /* 0x88 (10001000) */
+    {1, 4, 8, 0, 0, 0, 0, 0}, /* 0x89 (10001001) */
+    {2, 4, 8, 0, 0, 0, 0, 0}, /* 0x8A (10001010) */
+    {1, 2, 4, 8, 0, 0, 0, 0}, /* 0x8B (10001011) */
+    {3, 4, 8, 0, 0, 0, 0, 0}, /* 0x8C (10001100) */
+    {1, 3, 4, 8, 0, 0, 0, 0}, /* 0x8D (10001101) */
+    {2, 3, 4, 8, 0, 0, 0, 0}, /* 0x8E (10001110) */
+    {1, 2, 3, 4, 8, 0, 0, 0}, /* 0x8F (10001111) */
+    {5, 8, 0, 0, 0, 0, 0, 0}, /* 0x90 (10010000) */
+    {1, 5, 8, 0, 0, 0, 0, 0}, /* 0x91 (10010001) */
+    {2, 5, 8, 0, 0, 0, 0, 0}, /* 0x92 (10010010) */
+    {1, 2, 5, 8, 0, 0, 0, 0}, /* 0x93 (10010011) */
+    {3, 5, 8, 0, 0, 0, 0, 0}, /* 0x94 (10010100) */
+    {1, 3, 5, 8, 0, 0, 0, 0}, /* 0x95 (10010101) */
+    {2, 3, 5, 8, 0, 0, 0, 0}, /* 0x96 (10010110) */
+    {1, 2, 3, 5, 8, 0, 0, 0}, /* 0x97 (10010111) */
+    {4, 5, 8, 0, 0, 0, 0, 0}, /* 0x98 (10011000) */
+    {1, 4, 5, 8, 0, 0, 0, 0}, /* 0x99 (10011001) */
+    {2, 4, 5, 8, 0, 0, 0, 0}, /* 0x9A (10011010) */
+    {1, 2, 4, 5, 8, 0, 0, 0}, /* 0x9B (10011011) */
+    {3, 4, 5, 8, 0, 0, 0, 0}, /* 0x9C (10011100) */
+    {1, 3, 4, 5, 8, 0, 0, 0}, /* 0x9D (10011101) */
+    {2, 3, 4, 5, 8, 0, 0, 0}, /* 0x9E (10011110) */
+    {1, 2, 3, 4, 5, 8, 0, 0}, /* 0x9F (10011111) */
+    {6, 8, 0, 0, 0, 0, 0, 0}, /* 0xA0 (10100000) */
+    {1, 6, 8, 0, 0, 0, 0, 0}, /* 0xA1 (10100001) */
+    {2, 6, 8, 0, 0, 0, 0, 0}, /* 0xA2 (10100010) */
+    {1, 2, 6, 8, 0, 0, 0, 0}, /* 0xA3 (10100011) */
+    {3, 6, 8, 0, 0, 0, 0, 0}, /* 0xA4 (10100100) */
+    {1, 3, 6, 8, 0, 0, 0, 0}, /* 0xA5 (10100101) */
+    {2, 3, 6, 8, 0, 0, 0, 0}, /* 0xA6 (10100110) */
+    {1, 2, 3, 6, 8, 0, 0, 0}, /* 0xA7 (10100111) */
+    {4, 6, 8, 0, 0, 0, 0, 0}, /* 0xA8 (10101000) */
+    {1, 4, 6, 8, 0, 0, 0, 0}, /* 0xA9 (10101001) */
+    {2, 4, 6, 8, 0, 0, 0, 0}, /* 0xAA (10101010) */
+    {1, 2, 4, 6, 8, 0, 0, 0}, /* 0xAB (10101011) */
+    {3, 4, 6, 8, 0, 0, 0, 0}, /* 0xAC (10101100) */
+    {1, 3, 4, 6, 8, 0, 0, 0}, /* 0xAD (10101101) */
+    {2, 3, 4, 6, 8, 0, 0, 0}, /* 0xAE (10101110) */
+    {1, 2, 3, 4, 6, 8, 0, 0}, /* 0xAF (10101111) */
+    {5, 6, 8, 0, 0, 0, 0, 0}, /* 0xB0 (10110000) */
+    {1, 5, 6, 8, 0, 0, 0, 0}, /* 0xB1 (10110001) */
+    {2, 5, 6, 8, 0, 0, 0, 0}, /* 0xB2 (10110010) */
+    {1, 2, 5, 6, 8, 0, 0, 0}, /* 0xB3 (10110011) */
+    {3, 5, 6, 8, 0, 0, 0, 0}, /* 0xB4 (10110100) */
+    {1, 3, 5, 6, 8, 0, 0, 0}, /* 0xB5 (10110101) */
+    {2, 3, 5, 6, 8, 0, 0, 0}, /* 0xB6 (10110110) */
+    {1, 2, 3, 5, 6, 8, 0, 0}, /* 0xB7 (10110111) */
+    {4, 5, 6, 8, 0, 0, 0, 0}, /* 0xB8 (10111000) */
+    {1, 4, 5, 6, 8, 0, 0, 0}, /* 0xB9 (10111001) */
+    {2, 4, 5, 6, 8, 0, 0, 0}, /* 0xBA (10111010) */
+    {1, 2, 4, 5, 6, 8, 0, 0}, /* 0xBB (10111011) */
+    {3, 4, 5, 6, 8, 0, 0, 0}, /* 0xBC (10111100) */
+    {1, 3, 4, 5, 6, 8, 0, 0}, /* 0xBD (10111101) */
+    {2, 3, 4, 5, 6, 8, 0, 0}, /* 0xBE (10111110) */
+    {1, 2, 3, 4, 5, 6, 8, 0}, /* 0xBF (10111111) */
+    {7, 8, 0, 0, 0, 0, 0, 0}, /* 0xC0 (11000000) */
+    {1, 7, 8, 0, 0, 0, 0, 0}, /* 0xC1 (11000001) */
+    {2, 7, 8, 0, 0, 0, 0, 0}, /* 0xC2 (11000010) */
+    {1, 2, 7, 8, 0, 0, 0, 0}, /* 0xC3 (11000011) */
+    {3, 7, 8, 0, 0, 0, 0, 0}, /* 0xC4 (11000100) */
+    {1, 3, 7, 8, 0, 0, 0, 0}, /* 0xC5 (11000101) */
+    {2, 3, 7, 8, 0, 0, 0, 0}, /* 0xC6 (11000110) */
+    {1, 2, 3, 7, 8, 0, 0, 0}, /* 0xC7 (11000111) */
+    {4, 7, 8, 0, 0, 0, 0, 0}, /* 0xC8 (11001000) */
+    {1, 4, 7, 8, 0, 0, 0, 0}, /* 0xC9 (11001001) */
+    {2, 4, 7, 8, 0, 0, 0, 0}, /* 0xCA (11001010) */
+    {1, 2, 4, 7, 8, 0, 0, 0}, /* 0xCB (11001011) */
+    {3, 4, 7, 8, 0, 0, 0, 0}, /* 0xCC (11001100) */
+    {1, 3, 4, 7, 8, 0, 0, 0}, /* 0xCD (11001101) */
+    {2, 3, 4, 7, 8, 0, 0, 0}, /* 0xCE (11001110) */
+    {1, 2, 3, 4, 7, 8, 0, 0}, /* 0xCF (11001111) */
+    {5, 7, 8, 0, 0, 0, 0, 0}, /* 0xD0 (11010000) */
+    {1, 5, 7, 8, 0, 0, 0, 0}, /* 0xD1 (11010001) */
+    {2, 5, 7, 8, 0, 0, 0, 0}, /* 0xD2 (11010010) */
+    {1, 2, 5, 7, 8, 0, 0, 0}, /* 0xD3 (11010011) */
+    {3, 5, 7, 8, 0, 0, 0, 0}, /* 0xD4 (11010100) */
+    {1, 3, 5, 7, 8, 0, 0, 0}, /* 0xD5 (11010101) */
+    {2, 3, 5, 7, 8, 0, 0, 0}, /* 0xD6 (11010110) */
+    {1, 2, 3, 5, 7, 8, 0, 0}, /* 0xD7 (11010111) */
+    {4, 5, 7, 8, 0, 0, 0, 0}, /* 0xD8 (11011000) */
+    {1, 4, 5, 7, 8, 0, 0, 0}, /* 0xD9 (11011001) */
+    {2, 4, 5, 7, 8, 0, 0, 0}, /* 0xDA (11011010) */
+    {1, 2, 4, 5, 7, 8, 0, 0}, /* 0xDB (11011011) */
+    {3, 4, 5, 7, 8, 0, 0, 0}, /* 0xDC (11011100) */
+    {1, 3, 4, 5, 7, 8, 0, 0}, /* 0xDD (11011101) */
+    {2, 3, 4, 5, 7, 8, 0, 0}, /* 0xDE (11011110) */
+    {1, 2, 3, 4, 5, 7, 8, 0}, /* 0xDF (11011111) */
+    {6, 7, 8, 0, 0, 0, 0, 0}, /* 0xE0 (11100000) */
+    {1, 6, 7, 8, 0, 0, 0, 0}, /* 0xE1 (11100001) */
+    {2, 6, 7, 8, 0, 0, 0, 0}, /* 0xE2 (11100010) */
+    {1, 2, 6, 7, 8, 0, 0, 0}, /* 0xE3 (11100011) */
+    {3, 6, 7, 8, 0, 0, 0, 0}, /* 0xE4 (11100100) */
+    {1, 3, 6, 7, 8, 0, 0, 0}, /* 0xE5 (11100101) */
+    {2, 3, 6, 7, 8, 0, 0, 0}, /* 0xE6 (11100110) */
+    {1, 2, 3, 6, 7, 8, 0, 0}, /* 0xE7 (11100111) */
+    {4, 6, 7, 8, 0, 0, 0, 0}, /* 0xE8 (11101000) */
+    {1, 4, 6, 7, 8, 0, 0, 0}, /* 0xE9 (11101001) */
+    {2, 4, 6, 7, 8, 0, 0, 0}, /* 0xEA (11101010) */
+    {1, 2, 4, 6, 7, 8, 0, 0}, /* 0xEB (11101011) */
+    {3, 4, 6, 7, 8, 0, 0, 0}, /* 0xEC (11101100) */
+    {1, 3, 4, 6, 7, 8, 0, 0}, /* 0xED (11101101) */
+    {2, 3, 4, 6, 7, 8, 0, 0}, /* 0xEE (11101110) */
+    {1, 2, 3, 4, 6, 7, 8, 0}, /* 0xEF (11101111) */
+    {5, 6, 7, 8, 0, 0, 0, 0}, /* 0xF0 (11110000) */
+    {1, 5, 6, 7, 8, 0, 0, 0}, /* 0xF1 (11110001) */
+    {2, 5, 6, 7, 8, 0, 0, 0}, /* 0xF2 (11110010) */
+    {1, 2, 5, 6, 7, 8, 0, 0}, /* 0xF3 (11110011) */
+    {3, 5, 6, 7, 8, 0, 0, 0}, /* 0xF4 (11110100) */
+    {1, 3, 5, 6, 7, 8, 0, 0}, /* 0xF5 (11110101) */
+    {2, 3, 5, 6, 7, 8, 0, 0}, /* 0xF6 (11110110) */
+    {1, 2, 3, 5, 6, 7, 8, 0}, /* 0xF7 (11110111) */
+    {4, 5, 6, 7, 8, 0, 0, 0}, /* 0xF8 (11111000) */
+    {1, 4, 5, 6, 7, 8, 0, 0}, /* 0xF9 (11111001) */
+    {2, 4, 5, 6, 7, 8, 0, 0}, /* 0xFA (11111010) */
+    {1, 2, 4, 5, 6, 7, 8, 0}, /* 0xFB (11111011) */
+    {3, 4, 5, 6, 7, 8, 0, 0}, /* 0xFC (11111100) */
+    {1, 3, 4, 5, 6, 7, 8, 0}, /* 0xFD (11111101) */
+    {2, 3, 4, 5, 6, 7, 8, 0}, /* 0xFE (11111110) */
+    {1, 2, 3, 4, 5, 6, 7, 8}  /* 0xFF (11111111) */
+};
+
+#endif
+
+#if CROARING_IS_X64
+#if CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX512
+const uint8_t vbmi2_table[64] = {
+    0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, 12, 13, 14, 15,
+    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+    32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+    48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63};
+size_t bitset_extract_setbits_avx512(const uint64_t *words, size_t length,
+                                     uint32_t *vout, size_t outcapacity,
+                                     uint32_t base) {
+    uint32_t *out = (uint32_t *)vout;
+    uint32_t *initout = out;
+    uint32_t *safeout = out + outcapacity;
+    __m512i base_v = _mm512_set1_epi32(base);
+    __m512i index_table = _mm512_loadu_si512(vbmi2_table);
+    size_t i = 0;
+
+    for (; (i < length) && ((out + 64) < safeout); i += 1) {
+        uint64_t v = words[i];
+        __m512i vec = _mm512_maskz_compress_epi8(v, index_table);
+
+        uint8_t advance = (uint8_t)roaring_hamming(v);
+
+        __m512i vbase =
+            _mm512_add_epi32(base_v, _mm512_set1_epi32((int)(i * 64)));
+        __m512i r1 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 0));
+        __m512i r2 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 1));
+        __m512i r3 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 2));
+        __m512i r4 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 3));
+
+        r1 = _mm512_add_epi32(r1, vbase);
+        r2 = _mm512_add_epi32(r2, vbase);
+        r3 = _mm512_add_epi32(r3, vbase);
+        r4 = _mm512_add_epi32(r4, vbase);
+        _mm512_storeu_si512((__m512i *)out, r1);
+        _mm512_storeu_si512((__m512i *)(out + 16), r2);
+        _mm512_storeu_si512((__m512i *)(out + 32), r3);
+        _mm512_storeu_si512((__m512i *)(out + 48), r4);
+
+        out += advance;
+    }
+
+    base += i * 64;
+
+    for (; (i < length) && (out < safeout); ++i) {
+        uint64_t w = words[i];
+        while ((w != 0) && (out < safeout)) {
+            int r =
+                roaring_trailing_zeroes(w);  // on x64, should compile to TZCNT
+            uint32_t val = r + base;
+            memcpy(out, &val,
+                   sizeof(uint32_t));  // should be compiled as a MOV on x64
+            out++;
+            w &= (w - 1);
+        }
+        base += 64;
+    }
+
+    return out - initout;
+}
+
+// Reference:
+// 
https://lemire.me/blog/2022/05/10/faster-bitset-decoding-using-intel-avx-512/
+size_t bitset_extract_setbits_avx512_uint16(const uint64_t *array,
+                                            size_t length, uint16_t *vout,
+                                            size_t capacity, uint16_t base) {
+    uint16_t *out = (uint16_t *)vout;
+    uint16_t *initout = out;
+    uint16_t *safeout = vout + capacity;
+
+    __m512i base_v = _mm512_set1_epi16(base);
+    __m512i index_table = _mm512_loadu_si512(vbmi2_table);
+    size_t i = 0;
+
+    for (; (i < length) && ((out + 64) < safeout); i++) {
+        uint64_t v = array[i];
+        __m512i vec = _mm512_maskz_compress_epi8(v, index_table);
+
+        uint8_t advance = (uint8_t)roaring_hamming(v);
+
+        __m512i vbase =
+            _mm512_add_epi16(base_v, _mm512_set1_epi16((short)(i * 64)));
+        __m512i r1 = _mm512_cvtepi8_epi16(_mm512_extracti32x8_epi32(vec, 0));
+        __m512i r2 = _mm512_cvtepi8_epi16(_mm512_extracti32x8_epi32(vec, 1));
+
+        r1 = _mm512_add_epi16(r1, vbase);
+        r2 = _mm512_add_epi16(r2, vbase);
+
+        _mm512_storeu_si512((__m512i *)out, r1);
+        _mm512_storeu_si512((__m512i *)(out + 32), r2);
+        out += advance;
+    }
+
+    base += i * 64;
+
+    for (; (i < length) && (out < safeout); ++i) {
+        uint64_t w = array[i];
+        while ((w != 0) && (out < safeout)) {
+            int r =
+                roaring_trailing_zeroes(w);  // on x64, should compile to TZCNT
+            uint32_t val = r + base;
+            memcpy(out, &val, sizeof(uint16_t));
+            out++;
+            w &= (w - 1);
+        }
+        base += 64;
+    }
+
+    return out - initout;
+}
+CROARING_UNTARGET_AVX512
+#endif
+
+CROARING_TARGET_AVX2
+size_t bitset_extract_setbits_avx2(const uint64_t *words, size_t length,
+                                   uint32_t *out, size_t outcapacity,
+                                   uint32_t base) {
+    uint32_t *initout = out;
+    __m256i baseVec = _mm256_set1_epi32(base - 1);
+    __m256i incVec = _mm256_set1_epi32(64);
+    __m256i add8 = _mm256_set1_epi32(8);
+    uint32_t *safeout = out + outcapacity;
+    size_t i = 0;
+    for (; (i < length) && (out + 64 <= safeout); ++i) {
+        uint64_t w = words[i];
+        if (w == 0) {
+            baseVec = _mm256_add_epi32(baseVec, incVec);
+        } else {
+            for (int k = 0; k < 4; ++k) {
+                uint8_t byteA = (uint8_t)w;
+                uint8_t byteB = (uint8_t)(w >> 8);
+                w >>= 16;
+                __m256i vecA =
+                    _mm256_loadu_si256((const __m256i *)vecDecodeTable[byteA]);
+                __m256i vecB =
+                    _mm256_loadu_si256((const __m256i *)vecDecodeTable[byteB]);
+                uint8_t advanceA = lengthTable[byteA];
+                uint8_t advanceB = lengthTable[byteB];
+                vecA = _mm256_add_epi32(baseVec, vecA);
+                baseVec = _mm256_add_epi32(baseVec, add8);
+                vecB = _mm256_add_epi32(baseVec, vecB);
+                baseVec = _mm256_add_epi32(baseVec, add8);
+                _mm256_storeu_si256((__m256i *)out, vecA);
+                out += advanceA;
+                _mm256_storeu_si256((__m256i *)out, vecB);
+                out += advanceB;
+            }
+        }
+    }
+    base += i * 64;
+    for (; (i < length) && (out < safeout); ++i) {
+        uint64_t w = words[i];
+        while ((w != 0) && (out < safeout)) {
+            int r =
+                roaring_trailing_zeroes(w);  // on x64, should compile to TZCNT
+            uint32_t val = r + base;
+            memcpy(out, &val,
+                   sizeof(uint32_t));  // should be compiled as a MOV on x64
+            out++;
+            w &= (w - 1);
+        }
+        base += 64;
+    }
+    return out - initout;
+}
+CROARING_UNTARGET_AVX2
+#endif  // CROARING_IS_X64
+
+size_t bitset_extract_setbits(const uint64_t *words, size_t length,
+                              uint32_t *out, uint32_t base) {
+    int outpos = 0;
+    for (size_t i = 0; i < length; ++i) {
+        uint64_t w = words[i];
+        while (w != 0) {
+            int r =
+                roaring_trailing_zeroes(w);  // on x64, should compile to TZCNT
+            uint32_t val = r + base;
+            memcpy(out + outpos, &val,
+                   sizeof(uint32_t));  // should be compiled as a MOV on x64
+            outpos++;
+            w &= (w - 1);
+        }
+        base += 64;
+    }
+    return outpos;
+}
+
+size_t bitset_extract_intersection_setbits_uint16(
+    const uint64_t *__restrict__ words1, const uint64_t *__restrict__ words2,
+    size_t length, uint16_t *out, uint16_t base) {
+    int outpos = 0;
+    for (size_t i = 0; i < length; ++i) {
+        uint64_t w = words1[i] & words2[i];
+        while (w != 0) {
+            int r = roaring_trailing_zeroes(w);
+            out[outpos++] = (uint16_t)(r + base);
+            w &= (w - 1);
+        }
+        base += 64;
+    }
+    return outpos;
+}
+
+#if CROARING_IS_X64
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out" as 16-bit integers, values start at "base" (can
+ *be set to zero).
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ *
+ * This function uses SSE decoding.
+ */
+CROARING_TARGET_AVX2
+size_t bitset_extract_setbits_sse_uint16(const uint64_t *words, size_t length,
+                                         uint16_t *out, size_t outcapacity,
+                                         uint16_t base) {
+    uint16_t *initout = out;
+    __m128i baseVec = _mm_set1_epi16(base - 1);
+    __m128i incVec = _mm_set1_epi16(64);
+    __m128i add8 = _mm_set1_epi16(8);
+    uint16_t *safeout = out + outcapacity;
+    const int numberofbytes = 2;  // process two bytes at a time
+    size_t i = 0;
+    for (; (i < length) && (out + numberofbytes * 8 <= safeout); ++i) {
+        uint64_t w = words[i];
+        if (w == 0) {
+            baseVec = _mm_add_epi16(baseVec, incVec);
+        } else {
+            for (int k = 0; k < 4; ++k) {
+                uint8_t byteA = (uint8_t)w;
+                uint8_t byteB = (uint8_t)(w >> 8);
+                w >>= 16;
+                __m128i vecA = _mm_loadu_si128(
+                    (const __m128i *)vecDecodeTable_uint16[byteA]);
+                __m128i vecB = _mm_loadu_si128(
+                    (const __m128i *)vecDecodeTable_uint16[byteB]);
+                uint8_t advanceA = lengthTable[byteA];
+                uint8_t advanceB = lengthTable[byteB];
+                vecA = _mm_add_epi16(baseVec, vecA);
+                baseVec = _mm_add_epi16(baseVec, add8);
+                vecB = _mm_add_epi16(baseVec, vecB);
+                baseVec = _mm_add_epi16(baseVec, add8);
+                _mm_storeu_si128((__m128i *)out, vecA);
+                out += advanceA;
+                _mm_storeu_si128((__m128i *)out, vecB);
+                out += advanceB;
+            }
+        }
+    }
+    base += (uint16_t)(i * 64);
+    for (; (i < length) && (out < safeout); ++i) {
+        uint64_t w = words[i];
+        while ((w != 0) && (out < safeout)) {
+            int r = roaring_trailing_zeroes(w);
+            *out = (uint16_t)(r + base);
+            out++;
+            w &= (w - 1);
+        }
+        base += 64;
+    }
+    return out - initout;
+}
+CROARING_UNTARGET_AVX2
+#endif
+
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out", values start at "base" (can be set to zero).
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ */
+size_t bitset_extract_setbits_uint16(const uint64_t *words, size_t length,
+                                     uint16_t *out, uint16_t base) {
+    int outpos = 0;
+    for (size_t i = 0; i < length; ++i) {
+        uint64_t w = words[i];
+        while (w != 0) {
+            int r = roaring_trailing_zeroes(w);
+            out[outpos++] = (uint16_t)(r + base);
+            w &= (w - 1);
+        }
+        base += 64;
+    }
+    return outpos;
+}
+
+#if defined(CROARING_ASMBITMANIPOPTIMIZATION) && defined(CROARING_IS_X64)
+
+static inline uint64_t _asm_bitset_set_list_withcard(uint64_t *words,
+                                                     uint64_t card,
+                                                     const uint16_t *list,
+                                                     uint64_t length) {
+    uint64_t offset, load, pos;
+    uint64_t shift = 6;
+    const uint16_t *end = list + length;
+    if (!length) return card;
+    // TODO: could unroll for performance, see bitset_set_list
+    // bts is not available as an intrinsic in GCC
+    __asm volatile(
+        "1:\n"
+        "movzwq (%[list]), %[pos]\n"
+        "shrx %[shift], %[pos], %[offset]\n"
+        "mov (%[words],%[offset],8), %[load]\n"
+        "bts %[pos], %[load]\n"
+        "mov %[load], (%[words],%[offset],8)\n"
+        "sbb $-1, %[card]\n"
+        "add $2, %[list]\n"
+        "cmp %[list], %[end]\n"
+        "jnz 1b"
+        : [card] "+&r"(card), [list] "+&r"(list), [load] "=&r"(load),
+          [pos] "=&r"(pos), [offset] "=&r"(offset)
+        : [end] "r"(end), [words] "r"(words), [shift] "r"(shift));
+    return card;
+}
+
+static inline void _asm_bitset_set_list(uint64_t *words, const uint16_t *list,
+                                        uint64_t length) {
+    uint64_t pos;
+    const uint16_t *end = list + length;
+
+    uint64_t shift = 6;
+    uint64_t offset;
+    uint64_t load;
+    for (; list + 3 < end; list += 4) {
+        pos = list[0];
+        __asm volatile(
+            "shrx %[shift], %[pos], %[offset]\n"
+            "mov (%[words],%[offset],8), %[load]\n"
+            "bts %[pos], %[load]\n"
+            "mov %[load], (%[words],%[offset],8)"
+            : [load] "=&r"(load), [offset] "=&r"(offset)
+            : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
+        pos = list[1];
+        __asm volatile(
+            "shrx %[shift], %[pos], %[offset]\n"
+            "mov (%[words],%[offset],8), %[load]\n"
+            "bts %[pos], %[load]\n"
+            "mov %[load], (%[words],%[offset],8)"
+            : [load] "=&r"(load), [offset] "=&r"(offset)
+            : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
+        pos = list[2];
+        __asm volatile(
+            "shrx %[shift], %[pos], %[offset]\n"
+            "mov (%[words],%[offset],8), %[load]\n"
+            "bts %[pos], %[load]\n"
+            "mov %[load], (%[words],%[offset],8)"
+            : [load] "=&r"(load), [offset] "=&r"(offset)
+            : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
+        pos = list[3];
+        __asm volatile(
+            "shrx %[shift], %[pos], %[offset]\n"
+            "mov (%[words],%[offset],8), %[load]\n"
+            "bts %[pos], %[load]\n"
+            "mov %[load], (%[words],%[offset],8)"
+            : [load] "=&r"(load), [offset] "=&r"(offset)
+            : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
+    }
+
+    while (list != end) {
+        pos = list[0];
+        __asm volatile(
+            "shrx %[shift], %[pos], %[offset]\n"
+            "mov (%[words],%[offset],8), %[load]\n"
+            "bts %[pos], %[load]\n"
+            "mov %[load], (%[words],%[offset],8)"
+            : [load] "=&r"(load), [offset] "=&r"(offset)
+            : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
+        list++;
+    }
+}
+
+static inline uint64_t _asm_bitset_clear_list(uint64_t *words, uint64_t card,
+                                              const uint16_t *list,
+                                              uint64_t length) {
+    uint64_t offset, load, pos;
+    uint64_t shift = 6;
+    const uint16_t *end = list + length;
+    if (!length) return card;
+    // btr is not available as an intrinsic in GCC
+    __asm volatile(
+        "1:\n"
+        "movzwq (%[list]), %[pos]\n"
+        "shrx %[shift], %[pos], %[offset]\n"
+        "mov (%[words],%[offset],8), %[load]\n"
+        "btr %[pos], %[load]\n"
+        "mov %[load], (%[words],%[offset],8)\n"
+        "sbb $0, %[card]\n"
+        "add $2, %[list]\n"
+        "cmp %[list], %[end]\n"
+        "jnz 1b"
+        : [card] "+&r"(card), [list] "+&r"(list), [load] "=&r"(load),
+          [pos] "=&r"(pos), [offset] "=&r"(offset)
+        : [end] "r"(end), [words] "r"(words), [shift] "r"(shift)
+        :
+        /* clobbers */ "memory");
+    return card;
+}
+
+static inline uint64_t _scalar_bitset_clear_list(uint64_t *words, uint64_t 
card,
+                                                 const uint16_t *list,
+                                                 uint64_t length) {
+    uint64_t offset, load, newload, pos, index;
+    const uint16_t *end = list + length;
+    while (list != end) {
+        pos = *(const uint16_t *)list;
+        offset = pos >> 6;
+        index = pos % 64;
+        load = words[offset];
+        newload = load & ~(UINT64_C(1) << index);
+        card -= (load ^ newload) >> index;
+        words[offset] = newload;
+        list++;
+    }
+    return card;
+}
+
+static inline uint64_t _scalar_bitset_set_list_withcard(uint64_t *words,
+                                                        uint64_t card,
+                                                        const uint16_t *list,
+                                                        uint64_t length) {
+    uint64_t offset, load, newload, pos, index;
+    const uint16_t *end = list + length;
+    while (list != end) {
+        pos = *list;
+        offset = pos >> 6;
+        index = pos % 64;
+        load = words[offset];
+        newload = load | (UINT64_C(1) << index);
+        card += (load ^ newload) >> index;
+        words[offset] = newload;
+        list++;
+    }
+    return card;
+}
+
+static inline void _scalar_bitset_set_list(uint64_t *words,
+                                           const uint16_t *list,
+                                           uint64_t length) {
+    uint64_t offset, load, newload, pos, index;
+    const uint16_t *end = list + length;
+    while (list != end) {
+        pos = *list;
+        offset = pos >> 6;
+        index = pos % 64;
+        load = words[offset];
+        newload = load | (UINT64_C(1) << index);
+        words[offset] = newload;
+        list++;
+    }
+}
+
+uint64_t bitset_clear_list(uint64_t *words, uint64_t card, const uint16_t 
*list,
+                           uint64_t length) {
+    if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+        return _asm_bitset_clear_list(words, card, list, length);
+    } else {
+        return _scalar_bitset_clear_list(words, card, list, length);
+    }
+}
+
+uint64_t bitset_set_list_withcard(uint64_t *words, uint64_t card,
+                                  const uint16_t *list, uint64_t length) {
+    if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+        return _asm_bitset_set_list_withcard(words, card, list, length);
+    } else {
+        return _scalar_bitset_set_list_withcard(words, card, list, length);
+    }
+}
+
+void bitset_set_list(uint64_t *words, const uint16_t *list, uint64_t length) {
+    if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+        _asm_bitset_set_list(words, list, length);
+    } else {
+        _scalar_bitset_set_list(words, list, length);
+    }
+}
+#else
+uint64_t bitset_clear_list(uint64_t *words, uint64_t card, const uint16_t 
*list,
+                           uint64_t length) {
+    uint64_t offset, load, newload, pos, index;
+    const uint16_t *end = list + length;
+    while (list != end) {
+        pos = *(const uint16_t *)list;
+        offset = pos >> 6;
+        index = pos % 64;
+        load = words[offset];
+        newload = load & ~(UINT64_C(1) << index);
+        card -= (load ^ newload) >> index;
+        words[offset] = newload;
+        list++;
+    }
+    return card;
+}
+
+uint64_t bitset_set_list_withcard(uint64_t *words, uint64_t card,
+                                  const uint16_t *list, uint64_t length) {
+    uint64_t offset, load, newload, pos, index;
+    const uint16_t *end = list + length;
+    while (list != end) {
+        pos = *list;
+        offset = pos >> 6;
+        index = pos % 64;
+        load = words[offset];
+        newload = load | (UINT64_C(1) << index);
+        card += (load ^ newload) >> index;
+        words[offset] = newload;
+        list++;
+    }
+    return card;
+}
+
+void bitset_set_list(uint64_t *words, const uint16_t *list, uint64_t length) {
+    uint64_t offset, load, newload, pos, index;
+    const uint16_t *end = list + length;
+    while (list != end) {
+        pos = *list;
+        offset = pos >> 6;
+        index = pos % 64;
+        load = words[offset];
+        newload = load | (UINT64_C(1) << index);
+        words[offset] = newload;
+        list++;
+    }
+}
+
+#endif
+
+/* flip specified bits */
+/* TODO: consider whether worthwhile to make an asm version */
+
+uint64_t bitset_flip_list_withcard(uint64_t *words, uint64_t card,
+                                   const uint16_t *list, uint64_t length) {
+    uint64_t offset, load, newload, pos, index;
+    const uint16_t *end = list + length;
+    while (list != end) {
+        pos = *list;
+        offset = pos >> 6;
+        index = pos % 64;
+        load = words[offset];
+        newload = load ^ (UINT64_C(1) << index);
+        // todo: is a branch here all that bad?
+        card +=
+            (1 - 2 * (((UINT64_C(1) << index) & load) >> index));  // +1 or -1
+        words[offset] = newload;
+        list++;
+    }
+    return card;
+}
+
+void bitset_flip_list(uint64_t *words, const uint16_t *list, uint64_t length) {
+    uint64_t offset, load, newload, pos, index;
+    const uint16_t *end = list + length;
+    while (list != end) {
+        pos = *list;
+        offset = pos >> 6;
+        index = pos % 64;
+        load = words[offset];
+        newload = load ^ (UINT64_C(1) << index);
+        words[offset] = newload;
+        list++;
+    }
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace api {
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic pop
+#endif
+/* end file src/bitset_util.c */
+/* begin file src/containers/array.c */
+/*
+ * array.c
+ *
+ */
+
+#include <assert.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif  // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+extern inline uint16_t array_container_minimum(const array_container_t *arr);
+extern inline uint16_t array_container_maximum(const array_container_t *arr);
+extern inline int array_container_index_equalorlarger(
+    const array_container_t *arr, uint16_t x);
+
+extern inline int array_container_rank(const array_container_t *arr,
+                                       uint16_t x);
+extern inline uint32_t array_container_rank_many(const array_container_t *arr,
+                                                 uint64_t start_rank,
+                                                 const uint32_t *begin,
+                                                 const uint32_t *end,
+                                                 uint64_t *ans);
+extern inline int array_container_get_index(const array_container_t *arr,
+                                            uint16_t x);
+extern inline bool array_container_contains(const array_container_t *arr,
+                                            uint16_t pos);
+extern inline int array_container_cardinality(const array_container_t *array);
+extern inline bool array_container_nonzero_cardinality(
+    const array_container_t *array);
+extern inline int32_t array_container_serialized_size_in_bytes(int32_t card);
+extern inline bool array_container_empty(const array_container_t *array);
+extern inline bool array_container_full(const array_container_t *array);
+
+/* Create a new array with capacity size. Return NULL in case of failure. */
+array_container_t *array_container_create_given_capacity(int32_t size) {
+    array_container_t *container;
+
+    if ((container = (array_container_t *)roaring_malloc(
+             sizeof(array_container_t))) == NULL) {
+        return NULL;
+    }
+
+    if (size <= 0) {  // we don't want to rely on malloc(0)
+        container->array = NULL;
+    } else if ((container->array = (uint16_t *)roaring_malloc(sizeof(uint16_t) 
*
+                                                              size)) == NULL) {
+        roaring_free(container);
+        return NULL;
+    }
+
+    container->capacity = size;
+    container->cardinality = 0;
+
+    return container;
+}
+
+/* Create a new array. Return NULL in case of failure. */
+array_container_t *array_container_create(void) {
+    return array_container_create_given_capacity(ARRAY_DEFAULT_INIT_SIZE);
+}
+
+/* Create a new array containing all values in [min,max). */
+array_container_t *array_container_create_range(uint32_t min, uint32_t max) {
+    array_container_t *answer =
+        array_container_create_given_capacity(max - min + 1);
+    if (answer == NULL) return answer;
+    answer->cardinality = 0;
+    for (uint32_t k = min; k < max; k++) {
+        answer->array[answer->cardinality++] = k;
+    }
+    return answer;
+}
+
+/* Duplicate container */
+ALLOW_UNALIGNED
+array_container_t *array_container_clone(const array_container_t *src) {
+    array_container_t *newcontainer =
+        array_container_create_given_capacity(src->capacity);
+    if (newcontainer == NULL) return NULL;
+
+    newcontainer->cardinality = src->cardinality;
+
+    memcpy(newcontainer->array, src->array,
+           src->cardinality * sizeof(uint16_t));
+
+    return newcontainer;
+}
+
+void array_container_offset(const array_container_t *c, container_t **loc,
+                            container_t **hic, uint16_t offset) {
+    array_container_t *lo = NULL, *hi = NULL;
+    int top, lo_cap, hi_cap;
+
+    top = (1 << 16) - offset;
+
+    lo_cap = count_less(c->array, c->cardinality, top);
+    if (loc && lo_cap) {
+        lo = array_container_create_given_capacity(lo_cap);
+        for (int i = 0; i < lo_cap; ++i) {
+            array_container_add(lo, c->array[i] + offset);
+        }
+        *loc = (container_t *)lo;
+    }
+
+    hi_cap = c->cardinality - lo_cap;
+    if (hic && hi_cap) {
+        hi = array_container_create_given_capacity(hi_cap);
+        for (int i = lo_cap; i < c->cardinality; ++i) {
+            array_container_add(hi, c->array[i] + offset);
+        }
+        *hic = (container_t *)hi;
+    }
+}
+
+int array_container_shrink_to_fit(array_container_t *src) {
+    if (src->cardinality == src->capacity) return 0;  // nothing to do
+    int savings = src->capacity - src->cardinality;
+    src->capacity = src->cardinality;
+    if (src->capacity ==
+        0) {  // we do not want to rely on realloc for zero allocs
+        roaring_free(src->array);
+        src->array = NULL;
+    } else {
+        uint16_t *oldarray = src->array;
+        src->array = (uint16_t *)roaring_realloc(
+            oldarray, src->capacity * sizeof(uint16_t));
+        if (src->array == NULL) roaring_free(oldarray);  // should never 
happen?
+    }
+    return savings;
+}
+
+/* Free memory. */
+void array_container_free(array_container_t *arr) {
+    if (arr == NULL) return;
+    roaring_free(arr->array);
+    roaring_free(arr);
+}
+
+static inline int32_t grow_capacity(int32_t capacity) {
+    return (capacity <= 0)   ? ARRAY_DEFAULT_INIT_SIZE
+           : capacity < 64   ? capacity * 2
+           : capacity < 1024 ? capacity * 3 / 2
+                             : capacity * 5 / 4;
+}
+
+static inline int32_t clamp(int32_t val, int32_t min, int32_t max) {
+    return ((val < min) ? min : (val > max) ? max : val);
+}
+
+void array_container_grow(array_container_t *container, int32_t min,
+                          bool preserve) {
+    int32_t max = (min <= DEFAULT_MAX_SIZE ? DEFAULT_MAX_SIZE : 65536);
+    int32_t new_capacity = clamp(grow_capacity(container->capacity), min, max);
+
+    container->capacity = new_capacity;
+    uint16_t *array = container->array;
+
+    if (preserve) {
+        container->array =
+            (uint16_t *)roaring_realloc(array, new_capacity * 
sizeof(uint16_t));
+        if (container->array == NULL) roaring_free(array);
+    } else {
+        roaring_free(array);
+        container->array =
+            (uint16_t *)roaring_malloc(new_capacity * sizeof(uint16_t));
+    }
+
+    // if realloc fails, we have container->array == NULL.
+}
+
+/* Copy one container into another. We assume that they are distinct. */
+void array_container_copy(const array_container_t *src,
+                          array_container_t *dst) {
+    const int32_t cardinality = src->cardinality;
+    if (cardinality > dst->capacity) {
+        array_container_grow(dst, cardinality, false);
+    }
+
+    dst->cardinality = cardinality;
+    memcpy(dst->array, src->array, cardinality * sizeof(uint16_t));
+}
+
+void array_container_add_from_range(array_container_t *arr, uint32_t min,
+                                    uint32_t max, uint16_t step) {
+    for (uint32_t value = min; value < max; value += step) {
+        array_container_append(arr, value);
+    }
+}
+
+/* Computes the union of array1 and array2 and write the result to arrayout.
+ * It is assumed that arrayout is distinct from both array1 and array2.
+ */
+void array_container_union(const array_container_t *array_1,
+                           const array_container_t *array_2,
+                           array_container_t *out) {
+    const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality;
+    const int32_t max_cardinality = card_1 + card_2;
+
+    if (out->capacity < max_cardinality) {
+        array_container_grow(out, max_cardinality, false);
+    }
+    out->cardinality = (int32_t)fast_union_uint16(
+        array_1->array, card_1, array_2->array, card_2, out->array);
+}
+
+/* Computes the  difference of array1 and array2 and write the result
+ * to array out.
+ * Array out does not need to be distinct from array_1
+ */
+void array_container_andnot(const array_container_t *array_1,
+                            const array_container_t *array_2,
+                            array_container_t *out) {
+    if (out->capacity < array_1->cardinality)
+        array_container_grow(out, array_1->cardinality, false);
+#if CROARING_IS_X64
+    if ((croaring_hardware_support() & ROARING_SUPPORTS_AVX2) &&
+        (out != array_1) && (out != array_2)) {
+        out->cardinality = difference_vector16(
+            array_1->array, array_1->cardinality, array_2->array,
+            array_2->cardinality, out->array);
+    } else {
+        out->cardinality =
+            difference_uint16(array_1->array, array_1->cardinality,
+                              array_2->array, array_2->cardinality, 
out->array);
+    }
+#else
+    out->cardinality =
+        difference_uint16(array_1->array, array_1->cardinality, array_2->array,
+                          array_2->cardinality, out->array);
+#endif
+}
+
+/* Computes the symmetric difference of array1 and array2 and write the
+ * result
+ * to arrayout.
+ * It is assumed that arrayout is distinct from both array1 and array2.
+ */
+void array_container_xor(const array_container_t *array_1,
+                         const array_container_t *array_2,
+                         array_container_t *out) {
+    const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality;
+    const int32_t max_cardinality = card_1 + card_2;
+    if (out->capacity < max_cardinality) {
+        array_container_grow(out, max_cardinality, false);
+    }
+
+#if CROARING_IS_X64
+    if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+        out->cardinality =
+            xor_vector16(array_1->array, array_1->cardinality, array_2->array,
+                         array_2->cardinality, out->array);
+    } else {
+        out->cardinality =
+            xor_uint16(array_1->array, array_1->cardinality, array_2->array,
+                       array_2->cardinality, out->array);
+    }
+#else
+    out->cardinality =
+        xor_uint16(array_1->array, array_1->cardinality, array_2->array,
+                   array_2->cardinality, out->array);
+#endif
+}
+
+static inline int32_t minimum_int32(int32_t a, int32_t b) {
+    return (a < b) ? a : b;
+}
+
+/* computes the intersection of array1 and array2 and write the result to
+ * arrayout.
+ * It is assumed that arrayout is distinct from both array1 and array2.
+ * */
+void array_container_intersection(const array_container_t *array1,
+                                  const array_container_t *array2,
+                                  array_container_t *out) {
+    int32_t card_1 = array1->cardinality, card_2 = array2->cardinality,
+            min_card = minimum_int32(card_1, card_2);
+    const int threshold = 64;  // subject to tuning
+#if CROARING_IS_X64
+    if (out->capacity < min_card) {
+        array_container_grow(out, min_card + sizeof(__m128i) / 
sizeof(uint16_t),
+                             false);
+    }
+#else
+    if (out->capacity < min_card) {
+        array_container_grow(out, min_card, false);
+    }
+#endif
+
+    if (card_1 * threshold < card_2) {
+        out->cardinality = intersect_skewed_uint16(
+            array1->array, card_1, array2->array, card_2, out->array);
+    } else if (card_2 * threshold < card_1) {
+        out->cardinality = intersect_skewed_uint16(
+            array2->array, card_2, array1->array, card_1, out->array);
+    } else {
+#if CROARING_IS_X64
+        if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+            out->cardinality = intersect_vector16(
+                array1->array, card_1, array2->array, card_2, out->array);
+        } else {
+            out->cardinality = intersect_uint16(
+                array1->array, card_1, array2->array, card_2, out->array);
+        }
+#else
+        out->cardinality = intersect_uint16(array1->array, card_1,
+                                            array2->array, card_2, out->array);
+#endif
+    }
+}
+
+/* computes the size of the intersection of array1 and array2
+ * */
+int array_container_intersection_cardinality(const array_container_t *array1,
+                                             const array_container_t *array2) {
+    int32_t card_1 = array1->cardinality, card_2 = array2->cardinality;
+    const int threshold = 64;  // subject to tuning
+    if (card_1 * threshold < card_2) {
+        return intersect_skewed_uint16_cardinality(array1->array, card_1,
+                                                   array2->array, card_2);
+    } else if (card_2 * threshold < card_1) {
+        return intersect_skewed_uint16_cardinality(array2->array, card_2,
+                                                   array1->array, card_1);
+    } else {
+#if CROARING_IS_X64
+        if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+            return intersect_vector16_cardinality(array1->array, card_1,
+                                                  array2->array, card_2);
+        } else {
+            return intersect_uint16_cardinality(array1->array, card_1,
+                                                array2->array, card_2);
+        }
+#else
+        return intersect_uint16_cardinality(array1->array, card_1,
+                                            array2->array, card_2);
+#endif
+    }
+}
+
+bool array_container_intersect(const array_container_t *array1,
+                               const array_container_t *array2) {
+    int32_t card_1 = array1->cardinality, card_2 = array2->cardinality;
+    const int threshold = 64;  // subject to tuning
+    if (card_1 * threshold < card_2) {
+        return intersect_skewed_uint16_nonempty(array1->array, card_1,
+                                                array2->array, card_2);
+    } else if (card_2 * threshold < card_1) {
+        return intersect_skewed_uint16_nonempty(array2->array, card_2,
+                                                array1->array, card_1);
+    } else {
+        // we do not bother vectorizing
+        return intersect_uint16_nonempty(array1->array, card_1, array2->array,
+                                         card_2);
+    }
+}
+
+/* computes the intersection of array1 and array2 and write the result to
+ * array1.
+ * */
+void array_container_intersection_inplace(array_container_t *src_1,
+                                          const array_container_t *src_2) {
+    int32_t card_1 = src_1->cardinality, card_2 = src_2->cardinality;
+    const int threshold = 64;  // subject to tuning
+    if (card_1 * threshold < card_2) {
+        src_1->cardinality = intersect_skewed_uint16(
+            src_1->array, card_1, src_2->array, card_2, src_1->array);
+    } else if (card_2 * threshold < card_1) {
+        src_1->cardinality = intersect_skewed_uint16(
+            src_2->array, card_2, src_1->array, card_1, src_1->array);
+    } else {
+#if CROARING_IS_X64
+        if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+            src_1->cardinality = intersect_vector16_inplace(
+                src_1->array, card_1, src_2->array, card_2);
+        } else {
+            src_1->cardinality = intersect_uint16(
+                src_1->array, card_1, src_2->array, card_2, src_1->array);
+        }
+#else
+        src_1->cardinality = intersect_uint16(
+            src_1->array, card_1, src_2->array, card_2, src_1->array);
+#endif
+    }
+}
+
+ALLOW_UNALIGNED
+int array_container_to_uint32_array(void *vout, const array_container_t *cont,
+                                    uint32_t base) {
+#if CROARING_IS_X64
+    int support = croaring_hardware_support();
+#if CROARING_COMPILER_SUPPORTS_AVX512
+    if (support & ROARING_SUPPORTS_AVX512) {
+        return avx512_array_container_to_uint32_array(vout, cont->array,
+                                                      cont->cardinality, base);
+    }
+#endif
+    if (support & ROARING_SUPPORTS_AVX2) {
+        return array_container_to_uint32_array_vector16(
+            vout, cont->array, cont->cardinality, base);
+    }
+#endif  // CROARING_IS_X64
+    int outpos = 0;
+    uint32_t *out = (uint32_t *)vout;
+    size_t i = 0;
+    for (; i < (size_t)cont->cardinality; ++i) {
+        const uint32_t val = base + cont->array[i];
+        memcpy(out + outpos, &val,
+               sizeof(uint32_t));  // should be compiled as a MOV on x64
+        outpos++;
+    }
+    return outpos;
+}
+
+void array_container_printf(const array_container_t *v) {
+    if (v->cardinality == 0) {
+        printf("{}");
+        return;
+    }
+    printf("{");
+    printf("%d", v->array[0]);
+    for (int i = 1; i < v->cardinality; ++i) {
+        printf(",%d", v->array[i]);
+    }
+    printf("}");
+}
+
+void array_container_printf_as_uint32_array(const array_container_t *v,
+                                            uint32_t base) {
+    if (v->cardinality == 0) {
+        return;
+    }
+    printf("%u", v->array[0] + base);
+    for (int i = 1; i < v->cardinality; ++i) {
+        printf(",%u", v->array[i] + base);
+    }
+}
+
+/*
+ * Validate the container. Returns true if valid.
+ */
+bool array_container_validate(const array_container_t *v, const char **reason) 
{
+    if (v->capacity < 0) {
+        *reason = "negative capacity";
+        return false;
+    }
+    if (v->cardinality < 0) {
+        *reason = "negative cardinality";
+        return false;
+    }
+    if (v->cardinality > v->capacity) {
+        *reason = "cardinality exceeds capacity";
+        return false;
+    }
+    if (v->cardinality > DEFAULT_MAX_SIZE) {
+        *reason = "cardinality exceeds DEFAULT_MAX_SIZE";
+        return false;
+    }
+    if (v->cardinality == 0) {
+        *reason = "zero cardinality";
+        return false;
+    }
+
+    if (v->array == NULL) {
+        *reason = "NULL array pointer";
+        return false;
+    }
+    uint16_t prev = v->array[0];
+    for (int i = 1; i < v->cardinality; ++i) {
+        if (v->array[i] <= prev) {
+            *reason = "array elements not strictly increasing";
+            return false;
+        }
+        prev = v->array[i];
+    }
+
+    return true;
+}
+
+/* Compute the number of runs */
+int32_t array_container_number_of_runs(const array_container_t *ac) {
+    // Can SIMD work here?
+    int32_t nr_runs = 0;
+    int32_t prev = -2;
+    for (const uint16_t *p = ac->array; p != ac->array + ac->cardinality; ++p) 
{
+        if (*p != prev + 1) nr_runs++;
+        prev = *p;
+    }
+    return nr_runs;
+}
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * The number of bytes written should be
+ * array_container_size_in_bytes(container).
+ *
+ */
+int32_t array_container_write(const array_container_t *container, char *buf) {
+    memcpy(buf, container->array, container->cardinality * sizeof(uint16_t));
+    return array_container_size_in_bytes(container);
+}
+
+bool array_container_is_subset(const array_container_t *container1,
+                               const array_container_t *container2) {
+    if (container1->cardinality > container2->cardinality) {
+        return false;
+    }
+    int i1 = 0, i2 = 0;
+    while (i1 < container1->cardinality && i2 < container2->cardinality) {
+        if (container1->array[i1] == container2->array[i2]) {
+            i1++;
+            i2++;
+        } else if (container1->array[i1] > container2->array[i2]) {
+            i2++;
+        } else {  // container1->array[i1] < container2->array[i2]
+            return false;
+        }
+    }
+    if (i1 == container1->cardinality) {
+        return true;
+    } else {
+        return false;
+    }
+}
+
+int32_t array_container_read(int32_t cardinality, array_container_t *container,
+                             const char *buf) {
+    if (container->capacity < cardinality) {
+        array_container_grow(container, cardinality, false);
+    }
+    container->cardinality = cardinality;
+    memcpy(container->array, buf, container->cardinality * sizeof(uint16_t));
+
+    return array_container_size_in_bytes(container);
+}
+
+bool array_container_iterate(const array_container_t *cont, uint32_t base,
+                             roaring_iterator iterator, void *ptr) {
+    for (int i = 0; i < cont->cardinality; i++)
+        if (!iterator(cont->array[i] + base, ptr)) return false;
+    return true;
+}
+
+bool array_container_iterate64(const array_container_t *cont, uint32_t base,
+                               roaring_iterator64 iterator, uint64_t high_bits,
+                               void *ptr) {
+    for (int i = 0; i < cont->cardinality; i++)
+        if (!iterator(high_bits | (uint64_t)(cont->array[i] + base), ptr))
+            return false;
+    return true;
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/array.c */
+/* begin file src/containers/bitset.c */
+/*
+ * bitset.c
+ *
+ */
+#ifndef _POSIX_C_SOURCE
+#define _POSIX_C_SOURCE 200809L
+#endif
+#include <assert.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif  // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+extern inline int bitset_container_cardinality(
+    const bitset_container_t *bitset);
+extern inline void bitset_container_set(bitset_container_t *bitset,
+                                        uint16_t pos);
+// unused at this time:
+// extern inline void bitset_container_unset(bitset_container_t *bitset,
+// uint16_t pos);
+extern inline bool bitset_container_get(const bitset_container_t *bitset,
+                                        uint16_t pos);
+extern inline int32_t bitset_container_serialized_size_in_bytes(void);
+extern inline bool bitset_container_add(bitset_container_t *bitset,
+                                        uint16_t pos);
+extern inline bool bitset_container_remove(bitset_container_t *bitset,
+                                           uint16_t pos);
+extern inline bool bitset_container_contains(const bitset_container_t *bitset,
+                                             uint16_t pos);
+
+void bitset_container_clear(bitset_container_t *bitset) {
+    memset(bitset->words, 0, sizeof(uint64_t) * 
BITSET_CONTAINER_SIZE_IN_WORDS);
+    bitset->cardinality = 0;
+}
+
+void bitset_container_set_all(bitset_container_t *bitset) {
+    memset(bitset->words, INT64_C(-1),
+           sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+    bitset->cardinality = (1 << 16);
+}
+
+/* Create a new bitset. Return NULL in case of failure. */
+bitset_container_t *bitset_container_create(void) {
+    bitset_container_t *bitset =
+        (bitset_container_t *)roaring_malloc(sizeof(bitset_container_t));
+
+    if (!bitset) {
+        return NULL;
+    }
+
+    size_t align_size = 32;
+#if CROARING_IS_X64
+    int support = croaring_hardware_support();
+    if (support & ROARING_SUPPORTS_AVX512) {
+        // sizeof(__m512i) == 64
+        align_size = 64;
+    } else {
+        // sizeof(__m256i) == 32
+        align_size = 32;
+    }
+#endif
+    bitset->words = (uint64_t *)roaring_aligned_malloc(
+        align_size, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+    if (!bitset->words) {
+        roaring_free(bitset);
+        return NULL;
+    }
+    bitset_container_clear(bitset);
+    return bitset;
+}
+
+/* Copy one container into another. We assume that they are distinct. */
+void bitset_container_copy(const bitset_container_t *source,
+                           bitset_container_t *dest) {
+    dest->cardinality = source->cardinality;
+    memcpy(dest->words, source->words,
+           sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+}
+
+void bitset_container_add_from_range(bitset_container_t *bitset, uint32_t min,
+                                     uint32_t max, uint16_t step) {
+    if (step == 0) return;   // refuse to crash
+    if ((64 % step) == 0) {  // step divides 64
+        uint64_t mask = 0;   // construct the repeated mask
+        for (uint32_t value = (min % step); value < 64; value += step) {
+            mask |= ((uint64_t)1 << value);
+        }
+        uint32_t firstword = min / 64;
+        uint32_t endword = (max - 1) / 64;
+        bitset->cardinality = (max - min + step - 1) / step;
+        if (firstword == endword) {
+            bitset->words[firstword] |=
+                mask & (((~UINT64_C(0)) << (min % 64)) &
+                        ((~UINT64_C(0)) >> ((~max + 1) % 64)));
+            return;
+        }
+        bitset->words[firstword] = mask & ((~UINT64_C(0)) << (min % 64));
+        for (uint32_t i = firstword + 1; i < endword; i++)
+            bitset->words[i] = mask;
+        bitset->words[endword] = mask & ((~UINT64_C(0)) >> ((~max + 1) % 64));
+    } else {
+        for (uint32_t value = min; value < max; value += step) {
+            bitset_container_add(bitset, value);
+        }
+    }
+}
+
+/* Free memory. */
+void bitset_container_free(bitset_container_t *bitset) {
+    if (bitset == NULL) return;
+    roaring_aligned_free(bitset->words);
+    roaring_free(bitset);
+}
+
+/* duplicate container. */
+ALLOW_UNALIGNED
+bitset_container_t *bitset_container_clone(const bitset_container_t *src) {
+    bitset_container_t *bitset =
+        (bitset_container_t *)roaring_malloc(sizeof(bitset_container_t));
+
+    if (!bitset) {
+        return NULL;
+    }
+
+    size_t align_size = 32;
+#if CROARING_IS_X64
+    if (croaring_hardware_support() & ROARING_SUPPORTS_AVX512) {
+        // sizeof(__m512i) == 64
+        align_size = 64;
+    } else {
+        // sizeof(__m256i) == 32
+        align_size = 32;
+    }
+#endif
+    bitset->words = (uint64_t *)roaring_aligned_malloc(
+        align_size, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+    if (!bitset->words) {
+        roaring_free(bitset);
+        return NULL;
+    }
+    bitset->cardinality = src->cardinality;
+    memcpy(bitset->words, src->words,
+           sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+    return bitset;
+}
+
+void bitset_container_offset(const bitset_container_t *c, container_t **loc,
+                             container_t **hic, uint16_t offset) {
+    bitset_container_t *bc = NULL;
+    uint64_t val;
+    uint16_t b, i, end;
+
+    b = offset >> 6;
+    i = offset % 64;
+    end = 1024 - b;
+
+    if (loc != NULL) {
+        bc = bitset_container_create();
+        if (i == 0) {
+            memcpy(bc->words + b, c->words, 8 * end);
+        } else {
+            bc->words[b] = c->words[0] << i;
+            for (uint32_t k = 1; k < end; ++k) {
+                val = c->words[k] << i;
+                val |= c->words[k - 1] >> (64 - i);
+                bc->words[b + k] = val;
+            }
+        }
+
+        bc->cardinality = bitset_container_compute_cardinality(bc);
+        if (bc->cardinality != 0) {
+            *loc = bc;
+        }
+        if (bc->cardinality == c->cardinality) {
+            return;
+        }
+    }
+
+    if (hic == NULL) {
+        // Both hic and loc can't be NULL, so bc is never NULL here
+        if (bc->cardinality == 0) {
+            bitset_container_free(bc);
+        }
+        return;
+    }
+
+    if (bc == NULL || bc->cardinality != 0) {
+        bc = bitset_container_create();
+    }
+
+    if (i == 0) {
+        memcpy(bc->words, c->words + end, 8 * b);
+    } else {
+        for (uint32_t k = end; k < 1024; ++k) {
+            val = c->words[k] << i;
+            val |= c->words[k - 1] >> (64 - i);
+            bc->words[k - end] = val;
+        }
+        bc->words[b] = c->words[1023] >> (64 - i);
+    }
+
+    bc->cardinality = bitset_container_compute_cardinality(bc);
+    if (bc->cardinality == 0) {
+        bitset_container_free(bc);
+        return;
+    }
+    *hic = bc;
+}
+
+void bitset_container_set_range(bitset_container_t *bitset, uint32_t begin,
+                                uint32_t end) {
+    bitset_set_range(bitset->words, begin, end);
+    bitset->cardinality =
+        bitset_container_compute_cardinality(bitset);  // could be smarter
+}
+
+bool bitset_container_intersect(const bitset_container_t *src_1,
+                                const bitset_container_t *src_2) {
+    // could vectorize, but this is probably already quite fast in practice
+    const uint64_t *__restrict__ words_1 = src_1->words;
+    const uint64_t *__restrict__ words_2 = src_2->words;
+    for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) {
+        if ((words_1[i] & words_2[i]) != 0) return true;
+    }
+    return false;
+}
+
+#if CROARING_IS_X64
+#ifndef CROARING_WORDS_IN_AVX2_REG
+#define CROARING_WORDS_IN_AVX2_REG sizeof(__m256i) / sizeof(uint64_t)
+#endif
+#ifndef WORDS_IN_AVX512_REG
+#define WORDS_IN_AVX512_REG sizeof(__m512i) / sizeof(uint64_t)
+#endif
+/* Get the number of bits set (force computation) */
+static inline int _scalar_bitset_container_compute_cardinality(
+    const bitset_container_t *bitset) {
+    const uint64_t *words = bitset->words;
+    int32_t sum = 0;
+    for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 4) {
+        sum += roaring_hamming(words[i]);
+        sum += roaring_hamming(words[i + 1]);
+        sum += roaring_hamming(words[i + 2]);
+        sum += roaring_hamming(words[i + 3]);
+    }
+    return sum;
+}
+/* Get the number of bits set (force computation) */
+int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
+    int support = croaring_hardware_support();
+#if CROARING_COMPILER_SUPPORTS_AVX512
+    if (support & ROARING_SUPPORTS_AVX512) {
+        return (int)avx512_vpopcount(
+            (const __m512i *)bitset->words,
+            BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX512_REG));
+    } else
+#endif  // CROARING_COMPILER_SUPPORTS_AVX512
+        if (support & ROARING_SUPPORTS_AVX2) {
+            return (int)avx2_harley_seal_popcount256(
+                (const __m256i *)bitset->words,
+                BITSET_CONTAINER_SIZE_IN_WORDS / (CROARING_WORDS_IN_AVX2_REG));
+        } else {
+            return _scalar_bitset_container_compute_cardinality(bitset);
+        }
+}
+
+#elif defined(CROARING_USENEON)
+int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
+    uint16x8_t n0 = vdupq_n_u16(0);
+    uint16x8_t n1 = vdupq_n_u16(0);
+    uint16x8_t n2 = vdupq_n_u16(0);
+    uint16x8_t n3 = vdupq_n_u16(0);
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) {
+        uint64x2_t c0 = vld1q_u64(&bitset->words[i + 0]);
+        n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0))));
+        uint64x2_t c1 = vld1q_u64(&bitset->words[i + 2]);
+        n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1))));
+        uint64x2_t c2 = vld1q_u64(&bitset->words[i + 4]);
+        n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2))));
+        uint64x2_t c3 = vld1q_u64(&bitset->words[i + 6]);
+        n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3))));
+    }
+    uint64x2_t n = vdupq_n_u64(0);
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0)));
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1)));
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2)));
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3)));
+    return vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1);
+}
+
+#else  // CROARING_IS_X64
+
+/* Get the number of bits set (force computation) */
+int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
+    const uint64_t *words = bitset->words;
+    int32_t sum = 0;
+    for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 4) {
+        sum += roaring_hamming(words[i]);
+        sum += roaring_hamming(words[i + 1]);
+        sum += roaring_hamming(words[i + 2]);
+        sum += roaring_hamming(words[i + 3]);
+    }
+    return sum;
+}
+
+#endif  // CROARING_IS_X64
+
+#if CROARING_IS_X64
+
+#define CROARING_BITSET_CONTAINER_FN_REPEAT 8
+#ifndef WORDS_IN_AVX512_REG
+#define WORDS_IN_AVX512_REG sizeof(__m512i) / sizeof(uint64_t)
+#endif  // WORDS_IN_AVX512_REG
+
+/* Computes a binary operation (eg union) on bitset1 and bitset2 and write the
+   result to bitsetout */
+// clang-format off
+#define CROARING_AVX512_BITSET_CONTAINER_FN1(before, opname, opsymbol, 
avx_intrinsic,   \
+                                neon_intrinsic, after)                         
\
+  static inline int _avx512_bitset_container_##opname##_nocard(                
\
+      const bitset_container_t *src_1, const bitset_container_t *src_2,        
\
+      bitset_container_t *dst) {                                               
\
+    const uint8_t * __restrict__ words_1 = (const uint8_t *)src_1->words;      
\
+    const uint8_t * __restrict__ words_2 = (const uint8_t *)src_2->words;      
\
+    /* not using the blocking optimization for some reason*/                   
\
+    uint8_t *out = (uint8_t*)dst->words;                                       
\
+    const int innerloop = 8;                                                   
\
+    for (size_t i = 0;                                                         
\
+        i < BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX512_REG);            
\
+                                                         i+=innerloop) {       
\
+        __m512i A1, A2, AO;                                                    
\
+        A1 = _mm512_loadu_si512((const __m512i *)(words_1));                   
\
+        A2 = _mm512_loadu_si512((const __m512i *)(words_2));                   
\
+        AO = avx_intrinsic(A2, A1);                                            
\
+        _mm512_storeu_si512((__m512i *)out, AO);                               
\
+        A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 64));              
\
+        A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 64));              
\
+        AO = avx_intrinsic(A2, A1);                                            
\
+        _mm512_storeu_si512((__m512i *)(out+64), AO);                          
\
+        A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 128));             
\
+        A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 128));             
\
+        AO = avx_intrinsic(A2, A1);                                            
\
+        _mm512_storeu_si512((__m512i *)(out+128), AO);                         
\
+        A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 192));             
\
+        A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 192));             
\
+        AO = avx_intrinsic(A2, A1);                                            
\
+        _mm512_storeu_si512((__m512i *)(out+192), AO);                         
\
+        A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 256));             
\
+        A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 256));             
\
+        AO = avx_intrinsic(A2, A1);                                            
\
+        _mm512_storeu_si512((__m512i *)(out+256), AO);                         
\
+        A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 320));             
\
+        A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 320));             
\
+        AO = avx_intrinsic(A2, A1);                                            
\
+        _mm512_storeu_si512((__m512i *)(out+320), AO);                         
\
+        A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 384));             
\
+        A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 384));             
\
+        AO = avx_intrinsic(A2, A1);                                            
\
+        _mm512_storeu_si512((__m512i *)(out+384), AO);                         
\
+        A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 448));             
\
+        A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 448));             
\
+        AO = avx_intrinsic(A2, A1);                                     \
+        _mm512_storeu_si512((__m512i *)(out+448), AO);                  \
+        out+=512;                                                       \
+        words_1 += 512;                                                 \
+        words_2 += 512;                                                 \
+    }                                                                   \
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;                      \
+    return dst->cardinality;                                            \
+  }
+
+#define CROARING_AVX512_BITSET_CONTAINER_FN2(before, opname, opsymbol, 
avx_intrinsic,           \
+                                neon_intrinsic, after)                         
        \
+  /* next, a version that updates cardinality*/                                
        \
+  static inline int _avx512_bitset_container_##opname(const bitset_container_t 
*src_1, \
+                                      const bitset_container_t *src_2,         
        \
+                                      bitset_container_t *dst) {               
        \
+    const __m512i * __restrict__ words_1 = (const __m512i *) src_1->words;     
        \
+    const __m512i * __restrict__ words_2 = (const __m512i *) src_2->words;     
        \
+    __m512i *out = (__m512i *) dst->words;                                     
        \
+    dst->cardinality = 
(int32_t)avx512_harley_seal_popcount512andstore_##opname(words_2,\
+                               words_1, out,BITSET_CONTAINER_SIZE_IN_WORDS / 
(WORDS_IN_AVX512_REG));           \
+    return dst->cardinality;                                                   
         \
+  }
+
+#define CROARING_AVX512_BITSET_CONTAINER_FN3(before, opname, opsymbol, 
avx_intrinsic,            \
+                                neon_intrinsic, after)                         
         \
+  /* next, a version that just computes the cardinality*/                      
         \
+  static inline int _avx512_bitset_container_##opname##_justcard(              
         \
+      const bitset_container_t *src_1, const bitset_container_t *src_2) {      
         \
+    const __m512i * __restrict__ data1 = (const __m512i *) src_1->words;       
         \
+    const __m512i * __restrict__ data2 = (const __m512i *) src_2->words;       
         \
+    return (int)avx512_harley_seal_popcount512_##opname(data2,                 
         \
+                               data1, BITSET_CONTAINER_SIZE_IN_WORDS / 
(WORDS_IN_AVX512_REG));                 \
+  }
+
+
+// we duplicate the function because other containers use the "or" term, makes 
API more consistent
+#if CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, or,    |, 
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, union, |, 
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+// we duplicate the function because other containers use the "intersection" 
term, makes API more consistent
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, and,          &, 
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, intersection, &, 
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, xor,    ^,  
_mm512_xor_si512,    veorq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, andnot, &~, 
_mm512_andnot_si512, vbicq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+// we duplicate the function because other containers use the "or" term, makes 
API more consistent
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, or,    |, 
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, union, |, 
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+// we duplicate the function because other containers use the "intersection" 
term, makes API more consistent
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, and,          &, 
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, intersection, &, 
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, xor,    ^,  
_mm512_xor_si512,    veorq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, andnot, &~, 
_mm512_andnot_si512, vbicq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+// we duplicate the function because other containers use the "or" term, makes 
API more consistent
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, or,    |, 
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, union, |, 
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+// we duplicate the function because other containers use the "intersection" 
term, makes API more consistent
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, and,          &, 
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, intersection, &, 
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, xor,    ^,  
_mm512_xor_si512,    veorq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+CROARING_TARGET_AVX512
+CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, andnot, &~, 
_mm512_andnot_si512, vbicq_u64, CROARING_UNTARGET_AVX512)
+CROARING_UNTARGET_AVX512
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+
+#ifndef CROARING_WORDS_IN_AVX2_REG
+#define CROARING_WORDS_IN_AVX2_REG sizeof(__m256i) / sizeof(uint64_t)
+#endif // CROARING_WORDS_IN_AVX2_REG
+#define CROARING_LOOP_SIZE                    \
+    BITSET_CONTAINER_SIZE_IN_WORDS / \
+        ((CROARING_WORDS_IN_AVX2_REG)*CROARING_BITSET_CONTAINER_FN_REPEAT)
+
+/* Computes a binary operation (eg union) on bitset1 and bitset2 and write the
+   result to bitsetout */
+// clang-format off
+#define CROARING_AVX_BITSET_CONTAINER_FN1(before, opname, opsymbol, 
avx_intrinsic,               \
+                                neon_intrinsic, after)                         
       \
+  static inline int _avx2_bitset_container_##opname##_nocard(                  
              \
+      const bitset_container_t *src_1, const bitset_container_t *src_2,        
\
+      bitset_container_t *dst) {                                               
\
+    const uint8_t *__restrict__ words_1 = (const uint8_t *)src_1->words;       
\
+    const uint8_t *__restrict__ words_2 = (const uint8_t *)src_2->words;       
\
+    /* not using the blocking optimization for some reason*/                   
\
+    uint8_t *out = (uint8_t *)dst->words;                                      
\
+    const int innerloop = 8;                                                   
\
+    for (size_t i = 0;                                                         
\
+         i < BITSET_CONTAINER_SIZE_IN_WORDS / (CROARING_WORDS_IN_AVX2_REG);    
         \
+         i += innerloop) {                                                     
\
+      __m256i A1, A2, AO;                                                      
\
+      A1 = _mm256_lddqu_si256((const __m256i *)(words_1));                     
\
+      A2 = _mm256_lddqu_si256((const __m256i *)(words_2));                     
\
+      AO = avx_intrinsic(A2, A1);                                              
\
+      _mm256_storeu_si256((__m256i *)out, AO);                                 
\
+      A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 32));                
\
+      A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 32));                
\
+      AO = avx_intrinsic(A2, A1);                                              
\
+      _mm256_storeu_si256((__m256i *)(out + 32), AO);                          
\
+      A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 64));                
\
+      A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 64));                
\
+      AO = avx_intrinsic(A2, A1);                                              
\
+      _mm256_storeu_si256((__m256i *)(out + 64), AO);                          
\
+      A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 96));                
\
+      A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 96));                
\
+      AO = avx_intrinsic(A2, A1);                                              
\
+      _mm256_storeu_si256((__m256i *)(out + 96), AO);                          
\
+      A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 128));               
\
+      A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 128));               
\
+      AO = avx_intrinsic(A2, A1);                                              
\
+      _mm256_storeu_si256((__m256i *)(out + 128), AO);                         
\
+      A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 160));               
\
+      A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 160));               
\
+      AO = avx_intrinsic(A2, A1);                                              
\
+      _mm256_storeu_si256((__m256i *)(out + 160), AO);                         
\
+      A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 192));               
\
+      A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 192));               
\
+      AO = avx_intrinsic(A2, A1);                                              
\
+      _mm256_storeu_si256((__m256i *)(out + 192), AO);                         
\
+      A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 224));               
\
+      A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 224));               
\
+      AO = avx_intrinsic(A2, A1);                                              
\
+      _mm256_storeu_si256((__m256i *)(out + 224), AO);                         
\
+      out += 256;                                                              
\
+      words_1 += 256;                                                          
\
+      words_2 += 256;                                                          
\
+    }                                                                          
\
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;                             
\
+    return dst->cardinality;                                                   
\
+  }
+
+#define CROARING_AVX_BITSET_CONTAINER_FN2(before, opname, opsymbol, 
avx_intrinsic,               \
+                                neon_intrinsic, after)                         
       \
+  /* next, a version that updates cardinality*/                                
\
+  static inline int _avx2_bitset_container_##opname(const bitset_container_t 
*src_1,         \
+                                      const bitset_container_t *src_2,         
\
+                                      bitset_container_t *dst) {               
\
+    const __m256i *__restrict__ words_1 = (const __m256i *)src_1->words;       
\
+    const __m256i *__restrict__ words_2 = (const __m256i *)src_2->words;       
\
+    __m256i *out = (__m256i *)dst->words;                                      
\
+    dst->cardinality = (int32_t)avx2_harley_seal_popcount256andstore_##opname( 
\
+        words_2, words_1, out,                                                 
\
+        BITSET_CONTAINER_SIZE_IN_WORDS / (CROARING_WORDS_IN_AVX2_REG));        
         \
+    return dst->cardinality;                                                   
\
+  }                                                                            
\
+
+#define CROARING_AVX_BITSET_CONTAINER_FN3(before, opname, opsymbol, 
avx_intrinsic,               \
+                                neon_intrinsic, after)                         
       \
+  /* next, a version that just computes the cardinality*/                      
\
+  static inline int _avx2_bitset_container_##opname##_justcard(                
              \
+      const bitset_container_t *src_1, const bitset_container_t *src_2) {      
\
+    const __m256i *__restrict__ data1 = (const __m256i *)src_1->words;         
\
+    const __m256i *__restrict__ data2 = (const __m256i *)src_2->words;         
\
+    return (int)avx2_harley_seal_popcount256_##opname(                         
\
+        data2, data1, BITSET_CONTAINER_SIZE_IN_WORDS / 
(CROARING_WORDS_IN_AVX2_REG));   \
+  }
+
+
+// we duplicate the function because other containers use the "or" term, makes 
API more consistent
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, or,    |, 
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, union, |, 
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+// we duplicate the function because other containers use the "intersection" 
term, makes API more consistent
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, and,          &, 
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, intersection, &, 
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, xor,    ^,  
_mm256_xor_si256,    veorq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, andnot, &~, 
_mm256_andnot_si256, vbicq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+// we duplicate the function because other containers use the "or" term, makes 
API more consistent
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, or,    |, 
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, union, |, 
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+// we duplicate the function because other containers use the "intersection" 
term, makes API more consistent
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, and,          &, 
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, intersection, &, 
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, xor,    ^,  
_mm256_xor_si256,    veorq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, andnot, &~, 
_mm256_andnot_si256, vbicq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+// we duplicate the function because other containers use the "or" term, makes 
API more consistent
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, or,    |, 
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, union, |, 
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+// we duplicate the function because other containers use the "intersection" 
term, makes API more consistent
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, and,          &, 
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, intersection, &, 
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, xor,    ^,  
_mm256_xor_si256,    veorq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+CROARING_TARGET_AVX2
+CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, andnot, &~, 
_mm256_andnot_si256, vbicq_u64, CROARING_UNTARGET_AVX2)
+CROARING_UNTARGET_AVX2
+
+
+#define SCALAR_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic,            
\
+                                   neon_intrinsic)                             
\
+  static inline int _scalar_bitset_container_##opname(const bitset_container_t 
*src_1,       \
+                                        const bitset_container_t *src_2,       
\
+                                        bitset_container_t *dst) {             
\
+    const uint64_t *__restrict__ words_1 = src_1->words;                       
\
+    const uint64_t *__restrict__ words_2 = src_2->words;                       
\
+    uint64_t *out = dst->words;                                                
\
+    int32_t sum = 0;                                                           
\
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) {           
\
+      const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]),                
\
+                     word_2 = (words_1[i + 1]) opsymbol(words_2[i + 1]);       
\
+      out[i] = word_1;                                                         
\
+      out[i + 1] = word_2;                                                     
\
+      sum += roaring_hamming(word_1);                                          
        \
+      sum += roaring_hamming(word_2);                                          
        \
+    }                                                                          
\
+    dst->cardinality = sum;                                                    
\
+    return dst->cardinality;                                                   
\
+  }                                                                            
\
+  static inline int _scalar_bitset_container_##opname##_nocard(                
              \
+      const bitset_container_t *src_1, const bitset_container_t *src_2,        
\
+      bitset_container_t *dst) {                                               
\
+    const uint64_t *__restrict__ words_1 = src_1->words;                       
\
+    const uint64_t *__restrict__ words_2 = src_2->words;                       
\
+    uint64_t *out = dst->words;                                                
\
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) {              
\
+      out[i] = (words_1[i])opsymbol(words_2[i]);                               
\
+    }                                                                          
\
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;                             
\
+    return dst->cardinality;                                                   
\
+  }                                                                            
\
+  static inline int _scalar_bitset_container_##opname##_justcard(              
              \
+      const bitset_container_t *src_1, const bitset_container_t *src_2) {      
\
+    const uint64_t *__restrict__ words_1 = src_1->words;                       
\
+    const uint64_t *__restrict__ words_2 = src_2->words;                       
\
+    int32_t sum = 0;                                                           
\
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) {           
\
+      const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]),                
\
+                     word_2 = (words_1[i + 1]) opsymbol(words_2[i + 1]);       
\
+      sum += roaring_hamming(word_1);                                          
        \
+      sum += roaring_hamming(word_2);                                          
        \
+    }                                                                          
\
+    return sum;                                                                
\
+  }
+
+// we duplicate the function because other containers use the "or" term, makes 
API more consistent
+SCALAR_BITSET_CONTAINER_FN(or,    |, _mm256_or_si256, vorrq_u64)
+SCALAR_BITSET_CONTAINER_FN(union, |, _mm256_or_si256, vorrq_u64)
+
+// we duplicate the function because other containers use the "intersection" 
term, makes API more consistent
+SCALAR_BITSET_CONTAINER_FN(and,          &, _mm256_and_si256, vandq_u64)
+SCALAR_BITSET_CONTAINER_FN(intersection, &, _mm256_and_si256, vandq_u64)
+
+SCALAR_BITSET_CONTAINER_FN(xor,    ^,  _mm256_xor_si256,    veorq_u64)
+SCALAR_BITSET_CONTAINER_FN(andnot, &~, _mm256_andnot_si256, vbicq_u64)
+
+#if CROARING_COMPILER_SUPPORTS_AVX512
+#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, 
neon_intrinsic)   \
+  int bitset_container_##opname(const bitset_container_t *src_1,               
\
+                                const bitset_container_t *src_2,               
\
+                                bitset_container_t *dst) {                     
\
+    int support = croaring_hardware_support();                                 
\
+    if ( support & ROARING_SUPPORTS_AVX512 ) {                                 
\
+      return _avx512_bitset_container_##opname(src_1, src_2, dst);             
\
+    }                                                                          
\
+    else if ( support & ROARING_SUPPORTS_AVX2 ) {                              
\
+      return _avx2_bitset_container_##opname(src_1, src_2, dst);               
\
+    } else {                                                                   
\
+      return _scalar_bitset_container_##opname(src_1, src_2, dst);             
\
+    }                                                                          
\
+  }                                                                            
\
+  int bitset_container_##opname##_nocard(const bitset_container_t *src_1,      
\
+                                         const bitset_container_t *src_2,      
\
+                                         bitset_container_t *dst) {            
\
+    int support = croaring_hardware_support();                                 
\
+    if ( support & ROARING_SUPPORTS_AVX512 ) {                                 
\
+      return _avx512_bitset_container_##opname##_nocard(src_1, src_2, dst);    
\
+    }                                                                          
\
+    else if ( support & ROARING_SUPPORTS_AVX2 ) {                              
\
+      return _avx2_bitset_container_##opname##_nocard(src_1, src_2, dst);      
\
+    } else {                                                                   
\
+      return _scalar_bitset_container_##opname##_nocard(src_1, src_2, dst);    
\
+    }                                                                          
\
+  }                                                                            
\
+  int bitset_container_##opname##_justcard(const bitset_container_t *src_1,    
\
+                                           const bitset_container_t *src_2) {  
\
+     int support = croaring_hardware_support();                                
\
+    if ( support & ROARING_SUPPORTS_AVX512 ) {                                 
\
+      return _avx512_bitset_container_##opname##_justcard(src_1, src_2);       
\
+    }                                                                          
\
+    else if ( support & ROARING_SUPPORTS_AVX2 ) {                              
\
+      return _avx2_bitset_container_##opname##_justcard(src_1, src_2);         
\
+    } else {                                                                   
\
+      return _scalar_bitset_container_##opname##_justcard(src_1, src_2);       
\
+    }                                                                          
\
+  }
+
+#else // CROARING_COMPILER_SUPPORTS_AVX512
+
+
+#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, 
neon_intrinsic)   \
+  int bitset_container_##opname(const bitset_container_t *src_1,               
\
+                                const bitset_container_t *src_2,               
\
+                                bitset_container_t *dst) {                     
\
+    if ( croaring_hardware_support() & ROARING_SUPPORTS_AVX2 ) {               
\
+      return _avx2_bitset_container_##opname(src_1, src_2, dst);               
\
+    } else {                                                                   
\
+      return _scalar_bitset_container_##opname(src_1, src_2, dst);             
\
+    }                                                                          
\
+  }                                                                            
\
+  int bitset_container_##opname##_nocard(const bitset_container_t *src_1,      
\
+                                         const bitset_container_t *src_2,      
\
+                                         bitset_container_t *dst) {            
\
+    if ( croaring_hardware_support() & ROARING_SUPPORTS_AVX2 ) {               
\
+      return _avx2_bitset_container_##opname##_nocard(src_1, src_2, dst);      
\
+    } else {                                                                   
\
+      return _scalar_bitset_container_##opname##_nocard(src_1, src_2, dst);    
\
+    }                                                                          
\
+  }                                                                            
\
+  int bitset_container_##opname##_justcard(const bitset_container_t *src_1,    
\
+                                           const bitset_container_t *src_2) {  
\
+    if ( croaring_hardware_support() & ROARING_SUPPORTS_AVX2 ) {               
\
+      return _avx2_bitset_container_##opname##_justcard(src_1, src_2);         
\
+    } else {                                                                   
\
+      return _scalar_bitset_container_##opname##_justcard(src_1, src_2);       
\
+    }                                                                          
\
+  }
+
+#endif //  CROARING_COMPILER_SUPPORTS_AVX512
+
+#elif defined(CROARING_USENEON)
+
+#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, 
neon_intrinsic)  \
+int bitset_container_##opname(const bitset_container_t *src_1,                \
+                              const bitset_container_t *src_2,                \
+                              bitset_container_t *dst) {                      \
+    const uint64_t * __restrict__ words_1 = src_1->words;                     \
+    const uint64_t * __restrict__ words_2 = src_2->words;                     \
+    uint64_t *out = dst->words;                                               \
+    uint16x8_t n0 = vdupq_n_u16(0);                                           \
+    uint16x8_t n1 = vdupq_n_u16(0);                                           \
+    uint16x8_t n2 = vdupq_n_u16(0);                                           \
+    uint16x8_t n3 = vdupq_n_u16(0);                                           \
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) {          \
+        uint64x2_t c0 = neon_intrinsic(vld1q_u64(&words_1[i + 0]),            \
+                                       vld1q_u64(&words_2[i + 0]));           \
+        n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0))));   \
+        vst1q_u64(&out[i + 0], c0);                                           \
+        uint64x2_t c1 = neon_intrinsic(vld1q_u64(&words_1[i + 2]),            \
+                                       vld1q_u64(&words_2[i + 2]));           \
+        n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1))));   \
+        vst1q_u64(&out[i + 2], c1);                                           \
+        uint64x2_t c2 = neon_intrinsic(vld1q_u64(&words_1[i + 4]),            \
+                                       vld1q_u64(&words_2[i + 4]));           \
+        n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2))));   \
+        vst1q_u64(&out[i + 4], c2);                                           \
+        uint64x2_t c3 = neon_intrinsic(vld1q_u64(&words_1[i + 6]),            \
+                                       vld1q_u64(&words_2[i + 6]));           \
+        n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3))));   \
+        vst1q_u64(&out[i + 6], c3);                                           \
+    }                                                                         \
+    uint64x2_t n = vdupq_n_u64(0);                                            \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0)));                           \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1)));                           \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2)));                           \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3)));                           \
+    dst->cardinality = vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1);           \
+    return dst->cardinality;                                                  \
+}                                                                             \
+int bitset_container_##opname##_nocard(const bitset_container_t *src_1,       \
+                                       const bitset_container_t *src_2,       \
+                                             bitset_container_t *dst) {       \
+    const uint64_t * __restrict__ words_1 = src_1->words;                     \
+    const uint64_t * __restrict__ words_2 = src_2->words;                     \
+    uint64_t *out = dst->words;                                               \
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) {          \
+        vst1q_u64(&out[i + 0], neon_intrinsic(vld1q_u64(&words_1[i + 0]),     \
+                                              vld1q_u64(&words_2[i + 0])));   \
+        vst1q_u64(&out[i + 2], neon_intrinsic(vld1q_u64(&words_1[i + 2]),     \
+                                              vld1q_u64(&words_2[i + 2])));   \
+        vst1q_u64(&out[i + 4], neon_intrinsic(vld1q_u64(&words_1[i + 4]),     \
+                                              vld1q_u64(&words_2[i + 4])));   \
+        vst1q_u64(&out[i + 6], neon_intrinsic(vld1q_u64(&words_1[i + 6]),     \
+                                              vld1q_u64(&words_2[i + 6])));   \
+    }                                                                         \
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;                            \
+    return dst->cardinality;                                                  \
+}                                                                             \
+int bitset_container_##opname##_justcard(const bitset_container_t *src_1,     \
+                                         const bitset_container_t *src_2) {   \
+    const uint64_t * __restrict__ words_1 = src_1->words;                     \
+    const uint64_t * __restrict__ words_2 = src_2->words;                     \
+    uint16x8_t n0 = vdupq_n_u16(0);                                           \
+    uint16x8_t n1 = vdupq_n_u16(0);                                           \
+    uint16x8_t n2 = vdupq_n_u16(0);                                           \
+    uint16x8_t n3 = vdupq_n_u16(0);                                           \
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) {          \
+        uint64x2_t c0 = neon_intrinsic(vld1q_u64(&words_1[i + 0]),            \
+                                       vld1q_u64(&words_2[i + 0]));           \
+        n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0))));   \
+        uint64x2_t c1 = neon_intrinsic(vld1q_u64(&words_1[i + 2]),            \
+                                       vld1q_u64(&words_2[i + 2]));           \
+        n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1))));   \
+        uint64x2_t c2 = neon_intrinsic(vld1q_u64(&words_1[i + 4]),            \
+                                       vld1q_u64(&words_2[i + 4]));           \
+        n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2))));   \
+        uint64x2_t c3 = neon_intrinsic(vld1q_u64(&words_1[i + 6]),            \
+                                       vld1q_u64(&words_2[i + 6]));           \
+        n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3))));   \
+    }                                                                         \
+    uint64x2_t n = vdupq_n_u64(0);                                            \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0)));                           \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1)));                           \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2)));                           \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3)));                           \
+    return vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1);                       \
+}
+
+#else
+
+#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, 
neon_intrinsic)  \
+int bitset_container_##opname(const bitset_container_t *src_1,            \
+                              const bitset_container_t *src_2,            \
+                              bitset_container_t *dst) {                  \
+    const uint64_t * __restrict__ words_1 = src_1->words;                 \
+    const uint64_t * __restrict__ words_2 = src_2->words;                 \
+    uint64_t *out = dst->words;                                           \
+    int32_t sum = 0;                                                      \
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) {      \
+        const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]),         \
+                       word_2 = (words_1[i + 1])opsymbol(words_2[i + 1]); \
+        out[i] = word_1;                                                  \
+        out[i + 1] = word_2;                                              \
+        sum += roaring_hamming(word_1);                                    \
+        sum += roaring_hamming(word_2);                                    \
+    }                                                                     \
+    dst->cardinality = sum;                                               \
+    return dst->cardinality;                                              \
+}                                                                         \
+int bitset_container_##opname##_nocard(const bitset_container_t *src_1,   \
+                                       const bitset_container_t *src_2,   \
+                                       bitset_container_t *dst) {         \
+    const uint64_t * __restrict__ words_1 = src_1->words;                 \
+    const uint64_t * __restrict__ words_2 = src_2->words;                 \
+    uint64_t *out = dst->words;                                           \
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) {         \
+        out[i] = (words_1[i])opsymbol(words_2[i]);                        \
+    }                                                                     \
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;                        \
+    return dst->cardinality;                                              \
+}                                                                         \
+int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \
+                              const bitset_container_t *src_2) {          \
+    const uint64_t * __restrict__ words_1 = src_1->words;                 \
+    const uint64_t * __restrict__ words_2 = src_2->words;                 \
+    int32_t sum = 0;                                                      \
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) {      \
+        const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]),         \
+                       word_2 = (words_1[i + 1])opsymbol(words_2[i + 1]); \
+        sum += roaring_hamming(word_1);                                    \
+        sum += roaring_hamming(word_2);                                    \
+    }                                                                     \
+    return sum;                                                           \
+}
+
+#endif // CROARING_IS_X64
+
+// we duplicate the function because other containers use the "or" term, makes 
API more consistent
+CROARING_BITSET_CONTAINER_FN(or,    |, _mm256_or_si256, vorrq_u64)
+CROARING_BITSET_CONTAINER_FN(union, |, _mm256_or_si256, vorrq_u64)
+
+// we duplicate the function because other containers use the "intersection" 
term, makes API more consistent
+CROARING_BITSET_CONTAINER_FN(and,          &, _mm256_and_si256, vandq_u64)
+CROARING_BITSET_CONTAINER_FN(intersection, &, _mm256_and_si256, vandq_u64)
+
+CROARING_BITSET_CONTAINER_FN(xor,    ^,  _mm256_xor_si256,    veorq_u64)
+CROARING_BITSET_CONTAINER_FN(andnot, &~, _mm256_andnot_si256, vbicq_u64)
+// clang-format On
+
+
+ALLOW_UNALIGNED
+int bitset_container_to_uint32_array(
+    uint32_t *out,
+    const bitset_container_t *bc,
+    uint32_t base
+){
+#if CROARING_IS_X64
+   int support = croaring_hardware_support();
+#if CROARING_COMPILER_SUPPORTS_AVX512
+   if(( support & ROARING_SUPPORTS_AVX512 ) &&  (bc->cardinality >= 8192))  // 
heuristic
+               return (int) bitset_extract_setbits_avx512(bc->words,
+                BITSET_CONTAINER_SIZE_IN_WORDS, out, bc->cardinality, base);
+   else
+#endif
+   if(( support & ROARING_SUPPORTS_AVX2 ) &&  (bc->cardinality >= 8192))  // 
heuristic
+               return (int) bitset_extract_setbits_avx2(bc->words,
+                BITSET_CONTAINER_SIZE_IN_WORDS, out, bc->cardinality, base);
+       else
+               return (int) bitset_extract_setbits(bc->words,
+                BITSET_CONTAINER_SIZE_IN_WORDS, out, base);
+#else
+       return (int) bitset_extract_setbits(bc->words,
+                BITSET_CONTAINER_SIZE_IN_WORDS, out, base);
+#endif
+}
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void bitset_container_printf(const bitset_container_t * v) {
+       printf("{");
+       uint32_t base = 0;
+       bool iamfirst = true;// TODO: rework so that this is not necessary yet 
still readable
+       for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
+               uint64_t w = v->words[i];
+               while (w != 0) {
+                       uint64_t t = w & (~w + 1);
+                       int r = roaring_trailing_zeroes(w);
+                       if(iamfirst) {// predicted to be false
+                               printf("%u",base + r);
+                               iamfirst = false;
+                       } else {
+                               printf(",%u",base + r);
+                       }
+                       w ^= t;
+               }
+               base += 64;
+       }
+       printf("}");
+}
+
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit 
integers starting at base.
+ */
+void bitset_container_printf_as_uint32_array(const bitset_container_t * v, 
uint32_t base) {
+       bool iamfirst = true;// TODO: rework so that this is not necessary yet 
still readable
+       for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
+               uint64_t w = v->words[i];
+               while (w != 0) {
+                       uint64_t t = w & (~w + 1);
+                       int r = roaring_trailing_zeroes(w);
+                       if(iamfirst) {// predicted to be false
+                               printf("%u", r + base);
+                               iamfirst = false;
+                       } else {
+                               printf(",%u",r + base);
+                       }
+                       w ^= t;
+               }
+               base += 64;
+       }
+}
+
+/*
+ * Validate the container. Returns true if valid.
+ */
+bool bitset_container_validate(const bitset_container_t *v, const char 
**reason) {
+    if (v->words == NULL) {
+        *reason = "words is NULL";
+        return false;
+    }
+    if (v->cardinality != bitset_container_compute_cardinality(v)) {
+        *reason = "cardinality is incorrect";
+        return false;
+    }
+    if (v->cardinality <= DEFAULT_MAX_SIZE) {
+        *reason = "cardinality is too small for a bitmap container";
+        return false;
+    }
+    // Attempt to forcibly load the first and last words, hopefully causing
+    // a segfault or an address sanitizer error if words is not allocated.
+    volatile uint64_t *words = v->words;
+    (void) words[0];
+    (void) words[BITSET_CONTAINER_SIZE_IN_WORDS - 1];
+    return true;
+}
+
+
+// TODO: use the fast lower bound, also
+int bitset_container_number_of_runs(bitset_container_t *bc) {
+  int num_runs = 0;
+  uint64_t next_word = bc->words[0];
+
+  for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS-1; ++i) {
+    uint64_t word = next_word;
+    next_word = bc->words[i+1];
+    num_runs += roaring_hamming((~word) & (word << 1)) + ( (word >> 63) & 
~next_word);
+  }
+
+  uint64_t word = next_word;
+  num_runs += roaring_hamming((~word) & (word << 1));
+  if((word & 0x8000000000000000ULL) != 0)
+    num_runs++;
+  return num_runs;
+}
+
+
+int32_t bitset_container_write(const bitset_container_t *container,
+                                  char *buf) {
+       memcpy(buf, container->words, BITSET_CONTAINER_SIZE_IN_WORDS * 
sizeof(uint64_t));
+       return bitset_container_size_in_bytes(container);
+}
+
+
+int32_t bitset_container_read(int32_t cardinality, bitset_container_t 
*container,
+               const char *buf)  {
+       container->cardinality = cardinality;
+       memcpy(container->words, buf, BITSET_CONTAINER_SIZE_IN_WORDS * 
sizeof(uint64_t));
+       return bitset_container_size_in_bytes(container);
+}
+
+bool bitset_container_iterate(const bitset_container_t *cont, uint32_t base, 
roaring_iterator iterator, void *ptr) {
+  for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
+    uint64_t w = cont->words[i];
+    while (w != 0) {
+      uint64_t t = w & (~w + 1);
+      int r = roaring_trailing_zeroes(w);
+      if(!iterator(r + base, ptr)) return false;
+      w ^= t;
+    }
+    base += 64;
+  }
+  return true;
+}
+
+bool bitset_container_iterate64(const bitset_container_t *cont, uint32_t base, 
roaring_iterator64 iterator, uint64_t high_bits, void *ptr) {
+  for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
+    uint64_t w = cont->words[i];
+    while (w != 0) {
+      uint64_t t = w & (~w + 1);
+      int r = roaring_trailing_zeroes(w);
+      if(!iterator(high_bits | (uint64_t)(r + base), ptr)) return false;
+      w ^= t;
+    }
+    base += 64;
+  }
+  return true;
+}
+
+#if CROARING_IS_X64
+#if CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX512
+ALLOW_UNALIGNED
+static inline bool _avx512_bitset_container_equals(const bitset_container_t 
*container1, const bitset_container_t *container2) {
+  const __m512i *ptr1 = (const __m512i*)container1->words;
+  const __m512i *ptr2 = (const __m512i*)container2->words;
+  for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)/64; 
i++) {
+      __m512i r1 = _mm512_loadu_si512(ptr1+i);
+      __m512i r2 = _mm512_loadu_si512(ptr2+i);
+      __mmask64 mask = _mm512_cmpeq_epi8_mask(r1, r2);
+      if ((uint64_t)mask != UINT64_MAX) {
+          return false;
+      }
+  }
+       return true;
+}
+CROARING_UNTARGET_AVX512
+#endif // CROARING_COMPILER_SUPPORTS_AVX512
+CROARING_TARGET_AVX2
+ALLOW_UNALIGNED
+static inline bool _avx2_bitset_container_equals(const bitset_container_t 
*container1, const bitset_container_t *container2) {
+    const __m256i *ptr1 = (const __m256i*)container1->words;
+    const __m256i *ptr2 = (const __m256i*)container2->words;
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)/32; 
i++) {
+      __m256i r1 = _mm256_loadu_si256(ptr1+i);
+      __m256i r2 = _mm256_loadu_si256(ptr2+i);
+      int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2));
+      if ((uint32_t)mask != UINT32_MAX) {
+          return false;
+      }
+  }
+       return true;
+}
+CROARING_UNTARGET_AVX2
+#endif // CROARING_IS_X64
+
+ALLOW_UNALIGNED
+bool bitset_container_equals(const bitset_container_t *container1, const 
bitset_container_t *container2) {
+  if((container1->cardinality != BITSET_UNKNOWN_CARDINALITY) && 
(container2->cardinality != BITSET_UNKNOWN_CARDINALITY)) {
+    if(container1->cardinality != container2->cardinality) {
+      return false;
+    }
+    if (container1->cardinality == INT32_C(0x10000)) {
+      return true;
+    }
+  }
+#if CROARING_IS_X64
+  int support = croaring_hardware_support();
+#if CROARING_COMPILER_SUPPORTS_AVX512
+  if( support & ROARING_SUPPORTS_AVX512 ) {
+    return _avx512_bitset_container_equals(container1, container2);
+  }
+  else
+#endif
+  if( support & ROARING_SUPPORTS_AVX2 ) {
+    return _avx2_bitset_container_equals(container1, container2);
+  }
+#endif
+  return memcmp(container1->words,
+                container2->words,
+                BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)) == 0;
+}
+
+bool bitset_container_is_subset(const bitset_container_t *container1,
+                          const bitset_container_t *container2) {
+    if((container1->cardinality != BITSET_UNKNOWN_CARDINALITY) && 
(container2->cardinality != BITSET_UNKNOWN_CARDINALITY)) {
+        if(container1->cardinality > container2->cardinality) {
+            return false;
+        }
+    }
+    for(int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
+               if((container1->words[i] & container2->words[i]) != 
container1->words[i]) {
+                       return false;
+               }
+       }
+       return true;
+}
+
+bool bitset_container_select(const bitset_container_t *container, uint32_t 
*start_rank, uint32_t rank, uint32_t *element) {
+    int card = bitset_container_cardinality(container);
+    if(rank >= *start_rank + card) {
+        *start_rank += card;
+        return false;
+    }
+    const uint64_t *words = container->words;
+    int32_t size;
+    for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 1) {
+        size = roaring_hamming(words[i]);
+        if(rank <= *start_rank + size) {
+            uint64_t w = container->words[i];
+            uint16_t base = i*64;
+            while (w != 0) {
+                uint64_t t = w & (~w + 1);
+                int r = roaring_trailing_zeroes(w);
+                if(*start_rank == rank) {
+                    *element = r+base;
+                    return true;
+                }
+                w ^= t;
+                *start_rank += 1;
+            }
+        }
+        else
+            *start_rank += size;
+    }
+    assert(false);
+    roaring_unreachable;
+}
+
+
+/* Returns the smallest value (assumes not empty) */
+uint16_t bitset_container_minimum(const bitset_container_t *container) {
+  for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
+    uint64_t w = container->words[i];
+    if (w != 0) {
+      int r = roaring_trailing_zeroes(w);
+      return r + i * 64;
+    }
+  }
+  return UINT16_MAX;
+}
+
+/* Returns the largest value (assumes not empty) */
+uint16_t bitset_container_maximum(const bitset_container_t *container) {
+  for (int32_t i = BITSET_CONTAINER_SIZE_IN_WORDS - 1; i > 0; --i ) {
+    uint64_t w = container->words[i];
+    if (w != 0) {
+      int r = roaring_leading_zeroes(w);
+      return i * 64 + 63  - r;
+    }
+  }
+  return 0;
+}
+
+/* Returns the number of values equal or smaller than x */
+int bitset_container_rank(const bitset_container_t *container, uint16_t x) {
+  // credit: aqrit
+  int sum = 0;
+  int i = 0;
+  for (int end = x / 64; i < end; i++){
+    sum += roaring_hamming(container->words[i]);
+  }
+  uint64_t lastword = container->words[i];
+  uint64_t lastpos = UINT64_C(1) << (x % 64);
+  uint64_t mask = lastpos + lastpos - 1; // smear right
+  sum += roaring_hamming(lastword & mask);
+  return sum;
+}
+
+uint32_t bitset_container_rank_many(const bitset_container_t *container, 
uint64_t start_rank, const uint32_t* begin, const uint32_t* end, uint64_t* ans){
+  const uint16_t high = (uint16_t)((*begin) >> 16);
+  int i = 0;
+  int sum = 0;
+  const uint32_t* iter = begin;
+  for(; iter != end; iter++) {
+      uint32_t x = *iter;
+      uint16_t xhigh = (uint16_t)(x >> 16);
+      if(xhigh != high) return iter - begin; // stop at next container
+
+      uint16_t xlow = (uint16_t)x;
+      for(int count = xlow / 64; i < count; i++){
+        sum += roaring_hamming(container->words[i]);
+      }
+      uint64_t lastword = container->words[i];
+      uint64_t lastpos = UINT64_C(1) << (xlow % 64);
+      uint64_t mask = lastpos + lastpos - 1; // smear right
+      *(ans++) = start_rank + sum + roaring_hamming(lastword & mask);
+  }
+  return iter - begin;
+}
+
+
+/* Returns the index of x , if not exsist return -1 */
+int bitset_container_get_index(const bitset_container_t *container, uint16_t 
x) {
+  if (bitset_container_get(container, x)) {
+    // credit: aqrit
+    int sum = 0;
+    int i = 0;
+    for (int end = x / 64; i < end; i++){
+      sum += roaring_hamming(container->words[i]);
+    }
+    uint64_t lastword = container->words[i];
+    uint64_t lastpos = UINT64_C(1) << (x % 64);
+    uint64_t mask = lastpos + lastpos - 1; // smear right
+    sum += roaring_hamming(lastword & mask);
+    return sum - 1;
+  } else {
+    return -1;
+  }
+}
+
+/* Returns the index of the first value equal or larger than x, or -1 */
+int bitset_container_index_equalorlarger(const bitset_container_t *container, 
uint16_t x) {
+  uint32_t x32 = x;
+  uint32_t k = x32 / 64;
+  uint64_t word = container->words[k];
+  const int diff = x32 - k * 64; // in [0,64)
+  word = (word >> diff) << diff; // a mask is faster, but we don't care
+  while(word == 0) {
+    k++;
+    if(k == BITSET_CONTAINER_SIZE_IN_WORDS) return -1;
+    word = container->words[k];
+  }
+  return k * 64 + roaring_trailing_zeroes(word);
+}
+
+#ifdef __cplusplus
+} } }  // extern "C" { namespace roaring { namespace internal {
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic pop
+#endif/* end file src/containers/bitset.c */
+/* begin file src/containers/containers.c */
+
+
+#ifdef __cplusplus
+extern "C" {
+// In Windows MSVC C++ compiler, (type){init} does not compile,
+// it causes C4576: a parenthesized type followed by an initializer list is a
+// non-standard explicit type conversion syntax The correct syntax is 
type{init}
+#define ROARING_INIT_ROARING_CONTAINER_ITERATOR_T roaring_container_iterator_t
+namespace roaring {
+namespace internal {
+#else
+#define ROARING_INIT_ROARING_CONTAINER_ITERATOR_T 
(roaring_container_iterator_t)
+#endif
+
+static inline uint32_t minimum_uint32(uint32_t a, uint32_t b) {
+    return (a < b) ? a : b;
+}
+
+extern inline const container_t *container_unwrap_shared(
+    const container_t *candidate_shared_container, uint8_t *type);
+
+extern inline container_t *container_mutable_unwrap_shared(
+    container_t *candidate_shared_container, uint8_t *type);
+
+extern inline int container_get_cardinality(const container_t *c,
+                                            uint8_t typecode);
+
+extern inline container_t *container_iand(container_t *c1, uint8_t type1,
+                                          const container_t *c2, uint8_t type2,
+                                          uint8_t *result_type);
+
+extern inline container_t *container_ior(container_t *c1, uint8_t type1,
+                                         const container_t *c2, uint8_t type2,
+                                         uint8_t *result_type);
+
+extern inline container_t *container_ixor(container_t *c1, uint8_t type1,
+                                          const container_t *c2, uint8_t type2,
+                                          uint8_t *result_type);
+
+extern inline container_t *container_iandnot(container_t *c1, uint8_t type1,
+                                             const container_t *c2,
+                                             uint8_t type2,
+                                             uint8_t *result_type);
+
+void container_free(container_t *c, uint8_t type) {
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            bitset_container_free(CAST_bitset(c));
+            break;
+        case ARRAY_CONTAINER_TYPE:
+            array_container_free(CAST_array(c));
+            break;
+        case RUN_CONTAINER_TYPE:
+            run_container_free(CAST_run(c));
+            break;
+        case SHARED_CONTAINER_TYPE:
+            shared_container_free(CAST_shared(c));
+            break;
+        default:
+            assert(false);
+            roaring_unreachable;
+    }
+}
+
+void container_printf(const container_t *c, uint8_t type) {
+    c = container_unwrap_shared(c, &type);
+    switch (type) {
+        case BITSET_CONTAINER_TYPE:
+            bitset_container_printf(const_CAST_bitset(c));
+            return;
+        case ARRAY_CONTAINER_TYPE:
+            array_container_printf(const_CAST_array(c));
+            return;
+        case RUN_CONTAINER_TYPE:
+            run_container_printf(const_CAST_run(c));
+            return;
+        default:
+            roaring_unreachable;
+    }
+}
+
+void container_printf_as_uint32_array(const container_t *c, uint8_t typecode,
+                                      uint32_t base) {
+    c = container_unwrap_shared(c, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            bitset_container_printf_as_uint32_array(const_CAST_bitset(c), 
base);
+            return;
+        case ARRAY_CONTAINER_TYPE:
+            array_container_printf_as_uint32_array(const_CAST_array(c), base);
+            return;
+        case RUN_CONTAINER_TYPE:
+            run_container_printf_as_uint32_array(const_CAST_run(c), base);
+            return;
+        default:
+            roaring_unreachable;
+    }
+}
+
+bool container_internal_validate(const container_t *container, uint8_t 
typecode,
+                                 const char **reason) {
+    if (container == NULL) {
+        *reason = "container is NULL";
+        return false;
+    }
+    // Not using container_unwrap_shared because it asserts if shared 
containers
+    // are nested
+    if (typecode == SHARED_CONTAINER_TYPE) {
+        const shared_container_t *shared_container =
+            const_CAST_shared(container);
+        if (croaring_refcount_get(&shared_container->counter) == 0) {
+            *reason = "shared container has zero refcount";
+            return false;
+        }
+        if (shared_container->typecode == SHARED_CONTAINER_TYPE) {
+            *reason = "shared container is nested";
+            return false;
+        }
+        if (shared_container->container == NULL) {
+            *reason = "shared container has NULL container";
+            return false;
+        }
+        container = shared_container->container;
+        typecode = shared_container->typecode;
+    }
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_validate(const_CAST_bitset(container),
+                                             reason);
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_validate(const_CAST_array(container),
+                                            reason);
+        case RUN_CONTAINER_TYPE:
+            return run_container_validate(const_CAST_run(container), reason);
+        default:
+            *reason = "invalid typecode";
+            return false;
+    }
+}
+
+extern inline bool container_nonzero_cardinality(const container_t *c,
+                                                 uint8_t typecode);
+
+extern inline int container_to_uint32_array(uint32_t *output,
+                                            const container_t *c,
+                                            uint8_t typecode, uint32_t base);
+
+extern inline container_t *container_add(container_t *c, uint16_t val,
+                                         uint8_t typecode,  // !!! 2nd arg?
+                                         uint8_t *new_typecode);
+
+extern inline bool container_contains(const container_t *c, uint16_t val,
+                                      uint8_t typecode);  // !!! 2nd arg?
+
+extern inline container_t *container_and(const container_t *c1, uint8_t type1,
+                                         const container_t *c2, uint8_t type2,
+                                         uint8_t *result_type);
+
+extern inline container_t *container_or(const container_t *c1, uint8_t type1,
+                                        const container_t *c2, uint8_t type2,
+                                        uint8_t *result_type);
+
+extern inline container_t *container_xor(const container_t *c1, uint8_t type1,
+                                         const container_t *c2, uint8_t type2,
+                                         uint8_t *result_type);
+
+container_t *get_copy_of_container(container_t *c, uint8_t *typecode,
+                                   bool copy_on_write) {
+    if (copy_on_write) {
+        shared_container_t *shared_container;
+        if (*typecode == SHARED_CONTAINER_TYPE) {
+            shared_container = CAST_shared(c);
+            croaring_refcount_inc(&shared_container->counter);
+            return shared_container;
+        }
+        assert(*typecode != SHARED_CONTAINER_TYPE);
+
+        if ((shared_container = (shared_container_t *)roaring_malloc(
+                 sizeof(shared_container_t))) == NULL) {
+            return NULL;
+        }
+
+        shared_container->container = c;
+        shared_container->typecode = *typecode;
+        // At this point, we are creating new shared container
+        // so there should be no other references, and setting
+        // the counter to 2 - even non-atomically - is safe as
+        // long as the value is set before the return statement.
+        shared_container->counter = 2;
+        *typecode = SHARED_CONTAINER_TYPE;
+
+        return shared_container;
+    }  // copy_on_write
+    // otherwise, no copy on write...
+    const container_t *actual_container = container_unwrap_shared(c, typecode);
+    assert(*typecode != SHARED_CONTAINER_TYPE);
+    return container_clone(actual_container, *typecode);
+}
+
+/**
+ * Copies a container, requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ */
+container_t *container_clone(const container_t *c, uint8_t typecode) {
+    // We do not want to allow cloning of shared containers.
+    // c = container_unwrap_shared(c, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE:
+            return bitset_container_clone(const_CAST_bitset(c));
+        case ARRAY_CONTAINER_TYPE:
+            return array_container_clone(const_CAST_array(c));
+        case RUN_CONTAINER_TYPE:
+            return run_container_clone(const_CAST_run(c));
+        case SHARED_CONTAINER_TYPE:
+            // Shared containers are not cloneable. Are you mixing COW and
+            // non-COW bitmaps?
+            return NULL;
+        default:
+            assert(false);
+            roaring_unreachable;
+            return NULL;
+    }
+}
+
+container_t *shared_container_extract_copy(shared_container_t *sc,
+                                           uint8_t *typecode) {
+    assert(sc->typecode != SHARED_CONTAINER_TYPE);
+    *typecode = sc->typecode;
+    container_t *answer;
+    if (croaring_refcount_dec(&sc->counter)) {
+        answer = sc->container;
+        sc->container = NULL;  // paranoid
+        roaring_free(sc);
+    } else {
+        answer = container_clone(sc->container, *typecode);
+    }
+    assert(*typecode != SHARED_CONTAINER_TYPE);
+    return answer;
+}
+
+void shared_container_free(shared_container_t *container) {
+    if (croaring_refcount_dec(&container->counter)) {
+        assert(container->typecode != SHARED_CONTAINER_TYPE);
+        container_free(container->container, container->typecode);
+        container->container = NULL;  // paranoid
+        roaring_free(container);
+    }
+}
+
+extern inline container_t *container_not(const container_t *c1, uint8_t type1,
+                                         uint8_t *result_type);
+
+extern inline container_t *container_not_range(const container_t *c1,
+                                               uint8_t type1,
+                                               uint32_t range_start,
+                                               uint32_t range_end,
+                                               uint8_t *result_type);
+
+extern inline container_t *container_inot(container_t *c1, uint8_t type1,
+                                          uint8_t *result_type);
+
+extern inline container_t *container_inot_range(container_t *c1, uint8_t type1,
+                                                uint32_t range_start,
+                                                uint32_t range_end,
+                                                uint8_t *result_type);
+
+extern inline container_t *container_range_of_ones(uint32_t range_start,
+                                                   uint32_t range_end,
+                                                   uint8_t *result_type);
+
+// where are the correponding things for union and intersection??
+extern inline container_t *container_lazy_xor(const container_t *c1,
+                                              uint8_t type1,
+                                              const container_t *c2,
+                                              uint8_t type2,
+                                              uint8_t *result_type);
+
+extern inline container_t *container_lazy_ixor(container_t *c1, uint8_t type1,
+                                               const container_t *c2,
+                                               uint8_t type2,
+                                               uint8_t *result_type);
+
+extern inline container_t *container_andnot(const container_t *c1,
+                                            uint8_t type1,
+                                            const container_t *c2,
+                                            uint8_t type2,
+                                            uint8_t *result_type);
+
+roaring_container_iterator_t container_init_iterator(const container_t *c,
+                                                     uint8_t typecode,
+                                                     uint16_t *value) {
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE: {
+            const bitset_container_t *bc = const_CAST_bitset(c);
+            uint32_t wordindex = 0;
+            uint64_t word;
+            while ((word = bc->words[wordindex]) == 0) {
+                wordindex++;
+            }
+            // word is non-zero
+            int32_t index = wordindex * 64 + roaring_trailing_zeroes(word);
+            *value = index;
+            return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
+                .index = index,
+            };
+        }
+        case ARRAY_CONTAINER_TYPE: {
+            const array_container_t *ac = const_CAST_array(c);
+            *value = ac->array[0];
+            return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
+                .index = 0,
+            };
+        }
+        case RUN_CONTAINER_TYPE: {
+            const run_container_t *rc = const_CAST_run(c);
+            *value = rc->runs[0].value;
+            return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
+                .index = 0,
+            };
+        }
+        default:
+            assert(false);
+            roaring_unreachable;
+            return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{0};
+    }
+}
+
+roaring_container_iterator_t container_init_iterator_last(const container_t *c,
+                                                          uint8_t typecode,
+                                                          uint16_t *value) {
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE: {
+            const bitset_container_t *bc = const_CAST_bitset(c);
+            uint32_t wordindex = BITSET_CONTAINER_SIZE_IN_WORDS - 1;
+            uint64_t word;
+            while ((word = bc->words[wordindex]) == 0) {
+                wordindex--;
+            }
+            // word is non-zero
+            int32_t index =
+                wordindex * 64 + (63 - roaring_leading_zeroes(word));
+            *value = index;
+            return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
+                .index = index,
+            };
+        }
+        case ARRAY_CONTAINER_TYPE: {
+            const array_container_t *ac = const_CAST_array(c);
+            int32_t index = ac->cardinality - 1;
+            *value = ac->array[index];
+            return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
+                .index = index,
+            };
+        }
+        case RUN_CONTAINER_TYPE: {
+            const run_container_t *rc = const_CAST_run(c);
+            int32_t run_index = rc->n_runs - 1;
+            const rle16_t *last_run = &rc->runs[run_index];
+            *value = last_run->value + last_run->length;
+            return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
+                .index = run_index,
+            };
+        }
+        default:
+            assert(false);
+            roaring_unreachable;
+            return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{0};
+    }
+}
+
+bool container_iterator_next(const container_t *c, uint8_t typecode,
+                             roaring_container_iterator_t *it,
+                             uint16_t *value) {
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE: {
+            const bitset_container_t *bc = const_CAST_bitset(c);
+            it->index++;
+
+            uint32_t wordindex = it->index / 64;
+            if (wordindex >= BITSET_CONTAINER_SIZE_IN_WORDS) {
+                return false;
+            }
+
+            uint64_t word =
+                bc->words[wordindex] & (UINT64_MAX << (it->index % 64));
+            // next part could be optimized/simplified
+            while (word == 0 &&
+                   (wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS)) {
+                wordindex++;
+                word = bc->words[wordindex];
+            }
+            if (word != 0) {
+                it->index = wordindex * 64 + roaring_trailing_zeroes(word);
+                *value = it->index;
+                return true;
+            }
+            return false;
+        }
+        case ARRAY_CONTAINER_TYPE: {
+            const array_container_t *ac = const_CAST_array(c);
+            it->index++;
+            if (it->index < ac->cardinality) {
+                *value = ac->array[it->index];
+                return true;
+            }
+            return false;
+        }
+        case RUN_CONTAINER_TYPE: {
+            if (*value == UINT16_MAX) {  // Avoid overflow to zero
+                return false;
+            }
+
+            const run_container_t *rc = const_CAST_run(c);
+            uint32_t limit =
+                rc->runs[it->index].value + rc->runs[it->index].length;
+            if (*value < limit) {
+                (*value)++;
+                return true;
+            }
+
+            it->index++;
+            if (it->index < rc->n_runs) {
+                *value = rc->runs[it->index].value;
+                return true;
+            }
+            return false;
+        }
+        default:
+            assert(false);
+            roaring_unreachable;
+            return false;
+    }
+}
+
+bool container_iterator_prev(const container_t *c, uint8_t typecode,
+                             roaring_container_iterator_t *it,
+                             uint16_t *value) {
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE: {
+            if (--it->index < 0) {
+                return false;
+            }
+
+            const bitset_container_t *bc = const_CAST_bitset(c);
+            int32_t wordindex = it->index / 64;
+            uint64_t word =
+                bc->words[wordindex] & (UINT64_MAX >> (63 - (it->index % 64)));
+
+            while (word == 0 && --wordindex >= 0) {
+                word = bc->words[wordindex];
+            }
+            if (word == 0) {
+                return false;
+            }
+
+            it->index = (wordindex * 64) + (63 - roaring_leading_zeroes(word));
+            *value = it->index;
+            return true;
+        }
+        case ARRAY_CONTAINER_TYPE: {
+            if (--it->index < 0) {
+                return false;
+            }
+            const array_container_t *ac = const_CAST_array(c);
+            *value = ac->array[it->index];
+            return true;
+        }
+        case RUN_CONTAINER_TYPE: {
+            if (*value == 0) {
+                return false;
+            }
+
+            const run_container_t *rc = const_CAST_run(c);
+            (*value)--;
+            if (*value >= rc->runs[it->index].value) {
+                return true;
+            }
+
+            if (--it->index < 0) {
+                return false;
+            }
+
+            *value = rc->runs[it->index].value + rc->runs[it->index].length;
+            return true;
+        }
+        default:
+            assert(false);
+            roaring_unreachable;
+            return false;
+    }
+}
+
+bool container_iterator_lower_bound(const container_t *c, uint8_t typecode,
+                                    roaring_container_iterator_t *it,
+                                    uint16_t *value_out, uint16_t val) {
+    if (val > container_maximum(c, typecode)) {
+        return false;
+    }
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE: {
+            const bitset_container_t *bc = const_CAST_bitset(c);
+            it->index = bitset_container_index_equalorlarger(bc, val);
+            *value_out = it->index;
+            return true;
+        }
+        case ARRAY_CONTAINER_TYPE: {
+            const array_container_t *ac = const_CAST_array(c);
+            it->index = array_container_index_equalorlarger(ac, val);
+            *value_out = ac->array[it->index];
+            return true;
+        }
+        case RUN_CONTAINER_TYPE: {
+            const run_container_t *rc = const_CAST_run(c);
+            it->index = run_container_index_equalorlarger(rc, val);
+            if (rc->runs[it->index].value <= val) {
+                *value_out = val;
+            } else {
+                *value_out = rc->runs[it->index].value;
+            }
+            return true;
+        }
+        default:
+            assert(false);
+            roaring_unreachable;
+            return false;
+    }
+}
+
+bool container_iterator_read_into_uint32(const container_t *c, uint8_t 
typecode,
+                                         roaring_container_iterator_t *it,
+                                         uint32_t high16, uint32_t *buf,
+                                         uint32_t count, uint32_t *consumed,
+                                         uint16_t *value_out) {
+    *consumed = 0;
+    if (count == 0) {
+        return false;
+    }
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE: {
+            const bitset_container_t *bc = const_CAST_bitset(c);
+            uint32_t wordindex = it->index / 64;
+            uint64_t word =
+                bc->words[wordindex] & (UINT64_MAX << (it->index % 64));
+            do {
+                // Read set bits.
+                while (word != 0 && *consumed < count) {
+                    *buf = high16 |
+                           (wordindex * 64 + roaring_trailing_zeroes(word));
+                    word = word & (word - 1);
+                    buf++;
+                    (*consumed)++;
+                }
+                // Skip unset bits.
+                while (word == 0 &&
+                       wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS) {
+                    wordindex++;
+                    word = bc->words[wordindex];
+                }
+            } while (word != 0 && *consumed < count);
+
+            if (word != 0) {
+                it->index = wordindex * 64 + roaring_trailing_zeroes(word);
+                *value_out = it->index;
+                return true;
+            }
+            return false;
+        }
+        case ARRAY_CONTAINER_TYPE: {
+            const array_container_t *ac = const_CAST_array(c);
+            uint32_t num_values =
+                minimum_uint32(ac->cardinality - it->index, count);
+            for (uint32_t i = 0; i < num_values; i++) {
+                buf[i] = high16 | ac->array[it->index + i];
+            }
+            *consumed += num_values;
+            it->index += num_values;
+            if (it->index < ac->cardinality) {
+                *value_out = ac->array[it->index];
+                return true;
+            }
+            return false;
+        }
+        case RUN_CONTAINER_TYPE: {
+            const run_container_t *rc = const_CAST_run(c);
+            do {
+                uint32_t largest_run_value =
+                    rc->runs[it->index].value + rc->runs[it->index].length;
+                uint32_t num_values = minimum_uint32(
+                    largest_run_value - *value_out + 1, count - *consumed);
+                for (uint32_t i = 0; i < num_values; i++) {
+                    buf[i] = high16 | (*value_out + i);
+                }
+                *value_out += num_values;
+                buf += num_values;
+                *consumed += num_values;
+
+                // We check for `value == 0` because `it->value += num_values`
+                // can overflow when `value == UINT16_MAX`, and `count >
+                // length`. In this case `value` will overflow to 0.
+                if (*value_out > largest_run_value || *value_out == 0) {
+                    it->index++;
+                    if (it->index < rc->n_runs) {
+                        *value_out = rc->runs[it->index].value;
+                    } else {
+                        return false;
+                    }
+                }
+            } while (*consumed < count);
+            return true;
+        }
+        default:
+            assert(false);
+            roaring_unreachable;
+            return 0;
+    }
+}
+
+bool container_iterator_read_into_uint64(const container_t *c, uint8_t 
typecode,
+                                         roaring_container_iterator_t *it,
+                                         uint64_t high48, uint64_t *buf,
+                                         uint32_t count, uint32_t *consumed,
+                                         uint16_t *value_out) {
+    *consumed = 0;
+    if (count == 0) {
+        return false;
+    }
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE: {
+            const bitset_container_t *bc = const_CAST_bitset(c);
+            uint32_t wordindex = it->index / 64;
+            uint64_t word =
+                bc->words[wordindex] & (UINT64_MAX << (it->index % 64));
+            do {
+                // Read set bits.
+                while (word != 0 && *consumed < count) {
+                    *buf = high48 |
+                           (wordindex * 64 + roaring_trailing_zeroes(word));
+                    word = word & (word - 1);
+                    buf++;
+                    (*consumed)++;
+                }
+                // Skip unset bits.
+                while (word == 0 &&
+                       wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS) {
+                    wordindex++;
+                    word = bc->words[wordindex];
+                }
+            } while (word != 0 && *consumed < count);
+
+            if (word != 0) {
+                it->index = wordindex * 64 + roaring_trailing_zeroes(word);
+                *value_out = it->index;
+                return true;
+            }
+            return false;
+        }
+        case ARRAY_CONTAINER_TYPE: {
+            const array_container_t *ac = const_CAST_array(c);
+            uint32_t num_values =
+                minimum_uint32(ac->cardinality - it->index, count);
+            for (uint32_t i = 0; i < num_values; i++) {
+                buf[i] = high48 | ac->array[it->index + i];
+            }
+            *consumed += num_values;
+            it->index += num_values;
+            if (it->index < ac->cardinality) {
+                *value_out = ac->array[it->index];
+                return true;
+            }
+            return false;
+        }
+        case RUN_CONTAINER_TYPE: {
+            const run_container_t *rc = const_CAST_run(c);
+            do {
+                uint32_t largest_run_value =
+                    rc->runs[it->index].value + rc->runs[it->index].length;
+                uint32_t num_values = minimum_uint32(
+                    largest_run_value - *value_out + 1, count - *consumed);
+                for (uint32_t i = 0; i < num_values; i++) {
+                    buf[i] = high48 | (*value_out + i);
+                }
+                *value_out += num_values;
+                buf += num_values;
+                *consumed += num_values;
+
+                // We check for `value == 0` because `it->value += num_values`
+                // can overflow when `value == UINT16_MAX`, and `count >
+                // length`. In this case `value` will overflow to 0.
+                if (*value_out > largest_run_value || *value_out == 0) {
+                    it->index++;
+                    if (it->index < rc->n_runs) {
+                        *value_out = rc->runs[it->index].value;
+                    } else {
+                        return false;
+                    }
+                }
+            } while (*consumed < count);
+            return true;
+        }
+        default:
+            assert(false);
+            roaring_unreachable;
+            return 0;
+    }
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+
+#undef ROARING_INIT_ROARING_CONTAINER_ITERATOR_T
+/* end file src/containers/containers.c */
+/* begin file src/containers/convert.c */
+#include <stdio.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif  // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+// file contains grubby stuff that must know impl. details of all container
+// types.
+bitset_container_t *bitset_container_from_array(const array_container_t *ac) {
+    bitset_container_t *ans = bitset_container_create();
+    int limit = array_container_cardinality(ac);
+    for (int i = 0; i < limit; ++i) bitset_container_set(ans, ac->array[i]);
+    return ans;
+}
+
+bitset_container_t *bitset_container_from_run(const run_container_t *arr) {
+    int card = run_container_cardinality(arr);
+    bitset_container_t *answer = bitset_container_create();
+    for (int rlepos = 0; rlepos < arr->n_runs; ++rlepos) {
+        rle16_t vl = arr->runs[rlepos];
+        bitset_set_lenrange(answer->words, vl.value, vl.length);
+    }
+    answer->cardinality = card;
+    return answer;
+}
+
+array_container_t *array_container_from_run(const run_container_t *arr) {
+    array_container_t *answer =
+        array_container_create_given_capacity(run_container_cardinality(arr));
+    answer->cardinality = 0;
+    for (int rlepos = 0; rlepos < arr->n_runs; ++rlepos) {
+        int run_start = arr->runs[rlepos].value;
+        int run_end = run_start + arr->runs[rlepos].length;
+
+        for (int run_value = run_start; run_value <= run_end; ++run_value) {
+            answer->array[answer->cardinality++] = (uint16_t)run_value;
+        }
+    }
+    return answer;
+}
+
+array_container_t *array_container_from_bitset(const bitset_container_t *bits) 
{
+    array_container_t *result =
+        array_container_create_given_capacity(bits->cardinality);
+    result->cardinality = bits->cardinality;
+#if CROARING_IS_X64
+#if CROARING_COMPILER_SUPPORTS_AVX512
+    if (croaring_hardware_support() & ROARING_SUPPORTS_AVX512) {
+        bitset_extract_setbits_avx512_uint16(
+            bits->words, BITSET_CONTAINER_SIZE_IN_WORDS, result->array,
+            bits->cardinality, 0);
+    } else
+#endif
+    {
+        //  sse version ends up being slower here
+        // (bitset_extract_setbits_sse_uint16)
+        // because of the sparsity of the data
+        bitset_extract_setbits_uint16(
+            bits->words, BITSET_CONTAINER_SIZE_IN_WORDS, result->array, 0);
+    }
+#else
+    // If the system is not x64, then we have no accelerated function.
+    bitset_extract_setbits_uint16(bits->words, BITSET_CONTAINER_SIZE_IN_WORDS,
+                                  result->array, 0);
+#endif
+
+    return result;
+}
+
+/* assumes that container has adequate space.  Run from [s,e] (inclusive) */
+static void add_run(run_container_t *rc, int s, int e) {
+    rc->runs[rc->n_runs].value = s;
+    rc->runs[rc->n_runs].length = e - s;
+    rc->n_runs++;
+}
+
+run_container_t *run_container_from_array(const array_container_t *c) {
+    int32_t n_runs = array_container_number_of_runs(c);
+    run_container_t *answer = run_container_create_given_capacity(n_runs);
+    int prev = -2;
+    int run_start = -1;
+    int32_t card = c->cardinality;
+    if (card == 0) return answer;
+    for (int i = 0; i < card; ++i) {
+        const uint16_t cur_val = c->array[i];
+        if (cur_val != prev + 1) {
+            // new run starts; flush old one, if any
+            if (run_start != -1) add_run(answer, run_start, prev);
+            run_start = cur_val;
+        }
+        prev = c->array[i];
+    }
+    // now prev is the last seen value
+    add_run(answer, run_start, prev);
+    // assert(run_container_cardinality(answer) == c->cardinality);
+    return answer;
+}
+
+/**
+ * Convert the runcontainer to either a Bitmap or an Array Container, depending
+ * on the cardinality.  Frees the container.
+ * Allocates and returns new container, which caller is responsible for 
freeing.
+ * It does not free the run container.
+ */
+container_t *convert_to_bitset_or_array_container(run_container_t *rc,
+                                                  int32_t card,
+                                                  uint8_t *resulttype) {
+    if (card <= DEFAULT_MAX_SIZE) {
+        array_container_t *answer = 
array_container_create_given_capacity(card);
+        answer->cardinality = 0;
+        for (int rlepos = 0; rlepos < rc->n_runs; ++rlepos) {
+            uint16_t run_start = rc->runs[rlepos].value;
+            uint16_t run_end = run_start + rc->runs[rlepos].length;
+            for (uint16_t run_value = run_start; run_value < run_end;
+                 ++run_value) {
+                answer->array[answer->cardinality++] = run_value;
+            }
+            answer->array[answer->cardinality++] = run_end;
+        }
+        assert(card == answer->cardinality);
+        *resulttype = ARRAY_CONTAINER_TYPE;
+        // run_container_free(r);
+        return answer;
+    }
+    bitset_container_t *answer = bitset_container_create();
+    for (int rlepos = 0; rlepos < rc->n_runs; ++rlepos) {
+        uint16_t run_start = rc->runs[rlepos].value;
+        bitset_set_lenrange(answer->words, run_start, rc->runs[rlepos].length);
+    }
+    answer->cardinality = card;
+    *resulttype = BITSET_CONTAINER_TYPE;
+    // run_container_free(r);
+    return answer;
+}
+
+/* Converts a run container to either an array or a bitset, IF it saves space.
+ */
+/* If a conversion occurs, the caller is responsible to free the original
+ * container and
+ * he becomes responsible to free the new one. */
+container_t *convert_run_to_efficient_container(run_container_t *c,
+                                                uint8_t *typecode_after) {
+    int32_t size_as_run_container =
+        run_container_serialized_size_in_bytes(c->n_runs);
+
+    int32_t size_as_bitset_container =
+        bitset_container_serialized_size_in_bytes();
+    int32_t card = run_container_cardinality(c);
+    int32_t size_as_array_container =
+        array_container_serialized_size_in_bytes(card);
+
+    int32_t min_size_non_run =
+        size_as_bitset_container < size_as_array_container
+            ? size_as_bitset_container
+            : size_as_array_container;
+    if (size_as_run_container <= min_size_non_run) {  // no conversion
+        *typecode_after = RUN_CONTAINER_TYPE;
+        return c;
+    }
+    if (card <= DEFAULT_MAX_SIZE) {
+        // to array
+        array_container_t *answer = 
array_container_create_given_capacity(card);
+        answer->cardinality = 0;
+        for (int rlepos = 0; rlepos < c->n_runs; ++rlepos) {
+            int run_start = c->runs[rlepos].value;
+            int run_end = run_start + c->runs[rlepos].length;
+
+            for (int run_value = run_start; run_value <= run_end; ++run_value) 
{
+                answer->array[answer->cardinality++] = (uint16_t)run_value;
+            }
+        }
+        *typecode_after = ARRAY_CONTAINER_TYPE;
+        return answer;
+    }
+
+    // else to bitset
+    bitset_container_t *answer = bitset_container_create();
+
+    for (int rlepos = 0; rlepos < c->n_runs; ++rlepos) {
+        int start = c->runs[rlepos].value;
+        int end = start + c->runs[rlepos].length;
+        bitset_set_range(answer->words, start, end + 1);
+    }
+    answer->cardinality = card;
+    *typecode_after = BITSET_CONTAINER_TYPE;
+    return answer;
+}
+
+// like convert_run_to_efficient_container but frees the old result if needed
+container_t *convert_run_to_efficient_container_and_free(
+    run_container_t *c, uint8_t *typecode_after) {
+    container_t *answer = convert_run_to_efficient_container(c, 
typecode_after);
+    if (answer != c) run_container_free(c);
+    return answer;
+}
+
+/* once converted, the original container is disposed here, rather than
+   in roaring_array
+*/
+
+// TODO: split into run-  array-  and bitset-  subfunctions for sanity;
+// a few function calls won't really matter.
+
+container_t *convert_run_optimize(container_t *c, uint8_t typecode_original,
+                                  uint8_t *typecode_after) {
+    if (typecode_original == RUN_CONTAINER_TYPE) {
+        container_t *newc =
+            convert_run_to_efficient_container(CAST_run(c), typecode_after);
+        if (newc != c) {
+            container_free(c, typecode_original);
+        }
+        return newc;
+    } else if (typecode_original == ARRAY_CONTAINER_TYPE) {
+        // it might need to be converted to a run container.
+        array_container_t *c_qua_array = CAST_array(c);
+        int32_t n_runs = array_container_number_of_runs(c_qua_array);
+        int32_t size_as_run_container =
+            run_container_serialized_size_in_bytes(n_runs);
+        int32_t card = array_container_cardinality(c_qua_array);
+        int32_t size_as_array_container =
+            array_container_serialized_size_in_bytes(card);
+
+        if (size_as_run_container >= size_as_array_container) {
+            *typecode_after = ARRAY_CONTAINER_TYPE;
+            return c;
+        }
+        // else convert array to run container
+        run_container_t *answer = run_container_create_given_capacity(n_runs);
+        int prev = -2;
+        int run_start = -1;
+
+        assert(card > 0);
+        for (int i = 0; i < card; ++i) {
+            uint16_t cur_val = c_qua_array->array[i];
+            if (cur_val != prev + 1) {
+                // new run starts; flush old one, if any
+                if (run_start != -1) add_run(answer, run_start, prev);
+                run_start = cur_val;
+            }
+            prev = c_qua_array->array[i];
+        }
+        assert(run_start >= 0);
+        // now prev is the last seen value
+        add_run(answer, run_start, prev);
+        *typecode_after = RUN_CONTAINER_TYPE;
+        array_container_free(c_qua_array);
+        return answer;
+    } else if (typecode_original ==
+               BITSET_CONTAINER_TYPE) {  // run conversions on bitset
+        // does bitset need conversion to run?
+        bitset_container_t *c_qua_bitset = CAST_bitset(c);
+        int32_t n_runs = bitset_container_number_of_runs(c_qua_bitset);
+        int32_t size_as_run_container =
+            run_container_serialized_size_in_bytes(n_runs);
+        int32_t size_as_bitset_container =
+            bitset_container_serialized_size_in_bytes();
+
+        if (size_as_bitset_container <= size_as_run_container) {
+            // no conversion needed.
+            *typecode_after = BITSET_CONTAINER_TYPE;
+            return c;
+        }
+        // bitset to runcontainer (ported from Java  RunContainer(
+        // BitmapContainer bc, int nbrRuns))
+        assert(n_runs > 0);  // no empty bitmaps
+        run_container_t *answer = run_container_create_given_capacity(n_runs);
+
+        int long_ctr = 0;
+        uint64_t cur_word = c_qua_bitset->words[0];
+        while (true) {
+            while (cur_word == UINT64_C(0) &&
+                   long_ctr < BITSET_CONTAINER_SIZE_IN_WORDS - 1)
+                cur_word = c_qua_bitset->words[++long_ctr];
+
+            if (cur_word == UINT64_C(0)) {
+                bitset_container_free(c_qua_bitset);
+                *typecode_after = RUN_CONTAINER_TYPE;
+                return answer;
+            }
+
+            int local_run_start = roaring_trailing_zeroes(cur_word);
+            int run_start = local_run_start + 64 * long_ctr;
+            uint64_t cur_word_with_1s = cur_word | (cur_word - 1);
+
+            int run_end = 0;
+            while (cur_word_with_1s == UINT64_C(0xFFFFFFFFFFFFFFFF) &&
+                   long_ctr < BITSET_CONTAINER_SIZE_IN_WORDS - 1)
+                cur_word_with_1s = c_qua_bitset->words[++long_ctr];
+
+            if (cur_word_with_1s == UINT64_C(0xFFFFFFFFFFFFFFFF)) {
+                run_end = 64 + long_ctr * 64;  // exclusive, I guess
+                add_run(answer, run_start, run_end - 1);
+                bitset_container_free(c_qua_bitset);
+                *typecode_after = RUN_CONTAINER_TYPE;
+                return answer;
+            }
+            int local_run_end = roaring_trailing_zeroes(~cur_word_with_1s);
+            run_end = local_run_end + long_ctr * 64;
+            add_run(answer, run_start, run_end - 1);
+            cur_word = cur_word_with_1s & (cur_word_with_1s + 1);
+        }
+        return answer;
+    } else {
+        assert(false);
+        roaring_unreachable;
+        return NULL;
+    }
+}
+
+container_t *container_from_run_range(const run_container_t *run, uint32_t min,
+                                      uint32_t max, uint8_t *typecode_after) {
+    // We expect most of the time to end up with a bitset container
+    bitset_container_t *bitset = bitset_container_create();
+    *typecode_after = BITSET_CONTAINER_TYPE;
+    int32_t union_cardinality = 0;
+    for (int32_t i = 0; i < run->n_runs; ++i) {
+        uint32_t rle_min = run->runs[i].value;
+        uint32_t rle_max = rle_min + run->runs[i].length;
+        bitset_set_lenrange(bitset->words, rle_min, rle_max - rle_min);
+        union_cardinality += run->runs[i].length + 1;
+    }
+    union_cardinality += max - min + 1;
+    union_cardinality -=
+        bitset_lenrange_cardinality(bitset->words, min, max - min);
+    bitset_set_lenrange(bitset->words, min, max - min);
+    bitset->cardinality = union_cardinality;
+    if (bitset->cardinality <= DEFAULT_MAX_SIZE) {
+        // we need to convert to an array container
+        array_container_t *array = array_container_from_bitset(bitset);
+        *typecode_after = ARRAY_CONTAINER_TYPE;
+        bitset_container_free(bitset);
+        return array;
+    }
+    return bitset;
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/convert.c */
+/* begin file src/containers/mixed_andnot.c */
+/*
+ * mixed_andnot.c.  More methods since operation is not symmetric,
+ * except no "wide" andnot , so no lazy options motivated.
+ */
+
+#include <assert.h>
+#include <string.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst, a valid array container that could be the same as dst.*/
+void array_bitset_container_andnot(const array_container_t *src_1,
+                                   const bitset_container_t *src_2,
+                                   array_container_t *dst) {
+    // follows Java implementation as of June 2016
+    if (dst->capacity < src_1->cardinality) {
+        array_container_grow(dst, src_1->cardinality, false);
+    }
+    int32_t newcard = 0;
+    const int32_t origcard = src_1->cardinality;
+    for (int i = 0; i < origcard; ++i) {
+        uint16_t key = src_1->array[i];
+        dst->array[newcard] = key;
+        newcard += 1 - bitset_container_contains(src_2, key);
+    }
+    dst->cardinality = newcard;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * src_1 */
+
+void array_bitset_container_iandnot(array_container_t *src_1,
+                                    const bitset_container_t *src_2) {
+    array_bitset_container_andnot(src_1, src_2, src_1);
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst, which does not initially have a valid container.
+ * Return true for a bitset result; false for array
+ */
+
+bool bitset_array_container_andnot(const bitset_container_t *src_1,
+                                   const array_container_t *src_2,
+                                   container_t **dst) {
+    // Java did this directly, but we have option of asm or avx
+    bitset_container_t *result = bitset_container_create();
+    bitset_container_copy(src_1, result);
+    result->cardinality =
+        (int32_t)bitset_clear_list(result->words, 
(uint64_t)result->cardinality,
+                                   src_2->array, (uint64_t)src_2->cardinality);
+
+    // do required type conversions.
+    if (result->cardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(result);
+        bitset_container_free(result);
+        return false;
+    }
+    *dst = result;
+    return true;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_array_container_iandnot(bitset_container_t *src_1,
+                                    const array_container_t *src_2,
+                                    container_t **dst) {
+    *dst = src_1;
+    src_1->cardinality =
+        (int32_t)bitset_clear_list(src_1->words, (uint64_t)src_1->cardinality,
+                                   src_2->array, (uint64_t)src_2->cardinality);
+
+    if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(src_1);
+        bitset_container_free(src_1);
+        return false;  // not bitset
+    } else
+        return true;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_andnot(const run_container_t *src_1,
+                                 const bitset_container_t *src_2,
+                                 container_t **dst) {
+    // follows the Java implementation as of June 2016
+    int card = run_container_cardinality(src_1);
+    if (card <= DEFAULT_MAX_SIZE) {
+        // must be an array
+        array_container_t *answer = 
array_container_create_given_capacity(card);
+        answer->cardinality = 0;
+        for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+            rle16_t rle = src_1->runs[rlepos];
+            for (int run_value = rle.value; run_value <= rle.value + 
rle.length;
+                 ++run_value) {
+                if (!bitset_container_get(src_2, (uint16_t)run_value)) {
+                    answer->array[answer->cardinality++] = (uint16_t)run_value;
+                }
+            }
+        }
+        *dst = answer;
+        return false;
+    } else {  // we guess it will be a bitset, though have to check guess when
+              // done
+        bitset_container_t *answer = bitset_container_clone(src_2);
+
+        uint32_t last_pos = 0;
+        for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+            rle16_t rle = src_1->runs[rlepos];
+
+            uint32_t start = rle.value;
+            uint32_t end = start + rle.length + 1;
+            bitset_reset_range(answer->words, last_pos, start);
+            bitset_flip_range(answer->words, start, end);
+            last_pos = end;
+        }
+        bitset_reset_range(answer->words, last_pos, (uint32_t)(1 << 16));
+
+        answer->cardinality = bitset_container_compute_cardinality(answer);
+
+        if (answer->cardinality <= DEFAULT_MAX_SIZE) {
+            *dst = array_container_from_bitset(answer);
+            bitset_container_free(answer);
+            return false;  // not bitset
+        }
+        *dst = answer;
+        return true;  // bitset
+    }
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_iandnot(run_container_t *src_1,
+                                  const bitset_container_t *src_2,
+                                  container_t **dst) {
+    // dummy implementation
+    bool ans = run_bitset_container_andnot(src_1, src_2, dst);
+    run_container_free(src_1);
+    return ans;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset").  dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool bitset_run_container_andnot(const bitset_container_t *src_1,
+                                 const run_container_t *src_2,
+                                 container_t **dst) {
+    // follows Java implementation
+    bitset_container_t *result = bitset_container_create();
+
+    bitset_container_copy(src_1, result);
+    for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) {
+        rle16_t rle = src_2->runs[rlepos];
+        bitset_reset_range(result->words, rle.value,
+                           rle.value + rle.length + UINT32_C(1));
+    }
+    result->cardinality = bitset_container_compute_cardinality(result);
+
+    if (result->cardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(result);
+        bitset_container_free(result);
+        return false;  // not bitset
+    }
+    *dst = result;
+    return true;  // bitset
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_run_container_iandnot(bitset_container_t *src_1,
+                                  const run_container_t *src_2,
+                                  container_t **dst) {
+    *dst = src_1;
+
+    for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) {
+        rle16_t rle = src_2->runs[rlepos];
+        bitset_reset_range(src_1->words, rle.value,
+                           rle.value + rle.length + UINT32_C(1));
+    }
+    src_1->cardinality = bitset_container_compute_cardinality(src_1);
+
+    if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(src_1);
+        bitset_container_free(src_1);
+        return false;  // not bitset
+    } else
+        return true;
+}
+
+/* helper. a_out must be a valid array container with adequate capacity.
+ * Returns the cardinality of the output container. Partly Based on Java
+ * implementation Util.unsignedDifference.
+ *
+ * TODO: Util.unsignedDifference does not use advanceUntil.  Is it cheaper
+ * to avoid advanceUntil?
+ */
+
+static int run_array_array_subtract(const run_container_t *rc,
+                                    const array_container_t *a_in,
+                                    array_container_t *a_out) {
+    int out_card = 0;
+    int32_t in_array_pos =
+        -1;  // since advanceUntil always assumes we start the search AFTER 
this
+
+    for (int rlepos = 0; rlepos < rc->n_runs; rlepos++) {
+        int32_t start = rc->runs[rlepos].value;
+        int32_t end = start + rc->runs[rlepos].length + 1;
+
+        in_array_pos = advanceUntil(a_in->array, in_array_pos,
+                                    a_in->cardinality, (uint16_t)start);
+
+        if (in_array_pos >= a_in->cardinality) {  // run has no items 
subtracted
+            for (int32_t i = start; i < end; ++i)
+                a_out->array[out_card++] = (uint16_t)i;
+        } else {
+            uint16_t next_nonincluded = a_in->array[in_array_pos];
+            if (next_nonincluded >= end) {
+                // another case when run goes unaltered
+                for (int32_t i = start; i < end; ++i)
+                    a_out->array[out_card++] = (uint16_t)i;
+                in_array_pos--;  // ensure we see this item again if necessary
+            } else {
+                for (int32_t i = start; i < end; ++i)
+                    if (i != next_nonincluded)
+                        a_out->array[out_card++] = (uint16_t)i;
+                    else  // 0 should ensure  we don't match
+                        next_nonincluded =
+                            (in_array_pos + 1 >= a_in->cardinality)
+                                ? 0
+                                : a_in->array[++in_array_pos];
+                in_array_pos--;  // see again
+            }
+        }
+    }
+    return out_card;
+}
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any type of container.
+ */
+
+int run_array_container_andnot(const run_container_t *src_1,
+                               const array_container_t *src_2,
+                               container_t **dst) {
+    // follows the Java impl as of June 2016
+
+    int card = run_container_cardinality(src_1);
+    const int arbitrary_threshold = 32;
+
+    if (card <= arbitrary_threshold) {
+        if (src_2->cardinality == 0) {
+            *dst = run_container_clone(src_1);
+            return RUN_CONTAINER_TYPE;
+        }
+        // Java's "lazyandNot.toEfficientContainer" thing
+        run_container_t *answer = run_container_create_given_capacity(
+            card + array_container_cardinality(src_2));
+
+        int rlepos = 0;
+        int xrlepos = 0;  // "x" is src_2
+        rle16_t rle = src_1->runs[rlepos];
+        int32_t start = rle.value;
+        int32_t end = start + rle.length + 1;
+        int32_t xstart = src_2->array[xrlepos];
+
+        while ((rlepos < src_1->n_runs) && (xrlepos < src_2->cardinality)) {
+            if (end <= xstart) {
+                // output the first run
+                answer->runs[answer->n_runs++] =
+                    CROARING_MAKE_RLE16(start, end - start - 1);
+                rlepos++;
+                if (rlepos < src_1->n_runs) {
+                    start = src_1->runs[rlepos].value;
+                    end = start + src_1->runs[rlepos].length + 1;
+                }
+            } else if (xstart + 1 <= start) {
+                // exit the second run
+                xrlepos++;
+                if (xrlepos < src_2->cardinality) {
+                    xstart = src_2->array[xrlepos];
+                }
+            } else {
+                if (start < xstart) {
+                    answer->runs[answer->n_runs++] =
+                        CROARING_MAKE_RLE16(start, xstart - start - 1);
+                }
+                if (xstart + 1 < end) {
+                    start = xstart + 1;
+                } else {
+                    rlepos++;
+                    if (rlepos < src_1->n_runs) {
+                        start = src_1->runs[rlepos].value;
+                        end = start + src_1->runs[rlepos].length + 1;
+                    }
+                }
+            }
+        }
+        if (rlepos < src_1->n_runs) {
+            answer->runs[answer->n_runs++] =
+                CROARING_MAKE_RLE16(start, end - start - 1);
+            rlepos++;
+            if (rlepos < src_1->n_runs) {
+                memcpy(answer->runs + answer->n_runs, src_1->runs + rlepos,
+                       (src_1->n_runs - rlepos) * sizeof(rle16_t));
+                answer->n_runs += (src_1->n_runs - rlepos);
+            }
+        }
+        uint8_t return_type;
+        *dst = convert_run_to_efficient_container(answer, &return_type);
+        if (answer != *dst) run_container_free(answer);
+        return return_type;
+    }
+    // else it's a bitmap or array
+
+    if (card <= DEFAULT_MAX_SIZE) {
+        array_container_t *ac = array_container_create_given_capacity(card);
+        // nb Java code used a generic iterator-based merge to compute
+        // difference
+        ac->cardinality = run_array_array_subtract(src_1, src_2, ac);
+        *dst = ac;
+        return ARRAY_CONTAINER_TYPE;
+    }
+    bitset_container_t *ans = bitset_container_from_run(src_1);
+    bool result_is_bitset = bitset_array_container_iandnot(ans, src_2, dst);
+    return (result_is_bitset ? BITSET_CONTAINER_TYPE : ARRAY_CONTAINER_TYPE);
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+int run_array_container_iandnot(run_container_t *src_1,
+                                const array_container_t *src_2,
+                                container_t **dst) {
+    // dummy implementation same as June 2016 Java
+    int ans = run_array_container_andnot(src_1, src_2, dst);
+    run_container_free(src_1);
+    return ans;
+}
+
+/* dst must be a valid array container, allowed to be src_1 */
+
+void array_run_container_andnot(const array_container_t *src_1,
+                                const run_container_t *src_2,
+                                array_container_t *dst) {
+    // basically following Java impl as of June 2016
+    if (src_1->cardinality > dst->capacity) {
+        array_container_grow(dst, src_1->cardinality, false);
+    }
+
+    if (src_2->n_runs == 0) {
+        memmove(dst->array, src_1->array,
+                sizeof(uint16_t) * src_1->cardinality);
+        dst->cardinality = src_1->cardinality;
+        return;
+    }
+    int32_t run_start = src_2->runs[0].value;
+    int32_t run_end = run_start + src_2->runs[0].length;
+    int which_run = 0;
+
+    uint16_t val = 0;
+    int dest_card = 0;
+    for (int i = 0; i < src_1->cardinality; ++i) {
+        val = src_1->array[i];
+        if (val < run_start)
+            dst->array[dest_card++] = val;
+        else if (val <= run_end) {
+            ;  // omitted item
+        } else {
+            do {
+                if (which_run + 1 < src_2->n_runs) {
+                    ++which_run;
+                    run_start = src_2->runs[which_run].value;
+                    run_end = run_start + src_2->runs[which_run].length;
+
+                } else
+                    run_start = run_end = (1 << 16) + 1;
+            } while (val > run_end);
+            --i;
+        }
+    }
+    dst->cardinality = dest_card;
+}
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+void array_run_container_iandnot(array_container_t *src_1,
+                                 const run_container_t *src_2) {
+    array_run_container_andnot(src_1, src_2, src_1);
+}
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int run_run_container_andnot(const run_container_t *src_1,
+                             const run_container_t *src_2, container_t **dst) {
+    run_container_t *ans = run_container_create();
+    run_container_andnot(src_1, src_2, ans);
+    uint8_t typecode_after;
+    *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after);
+    return typecode_after;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+int run_run_container_iandnot(run_container_t *src_1,
+                              const run_container_t *src_2, container_t **dst) 
{
+    // following Java impl as of June 2016 (dummy)
+    int ans = run_run_container_andnot(src_1, src_2, dst);
+    run_container_free(src_1);
+    return ans;
+}
+
+/*
+ * dst is a valid array container and may be the same as src_1
+ */
+
+void array_array_container_andnot(const array_container_t *src_1,
+                                  const array_container_t *src_2,
+                                  array_container_t *dst) {
+    array_container_andnot(src_1, src_2, dst);
+}
+
+/* inplace array-array andnot will always be able to reuse the space of
+ * src_1 */
+void array_array_container_iandnot(array_container_t *src_1,
+                                   const array_container_t *src_2) {
+    array_container_andnot(src_1, src_2, src_1);
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). Return value is
+ * "dst is a bitset"
+ */
+
+bool bitset_bitset_container_andnot(const bitset_container_t *src_1,
+                                    const bitset_container_t *src_2,
+                                    container_t **dst) {
+    bitset_container_t *ans = bitset_container_create();
+    int card = bitset_container_andnot(src_1, src_2, ans);
+    if (card <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(ans);
+        bitset_container_free(ans);
+        return false;  // not bitset
+    } else {
+        *dst = ans;
+        return true;
+    }
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_bitset_container_iandnot(bitset_container_t *src_1,
+                                     const bitset_container_t *src_2,
+                                     container_t **dst) {
+    int card = bitset_container_andnot(src_1, src_2, src_1);
+    if (card <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(src_1);
+        bitset_container_free(src_1);
+        return false;  // not bitset
+    } else {
+        *dst = src_1;
+        return true;
+    }
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/mixed_andnot.c */
+/* begin file src/containers/mixed_equal.c */
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+bool array_container_equal_bitset(const array_container_t* container1,
+                                  const bitset_container_t* container2) {
+    if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+        if (container2->cardinality != container1->cardinality) {
+            return false;
+        }
+    }
+    int32_t pos = 0;
+    for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
+        uint64_t w = container2->words[i];
+        while (w != 0) {
+            uint64_t t = w & (~w + 1);
+            uint16_t r = i * 64 + roaring_trailing_zeroes(w);
+            if (pos >= container1->cardinality) {
+                return false;
+            }
+            if (container1->array[pos] != r) {
+                return false;
+            }
+            ++pos;
+            w ^= t;
+        }
+    }
+    return (pos == container1->cardinality);
+}
+
+bool run_container_equals_array(const run_container_t* container1,
+                                const array_container_t* container2) {
+    if (run_container_cardinality(container1) != container2->cardinality)
+        return false;
+    int32_t pos = 0;
+    for (int i = 0; i < container1->n_runs; ++i) {
+        const uint32_t run_start = container1->runs[i].value;
+        const uint32_t le = container1->runs[i].length;
+
+        if (container2->array[pos] != run_start) {
+            return false;
+        }
+
+        if (container2->array[pos + le] != run_start + le) {
+            return false;
+        }
+
+        pos += le + 1;
+    }
+    return true;
+}
+
+bool run_container_equals_bitset(const run_container_t* container1,
+                                 const bitset_container_t* container2) {
+    int run_card = run_container_cardinality(container1);
+    int bitset_card = (container2->cardinality != BITSET_UNKNOWN_CARDINALITY)
+                          ? container2->cardinality
+                          : bitset_container_compute_cardinality(container2);
+    if (bitset_card != run_card) {
+        return false;
+    }
+
+    for (int32_t i = 0; i < container1->n_runs; i++) {
+        uint32_t begin = container1->runs[i].value;
+        if (container1->runs[i].length) {
+            uint32_t end = begin + container1->runs[i].length + 1;
+            if (!bitset_container_contains_range(container2, begin, end)) {
+                return false;
+            }
+        } else {
+            if (!bitset_container_contains(container2, begin)) {
+                return false;
+            }
+        }
+    }
+
+    return true;
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/mixed_equal.c */
+/* begin file src/containers/mixed_intersection.c */
+/*
+ * mixed_intersection.c
+ *
+ */
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst.  */
+void array_bitset_container_intersection(const array_container_t *src_1,
+                                         const bitset_container_t *src_2,
+                                         array_container_t *dst) {
+    if (dst->capacity < src_1->cardinality) {
+        array_container_grow(dst, src_1->cardinality, false);
+    }
+    int32_t newcard = 0;  // dst could be src_1
+    const int32_t origcard = src_1->cardinality;
+    for (int i = 0; i < origcard; ++i) {
+        uint16_t key = src_1->array[i];
+        // this branchless approach is much faster...
+        dst->array[newcard] = key;
+        newcard += bitset_container_contains(src_2, key);
+        /**
+         * we could do it this way instead...
+         * if (bitset_container_contains(src_2, key)) {
+         * dst->array[newcard++] = key;
+         * }
+         * but if the result is unpredictible, the processor generates
+         * many mispredicted branches.
+         * Difference can be huge (from 3 cycles when predictible all the way
+         * to 16 cycles when unpredictible.
+         * See
+         * 
https://github.com/lemire/Code-used-on-Daniel-Lemire-s-blog/blob/master/extra/bitset/c/arraybitsetintersection.c
+         */
+    }
+    dst->cardinality = newcard;
+}
+
+/* Compute the size of the intersection of src_1 and src_2. */
+int array_bitset_container_intersection_cardinality(
+    const array_container_t *src_1, const bitset_container_t *src_2) {
+    int32_t newcard = 0;
+    const int32_t origcard = src_1->cardinality;
+    for (int i = 0; i < origcard; ++i) {
+        uint16_t key = src_1->array[i];
+        newcard += bitset_container_contains(src_2, key);
+    }
+    return newcard;
+}
+
+bool array_bitset_container_intersect(const array_container_t *src_1,
+                                      const bitset_container_t *src_2) {
+    const int32_t origcard = src_1->cardinality;
+    for (int i = 0; i < origcard; ++i) {
+        uint16_t key = src_1->array[i];
+        if (bitset_container_contains(src_2, key)) return true;
+    }
+    return false;
+}
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be equal to src_1. We assume that dst is a
+ * valid container. */
+void array_run_container_intersection(const array_container_t *src_1,
+                                      const run_container_t *src_2,
+                                      array_container_t *dst) {
+    if (run_container_is_full(src_2)) {
+        if (dst != src_1) array_container_copy(src_1, dst);
+        return;
+    }
+    if (dst->capacity < src_1->cardinality) {
+        array_container_grow(dst, src_1->cardinality, false);
+    }
+    if (src_2->n_runs == 0) {
+        return;
+    }
+    int32_t rlepos = 0;
+    int32_t arraypos = 0;
+    rle16_t rle = src_2->runs[rlepos];
+    int32_t newcard = 0;
+    while (arraypos < src_1->cardinality) {
+        const uint16_t arrayval = src_1->array[arraypos];
+        while (rle.value + rle.length <
+               arrayval) {  // this will frequently be false
+            ++rlepos;
+            if (rlepos == src_2->n_runs) {
+                dst->cardinality = newcard;
+                return;  // we are done
+            }
+            rle = src_2->runs[rlepos];
+        }
+        if (rle.value > arrayval) {
+            arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
+                                    rle.value);
+        } else {
+            dst->array[newcard] = arrayval;
+            newcard++;
+            arraypos++;
+        }
+    }
+    dst->cardinality = newcard;
+}
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * *dst. If the result is true then the result is a bitset_container_t
+ * otherwise is a array_container_t. If *dst ==  src_2, an in-place processing
+ * is attempted.*/
+bool run_bitset_container_intersection(const run_container_t *src_1,
+                                       const bitset_container_t *src_2,
+                                       container_t **dst) {
+    if (run_container_is_full(src_1)) {
+        if (*dst != src_2) *dst = bitset_container_clone(src_2);
+        return true;
+    }
+    int32_t card = run_container_cardinality(src_1);
+    if (card <= DEFAULT_MAX_SIZE) {
+        // result can only be an array (assuming that we never make a
+        // RunContainer)
+        if (card > src_2->cardinality) {
+            card = src_2->cardinality;
+        }
+        array_container_t *answer = 
array_container_create_given_capacity(card);
+        *dst = answer;
+        if (*dst == NULL) {
+            return false;
+        }
+        for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+            rle16_t rle = src_1->runs[rlepos];
+            uint32_t endofrun = (uint32_t)rle.value + rle.length;
+            for (uint32_t runValue = rle.value; runValue <= endofrun;
+                 ++runValue) {
+                answer->array[answer->cardinality] = (uint16_t)runValue;
+                answer->cardinality +=
+                    bitset_container_contains(src_2, runValue);
+            }
+        }
+        return false;
+    }
+    if (*dst == src_2) {  // we attempt in-place
+        bitset_container_t *answer = CAST_bitset(*dst);
+        uint32_t start = 0;
+        for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+            const rle16_t rle = src_1->runs[rlepos];
+            uint32_t end = rle.value;
+            bitset_reset_range(src_2->words, start, end);
+
+            start = end + rle.length + 1;
+        }
+        bitset_reset_range(src_2->words, start, UINT32_C(1) << 16);
+        answer->cardinality = bitset_container_compute_cardinality(answer);
+        if (src_2->cardinality > DEFAULT_MAX_SIZE) {
+            return true;
+        } else {
+            array_container_t *newanswer = array_container_from_bitset(src_2);
+            if (newanswer == NULL) {
+                *dst = NULL;
+                return false;
+            }
+            *dst = newanswer;
+            return false;
+        }
+    } else {  // no inplace
+        // we expect the answer to be a bitmap (if we are lucky)
+        bitset_container_t *answer = bitset_container_clone(src_2);
+
+        *dst = answer;
+        if (answer == NULL) {
+            return true;
+        }
+        uint32_t start = 0;
+        for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+            const rle16_t rle = src_1->runs[rlepos];
+            uint32_t end = rle.value;
+            bitset_reset_range(answer->words, start, end);
+            start = end + rle.length + 1;
+        }
+        bitset_reset_range(answer->words, start, UINT32_C(1) << 16);
+        answer->cardinality = bitset_container_compute_cardinality(answer);
+
+        if (answer->cardinality > DEFAULT_MAX_SIZE) {
+            return true;
+        } else {
+            array_container_t *newanswer = array_container_from_bitset(answer);
+            bitset_container_free(CAST_bitset(*dst));
+            if (newanswer == NULL) {
+                *dst = NULL;
+                return false;
+            }
+            *dst = newanswer;
+            return false;
+        }
+    }
+}
+
+/* Compute the size of the intersection between src_1 and src_2 . */
+int array_run_container_intersection_cardinality(const array_container_t 
*src_1,
+                                                 const run_container_t *src_2) 
{
+    if (run_container_is_full(src_2)) {
+        return src_1->cardinality;
+    }
+    if (src_2->n_runs == 0) {
+        return 0;
+    }
+    int32_t rlepos = 0;
+    int32_t arraypos = 0;
+    rle16_t rle = src_2->runs[rlepos];
+    int32_t newcard = 0;
+    while (arraypos < src_1->cardinality) {
+        const uint16_t arrayval = src_1->array[arraypos];
+        while (rle.value + rle.length <
+               arrayval) {  // this will frequently be false
+            ++rlepos;
+            if (rlepos == src_2->n_runs) {
+                return newcard;  // we are done
+            }
+            rle = src_2->runs[rlepos];
+        }
+        if (rle.value > arrayval) {
+            arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
+                                    rle.value);
+        } else {
+            newcard++;
+            arraypos++;
+        }
+    }
+    return newcard;
+}
+
+/* Compute the intersection  between src_1 and src_2
+ **/
+int run_bitset_container_intersection_cardinality(
+    const run_container_t *src_1, const bitset_container_t *src_2) {
+    if (run_container_is_full(src_1)) {
+        return bitset_container_cardinality(src_2);
+    }
+    int answer = 0;
+    for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+        rle16_t rle = src_1->runs[rlepos];
+        answer +=
+            bitset_lenrange_cardinality(src_2->words, rle.value, rle.length);
+    }
+    return answer;
+}
+
+bool array_run_container_intersect(const array_container_t *src_1,
+                                   const run_container_t *src_2) {
+    if (run_container_is_full(src_2)) {
+        return !array_container_empty(src_1);
+    }
+    if (src_2->n_runs == 0) {
+        return false;
+    }
+    int32_t rlepos = 0;
+    int32_t arraypos = 0;
+    rle16_t rle = src_2->runs[rlepos];
+    while (arraypos < src_1->cardinality) {
+        const uint16_t arrayval = src_1->array[arraypos];
+        while (rle.value + rle.length <
+               arrayval) {  // this will frequently be false
+            ++rlepos;
+            if (rlepos == src_2->n_runs) {
+                return false;  // we are done
+            }
+            rle = src_2->runs[rlepos];
+        }
+        if (rle.value > arrayval) {
+            arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
+                                    rle.value);
+        } else {
+            return true;
+        }
+    }
+    return false;
+}
+
+/* Compute the intersection  between src_1 and src_2
+ **/
+bool run_bitset_container_intersect(const run_container_t *src_1,
+                                    const bitset_container_t *src_2) {
+    if (run_container_is_full(src_1)) {
+        return !bitset_container_empty(src_2);
+    }
+    for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+        rle16_t rle = src_1->runs[rlepos];
+        if (!bitset_lenrange_empty(src_2->words, rle.value, rle.length))
+            return true;
+    }
+    return false;
+}
+
+/*
+ * Compute the intersection between src_1 and src_2 and write the result
+ * to *dst. If the return function is true, the result is a bitset_container_t
+ * otherwise is a array_container_t.
+ */
+bool bitset_bitset_container_intersection(const bitset_container_t *src_1,
+                                          const bitset_container_t *src_2,
+                                          container_t **dst) {
+    const int newCardinality = bitset_container_and_justcard(src_1, src_2);
+    if (newCardinality > DEFAULT_MAX_SIZE) {
+        *dst = bitset_container_create();
+        if (*dst != NULL) {
+            bitset_container_and_nocard(src_1, src_2, CAST_bitset(*dst));
+            CAST_bitset(*dst)->cardinality = newCardinality;
+        }
+        return true;  // it is a bitset
+    }
+    *dst = array_container_create_given_capacity(newCardinality);
+    if (*dst != NULL) {
+        CAST_array(*dst)->cardinality = newCardinality;
+        bitset_extract_intersection_setbits_uint16(
+            src_1->words, src_2->words, BITSET_CONTAINER_SIZE_IN_WORDS,
+            CAST_array(*dst)->array, 0);
+    }
+    return false;  // not a bitset
+}
+
+bool bitset_bitset_container_intersection_inplace(
+    bitset_container_t *src_1, const bitset_container_t *src_2,
+    container_t **dst) {
+    const int newCardinality = bitset_container_and_justcard(src_1, src_2);
+    if (newCardinality > DEFAULT_MAX_SIZE) {
+        *dst = src_1;
+        bitset_container_and_nocard(src_1, src_2, src_1);
+        CAST_bitset(*dst)->cardinality = newCardinality;
+        return true;  // it is a bitset
+    }
+    *dst = array_container_create_given_capacity(newCardinality);
+    if (*dst != NULL) {
+        CAST_array(*dst)->cardinality = newCardinality;
+        bitset_extract_intersection_setbits_uint16(
+            src_1->words, src_2->words, BITSET_CONTAINER_SIZE_IN_WORDS,
+            CAST_array(*dst)->array, 0);
+    }
+    return false;  // not a bitset
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/mixed_intersection.c */
+/* begin file src/containers/mixed_negation.c */
+/*
+ * mixed_negation.c
+ *
+ */
+
+#include <assert.h>
+#include <string.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+// TODO: make simplified and optimized negation code across
+// the full range.
+
+/* Negation across the entire range of the container.
+ * Compute the  negation of src  and write the result
+ * to *dst. The complement of a
+ * sufficiently sparse set will always be dense and a hence a bitmap
+' * We assume that dst is pre-allocated and a valid bitset container
+ * There can be no in-place version.
+ */
+void array_container_negation(const array_container_t *src,
+                              bitset_container_t *dst) {
+    uint64_t card = UINT64_C(1 << 16);
+    bitset_container_set_all(dst);
+
+    if (src->cardinality == 0) {
+        return;
+    }
+
+    dst->cardinality = (int32_t)bitset_clear_list(dst->words, card, src->array,
+                                                  (uint64_t)src->cardinality);
+}
+
+/* Negation across the entire range of the container
+ * Compute the  negation of src  and write the result
+ * to *dst.  A true return value indicates a bitset result,
+ * otherwise the result is an array container.
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_container_negation(const bitset_container_t *src,
+                               container_t **dst) {
+    return bitset_container_negation_range(src, 0, (1 << 16), dst);
+}
+
+/* inplace version */
+/*
+ * Same as bitset_container_negation except that if the output is to
+ * be a
+ * bitset_container_t, then src is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_container_negation_inplace(bitset_container_t *src,
+                                       container_t **dst) {
+    return bitset_container_negation_range_inplace(src, 0, (1 << 16), dst);
+}
+
+/* Negation across the entire range of container
+ * Compute the  negation of src  and write the result
+ * to *dst.  Return values are the *_TYPECODES as defined * in containers.h
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+int run_container_negation(const run_container_t *src, container_t **dst) {
+    return run_container_negation_range(src, 0, (1 << 16), dst);
+}
+
+/*
+ * Same as run_container_negation except that if the output is to
+ * be a
+ * run_container_t, and has the capacity to hold the result,
+ * then src is modified and no allocation is made.
+ * In all cases, the result is in *dst.
+ */
+int run_container_negation_inplace(run_container_t *src, container_t **dst) {
+    return run_container_negation_range_inplace(src, 0, (1 << 16), dst);
+}
+
+/* Negation across a range of the container.
+ * Compute the  negation of src  and write the result
+ * to *dst. Returns true if the result is a bitset container
+ * and false for an array container.  *dst is not preallocated.
+ */
+bool array_container_negation_range(const array_container_t *src,
+                                    const int range_start, const int range_end,
+                                    container_t **dst) {
+    /* close port of the Java implementation */
+    if (range_start >= range_end) {
+        *dst = array_container_clone(src);
+        return false;
+    }
+
+    int32_t start_index =
+        binarySearch(src->array, src->cardinality, (uint16_t)range_start);
+    if (start_index < 0) start_index = -start_index - 1;
+
+    int32_t last_index =
+        binarySearch(src->array, src->cardinality, (uint16_t)(range_end - 1));
+    if (last_index < 0) last_index = -last_index - 2;
+
+    const int32_t current_values_in_range = last_index - start_index + 1;
+    const int32_t span_to_be_flipped = range_end - range_start;
+    const int32_t new_values_in_range =
+        span_to_be_flipped - current_values_in_range;
+    const int32_t cardinality_change =
+        new_values_in_range - current_values_in_range;
+    const int32_t new_cardinality = src->cardinality + cardinality_change;
+
+    if (new_cardinality > DEFAULT_MAX_SIZE) {
+        bitset_container_t *temp = bitset_container_from_array(src);
+        bitset_flip_range(temp->words, (uint32_t)range_start,
+                          (uint32_t)range_end);
+        temp->cardinality = new_cardinality;
+        *dst = temp;
+        return true;
+    }
+
+    array_container_t *arr =
+        array_container_create_given_capacity(new_cardinality);
+    *dst = (container_t *)arr;
+    if (new_cardinality == 0) {
+        arr->cardinality = new_cardinality;
+        return false;  // we are done.
+    }
+    // copy stuff before the active area
+    memcpy(arr->array, src->array, start_index * sizeof(uint16_t));
+
+    // work on the range
+    int32_t out_pos = start_index, in_pos = start_index;
+    int32_t val_in_range = range_start;
+    for (; val_in_range < range_end && in_pos <= last_index; ++val_in_range) {
+        if ((uint16_t)val_in_range != src->array[in_pos]) {
+            arr->array[out_pos++] = (uint16_t)val_in_range;
+        } else {
+            ++in_pos;
+        }
+    }
+    for (; val_in_range < range_end; ++val_in_range)
+        arr->array[out_pos++] = (uint16_t)val_in_range;
+
+    // content after the active range
+    memcpy(arr->array + out_pos, src->array + (last_index + 1),
+           (src->cardinality - (last_index + 1)) * sizeof(uint16_t));
+    arr->cardinality = new_cardinality;
+    return false;
+}
+
+/* Even when the result would fit, it is unclear how to make an
+ * inplace version without inefficient copying.
+ */
+
+bool array_container_negation_range_inplace(array_container_t *src,
+                                            const int range_start,
+                                            const int range_end,
+                                            container_t **dst) {
+    bool ans = array_container_negation_range(src, range_start, range_end, 
dst);
+    // TODO : try a real inplace version
+    array_container_free(src);
+    return ans;
+}
+
+/* Negation across a range of the container
+ * Compute the  negation of src  and write the result
+ * to *dst.  A true return value indicates a bitset result,
+ * otherwise the result is an array container.
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_container_negation_range(const bitset_container_t *src,
+                                     const int range_start, const int 
range_end,
+                                     container_t **dst) {
+    // TODO maybe consider density-based estimate
+    // and sometimes build result directly as array, with
+    // conversion back to bitset if wrong.  Or determine
+    // actual result cardinality, then go directly for the known final cont.
+
+    // keep computation using bitsets as long as possible.
+    bitset_container_t *t = bitset_container_clone(src);
+    bitset_flip_range(t->words, (uint32_t)range_start, (uint32_t)range_end);
+    t->cardinality = bitset_container_compute_cardinality(t);
+
+    if (t->cardinality > DEFAULT_MAX_SIZE) {
+        *dst = t;
+        return true;
+    } else {
+        *dst = array_container_from_bitset(t);
+        bitset_container_free(t);
+        return false;
+    }
+}
+
+/* inplace version */
+/*
+ * Same as bitset_container_negation except that if the output is to
+ * be a
+ * bitset_container_t, then src is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_container_negation_range_inplace(bitset_container_t *src,
+                                             const int range_start,
+                                             const int range_end,
+                                             container_t **dst) {
+    bitset_flip_range(src->words, (uint32_t)range_start, (uint32_t)range_end);
+    src->cardinality = bitset_container_compute_cardinality(src);
+    if (src->cardinality > DEFAULT_MAX_SIZE) {
+        *dst = src;
+        return true;
+    }
+    *dst = array_container_from_bitset(src);
+    bitset_container_free(src);
+    return false;
+}
+
+/* Negation across a range of container
+ * Compute the  negation of src  and write the result
+ * to *dst. Return values are the *_TYPECODES as defined * in containers.h
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+int run_container_negation_range(const run_container_t *src,
+                                 const int range_start, const int range_end,
+                                 container_t **dst) {
+    uint8_t return_typecode;
+
+    // follows the Java implementation
+    if (range_end <= range_start) {
+        *dst = run_container_clone(src);
+        return RUN_CONTAINER_TYPE;
+    }
+
+    run_container_t *ans = run_container_create_given_capacity(
+        src->n_runs + 1);  // src->n_runs + 1);
+    int k = 0;
+    for (; k < src->n_runs && src->runs[k].value < range_start; ++k) {
+        ans->runs[k] = src->runs[k];
+        ans->n_runs++;
+    }
+
+    run_container_smart_append_exclusive(
+        ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1));
+
+    for (; k < src->n_runs; ++k) {
+        run_container_smart_append_exclusive(ans, src->runs[k].value,
+                                             src->runs[k].length);
+    }
+
+    *dst = convert_run_to_efficient_container(ans, &return_typecode);
+    if (return_typecode != RUN_CONTAINER_TYPE) run_container_free(ans);
+
+    return return_typecode;
+}
+
+/*
+ * Same as run_container_negation except that if the output is to
+ * be a
+ * run_container_t, and has the capacity to hold the result,
+ * then src is modified and no allocation is made.
+ * In all cases, the result is in *dst.
+ */
+int run_container_negation_range_inplace(run_container_t *src,
+                                         const int range_start,
+                                         const int range_end,
+                                         container_t **dst) {
+    uint8_t return_typecode;
+
+    if (range_end <= range_start) {
+        *dst = src;
+        return RUN_CONTAINER_TYPE;
+    }
+
+    // TODO: efficient special case when range is 0 to 65535 inclusive
+
+    if (src->capacity == src->n_runs) {
+        // no excess room.  More checking to see if result can fit
+        bool last_val_before_range = false;
+        bool first_val_in_range = false;
+        bool last_val_in_range = false;
+        bool first_val_past_range = false;
+
+        if (range_start > 0)
+            last_val_before_range =
+                run_container_contains(src, (uint16_t)(range_start - 1));
+        first_val_in_range = run_container_contains(src, 
(uint16_t)range_start);
+
+        if (last_val_before_range == first_val_in_range) {
+            last_val_in_range =
+                run_container_contains(src, (uint16_t)(range_end - 1));
+            if (range_end != 0x10000)
+                first_val_past_range =
+                    run_container_contains(src, (uint16_t)range_end);
+
+            if (last_val_in_range ==
+                first_val_past_range) {  // no space for inplace
+                int ans = run_container_negation_range(src, range_start,
+                                                       range_end, dst);
+                run_container_free(src);
+                return ans;
+            }
+        }
+    }
+    // all other cases: result will fit
+
+    run_container_t *ans = src;
+    int my_nbr_runs = src->n_runs;
+
+    ans->n_runs = 0;
+    int k = 0;
+    for (; (k < my_nbr_runs) && (src->runs[k].value < range_start); ++k) {
+        // ans->runs[k] = src->runs[k]; (would be self-copy)
+        ans->n_runs++;
+    }
+
+    // as with Java implementation, use locals to give self a buffer of depth 1
+    rle16_t buffered = CROARING_MAKE_RLE16(0, 0);
+    rle16_t next = buffered;
+    if (k < my_nbr_runs) buffered = src->runs[k];
+
+    run_container_smart_append_exclusive(
+        ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1));
+
+    for (; k < my_nbr_runs; ++k) {
+        if (k + 1 < my_nbr_runs) next = src->runs[k + 1];
+
+        run_container_smart_append_exclusive(ans, buffered.value,
+                                             buffered.length);
+        buffered = next;
+    }
+
+    *dst = convert_run_to_efficient_container(ans, &return_typecode);
+    if (return_typecode != RUN_CONTAINER_TYPE) run_container_free(ans);
+
+    return return_typecode;
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/mixed_negation.c */
+/* begin file src/containers/mixed_subset.c */
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+bool array_container_is_subset_bitset(const array_container_t* container1,
+                                      const bitset_container_t* container2) {
+    if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+        if (container2->cardinality < container1->cardinality) {
+            return false;
+        }
+    }
+    for (int i = 0; i < container1->cardinality; ++i) {
+        if (!bitset_container_contains(container2, container1->array[i])) {
+            return false;
+        }
+    }
+    return true;
+}
+
+bool run_container_is_subset_array(const run_container_t* container1,
+                                   const array_container_t* container2) {
+    if (run_container_cardinality(container1) > container2->cardinality)
+        return false;
+    int32_t start_pos = -1, stop_pos = -1;
+    for (int i = 0; i < container1->n_runs; ++i) {
+        int32_t start = container1->runs[i].value;
+        int32_t stop = start + container1->runs[i].length;
+        start_pos = advanceUntil(container2->array, stop_pos,
+                                 container2->cardinality, start);
+        stop_pos = advanceUntil(container2->array, stop_pos,
+                                container2->cardinality, stop);
+        if (stop_pos == container2->cardinality) {
+            return false;
+        } else if (stop_pos - start_pos != stop - start ||
+                   container2->array[start_pos] != start ||
+                   container2->array[stop_pos] != stop) {
+            return false;
+        }
+    }
+    return true;
+}
+
+bool array_container_is_subset_run(const array_container_t* container1,
+                                   const run_container_t* container2) {
+    if (container1->cardinality > run_container_cardinality(container2))
+        return false;
+    int i_array = 0, i_run = 0;
+    while (i_array < container1->cardinality && i_run < container2->n_runs) {
+        uint32_t start = container2->runs[i_run].value;
+        uint32_t stop = start + container2->runs[i_run].length;
+        if (container1->array[i_array] < start) {
+            return false;
+        } else if (container1->array[i_array] > stop) {
+            i_run++;
+        } else {  // the value of the array is in the run
+            i_array++;
+        }
+    }
+    if (i_array == container1->cardinality) {
+        return true;
+    } else {
+        return false;
+    }
+}
+
+bool run_container_is_subset_bitset(const run_container_t* container1,
+                                    const bitset_container_t* container2) {
+    // todo: this code could be much faster
+    if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+        if (container2->cardinality < run_container_cardinality(container1)) {
+            return false;
+        }
+    } else {
+        int32_t card = bitset_container_compute_cardinality(
+            container2);  // modify container2?
+        if (card < run_container_cardinality(container1)) {
+            return false;
+        }
+    }
+    for (int i = 0; i < container1->n_runs; ++i) {
+        uint32_t run_start = container1->runs[i].value;
+        uint32_t le = container1->runs[i].length;
+        for (uint32_t j = run_start; j <= run_start + le; ++j) {
+            if (!bitset_container_contains(container2, j)) {
+                return false;
+            }
+        }
+    }
+    return true;
+}
+
+bool bitset_container_is_subset_run(const bitset_container_t* container1,
+                                    const run_container_t* container2) {
+    // todo: this code could be much faster
+    if (container1->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+        if (container1->cardinality > run_container_cardinality(container2)) {
+            return false;
+        }
+    }
+    int32_t i_bitset = 0, i_run = 0;
+    while (i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS &&
+           i_run < container2->n_runs) {
+        uint64_t w = container1->words[i_bitset];
+        while (w != 0 && i_run < container2->n_runs) {
+            uint32_t start = container2->runs[i_run].value;
+            uint32_t stop = start + container2->runs[i_run].length;
+            uint64_t t = w & (~w + 1);
+            uint16_t r = i_bitset * 64 + roaring_trailing_zeroes(w);
+            if (r < start) {
+                return false;
+            } else if (r > stop) {
+                i_run++;
+                continue;
+            } else {
+                w ^= t;
+            }
+        }
+        if (w == 0) {
+            i_bitset++;
+        } else {
+            return false;
+        }
+    }
+    if (i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS) {
+        // terminated iterating on the run containers, check that rest of 
bitset
+        // is empty
+        for (; i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS; i_bitset++) {
+            if (container1->words[i_bitset] != 0) {
+                return false;
+            }
+        }
+    }
+    return true;
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/mixed_subset.c */
+/* begin file src/containers/mixed_union.c */
+/*
+ * mixed_union.c
+ *
+ */
+
+#include <assert.h>
+#include <string.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst.  */
+void array_bitset_container_union(const array_container_t *src_1,
+                                  const bitset_container_t *src_2,
+                                  bitset_container_t *dst) {
+    if (src_2 != dst) bitset_container_copy(src_2, dst);
+    dst->cardinality = (int32_t)bitset_set_list_withcard(
+        dst->words, dst->cardinality, src_1->array, src_1->cardinality);
+}
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst.  This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */
+void array_bitset_container_lazy_union(const array_container_t *src_1,
+                                       const bitset_container_t *src_2,
+                                       bitset_container_t *dst) {
+    if (src_2 != dst) bitset_container_copy(src_2, dst);
+    bitset_set_list(dst->words, src_1->array, src_1->cardinality);
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
+}
+
+void run_bitset_container_union(const run_container_t *src_1,
+                                const bitset_container_t *src_2,
+                                bitset_container_t *dst) {
+    assert(!run_container_is_full(src_1));  // catch this case upstream
+    if (src_2 != dst) bitset_container_copy(src_2, dst);
+    for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+        rle16_t rle = src_1->runs[rlepos];
+        bitset_set_lenrange(dst->words, rle.value, rle.length);
+    }
+    dst->cardinality = bitset_container_compute_cardinality(dst);
+}
+
+void run_bitset_container_lazy_union(const run_container_t *src_1,
+                                     const bitset_container_t *src_2,
+                                     bitset_container_t *dst) {
+    assert(!run_container_is_full(src_1));  // catch this case upstream
+    if (src_2 != dst) bitset_container_copy(src_2, dst);
+    for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+        rle16_t rle = src_1->runs[rlepos];
+        bitset_set_lenrange(dst->words, rle.value, rle.length);
+    }
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
+}
+
+// why do we leave the result as a run container??
+void array_run_container_union(const array_container_t *src_1,
+                               const run_container_t *src_2,
+                               run_container_t *dst) {
+    if (run_container_is_full(src_2)) {
+        run_container_copy(src_2, dst);
+        return;
+    }
+    // TODO: see whether the "2*" is spurious
+    run_container_grow(dst, 2 * (src_1->cardinality + src_2->n_runs), false);
+    int32_t rlepos = 0;
+    int32_t arraypos = 0;
+    rle16_t previousrle;
+    if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
+        previousrle = run_container_append_first(dst, src_2->runs[rlepos]);
+        rlepos++;
+    } else {
+        previousrle =
+            run_container_append_value_first(dst, src_1->array[arraypos]);
+        arraypos++;
+    }
+    while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) {
+        if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
+            run_container_append(dst, src_2->runs[rlepos], &previousrle);
+            rlepos++;
+        } else {
+            run_container_append_value(dst, src_1->array[arraypos],
+                                       &previousrle);
+            arraypos++;
+        }
+    }
+    if (arraypos < src_1->cardinality) {
+        while (arraypos < src_1->cardinality) {
+            run_container_append_value(dst, src_1->array[arraypos],
+                                       &previousrle);
+            arraypos++;
+        }
+    } else {
+        while (rlepos < src_2->n_runs) {
+            run_container_append(dst, src_2->runs[rlepos], &previousrle);
+            rlepos++;
+        }
+    }
+}
+
+void array_run_container_inplace_union(const array_container_t *src_1,
+                                       run_container_t *src_2) {
+    if (run_container_is_full(src_2)) {
+        return;
+    }
+    const int32_t maxoutput = src_1->cardinality + src_2->n_runs;
+    const int32_t neededcapacity = maxoutput + src_2->n_runs;
+    if (src_2->capacity < neededcapacity)
+        run_container_grow(src_2, neededcapacity, true);
+    memmove(src_2->runs + maxoutput, src_2->runs,
+            src_2->n_runs * sizeof(rle16_t));
+    rle16_t *inputsrc2 = src_2->runs + maxoutput;
+    int32_t rlepos = 0;
+    int32_t arraypos = 0;
+    int src2nruns = src_2->n_runs;
+    src_2->n_runs = 0;
+
+    rle16_t previousrle;
+
+    if (inputsrc2[rlepos].value <= src_1->array[arraypos]) {
+        previousrle = run_container_append_first(src_2, inputsrc2[rlepos]);
+        rlepos++;
+    } else {
+        previousrle =
+            run_container_append_value_first(src_2, src_1->array[arraypos]);
+        arraypos++;
+    }
+
+    while ((rlepos < src2nruns) && (arraypos < src_1->cardinality)) {
+        if (inputsrc2[rlepos].value <= src_1->array[arraypos]) {
+            run_container_append(src_2, inputsrc2[rlepos], &previousrle);
+            rlepos++;
+        } else {
+            run_container_append_value(src_2, src_1->array[arraypos],
+                                       &previousrle);
+            arraypos++;
+        }
+    }
+    if (arraypos < src_1->cardinality) {
+        while (arraypos < src_1->cardinality) {
+            run_container_append_value(src_2, src_1->array[arraypos],
+                                       &previousrle);
+            arraypos++;
+        }
+    } else {
+        while (rlepos < src2nruns) {
+            run_container_append(src_2, inputsrc2[rlepos], &previousrle);
+            rlepos++;
+        }
+    }
+}
+
+bool array_array_container_union(const array_container_t *src_1,
+                                 const array_container_t *src_2,
+                                 container_t **dst) {
+    int totalCardinality = src_1->cardinality + src_2->cardinality;
+    if (totalCardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_create_given_capacity(totalCardinality);
+        if (*dst != NULL) {
+            array_container_union(src_1, src_2, CAST_array(*dst));
+        } else {
+            return true;  // otherwise failure won't be caught
+        }
+        return false;  // not a bitset
+    }
+    *dst = bitset_container_create();
+    bool returnval = true;  // expect a bitset
+    if (*dst != NULL) {
+        bitset_container_t *ourbitset = CAST_bitset(*dst);
+        bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
+        ourbitset->cardinality = (int32_t)bitset_set_list_withcard(
+            ourbitset->words, src_1->cardinality, src_2->array,
+            src_2->cardinality);
+        if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
+            // need to convert!
+            *dst = array_container_from_bitset(ourbitset);
+            bitset_container_free(ourbitset);
+            returnval = false;  // not going to be a bitset
+        }
+    }
+    return returnval;
+}
+
+bool array_array_container_inplace_union(array_container_t *src_1,
+                                         const array_container_t *src_2,
+                                         container_t **dst) {
+    int totalCardinality = src_1->cardinality + src_2->cardinality;
+    *dst = NULL;
+    if (totalCardinality <= DEFAULT_MAX_SIZE) {
+        if (src_1->capacity < totalCardinality) {
+            *dst = array_container_create_given_capacity(
+                2 * totalCardinality);  // be purposefully generous
+            if (*dst != NULL) {
+                array_container_union(src_1, src_2, CAST_array(*dst));
+            } else {
+                return true;  // otherwise failure won't be caught
+            }
+            return false;  // not a bitset
+        } else {
+            memmove(src_1->array + src_2->cardinality, src_1->array,
+                    src_1->cardinality * sizeof(uint16_t));
+            // In theory, we could use fast_union_uint16, but it is unsafe. It
+            // fails with Intel compilers in particular.
+            // https://github.com/RoaringBitmap/CRoaring/pull/452
+            // See report https://github.com/RoaringBitmap/CRoaring/issues/476
+            src_1->cardinality = (int32_t)union_uint16(
+                src_1->array + src_2->cardinality, src_1->cardinality,
+                src_2->array, src_2->cardinality, src_1->array);
+            return false;  // not a bitset
+        }
+    }
+    *dst = bitset_container_create();
+    bool returnval = true;  // expect a bitset
+    if (*dst != NULL) {
+        bitset_container_t *ourbitset = CAST_bitset(*dst);
+        bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
+        ourbitset->cardinality = (int32_t)bitset_set_list_withcard(
+            ourbitset->words, src_1->cardinality, src_2->array,
+            src_2->cardinality);
+        if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
+            // need to convert!
+            if (src_1->capacity < ourbitset->cardinality) {
+                array_container_grow(src_1, ourbitset->cardinality, false);
+            }
+
+            bitset_extract_setbits_uint16(ourbitset->words,
+                                          BITSET_CONTAINER_SIZE_IN_WORDS,
+                                          src_1->array, 0);
+            src_1->cardinality = ourbitset->cardinality;
+            *dst = src_1;
+            bitset_container_free(ourbitset);
+            returnval = false;  // not going to be a bitset
+        }
+    }
+    return returnval;
+}
+
+bool array_array_container_lazy_union(const array_container_t *src_1,
+                                      const array_container_t *src_2,
+                                      container_t **dst) {
+    int totalCardinality = src_1->cardinality + src_2->cardinality;
+    //
+    // We assume that operations involving bitset containers will be faster 
than
+    // operations involving solely array containers, except maybe when array
+    // containers are small. Indeed, for example, it is cheap to compute the
+    // union between an array and a bitset container, generally more so than
+    // between a large array and another array. So it is advantageous to favour
+    // bitset containers during the computation. Of course, if we convert array
+    // containers eagerly to bitset containers, we may later need to revert the
+    // bitset containers to array containerr to satisfy the Roaring format
+    // requirements, but such one-time conversions at the end may not be overly
+    // expensive. We arrived to this design based on extensive benchmarking.
+    //
+    if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
+        *dst = array_container_create_given_capacity(totalCardinality);
+        if (*dst != NULL) {
+            array_container_union(src_1, src_2, CAST_array(*dst));
+        } else {
+            return true;  // otherwise failure won't be caught
+        }
+        return false;  // not a bitset
+    }
+    *dst = bitset_container_create();
+    bool returnval = true;  // expect a bitset
+    if (*dst != NULL) {
+        bitset_container_t *ourbitset = CAST_bitset(*dst);
+        bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
+        bitset_set_list(ourbitset->words, src_2->array, src_2->cardinality);
+        ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
+    }
+    return returnval;
+}
+
+bool array_array_container_lazy_inplace_union(array_container_t *src_1,
+                                              const array_container_t *src_2,
+                                              container_t **dst) {
+    int totalCardinality = src_1->cardinality + src_2->cardinality;
+    *dst = NULL;
+    //
+    // We assume that operations involving bitset containers will be faster 
than
+    // operations involving solely array containers, except maybe when array
+    // containers are small. Indeed, for example, it is cheap to compute the
+    // union between an array and a bitset container, generally more so than
+    // between a large array and another array. So it is advantageous to favour
+    // bitset containers during the computation. Of course, if we convert array
+    // containers eagerly to bitset containers, we may later need to revert the
+    // bitset containers to array containerr to satisfy the Roaring format
+    // requirements, but such one-time conversions at the end may not be overly
+    // expensive. We arrived to this design based on extensive benchmarking.
+    //
+    if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
+        if (src_1->capacity < totalCardinality) {
+            *dst = array_container_create_given_capacity(
+                2 * totalCardinality);  // be purposefully generous
+            if (*dst != NULL) {
+                array_container_union(src_1, src_2, CAST_array(*dst));
+            } else {
+                return true;  // otherwise failure won't be caught
+            }
+            return false;  // not a bitset
+        } else {
+            memmove(src_1->array + src_2->cardinality, src_1->array,
+                    src_1->cardinality * sizeof(uint16_t));
+            /*
+              Next line is safe:
+
+              We just need to focus on the reading and writing performed on
+              array1. In `union_vector16`, both vectorized and scalar code 
still
+              obey the basic rule: read from two inputs, do the union, and then
+              write the output.
+
+              Let's say the length(cardinality) of input2 is L2:
+              ```
+                  |<-  L2  ->|
+              array1: [output--- |input 1---|---]
+              array2: [input 2---]
+              ```
+              Let's define 3 __m128i pointers, `pos1` starts from `input1`,
+              `pos2` starts from `input2`, these 2 point at the next byte to
+              read, `out` starts from `output`, pointing at the next byte to
+              overwrite.
+              ```
+              array1: [output--- |input 1---|---]
+                          ^          ^
+                      out        pos1
+              array2: [input 2---]
+                          ^
+                          pos2
+              ```
+              The union output always contains less or equal number of elements
+              than all inputs added, so we have:
+              ```
+              out <= pos1 + pos2
+              ```
+              therefore:
+              ```
+              out <= pos1 + L2
+              ```
+              which means you will not overwrite data beyond pos1, so the data
+              haven't read is safe, and we don't care the data already read.
+            */
+            src_1->cardinality = (int32_t)fast_union_uint16(
+                src_1->array + src_2->cardinality, src_1->cardinality,
+                src_2->array, src_2->cardinality, src_1->array);
+            return false;  // not a bitset
+        }
+    }
+    *dst = bitset_container_create();
+    bool returnval = true;  // expect a bitset
+    if (*dst != NULL) {
+        bitset_container_t *ourbitset = CAST_bitset(*dst);
+        bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
+        bitset_set_list(ourbitset->words, src_2->array, src_2->cardinality);
+        ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
+    }
+    return returnval;
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/mixed_union.c */
+/* begin file src/containers/mixed_xor.c */
+/*
+ * mixed_xor.c
+ */
+
+#include <assert.h>
+#include <string.h>
+
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially).
+ * Result is true iff dst is a bitset  */
+bool array_bitset_container_xor(const array_container_t *src_1,
+                                const bitset_container_t *src_2,
+                                container_t **dst) {
+    bitset_container_t *result = bitset_container_create();
+    bitset_container_copy(src_2, result);
+    result->cardinality = (int32_t)bitset_flip_list_withcard(
+        result->words, result->cardinality, src_1->array, src_1->cardinality);
+
+    // do required type conversions.
+    if (result->cardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(result);
+        bitset_container_free(result);
+        return false;  // not bitset
+    }
+    *dst = result;
+    return true;  // bitset
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst.  This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY).
+ */
+
+void array_bitset_container_lazy_xor(const array_container_t *src_1,
+                                     const bitset_container_t *src_2,
+                                     bitset_container_t *dst) {
+    if (src_2 != dst) bitset_container_copy(src_2, dst);
+    bitset_flip_list(dst->words, src_1->array, src_1->cardinality);
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_xor(const run_container_t *src_1,
+                              const bitset_container_t *src_2,
+                              container_t **dst) {
+    bitset_container_t *result = bitset_container_create();
+
+    bitset_container_copy(src_2, result);
+    for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+        rle16_t rle = src_1->runs[rlepos];
+        bitset_flip_range(result->words, rle.value,
+                          rle.value + rle.length + UINT32_C(1));
+    }
+    result->cardinality = bitset_container_compute_cardinality(result);
+
+    if (result->cardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(result);
+        bitset_container_free(result);
+        return false;  // not bitset
+    }
+    *dst = result;
+    return true;  // bitset
+}
+
+/* lazy xor.  Dst is initialized and may be equal to src_2.
+ *  Result is left as a bitset container, even if actual
+ *  cardinality would dictate an array container.
+ */
+
+void run_bitset_container_lazy_xor(const run_container_t *src_1,
+                                   const bitset_container_t *src_2,
+                                   bitset_container_t *dst) {
+    if (src_2 != dst) bitset_container_copy(src_2, dst);
+    for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+        rle16_t rle = src_1->runs[rlepos];
+        bitset_flip_range(dst->words, rle.value,
+                          rle.value + rle.length + UINT32_C(1));
+    }
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
+}
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int array_run_container_xor(const array_container_t *src_1,
+                            const run_container_t *src_2, container_t **dst) {
+    // semi following Java XOR implementation as of May 2016
+    // the C OR implementation works quite differently and can return a run
+    // container
+    // TODO could optimize for full run containers.
+
+    // use of lazy following Java impl.
+    const int arbitrary_threshold = 32;
+    if (src_1->cardinality < arbitrary_threshold) {
+        run_container_t *ans = run_container_create();
+        array_run_container_lazy_xor(src_1, src_2, ans);  // keeps runs.
+        uint8_t typecode_after;
+        *dst =
+            convert_run_to_efficient_container_and_free(ans, &typecode_after);
+        return typecode_after;
+    }
+
+    int card = run_container_cardinality(src_2);
+    if (card <= DEFAULT_MAX_SIZE) {
+        // Java implementation works with the array, xoring the run elements 
via
+        // iterator
+        array_container_t *temp = array_container_from_run(src_2);
+        bool ret_is_bitset = array_array_container_xor(temp, src_1, dst);
+        array_container_free(temp);
+        return ret_is_bitset ? BITSET_CONTAINER_TYPE : ARRAY_CONTAINER_TYPE;
+
+    } else {  // guess that it will end up as a bitset
+        bitset_container_t *result = bitset_container_from_run(src_2);
+        bool is_bitset = bitset_array_container_ixor(result, src_1, dst);
+        // any necessary type conversion has been done by the ixor
+        int retval = (is_bitset ? BITSET_CONTAINER_TYPE : 
ARRAY_CONTAINER_TYPE);
+        return retval;
+    }
+}
+
+/* Dst is a valid run container. (Can it be src_2? Let's say not.)
+ * Leaves result as run container, even if other options are
+ * smaller.
+ */
+
+void array_run_container_lazy_xor(const array_container_t *src_1,
+                                  const run_container_t *src_2,
+                                  run_container_t *dst) {
+    run_container_grow(dst, src_1->cardinality + src_2->n_runs, false);
+    int32_t rlepos = 0;
+    int32_t arraypos = 0;
+    dst->n_runs = 0;
+
+    while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) {
+        if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
+            run_container_smart_append_exclusive(dst, 
src_2->runs[rlepos].value,
+                                                 src_2->runs[rlepos].length);
+            rlepos++;
+        } else {
+            run_container_smart_append_exclusive(dst, src_1->array[arraypos],
+                                                 0);
+            arraypos++;
+        }
+    }
+    while (arraypos < src_1->cardinality) {
+        run_container_smart_append_exclusive(dst, src_1->array[arraypos], 0);
+        arraypos++;
+    }
+    while (rlepos < src_2->n_runs) {
+        run_container_smart_append_exclusive(dst, src_2->runs[rlepos].value,
+                                             src_2->runs[rlepos].length);
+        rlepos++;
+    }
+}
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int run_run_container_xor(const run_container_t *src_1,
+                          const run_container_t *src_2, container_t **dst) {
+    run_container_t *ans = run_container_create();
+    run_container_xor(src_1, src_2, ans);
+    uint8_t typecode_after;
+    *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after);
+    return typecode_after;
+}
+
+/*
+ * Java implementation (as of May 2016) for array_run, run_run
+ * and  bitset_run don't do anything different for inplace.
+ * Could adopt the mixed_union.c approach instead (ie, using
+ * smart_append_exclusive)
+ *
+ */
+
+bool array_array_container_xor(const array_container_t *src_1,
+                               const array_container_t *src_2,
+                               container_t **dst) {
+    int totalCardinality =
+        src_1->cardinality + src_2->cardinality;  // upper bound
+    if (totalCardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_create_given_capacity(totalCardinality);
+        array_container_xor(src_1, src_2, CAST_array(*dst));
+        return false;  // not a bitset
+    }
+    *dst = bitset_container_from_array(src_1);
+    bool returnval = true;  // expect a bitset
+    bitset_container_t *ourbitset = CAST_bitset(*dst);
+    ourbitset->cardinality = (uint32_t)bitset_flip_list_withcard(
+        ourbitset->words, src_1->cardinality, src_2->array, 
src_2->cardinality);
+    if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
+        // need to convert!
+        *dst = array_container_from_bitset(ourbitset);
+        bitset_container_free(ourbitset);
+        returnval = false;  // not going to be a bitset
+    }
+
+    return returnval;
+}
+
+bool array_array_container_lazy_xor(const array_container_t *src_1,
+                                    const array_container_t *src_2,
+                                    container_t **dst) {
+    int totalCardinality = src_1->cardinality + src_2->cardinality;
+    //
+    // We assume that operations involving bitset containers will be faster 
than
+    // operations involving solely array containers, except maybe when array
+    // containers are small. Indeed, for example, it is cheap to compute the
+    // exclusive union between an array and a bitset container, generally more
+    // so than between a large array and another array. So it is advantageous 
to
+    // favour bitset containers during the computation. Of course, if we 
convert
+    // array containers eagerly to bitset containers, we may later need to
+    // revert the bitset containers to array containerr to satisfy the Roaring
+    // format requirements, but such one-time conversions at the end may not be
+    // overly expensive. We arrived to this design based on extensive
+    // benchmarking on unions. For XOR/exclusive union, we simply followed the
+    // heuristic used by the unions (see  mixed_union.c). Further tuning is
+    // possible.
+    //
+    if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
+        *dst = array_container_create_given_capacity(totalCardinality);
+        if (*dst != NULL) array_container_xor(src_1, src_2, CAST_array(*dst));
+        return false;  // not a bitset
+    }
+    *dst = bitset_container_from_array(src_1);
+    bool returnval = true;  // expect a bitset (maybe, for XOR??)
+    if (*dst != NULL) {
+        bitset_container_t *ourbitset = CAST_bitset(*dst);
+        bitset_flip_list(ourbitset->words, src_2->array, src_2->cardinality);
+        ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
+    }
+    return returnval;
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially). Return value is
+ * "dst is a bitset"
+ */
+
+bool bitset_bitset_container_xor(const bitset_container_t *src_1,
+                                 const bitset_container_t *src_2,
+                                 container_t **dst) {
+    bitset_container_t *ans = bitset_container_create();
+    int card = bitset_container_xor(src_1, src_2, ans);
+    if (card <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(ans);
+        bitset_container_free(ans);
+        return false;  // not bitset
+    } else {
+        *dst = ans;
+        return true;
+    }
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_array_container_ixor(bitset_container_t *src_1,
+                                 const array_container_t *src_2,
+                                 container_t **dst) {
+    *dst = src_1;
+    src_1->cardinality = (uint32_t)bitset_flip_list_withcard(
+        src_1->words, src_1->cardinality, src_2->array, src_2->cardinality);
+
+    if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(src_1);
+        bitset_container_free(src_1);
+        return false;  // not bitset
+    } else
+        return true;
+}
+
+/* a bunch of in-place, some of which may not *really* be inplace.
+ * TODO: write actual inplace routine if efficiency warrants it
+ * Anything inplace with a bitset is a good candidate
+ */
+
+bool bitset_bitset_container_ixor(bitset_container_t *src_1,
+                                  const bitset_container_t *src_2,
+                                  container_t **dst) {
+    int card = bitset_container_xor(src_1, src_2, src_1);
+    if (card <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(src_1);
+        bitset_container_free(src_1);
+        return false;  // not bitset
+    } else {
+        *dst = src_1;
+        return true;
+    }
+}
+
+bool array_bitset_container_ixor(array_container_t *src_1,
+                                 const bitset_container_t *src_2,
+                                 container_t **dst) {
+    bool ans = array_bitset_container_xor(src_1, src_2, dst);
+    array_container_free(src_1);
+    return ans;
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_ixor(run_container_t *src_1,
+                               const bitset_container_t *src_2,
+                               container_t **dst) {
+    bool ans = run_bitset_container_xor(src_1, src_2, dst);
+    run_container_free(src_1);
+    return ans;
+}
+
+bool bitset_run_container_ixor(bitset_container_t *src_1,
+                               const run_container_t *src_2,
+                               container_t **dst) {
+    bool ans = run_bitset_container_xor(src_2, src_1, dst);
+    bitset_container_free(src_1);
+    return ans;
+}
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int array_run_container_ixor(array_container_t *src_1,
+                             const run_container_t *src_2, container_t **dst) {
+    int ans = array_run_container_xor(src_1, src_2, dst);
+    array_container_free(src_1);
+    return ans;
+}
+
+int run_array_container_ixor(run_container_t *src_1,
+                             const array_container_t *src_2,
+                             container_t **dst) {
+    int ans = array_run_container_xor(src_2, src_1, dst);
+    run_container_free(src_1);
+    return ans;
+}
+
+bool array_array_container_ixor(array_container_t *src_1,
+                                const array_container_t *src_2,
+                                container_t **dst) {
+    bool ans = array_array_container_xor(src_1, src_2, dst);
+    array_container_free(src_1);
+    return ans;
+}
+
+int run_run_container_ixor(run_container_t *src_1, const run_container_t 
*src_2,
+                           container_t **dst) {
+    int ans = run_run_container_xor(src_1, src_2, dst);
+    run_container_free(src_1);
+    return ans;
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/containers/mixed_xor.c */
+/* begin file src/containers/run.c */
+#include <stdio.h>
+#include <stdlib.h>
+
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif  // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+
+extern inline uint16_t run_container_minimum(const run_container_t *run);
+extern inline uint16_t run_container_maximum(const run_container_t *run);
+extern inline int32_t interleavedBinarySearch(const rle16_t *array,
+                                              int32_t lenarray, uint16_t ikey);
+extern inline bool run_container_contains(const run_container_t *run,
+                                          uint16_t pos);
+extern inline int run_container_index_equalorlarger(const run_container_t *arr,
+                                                    uint16_t x);
+extern inline bool run_container_is_full(const run_container_t *run);
+extern inline bool run_container_nonzero_cardinality(const run_container_t 
*rc);
+extern inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs);
+extern inline run_container_t *run_container_create_range(uint32_t start,
+                                                          uint32_t stop);
+extern inline int run_container_cardinality(const run_container_t *run);
+
+bool run_container_add(run_container_t *run, uint16_t pos) {
+    int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
+    if (index >= 0) return false;  // already there
+    index = -index - 2;            // points to preceding value, possibly -1
+    if (index >= 0) {              // possible match
+        int32_t offset = pos - run->runs[index].value;
+        int32_t le = run->runs[index].length;
+        if (offset <= le) return false;  // already there
+        if (offset == le + 1) {
+            // we may need to fuse
+            if (index + 1 < run->n_runs) {
+                if (run->runs[index + 1].value == pos + 1) {
+                    // indeed fusion is needed
+                    run->runs[index].length = run->runs[index + 1].value +
+                                              run->runs[index + 1].length -
+                                              run->runs[index].value;
+                    recoverRoomAtIndex(run, (uint16_t)(index + 1));
+                    return true;
+                }
+            }
+            run->runs[index].length++;
+            return true;
+        }
+        if (index + 1 < run->n_runs) {
+            // we may need to fuse
+            if (run->runs[index + 1].value == pos + 1) {
+                // indeed fusion is needed
+                run->runs[index + 1].value = pos;
+                run->runs[index + 1].length = run->runs[index + 1].length + 1;
+                return true;
+            }
+        }
+    }
+    if (index == -1) {
+        // we may need to extend the first run
+        if (0 < run->n_runs) {
+            if (run->runs[0].value == pos + 1) {
+                run->runs[0].length++;
+                run->runs[0].value--;
+                return true;
+            }
+        }
+    }
+    makeRoomAtIndex(run, (uint16_t)(index + 1));
+    run->runs[index + 1].value = pos;
+    run->runs[index + 1].length = 0;
+    return true;
+}
+
+/* Create a new run container. Return NULL in case of failure. */
+run_container_t *run_container_create_given_capacity(int32_t size) {
+    run_container_t *run;
+    /* Allocate the run container itself. */
+    if ((run = (run_container_t *)roaring_malloc(sizeof(run_container_t))) ==
+        NULL) {
+        return NULL;
+    }
+    if (size <= 0) {  // we don't want to rely on malloc(0)
+        run->runs = NULL;
+    } else if ((run->runs = (rle16_t *)roaring_malloc(sizeof(rle16_t) *
+                                                      size)) == NULL) {
+        roaring_free(run);
+        return NULL;
+    }
+    run->capacity = size;
+    run->n_runs = 0;
+    return run;
+}
+
+int run_container_shrink_to_fit(run_container_t *src) {
+    if (src->n_runs == src->capacity) return 0;  // nothing to do
+    int savings = src->capacity - src->n_runs;
+    src->capacity = src->n_runs;
+    rle16_t *oldruns = src->runs;
+    src->runs =
+        (rle16_t *)roaring_realloc(oldruns, src->capacity * sizeof(rle16_t));
+    if (src->runs == NULL) roaring_free(oldruns);  // should never happen?
+    return savings;
+}
+/* Create a new run container. Return NULL in case of failure. */
+run_container_t *run_container_create(void) {
+    return run_container_create_given_capacity(RUN_DEFAULT_INIT_SIZE);
+}
+
+ALLOW_UNALIGNED
+run_container_t *run_container_clone(const run_container_t *src) {
+    run_container_t *run = run_container_create_given_capacity(src->capacity);
+    if (run == NULL) return NULL;
+    run->capacity = src->capacity;
+    run->n_runs = src->n_runs;
+    memcpy(run->runs, src->runs, src->n_runs * sizeof(rle16_t));
+    return run;
+}
+
+void run_container_offset(const run_container_t *c, container_t **loc,
+                          container_t **hic, uint16_t offset) {
+    run_container_t *lo = NULL, *hi = NULL;
+
+    bool split;
+    int lo_cap, hi_cap;
+    int top, pivot;
+
+    top = (1 << 16) - offset;
+    pivot = run_container_index_equalorlarger(c, top);
+
+    if (pivot == -1) {
+        split = false;
+        lo_cap = c->n_runs;
+        hi_cap = 0;
+    } else {
+        split = c->runs[pivot].value < top;
+        lo_cap = pivot + (split ? 1 : 0);
+        hi_cap = c->n_runs - pivot;
+    }
+
+    if (loc && lo_cap) {
+        lo = run_container_create_given_capacity(lo_cap);
+        memcpy(lo->runs, c->runs, lo_cap * sizeof(rle16_t));
+        lo->n_runs = lo_cap;
+        for (int i = 0; i < lo_cap; ++i) {
+            lo->runs[i].value += offset;
+        }
+        *loc = (container_t *)lo;
+    }
+
+    if (hic && hi_cap) {
+        hi = run_container_create_given_capacity(hi_cap);
+        memcpy(hi->runs, c->runs + pivot, hi_cap * sizeof(rle16_t));
+        hi->n_runs = hi_cap;
+        for (int i = 0; i < hi_cap; ++i) {
+            hi->runs[i].value += offset;
+        }
+        *hic = (container_t *)hi;
+    }
+
+    // Fix the split.
+    if (split) {
+        if (lo != NULL) {
+            // Add the missing run to 'lo', exhausting length.
+            lo->runs[lo->n_runs - 1].length =
+                (1 << 16) - lo->runs[lo->n_runs - 1].value - 1;
+        }
+
+        if (hi != NULL) {
+            // Fix the first run in 'hi'.
+            hi->runs[0].length -= UINT16_MAX - hi->runs[0].value + 1;
+            hi->runs[0].value = 0;
+        }
+    }
+}
+
+/* Free memory. */
+void run_container_free(run_container_t *run) {
+    if (run == NULL) return;
+    roaring_free(run->runs);
+    roaring_free(run);
+}
+
+void run_container_grow(run_container_t *run, int32_t min, bool copy) {
+    int32_t newCapacity = (run->capacity == 0)   ? RUN_DEFAULT_INIT_SIZE
+                          : run->capacity < 64   ? run->capacity * 2
+                          : run->capacity < 1024 ? run->capacity * 3 / 2
+                                                 : run->capacity * 5 / 4;
+    if (newCapacity < min) newCapacity = min;
+    run->capacity = newCapacity;
+    assert(run->capacity >= min);
+    if (copy) {
+        rle16_t *oldruns = run->runs;
+        run->runs = (rle16_t *)roaring_realloc(oldruns,
+                                               run->capacity * 
sizeof(rle16_t));
+        if (run->runs == NULL) roaring_free(oldruns);
+    } else {
+        roaring_free(run->runs);
+        run->runs = (rle16_t *)roaring_malloc(run->capacity * sizeof(rle16_t));
+    }
+    // We may have run->runs == NULL.
+}
+
+/* copy one container into another */
+void run_container_copy(const run_container_t *src, run_container_t *dst) {
+    const int32_t n_runs = src->n_runs;
+    if (src->n_runs > dst->capacity) {
+        run_container_grow(dst, n_runs, false);
+    }
+    dst->n_runs = n_runs;
+    memcpy(dst->runs, src->runs, sizeof(rle16_t) * n_runs);
+}
+
+/* Compute the union of `src_1' and `src_2' and write the result to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void run_container_union(const run_container_t *src_1,
+                         const run_container_t *src_2, run_container_t *dst) {
+    // TODO: this could be a lot more efficient
+
+    // we start out with inexpensive checks
+    const bool if1 = run_container_is_full(src_1);
+    const bool if2 = run_container_is_full(src_2);
+    if (if1 || if2) {
+        if (if1) {
+            run_container_copy(src_1, dst);
+            return;
+        }
+        if (if2) {
+            run_container_copy(src_2, dst);
+            return;
+        }
+    }
+    const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
+    if (dst->capacity < neededcapacity)
+        run_container_grow(dst, neededcapacity, false);
+    dst->n_runs = 0;
+    int32_t rlepos = 0;
+    int32_t xrlepos = 0;
+
+    rle16_t previousrle;
+    if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) {
+        previousrle = run_container_append_first(dst, src_1->runs[rlepos]);
+        rlepos++;
+    } else {
+        previousrle = run_container_append_first(dst, src_2->runs[xrlepos]);
+        xrlepos++;
+    }
+
+    while ((xrlepos < src_2->n_runs) && (rlepos < src_1->n_runs)) {
+        rle16_t newrl;
+        if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) {
+            newrl = src_1->runs[rlepos];
+            rlepos++;
+        } else {
+            newrl = src_2->runs[xrlepos];
+            xrlepos++;
+        }
+        run_container_append(dst, newrl, &previousrle);
+    }
+    while (xrlepos < src_2->n_runs) {
+        run_container_append(dst, src_2->runs[xrlepos], &previousrle);
+        xrlepos++;
+    }
+    while (rlepos < src_1->n_runs) {
+        run_container_append(dst, src_1->runs[rlepos], &previousrle);
+        rlepos++;
+    }
+}
+
+/* Compute the union of `src_1' and `src_2' and write the result to `src_1'
+ */
+void run_container_union_inplace(run_container_t *src_1,
+                                 const run_container_t *src_2) {
+    // TODO: this could be a lot more efficient
+
+    // we start out with inexpensive checks
+    const bool if1 = run_container_is_full(src_1);
+    const bool if2 = run_container_is_full(src_2);
+    if (if1 || if2) {
+        if (if1) {
+            return;
+        }
+        if (if2) {
+            run_container_copy(src_2, src_1);
+            return;
+        }
+    }
+    // we move the data to the end of the current array
+    const int32_t maxoutput = src_1->n_runs + src_2->n_runs;
+    const int32_t neededcapacity = maxoutput + src_1->n_runs;
+    if (src_1->capacity < neededcapacity)
+        run_container_grow(src_1, neededcapacity, true);
+    memmove(src_1->runs + maxoutput, src_1->runs,
+            src_1->n_runs * sizeof(rle16_t));
+    rle16_t *inputsrc1 = src_1->runs + maxoutput;
+    const int32_t input1nruns = src_1->n_runs;
+    src_1->n_runs = 0;
+    int32_t rlepos = 0;
+    int32_t xrlepos = 0;
+
+    rle16_t previousrle;
+    if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) {
+        previousrle = run_container_append_first(src_1, inputsrc1[rlepos]);
+        rlepos++;
+    } else {
+        previousrle = run_container_append_first(src_1, src_2->runs[xrlepos]);
+        xrlepos++;
+    }
+    while ((xrlepos < src_2->n_runs) && (rlepos < input1nruns)) {
+        rle16_t newrl;
+        if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) {
+            newrl = inputsrc1[rlepos];
+            rlepos++;
+        } else {
+            newrl = src_2->runs[xrlepos];
+            xrlepos++;
+        }
+        run_container_append(src_1, newrl, &previousrle);
+    }
+    while (xrlepos < src_2->n_runs) {
+        run_container_append(src_1, src_2->runs[xrlepos], &previousrle);
+        xrlepos++;
+    }
+    while (rlepos < input1nruns) {
+        run_container_append(src_1, inputsrc1[rlepos], &previousrle);
+        rlepos++;
+    }
+}
+
+/* Compute the symmetric difference of `src_1' and `src_2' and write the result
+ * to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void run_container_xor(const run_container_t *src_1,
+                       const run_container_t *src_2, run_container_t *dst) {
+    // don't bother to convert xor with full range into negation
+    // since negation is implemented similarly
+
+    const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
+    if (dst->capacity < neededcapacity)
+        run_container_grow(dst, neededcapacity, false);
+
+    int32_t pos1 = 0;
+    int32_t pos2 = 0;
+    dst->n_runs = 0;
+
+    while ((pos1 < src_1->n_runs) && (pos2 < src_2->n_runs)) {
+        if (src_1->runs[pos1].value <= src_2->runs[pos2].value) {
+            run_container_smart_append_exclusive(dst, src_1->runs[pos1].value,
+                                                 src_1->runs[pos1].length);
+            pos1++;
+        } else {
+            run_container_smart_append_exclusive(dst, src_2->runs[pos2].value,
+                                                 src_2->runs[pos2].length);
+            pos2++;
+        }
+    }
+    while (pos1 < src_1->n_runs) {
+        run_container_smart_append_exclusive(dst, src_1->runs[pos1].value,
+                                             src_1->runs[pos1].length);
+        pos1++;
+    }
+
+    while (pos2 < src_2->n_runs) {
+        run_container_smart_append_exclusive(dst, src_2->runs[pos2].value,
+                                             src_2->runs[pos2].length);
+        pos2++;
+    }
+}
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+void run_container_intersection(const run_container_t *src_1,
+                                const run_container_t *src_2,
+                                run_container_t *dst) {
+    const bool if1 = run_container_is_full(src_1);
+    const bool if2 = run_container_is_full(src_2);
+    if (if1 || if2) {
+        if (if1) {
+            run_container_copy(src_2, dst);
+            return;
+        }
+        if (if2) {
+            run_container_copy(src_1, dst);
+            return;
+        }
+    }
+    // TODO: this could be a lot more efficient, could use SIMD optimizations
+    const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
+    if (dst->capacity < neededcapacity)
+        run_container_grow(dst, neededcapacity, false);
+    dst->n_runs = 0;
+    int32_t rlepos = 0;
+    int32_t xrlepos = 0;
+    int32_t start = src_1->runs[rlepos].value;
+    int32_t end = start + src_1->runs[rlepos].length + 1;
+    int32_t xstart = src_2->runs[xrlepos].value;
+    int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
+    while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
+        if (end <= xstart) {
+            ++rlepos;
+            if (rlepos < src_1->n_runs) {
+                start = src_1->runs[rlepos].value;
+                end = start + src_1->runs[rlepos].length + 1;
+            }
+        } else if (xend <= start) {
+            ++xrlepos;
+            if (xrlepos < src_2->n_runs) {
+                xstart = src_2->runs[xrlepos].value;
+                xend = xstart + src_2->runs[xrlepos].length + 1;
+            }
+        } else {  // they overlap
+            const int32_t lateststart = start > xstart ? start : xstart;
+            int32_t earliestend;
+            if (end == xend) {  // improbable
+                earliestend = end;
+                rlepos++;
+                xrlepos++;
+                if (rlepos < src_1->n_runs) {
+                    start = src_1->runs[rlepos].value;
+                    end = start + src_1->runs[rlepos].length + 1;
+                }
+                if (xrlepos < src_2->n_runs) {
+                    xstart = src_2->runs[xrlepos].value;
+                    xend = xstart + src_2->runs[xrlepos].length + 1;
+                }
+            } else if (end < xend) {
+                earliestend = end;
+                rlepos++;
+                if (rlepos < src_1->n_runs) {
+                    start = src_1->runs[rlepos].value;
+                    end = start + src_1->runs[rlepos].length + 1;
+                }
+
+            } else {  // end > xend
+                earliestend = xend;
+                xrlepos++;
+                if (xrlepos < src_2->n_runs) {
+                    xstart = src_2->runs[xrlepos].value;
+                    xend = xstart + src_2->runs[xrlepos].length + 1;
+                }
+            }
+            dst->runs[dst->n_runs].value = (uint16_t)lateststart;
+            dst->runs[dst->n_runs].length =
+                (uint16_t)(earliestend - lateststart - 1);
+            dst->n_runs++;
+        }
+    }
+}
+
+/* Compute the size of the intersection of src_1 and src_2 . */
+int run_container_intersection_cardinality(const run_container_t *src_1,
+                                           const run_container_t *src_2) {
+    const bool if1 = run_container_is_full(src_1);
+    const bool if2 = run_container_is_full(src_2);
+    if (if1 || if2) {
+        if (if1) {
+            return run_container_cardinality(src_2);
+        }
+        if (if2) {
+            return run_container_cardinality(src_1);
+        }
+    }
+    int answer = 0;
+    int32_t rlepos = 0;
+    int32_t xrlepos = 0;
+    int32_t start = src_1->runs[rlepos].value;
+    int32_t end = start + src_1->runs[rlepos].length + 1;
+    int32_t xstart = src_2->runs[xrlepos].value;
+    int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
+    while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
+        if (end <= xstart) {
+            ++rlepos;
+            if (rlepos < src_1->n_runs) {
+                start = src_1->runs[rlepos].value;
+                end = start + src_1->runs[rlepos].length + 1;
+            }
+        } else if (xend <= start) {
+            ++xrlepos;
+            if (xrlepos < src_2->n_runs) {
+                xstart = src_2->runs[xrlepos].value;
+                xend = xstart + src_2->runs[xrlepos].length + 1;
+            }
+        } else {  // they overlap
+            const int32_t lateststart = start > xstart ? start : xstart;
+            int32_t earliestend;
+            if (end == xend) {  // improbable
+                earliestend = end;
+                rlepos++;
+                xrlepos++;
+                if (rlepos < src_1->n_runs) {
+                    start = src_1->runs[rlepos].value;
+                    end = start + src_1->runs[rlepos].length + 1;
+                }
+                if (xrlepos < src_2->n_runs) {
+                    xstart = src_2->runs[xrlepos].value;
+                    xend = xstart + src_2->runs[xrlepos].length + 1;
+                }
+            } else if (end < xend) {
+                earliestend = end;
+                rlepos++;
+                if (rlepos < src_1->n_runs) {
+                    start = src_1->runs[rlepos].value;
+                    end = start + src_1->runs[rlepos].length + 1;
+                }
+
+            } else {  // end > xend
+                earliestend = xend;
+                xrlepos++;
+                if (xrlepos < src_2->n_runs) {
+                    xstart = src_2->runs[xrlepos].value;
+                    xend = xstart + src_2->runs[xrlepos].length + 1;
+                }
+            }
+            answer += earliestend - lateststart;
+        }
+    }
+    return answer;
+}
+
+bool run_container_intersect(const run_container_t *src_1,
+                             const run_container_t *src_2) {
+    const bool if1 = run_container_is_full(src_1);
+    const bool if2 = run_container_is_full(src_2);
+    if (if1 || if2) {
+        if (if1) {
+            return !run_container_empty(src_2);
+        }
+        if (if2) {
+            return !run_container_empty(src_1);
+        }
+    }
+    int32_t rlepos = 0;
+    int32_t xrlepos = 0;
+    int32_t start = src_1->runs[rlepos].value;
+    int32_t end = start + src_1->runs[rlepos].length + 1;
+    int32_t xstart = src_2->runs[xrlepos].value;
+    int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
+    while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
+        if (end <= xstart) {
+            ++rlepos;
+            if (rlepos < src_1->n_runs) {
+                start = src_1->runs[rlepos].value;
+                end = start + src_1->runs[rlepos].length + 1;
+            }
+        } else if (xend <= start) {
+            ++xrlepos;
+            if (xrlepos < src_2->n_runs) {
+                xstart = src_2->runs[xrlepos].value;
+                xend = xstart + src_2->runs[xrlepos].length + 1;
+            }
+        } else {  // they overlap
+            return true;
+        }
+    }
+    return false;
+}
+
+/* Compute the difference of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+void run_container_andnot(const run_container_t *src_1,
+                          const run_container_t *src_2, run_container_t *dst) {
+    // following Java implementation as of June 2016
+
+    if (dst->capacity < src_1->n_runs + src_2->n_runs)
+        run_container_grow(dst, src_1->n_runs + src_2->n_runs, false);
+
+    dst->n_runs = 0;
+
+    int rlepos1 = 0;
+    int rlepos2 = 0;
+    int32_t start = src_1->runs[rlepos1].value;
+    int32_t end = start + src_1->runs[rlepos1].length + 1;
+    int32_t start2 = src_2->runs[rlepos2].value;
+    int32_t end2 = start2 + src_2->runs[rlepos2].length + 1;
+
+    while ((rlepos1 < src_1->n_runs) && (rlepos2 < src_2->n_runs)) {
+        if (end <= start2) {
+            // output the first run
+            dst->runs[dst->n_runs++] =
+                CROARING_MAKE_RLE16(start, end - start - 1);
+            rlepos1++;
+            if (rlepos1 < src_1->n_runs) {
+                start = src_1->runs[rlepos1].value;
+                end = start + src_1->runs[rlepos1].length + 1;
+            }
+        } else if (end2 <= start) {
+            // exit the second run
+            rlepos2++;
+            if (rlepos2 < src_2->n_runs) {
+                start2 = src_2->runs[rlepos2].value;
+                end2 = start2 + src_2->runs[rlepos2].length + 1;
+            }
+        } else {
+            if (start < start2) {
+                dst->runs[dst->n_runs++] =
+                    CROARING_MAKE_RLE16(start, start2 - start - 1);
+            }
+            if (end2 < end) {
+                start = end2;
+            } else {
+                rlepos1++;
+                if (rlepos1 < src_1->n_runs) {
+                    start = src_1->runs[rlepos1].value;
+                    end = start + src_1->runs[rlepos1].length + 1;
+                }
+            }
+        }
+    }
+    if (rlepos1 < src_1->n_runs) {
+        dst->runs[dst->n_runs++] = CROARING_MAKE_RLE16(start, end - start - 1);
+        rlepos1++;
+        if (rlepos1 < src_1->n_runs) {
+            memcpy(dst->runs + dst->n_runs, src_1->runs + rlepos1,
+                   sizeof(rle16_t) * (src_1->n_runs - rlepos1));
+            dst->n_runs += src_1->n_runs - rlepos1;
+        }
+    }
+}
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void run_container_printf(const run_container_t *cont) {
+    for (int i = 0; i < cont->n_runs; ++i) {
+        uint16_t run_start = cont->runs[i].value;
+        uint16_t le = cont->runs[i].length;
+        printf("[%d,%d]", run_start, run_start + le);
+    }
+}
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit
+ * integers starting at base.
+ */
+void run_container_printf_as_uint32_array(const run_container_t *cont,
+                                          uint32_t base) {
+    if (cont->n_runs == 0) return;
+    {
+        uint32_t run_start = base + cont->runs[0].value;
+        uint16_t le = cont->runs[0].length;
+        printf("%u", run_start);
+        for (uint32_t j = 1; j <= le; ++j) printf(",%u", run_start + j);
+    }
+    for (int32_t i = 1; i < cont->n_runs; ++i) {
+        uint32_t run_start = base + cont->runs[i].value;
+        uint16_t le = cont->runs[i].length;
+        for (uint32_t j = 0; j <= le; ++j) printf(",%u", run_start + j);
+    }
+}
+
+/*
+ * Validate the container. Returns true if valid.
+ */
+bool run_container_validate(const run_container_t *run, const char **reason) {
+    if (run->n_runs < 0) {
+        *reason = "negative run count";
+        return false;
+    }
+    if (run->capacity < 0) {
+        *reason = "negative run capacity";
+        return false;
+    }
+    if (run->capacity < run->n_runs) {
+        *reason = "capacity less than run count";
+        return false;
+    }
+
+    if (run->n_runs == 0) {
+        *reason = "zero run count";
+        return false;
+    }
+    if (run->runs == NULL) {
+        *reason = "NULL runs";
+        return false;
+    }
+
+    // Use uint32_t to avoid overflow issues on ranges that contain UINT16_MAX.
+    uint32_t last_end = 0;
+    for (int i = 0; i < run->n_runs; ++i) {
+        uint32_t start = run->runs[i].value;
+        uint32_t end = start + run->runs[i].length + 1;
+        if (end <= start) {
+            *reason = "run start + length overflow";
+            return false;
+        }
+        if (end > (1 << 16)) {
+            *reason = "run start + length too large";
+            return false;
+        }
+        if (start < last_end) {
+            *reason = "run start less than last end";
+            return false;
+        }
+        if (start == last_end && last_end != 0) {
+            *reason = "run start equal to last end, should have combined";
+            return false;
+        }
+        last_end = end;
+    }
+    return true;
+}
+
+int32_t run_container_write(const run_container_t *container, char *buf) {
+    uint16_t cast_16 = container->n_runs;
+    memcpy(buf, &cast_16, sizeof(uint16_t));
+    memcpy(buf + sizeof(uint16_t), container->runs,
+           container->n_runs * sizeof(rle16_t));
+    return run_container_size_in_bytes(container);
+}
+
+int32_t run_container_read(int32_t cardinality, run_container_t *container,
+                           const char *buf) {
+    (void)cardinality;
+    uint16_t cast_16;
+    memcpy(&cast_16, buf, sizeof(uint16_t));
+    container->n_runs = cast_16;
+    if (container->n_runs > container->capacity)
+        run_container_grow(container, container->n_runs, false);
+    if (container->n_runs > 0) {
+        memcpy(container->runs, buf + sizeof(uint16_t),
+               container->n_runs * sizeof(rle16_t));
+    }
+    return run_container_size_in_bytes(container);
+}
+
+bool run_container_iterate(const run_container_t *cont, uint32_t base,
+                           roaring_iterator iterator, void *ptr) {
+    for (int i = 0; i < cont->n_runs; ++i) {
+        uint32_t run_start = base + cont->runs[i].value;
+        uint16_t le = cont->runs[i].length;
+
+        for (int j = 0; j <= le; ++j)
+            if (!iterator(run_start + j, ptr)) return false;
+    }
+    return true;
+}
+
+bool run_container_iterate64(const run_container_t *cont, uint32_t base,
+                             roaring_iterator64 iterator, uint64_t high_bits,
+                             void *ptr) {
+    for (int i = 0; i < cont->n_runs; ++i) {
+        uint32_t run_start = base + cont->runs[i].value;
+        uint16_t le = cont->runs[i].length;
+
+        for (int j = 0; j <= le; ++j)
+            if (!iterator(high_bits | (uint64_t)(run_start + j), ptr))
+                return false;
+    }
+    return true;
+}
+
+bool run_container_is_subset(const run_container_t *container1,
+                             const run_container_t *container2) {
+    int i1 = 0, i2 = 0;
+    while (i1 < container1->n_runs && i2 < container2->n_runs) {
+        int start1 = container1->runs[i1].value;
+        int stop1 = start1 + container1->runs[i1].length;
+        int start2 = container2->runs[i2].value;
+        int stop2 = start2 + container2->runs[i2].length;
+        if (start1 < start2) {
+            return false;
+        } else {  // start1 >= start2
+            if (stop1 < stop2) {
+                i1++;
+            } else if (stop1 == stop2) {
+                i1++;
+                i2++;
+            } else {  // stop1 > stop2
+                i2++;
+            }
+        }
+    }
+    if (i1 == container1->n_runs) {
+        return true;
+    } else {
+        return false;
+    }
+}
+
+// TODO: write smart_append_exclusive version to match the overloaded 1 param
+// Java version (or  is it even used?)
+
+// follows the Java implementation closely
+// length is the rle-value.  Ie, run [10,12) uses a length value 1.
+void run_container_smart_append_exclusive(run_container_t *src,
+                                          const uint16_t start,
+                                          const uint16_t length) {
+    int old_end;
+    rle16_t *last_run = src->n_runs ? src->runs + (src->n_runs - 1) : NULL;
+    rle16_t *appended_last_run = src->runs + src->n_runs;
+
+    if (!src->n_runs ||
+        (start > (old_end = last_run->value + last_run->length + 1))) {
+        *appended_last_run = CROARING_MAKE_RLE16(start, length);
+        src->n_runs++;
+        return;
+    }
+    if (old_end == start) {
+        // we merge
+        last_run->length += (length + 1);
+        return;
+    }
+    int new_end = start + length + 1;
+
+    if (start == last_run->value) {
+        // wipe out previous
+        if (new_end < old_end) {
+            *last_run = CROARING_MAKE_RLE16(new_end, old_end - new_end - 1);
+            return;
+        } else if (new_end > old_end) {
+            *last_run = CROARING_MAKE_RLE16(old_end, new_end - old_end - 1);
+            return;
+        } else {
+            src->n_runs--;
+            return;
+        }
+    }
+    last_run->length = start - last_run->value - 1;
+    if (new_end < old_end) {
+        *appended_last_run =
+            CROARING_MAKE_RLE16(new_end, old_end - new_end - 1);
+        src->n_runs++;
+    } else if (new_end > old_end) {
+        *appended_last_run =
+            CROARING_MAKE_RLE16(old_end, new_end - old_end - 1);
+        src->n_runs++;
+    }
+}
+
+bool run_container_select(const run_container_t *container,
+                          uint32_t *start_rank, uint32_t rank,
+                          uint32_t *element) {
+    for (int i = 0; i < container->n_runs; i++) {
+        uint16_t length = container->runs[i].length;
+        if (rank <= *start_rank + length) {
+            uint16_t value = container->runs[i].value;
+            *element = value + rank - (*start_rank);
+            return true;
+        } else
+            *start_rank += length + 1;
+    }
+    return false;
+}
+
+int run_container_rank(const run_container_t *container, uint16_t x) {
+    int sum = 0;
+    uint32_t x32 = x;
+    for (int i = 0; i < container->n_runs; i++) {
+        uint32_t startpoint = container->runs[i].value;
+        uint32_t length = container->runs[i].length;
+        uint32_t endpoint = length + startpoint;
+        if (x <= endpoint) {
+            if (x < startpoint) break;
+            return sum + (x32 - startpoint) + 1;
+        } else {
+            sum += length + 1;
+        }
+    }
+    return sum;
+}
+uint32_t run_container_rank_many(const run_container_t *container,
+                                 uint64_t start_rank, const uint32_t *begin,
+                                 const uint32_t *end, uint64_t *ans) {
+    const uint16_t high = (uint16_t)((*begin) >> 16);
+    const uint32_t *iter = begin;
+    int sum = 0;
+    int i = 0;
+    for (; iter != end; iter++) {
+        uint32_t x = *iter;
+        uint16_t xhigh = (uint16_t)(x >> 16);
+        if (xhigh != high) return iter - begin;  // stop at next container
+
+        uint32_t x32 = x & 0xFFFF;
+        while (i < container->n_runs) {
+            uint32_t startpoint = container->runs[i].value;
+            uint32_t length = container->runs[i].length;
+            uint32_t endpoint = length + startpoint;
+            if (x32 <= endpoint) {
+                if (x32 < startpoint) {
+                    *(ans++) = start_rank + sum;
+                } else {
+                    *(ans++) = start_rank + sum + (x32 - startpoint) + 1;
+                }
+                break;
+            } else {
+                sum += length + 1;
+                i++;
+            }
+        }
+        if (i >= container->n_runs) *(ans++) = start_rank + sum;
+    }
+
+    return iter - begin;
+}
+
+int run_container_get_index(const run_container_t *container, uint16_t x) {
+    if (run_container_contains(container, x)) {
+        int sum = 0;
+        uint32_t x32 = x;
+        for (int i = 0; i < container->n_runs; i++) {
+            uint32_t startpoint = container->runs[i].value;
+            uint32_t length = container->runs[i].length;
+            uint32_t endpoint = length + startpoint;
+            if (x <= endpoint) {
+                if (x < startpoint) break;
+                return sum + (x32 - startpoint);
+            } else {
+                sum += length + 1;
+            }
+        }
+        return sum - 1;
+    } else {
+        return -1;
+    }
+}
+
+#if defined(CROARING_IS_X64) && CROARING_COMPILER_SUPPORTS_AVX512
+
+CROARING_TARGET_AVX512
+ALLOW_UNALIGNED
+/* Get the cardinality of `run'. Requires an actual computation. */
+static inline int _avx512_run_container_cardinality(
+    const run_container_t *run) {
+    const int32_t n_runs = run->n_runs;
+    const rle16_t *runs = run->runs;
+
+    /* by initializing with n_runs, we omit counting the +1 for each pair. */
+    int sum = n_runs;
+    int32_t k = 0;
+    const int32_t step = sizeof(__m512i) / sizeof(rle16_t);
+    if (n_runs > step) {
+        __m512i total = _mm512_setzero_si512();
+        for (; k + step <= n_runs; k += step) {
+            __m512i ymm1 = _mm512_loadu_si512((const __m512i *)(runs + k));
+            __m512i justlengths = _mm512_srli_epi32(ymm1, 16);
+            total = _mm512_add_epi32(total, justlengths);
+        }
+
+        __m256i lo = _mm512_extracti32x8_epi32(total, 0);
+        __m256i hi = _mm512_extracti32x8_epi32(total, 1);
+
+        // a store might be faster than extract?
+        uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)];
+        _mm256_storeu_si256((__m256i *)buffer, lo);
+        sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) +
+               (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]);
+
+        _mm256_storeu_si256((__m256i *)buffer, hi);
+        sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) +
+               (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]);
+    }
+    for (; k < n_runs; ++k) {
+        sum += runs[k].length;
+    }
+
+    return sum;
+}
+
+CROARING_UNTARGET_AVX512
+
+CROARING_TARGET_AVX2
+ALLOW_UNALIGNED
+/* Get the cardinality of `run'. Requires an actual computation. */
+static inline int _avx2_run_container_cardinality(const run_container_t *run) {
+    const int32_t n_runs = run->n_runs;
+    const rle16_t *runs = run->runs;
+
+    /* by initializing with n_runs, we omit counting the +1 for each pair. */
+    int sum = n_runs;
+    int32_t k = 0;
+    const int32_t step = sizeof(__m256i) / sizeof(rle16_t);
+    if (n_runs > step) {
+        __m256i total = _mm256_setzero_si256();
+        for (; k + step <= n_runs; k += step) {
+            __m256i ymm1 = _mm256_lddqu_si256((const __m256i *)(runs + k));
+            __m256i justlengths = _mm256_srli_epi32(ymm1, 16);
+            total = _mm256_add_epi32(total, justlengths);
+        }
+        // a store might be faster than extract?
+        uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)];
+        _mm256_storeu_si256((__m256i *)buffer, total);
+        sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) +
+               (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]);
+    }
+    for (; k < n_runs; ++k) {
+        sum += runs[k].length;
+    }
+
+    return sum;
+}
+
+ALLOW_UNALIGNED
+int _avx2_run_container_to_uint32_array(void *vout, const run_container_t 
*cont,
+                                        uint32_t base) {
+    int outpos = 0;
+    uint32_t *out = (uint32_t *)vout;
+
+    for (int i = 0; i < cont->n_runs; ++i) {
+        uint32_t run_start = base + cont->runs[i].value;
+        uint16_t le = cont->runs[i].length;
+        if (le < 8) {
+            for (int j = 0; j <= le; ++j) {
+                uint32_t val = run_start + j;
+                memcpy(out + outpos, &val,
+                       sizeof(uint32_t));  // should be compiled as a MOV on 
x64
+                outpos++;
+            }
+        } else {
+            int j = 0;
+            __m256i run_start_v = _mm256_set1_epi32(run_start);
+            // [8,8,8,8....]
+            __m256i inc = _mm256_set1_epi32(8);
+            // used for generate sequence:
+            // [0, 1, 2, 3...], [8, 9, 10,...]
+            __m256i delta = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
+            for (j = 0; j + 8 <= le; j += 8) {
+                __m256i val_v = _mm256_add_epi32(run_start_v, delta);
+                _mm256_storeu_si256((__m256i *)(out + outpos), val_v);
+                delta = _mm256_add_epi32(inc, delta);
+                outpos += 8;
+            }
+            for (; j <= le; ++j) {
+                uint32_t val = run_start + j;
+                memcpy(out + outpos, &val,
+                       sizeof(uint32_t));  // should be compiled as a MOV on 
x64
+                outpos++;
+            }
+        }
+    }
+    return outpos;
+}
+
+CROARING_UNTARGET_AVX2
+
+/* Get the cardinality of `run'. Requires an actual computation. */
+static inline int _scalar_run_container_cardinality(
+    const run_container_t *run) {
+    const int32_t n_runs = run->n_runs;
+    const rle16_t *runs = run->runs;
+
+    /* by initializing with n_runs, we omit counting the +1 for each pair. */
+    int sum = n_runs;
+    for (int k = 0; k < n_runs; ++k) {
+        sum += runs[k].length;
+    }
+
+    return sum;
+}
+
+int run_container_cardinality(const run_container_t *run) {
+#if CROARING_COMPILER_SUPPORTS_AVX512
+    if (croaring_hardware_support() & ROARING_SUPPORTS_AVX512) {
+        return _avx512_run_container_cardinality(run);
+    } else
+#endif
+        if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+        return _avx2_run_container_cardinality(run);
+    } else {
+        return _scalar_run_container_cardinality(run);
+    }
+}
+
+int _scalar_run_container_to_uint32_array(void *vout,
+                                          const run_container_t *cont,
+                                          uint32_t base) {
+    int outpos = 0;
+    uint32_t *out = (uint32_t *)vout;
+    for (int i = 0; i < cont->n_runs; ++i) {
+        uint32_t run_start = base + cont->runs[i].value;
+        uint16_t le = cont->runs[i].length;
+        for (int j = 0; j <= le; ++j) {
+            uint32_t val = run_start + j;
+            memcpy(out + outpos, &val,
+                   sizeof(uint32_t));  // should be compiled as a MOV on x64
+            outpos++;
+        }
+    }
+    return outpos;
+}
+
+int run_container_to_uint32_array(void *vout, const run_container_t *cont,
+                                  uint32_t base) {
+    if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
+        return _avx2_run_container_to_uint32_array(vout, cont, base);
+    } else {
+        return _scalar_run_container_to_uint32_array(vout, cont, base);
+    }
+}
+
+#else
+
+/* Get the cardinality of `run'. Requires an actual computation. */
+ALLOW_UNALIGNED
+int run_container_cardinality(const run_container_t *run) {
+    const int32_t n_runs = run->n_runs;
+    const rle16_t *runs = run->runs;
+
+    /* by initializing with n_runs, we omit counting the +1 for each pair. */
+    int sum = n_runs;
+    for (int k = 0; k < n_runs; ++k) {
+        sum += runs[k].length;
+    }
+
+    return sum;
+}
+
+ALLOW_UNALIGNED
+int run_container_to_uint32_array(void *vout, const run_container_t *cont,
+                                  uint32_t base) {
+    int outpos = 0;
+    uint32_t *out = (uint32_t *)vout;
+    for (int i = 0; i < cont->n_runs; ++i) {
+        uint32_t run_start = base + cont->runs[i].value;
+        uint16_t le = cont->runs[i].length;
+        for (int j = 0; j <= le; ++j) {
+            uint32_t val = run_start + j;
+            memcpy(out + outpos, &val,
+                   sizeof(uint32_t));  // should be compiled as a MOV on x64
+            outpos++;
+        }
+    }
+    return outpos;
+}
+
+#endif
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic pop
+#endif/* end file src/containers/run.c */
+/* begin file src/isadetection.c */
+
+/* From
+https://github.com/endorno/pytorch/blob/master/torch/lib/TH/generic/simd/simd.h
+Highly modified.
+
+Copyright (c) 2016-     Facebook, Inc            (Adam Paszke)
+Copyright (c) 2014-     Facebook, Inc            (Soumith Chintala)
+Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
+Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
+Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
+Copyright (c) 2011-2013 NYU                      (Clement Farabet)
+Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou,
+Iain Melvin, Jason Weston) Copyright (c) 2006      Idiap Research Institute
+(Samy Bengio) Copyright (c) 2001-2004 Idiap Research Institute (Ronan 
Collobert,
+Samy Bengio, Johnny Mariethoz)
+
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+1. Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+2. Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories
+America and IDIAP Research Institute nor the names of its contributors may be
+   used to endorse or promote products derived from this software without
+   specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdlib.h>
+
+// Binaries produced by Visual Studio 19.38 with solely AVX2 routines
+// can compile to AVX-512 thus causing crashes on non-AVX-512 systems.
+// This appears to affect VS 17.8 and 17.9. We disable AVX-512 and AVX2
+// on these systems. It seems that ClangCL is not affected.
+// https://github.com/RoaringBitmap/CRoaring/pull/603
+#ifndef __clang__
+#if _MSC_VER == 1938
+#define ROARING_DISABLE_AVX 1
+#endif  // _MSC_VER == 1938
+#endif  // __clang__
+
+// We need portability.h to be included first, see
+// https://github.com/RoaringBitmap/CRoaring/issues/394
+#if CROARING_REGULAR_VISUAL_STUDIO
+#include <intrin.h>
+#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID)
+#include <cpuid.h>
+#endif  // CROARING_REGULAR_VISUAL_STUDIO
+
+#if CROARING_IS_X64
+#ifndef CROARING_COMPILER_SUPPORTS_AVX512
+#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
+#endif  // CROARING_COMPILER_SUPPORTS_AVX512
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+namespace roaring {
+namespace internal {
+#endif
+enum croaring_instruction_set {
+    CROARING_DEFAULT = 0x0,
+    CROARING_NEON = 0x1,
+    CROARING_AVX2 = 0x4,
+    CROARING_SSE42 = 0x8,
+    CROARING_PCLMULQDQ = 0x10,
+    CROARING_BMI1 = 0x20,
+    CROARING_BMI2 = 0x40,
+    CROARING_ALTIVEC = 0x80,
+    CROARING_AVX512F = 0x100,
+    CROARING_AVX512DQ = 0x200,
+    CROARING_AVX512BW = 0x400,
+    CROARING_AVX512VBMI2 = 0x800,
+    CROARING_AVX512BITALG = 0x1000,
+    CROARING_AVX512VPOPCNTDQ = 0x2000,
+    CROARING_UNINITIALIZED = 0x8000
+};
+
+#if CROARING_COMPILER_SUPPORTS_AVX512
+unsigned int CROARING_AVX512_REQUIRED =
+    (CROARING_AVX512F | CROARING_AVX512DQ | CROARING_AVX512BW |
+     CROARING_AVX512VBMI2 | CROARING_AVX512BITALG | CROARING_AVX512VPOPCNTDQ);
+#endif
+
+#if defined(__x86_64__) || defined(_M_AMD64)  // x64
+
+static inline void cpuid(uint32_t *eax, uint32_t *ebx, uint32_t *ecx,
+                         uint32_t *edx) {
+#if CROARING_REGULAR_VISUAL_STUDIO
+    int cpu_info[4];
+    __cpuidex(cpu_info, *eax, *ecx);
+    *eax = cpu_info[0];
+    *ebx = cpu_info[1];
+    *ecx = cpu_info[2];
+    *edx = cpu_info[3];
+#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID)
+    uint32_t level = *eax;
+    __get_cpuid(level, eax, ebx, ecx, edx);
+#else
+    uint32_t a = *eax, b, c = *ecx, d;
+    __asm__("cpuid\n\t" : "+a"(a), "=b"(b), "+c"(c), "=d"(d));
+    *eax = a;
+    *ebx = b;
+    *ecx = c;
+    *edx = d;
+#endif
+}
+
+static inline uint64_t xgetbv(void) {
+#if defined(_MSC_VER)
+    return _xgetbv(0);
+#else
+    uint32_t xcr0_lo, xcr0_hi;
+    __asm__("xgetbv\n\t" : "=a"(xcr0_lo), "=d"(xcr0_hi) : "c"(0));
+    return xcr0_lo | ((uint64_t)xcr0_hi << 32);
+#endif
+}
+
+/**
+ * This is a relatively expensive function but it will get called at most
+ * *once* per compilation units. Normally, the CRoaring library is built
+ * as one compilation unit.
+ */
+static inline uint32_t dynamic_croaring_detect_supported_architectures(void) {
+    uint32_t eax, ebx, ecx, edx;
+    uint32_t host_isa = 0x0;
+    // Can be found on Intel ISA Reference for CPUID
+    static uint32_t cpuid_avx2_bit =
+        1 << 5;  ///< @private Bit 5 of EBX for EAX=0x7
+    static uint32_t cpuid_bmi1_bit =
+        1 << 3;  ///< @private bit 3 of EBX for EAX=0x7
+    static uint32_t cpuid_bmi2_bit =
+        1 << 8;  ///< @private bit 8 of EBX for EAX=0x7
+    static uint32_t cpuid_avx512f_bit =
+        1 << 16;  ///< @private bit 16 of EBX for EAX=0x7
+    static uint32_t cpuid_avx512dq_bit =
+        1 << 17;  ///< @private bit 17 of EBX for EAX=0x7
+    static uint32_t cpuid_avx512bw_bit =
+        1 << 30;  ///< @private bit 30 of EBX for EAX=0x7
+    static uint32_t cpuid_avx512vbmi2_bit =
+        1 << 6;  ///< @private bit 6 of ECX for EAX=0x7
+    static uint32_t cpuid_avx512bitalg_bit =
+        1 << 12;  ///< @private bit 12 of ECX for EAX=0x7
+    static uint32_t cpuid_avx512vpopcntdq_bit =
+        1 << 14;  ///< @private bit 14 of ECX for EAX=0x7
+    static uint64_t cpuid_avx256_saved = 1 << 2;  ///< @private bit 2 = AVX
+    static uint64_t cpuid_avx512_saved =
+        7 << 5;  ///< @private bits 5,6,7 = opmask, ZMM_hi256, hi16_ZMM
+    static uint32_t cpuid_sse42_bit =
+        1 << 20;  ///< @private bit 20 of ECX for EAX=0x1
+    static uint32_t cpuid_osxsave =
+        (1 << 26) | (1 << 27);  ///< @private bits 26+27 of ECX for EAX=0x1
+    static uint32_t cpuid_pclmulqdq_bit =
+        1 << 1;  ///< @private bit  1 of ECX for EAX=0x1
+
+    // EBX for EAX=0x1
+    eax = 0x1;
+    ecx = 0x0;
+    cpuid(&eax, &ebx, &ecx, &edx);
+
+    if (ecx & cpuid_sse42_bit) {
+        host_isa |= CROARING_SSE42;
+    } else {
+        return host_isa;  // everything after is redundant
+    }
+
+    if (ecx & cpuid_pclmulqdq_bit) {
+        host_isa |= CROARING_PCLMULQDQ;
+    }
+
+    if ((ecx & cpuid_osxsave) != cpuid_osxsave) {
+        return host_isa;
+    }
+
+    // xgetbv for checking if the OS saves registers
+    uint64_t xcr0 = xgetbv();
+
+    if ((xcr0 & cpuid_avx256_saved) == 0) {
+        return host_isa;
+    }
+
+    // ECX for EAX=0x7
+    eax = 0x7;
+    ecx = 0x0;
+    cpuid(&eax, &ebx, &ecx, &edx);
+    if (ebx & cpuid_avx2_bit) {
+        host_isa |= CROARING_AVX2;
+    }
+    if (ebx & cpuid_bmi1_bit) {
+        host_isa |= CROARING_BMI1;
+    }
+
+    if (ebx & cpuid_bmi2_bit) {
+        host_isa |= CROARING_BMI2;
+    }
+
+    if (!((xcr0 & cpuid_avx512_saved) == cpuid_avx512_saved)) {
+        return host_isa;
+    }
+
+    if (ebx & cpuid_avx512f_bit) {
+        host_isa |= CROARING_AVX512F;
+    }
+
+    if (ebx & cpuid_avx512bw_bit) {
+        host_isa |= CROARING_AVX512BW;
+    }
+
+    if (ebx & cpuid_avx512dq_bit) {
+        host_isa |= CROARING_AVX512DQ;
+    }
+
+    if (ecx & cpuid_avx512vbmi2_bit) {
+        host_isa |= CROARING_AVX512VBMI2;
+    }
+
+    if (ecx & cpuid_avx512bitalg_bit) {
+        host_isa |= CROARING_AVX512BITALG;
+    }
+
+    if (ecx & cpuid_avx512vpopcntdq_bit) {
+        host_isa |= CROARING_AVX512VPOPCNTDQ;
+    }
+
+    return host_isa;
+}
+
+#endif  // end SIMD extension detection code
+
+#if defined(__x86_64__) || defined(_M_AMD64)  // x64
+
+#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_CPP
+static inline uint32_t croaring_detect_supported_architectures(void) {
+    // thread-safe as per the C++11 standard.
+    static uint32_t buffer = dynamic_croaring_detect_supported_architectures();
+    return buffer;
+}
+#elif CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C
+static uint32_t croaring_detect_supported_architectures(void) {
+    // we use an atomic for thread safety
+    static _Atomic uint32_t buffer = CROARING_UNINITIALIZED;
+    if (buffer == CROARING_UNINITIALIZED) {
+        // atomicity is sufficient
+        buffer = dynamic_croaring_detect_supported_architectures();
+    }
+    return buffer;
+}
+#else
+// If we do not have atomics, we do the best we can.
+static inline uint32_t croaring_detect_supported_architectures(void) {
+    static uint32_t buffer = CROARING_UNINITIALIZED;
+    if (buffer == CROARING_UNINITIALIZED) {
+        buffer = dynamic_croaring_detect_supported_architectures();
+    }
+    return buffer;
+}
+#endif  // CROARING_C_ATOMIC
+
+#ifdef ROARING_DISABLE_AVX
+
+int croaring_hardware_support(void) { return 0; }
+
+#elif defined(__AVX512F__) && defined(__AVX512DQ__) &&   \
+    defined(__AVX512BW__) && defined(__AVX512VBMI2__) && \
+    defined(__AVX512BITALG__) && defined(__AVX512VPOPCNTDQ__)
+int croaring_hardware_support(void) {
+    return ROARING_SUPPORTS_AVX2 | ROARING_SUPPORTS_AVX512;
+}
+#elif defined(__AVX2__)
+
+int croaring_hardware_support(void) {
+    static
+#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C
+        _Atomic
+#endif
+        int support = 0xFFFFFFF;
+    if (support == 0xFFFFFFF) {
+        bool avx512_support = false;
+#if CROARING_COMPILER_SUPPORTS_AVX512
+        avx512_support =
+            ((croaring_detect_supported_architectures() &
+              CROARING_AVX512_REQUIRED) == CROARING_AVX512_REQUIRED);
+#endif
+        support = ROARING_SUPPORTS_AVX2 |
+                  (avx512_support ? ROARING_SUPPORTS_AVX512 : 0);
+    }
+    return support;
+}
+#else
+
+int croaring_hardware_support(void) {
+    static
+#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C
+        _Atomic
+#endif
+        int support = 0xFFFFFFF;
+    if (support == 0xFFFFFFF) {
+        bool has_avx2 = (croaring_detect_supported_architectures() &
+                         CROARING_AVX2) == CROARING_AVX2;
+        bool has_avx512 = false;
+#if CROARING_COMPILER_SUPPORTS_AVX512
+        has_avx512 = (croaring_detect_supported_architectures() &
+                      CROARING_AVX512_REQUIRED) == CROARING_AVX512_REQUIRED;
+#endif  // CROARING_COMPILER_SUPPORTS_AVX512
+        support = (has_avx2 ? ROARING_SUPPORTS_AVX2 : 0) |
+                  (has_avx512 ? ROARING_SUPPORTS_AVX512 : 0);
+    }
+    return support;
+}
+#endif
+
+#endif  // defined(__x86_64__) || defined(_M_AMD64) // x64
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring { namespace internal {
+#endif
+/* end file src/isadetection.c */
+/* begin file src/memory.c */
+#include <stdlib.h>
+
+
+// without the following, we get lots of warnings about posix_memalign
+#ifndef __cplusplus
+extern int posix_memalign(void** __memptr, size_t __alignment, size_t __size);
+#endif  //__cplusplus // C++ does not have a well defined signature
+
+// portable version of  posix_memalign
+static void* roaring_bitmap_aligned_malloc(size_t alignment, size_t size) {
+    void* p;
+#ifdef _MSC_VER
+    p = _aligned_malloc(size, alignment);
+#elif defined(__MINGW32__) || defined(__MINGW64__)
+    p = __mingw_aligned_malloc(size, alignment);
+#else
+    // somehow, if this is used before including "x86intrin.h", it creates an
+    // implicit defined warning.
+    if (posix_memalign(&p, alignment, size) != 0) return NULL;
+#endif
+    return p;
+}
+
+static void roaring_bitmap_aligned_free(void* memblock) {
+#ifdef _MSC_VER
+    _aligned_free(memblock);
+#elif defined(__MINGW32__) || defined(__MINGW64__)
+    __mingw_aligned_free(memblock);
+#else
+    free(memblock);
+#endif
+}
+
+static roaring_memory_t global_memory_hook = {
+    .malloc = malloc,
+    .realloc = realloc,
+    .calloc = calloc,
+    .free = free,
+    .aligned_malloc = roaring_bitmap_aligned_malloc,
+    .aligned_free = roaring_bitmap_aligned_free,
+};
+
+void roaring_init_memory_hook(roaring_memory_t memory_hook) {
+    global_memory_hook = memory_hook;
+}
+
+void* roaring_malloc(size_t n) { return global_memory_hook.malloc(n); }
+
+void* roaring_realloc(void* p, size_t new_sz) {
+    return global_memory_hook.realloc(p, new_sz);
+}
+
+void* roaring_calloc(size_t n_elements, size_t element_size) {
+    return global_memory_hook.calloc(n_elements, element_size);
+}
+
+void roaring_free(void* p) { global_memory_hook.free(p); }
+
+void* roaring_aligned_malloc(size_t alignment, size_t size) {
+    return global_memory_hook.aligned_malloc(alignment, size);
+}
+
+void roaring_aligned_free(void* p) { global_memory_hook.aligned_free(p); }
+/* end file src/memory.c */
+/* begin file src/roaring.c */
+#include <assert.h>
+#include <inttypes.h>
+#include <limits.h>
+#include <stdarg.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <string.h>
+
+
+// Include after roaring.h
+
+#ifdef __cplusplus
+using namespace ::roaring::internal;
+
+extern "C" {
+namespace roaring {
+namespace api {
+#endif
+
+#define CROARING_SERIALIZATION_ARRAY_UINT32 1
+#define CROARING_SERIALIZATION_CONTAINER 2
+extern inline int roaring_trailing_zeroes(unsigned long long input_num);
+extern inline int roaring_leading_zeroes(unsigned long long input_num);
+extern inline void roaring_bitmap_init_cleared(roaring_bitmap_t *r);
+extern inline bool roaring_bitmap_get_copy_on_write(const roaring_bitmap_t *r);
+extern inline void roaring_bitmap_set_copy_on_write(roaring_bitmap_t *r,
+                                                    bool cow);
+extern inline roaring_bitmap_t *roaring_bitmap_create(void);
+extern inline void roaring_bitmap_add_range(roaring_bitmap_t *r, uint64_t min,
+                                            uint64_t max);
+extern inline void roaring_bitmap_remove_range(roaring_bitmap_t *r,
+                                               uint64_t min, uint64_t max);
+
+static inline bool is_cow(const roaring_bitmap_t *r) {
+    return r->high_low_container.flags & ROARING_FLAG_COW;
+}
+static inline bool is_frozen(const roaring_bitmap_t *r) {
+    return r->high_low_container.flags & ROARING_FLAG_FROZEN;
+}
+
+// this is like roaring_bitmap_add, but it populates pointer arguments in such 
a
+// way
+// that we can recover the container touched, which, in turn can be used to
+// accelerate some functions (when you repeatedly need to add to the same
+// container)
+static inline container_t *containerptr_roaring_bitmap_add(roaring_bitmap_t *r,
+                                                           uint32_t val,
+                                                           uint8_t *type,
+                                                           int *index) {
+    roaring_array_t *ra = &r->high_low_container;
+
+    uint16_t hb = val >> 16;
+    const int i = ra_get_index(ra, hb);
+    if (i >= 0) {
+        ra_unshare_container_at_index(ra, (uint16_t)i);
+        container_t *c = ra_get_container_at_index(ra, (uint16_t)i, type);
+        uint8_t new_type = *type;
+        container_t *c2 = container_add(c, val & 0xFFFF, *type, &new_type);
+        *index = i;
+        if (c2 != c) {
+            container_free(c, *type);
+            ra_set_container_at_index(ra, i, c2, new_type);
+            *type = new_type;
+            return c2;
+        } else {
+            return c;
+        }
+    } else {
+        array_container_t *new_ac = array_container_create();
+        container_t *c =
+            container_add(new_ac, val & 0xFFFF, ARRAY_CONTAINER_TYPE, type);
+        // we could just assume that it stays an array container
+        ra_insert_new_key_value_at(ra, -i - 1, hb, c, *type);
+        *index = -i - 1;
+        return c;
+    }
+}
+
+roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap) {
+    roaring_bitmap_t *ans =
+        (roaring_bitmap_t *)roaring_malloc(sizeof(roaring_bitmap_t));
+    if (!ans) {
+        return NULL;
+    }
+    bool is_ok = ra_init_with_capacity(&ans->high_low_container, cap);
+    if (!is_ok) {
+        roaring_free(ans);
+        return NULL;
+    }
+    return ans;
+}
+
+bool roaring_bitmap_init_with_capacity(roaring_bitmap_t *r, uint32_t cap) {
+    return ra_init_with_capacity(&r->high_low_container, cap);
+}
+
+static inline void add_bulk_impl(roaring_bitmap_t *r,
+                                 roaring_bulk_context_t *context,
+                                 uint32_t val) {
+    uint16_t key = val >> 16;
+    if (context->container == NULL || context->key != key) {
+        uint8_t typecode;
+        int idx;
+        context->container =
+            containerptr_roaring_bitmap_add(r, val, &typecode, &idx);
+        context->typecode = typecode;
+        context->idx = idx;
+        context->key = key;
+    } else {
+        // no need to seek the container, it is at hand
+        // because we already have the container at hand, we can do the
+        // insertion directly, bypassing the roaring_bitmap_add call
+        uint8_t new_typecode;
+        container_t *container2 = container_add(
+            context->container, val & 0xFFFF, context->typecode, 
&new_typecode);
+        if (container2 != context->container) {
+            // rare instance when we need to change the container type
+            container_free(context->container, context->typecode);
+            ra_set_container_at_index(&r->high_low_container, context->idx,
+                                      container2, new_typecode);
+            context->typecode = new_typecode;
+            context->container = container2;
+        }
+    }
+}
+
+void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args,
+                             const uint32_t *vals) {
+    uint32_t val;
+    const uint32_t *start = vals;
+    const uint32_t *end = vals + n_args;
+    const uint32_t *current_val = start;
+
+    if (n_args == 0) {
+        return;
+    }
+
+    uint8_t typecode;
+    int idx;
+    container_t *container;
+    val = *current_val;
+    container = containerptr_roaring_bitmap_add(r, val, &typecode, &idx);
+    roaring_bulk_context_t context = {container, idx, (uint16_t)(val >> 16),
+                                      typecode};
+
+    for (; current_val != end; current_val++) {
+        memcpy(&val, current_val, sizeof(val));
+        add_bulk_impl(r, &context, val);
+    }
+}
+
+void roaring_bitmap_add_bulk(roaring_bitmap_t *r,
+                             roaring_bulk_context_t *context, uint32_t val) {
+    add_bulk_impl(r, context, val);
+}
+
+bool roaring_bitmap_contains_bulk(const roaring_bitmap_t *r,
+                                  roaring_bulk_context_t *context,
+                                  uint32_t val) {
+    uint16_t key = val >> 16;
+    if (context->container == NULL || context->key != key) {
+        int32_t start_idx = -1;
+        if (context->container != NULL && context->key < key) {
+            start_idx = context->idx;
+        }
+        int idx = ra_advance_until(&r->high_low_container, key, start_idx);
+        if (idx == ra_get_size(&r->high_low_container)) {
+            return false;
+        }
+        uint8_t typecode;
+        context->container = ra_get_container_at_index(
+            &r->high_low_container, (uint16_t)idx, &typecode);
+        context->typecode = typecode;
+        context->idx = idx;
+        context->key =
+            ra_get_key_at_index(&r->high_low_container, (uint16_t)idx);
+        // ra_advance_until finds the next key >= the target, we found a later
+        // container.
+        if (context->key != key) {
+            return false;
+        }
+    }
+    // context is now set up
+    return container_contains(context->container, val & 0xFFFF,
+                              context->typecode);
+}
+
+roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals) {
+    roaring_bitmap_t *answer = roaring_bitmap_create();
+    roaring_bitmap_add_many(answer, n_args, vals);
+    return answer;
+}
+
+roaring_bitmap_t *roaring_bitmap_of(size_t n_args, ...) {
+    // todo: could be greatly optimized but we do not expect this call to ever
+    // include long lists
+    roaring_bitmap_t *answer = roaring_bitmap_create();
+    roaring_bulk_context_t context = CROARING_ZERO_INITIALIZER;
+    va_list ap;
+    va_start(ap, n_args);
+    for (size_t i = 0; i < n_args; i++) {
+        uint32_t val = va_arg(ap, uint32_t);
+        roaring_bitmap_add_bulk(answer, &context, val);
+    }
+    va_end(ap);
+    return answer;
+}
+
+static inline uint64_t minimum_uint64(uint64_t a, uint64_t b) {
+    return (a < b) ? a : b;
+}
+
+roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max,
+                                            uint32_t step) {
+    if (max >= UINT64_C(0x100000000)) {
+        max = UINT64_C(0x100000000);
+    }
+    if (step == 0) return NULL;
+    if (max <= min) return NULL;
+    roaring_bitmap_t *answer = roaring_bitmap_create();
+    if (step >= (1 << 16)) {
+        for (uint32_t value = (uint32_t)min; value < max; value += step) {
+            roaring_bitmap_add(answer, value);
+        }
+        return answer;
+    }
+    uint64_t min_tmp = min;
+    do {
+        uint32_t key = (uint32_t)min_tmp >> 16;
+        uint32_t container_min = min_tmp & 0xFFFF;
+        uint32_t container_max =
+            (uint32_t)minimum_uint64(max - (key << 16), 1 << 16);
+        uint8_t type;
+        container_t *container = container_from_range(
+            &type, container_min, container_max, (uint16_t)step);
+        ra_append(&answer->high_low_container, (uint16_t)key, container, type);
+        uint32_t gap = container_max - container_min + step - 1;
+        min_tmp += gap - (gap % step);
+    } while (min_tmp < max);
+    // cardinality of bitmap will be ((uint64_t) max - min + step - 1 ) / step
+    return answer;
+}
+
+void roaring_bitmap_add_range_closed(roaring_bitmap_t *r, uint32_t min,
+                                     uint32_t max) {
+    if (min > max) {
+        return;
+    }
+
+    roaring_array_t *ra = &r->high_low_container;
+
+    uint32_t min_key = min >> 16;
+    uint32_t max_key = max >> 16;
+
+    int32_t num_required_containers = max_key - min_key + 1;
+    int32_t suffix_length =
+        count_greater(ra->keys, ra->size, (uint16_t)max_key);
+    int32_t prefix_length =
+        count_less(ra->keys, ra->size - suffix_length, (uint16_t)min_key);
+    int32_t common_length = ra->size - prefix_length - suffix_length;
+
+    if (num_required_containers > common_length) {
+        ra_shift_tail(ra, suffix_length,
+                      num_required_containers - common_length);
+    }
+
+    int32_t src = prefix_length + common_length - 1;
+    int32_t dst = ra->size - suffix_length - 1;
+    for (uint32_t key = max_key; key != min_key - 1;
+         key--) {  // beware of min_key==0
+        uint32_t container_min = (min_key == key) ? (min & 0xffff) : 0;
+        uint32_t container_max = (max_key == key) ? (max & 0xffff) : 0xffff;
+        container_t *new_container;
+        uint8_t new_type;
+
+        if (src >= 0 && ra->keys[src] == key) {
+            ra_unshare_container_at_index(ra, (uint16_t)src);
+            new_container =
+                container_add_range(ra->containers[src], ra->typecodes[src],
+                                    container_min, container_max, &new_type);
+            if (new_container != ra->containers[src]) {
+                container_free(ra->containers[src], ra->typecodes[src]);
+            }
+            src--;
+        } else {
+            new_container = container_from_range(&new_type, container_min,
+                                                 container_max + 1, 1);
+        }
+        ra_replace_key_and_container_at_index(ra, dst, (uint16_t)key,
+                                              new_container, new_type);
+        dst--;
+    }
+}
+
+void roaring_bitmap_remove_range_closed(roaring_bitmap_t *r, uint32_t min,
+                                        uint32_t max) {
+    if (min > max) {
+        return;
+    }
+
+    roaring_array_t *ra = &r->high_low_container;
+
+    uint32_t min_key = min >> 16;
+    uint32_t max_key = max >> 16;
+
+    int32_t src = count_less(ra->keys, ra->size, (uint16_t)min_key);
+    int32_t dst = src;
+    while (src < ra->size && ra->keys[src] <= max_key) {
+        uint32_t container_min =
+            (min_key == ra->keys[src]) ? (min & 0xffff) : 0;
+        uint32_t container_max =
+            (max_key == ra->keys[src]) ? (max & 0xffff) : 0xffff;
+        ra_unshare_container_at_index(ra, (uint16_t)src);
+        container_t *new_container;
+        uint8_t new_type;
+        new_container =
+            container_remove_range(ra->containers[src], ra->typecodes[src],
+                                   container_min, container_max, &new_type);
+        if (new_container != ra->containers[src]) {
+            container_free(ra->containers[src], ra->typecodes[src]);
+        }
+        if (new_container) {
+            ra_replace_key_and_container_at_index(ra, dst, ra->keys[src],
+                                                  new_container, new_type);
+            dst++;
+        }
+        src++;
+    }
+    if (src > dst) {
+        ra_shift_tail(ra, ra->size - src, dst - src);
+    }
+}
+
+void roaring_bitmap_printf(const roaring_bitmap_t *r) {
+    const roaring_array_t *ra = &r->high_low_container;
+
+    printf("{");
+    for (int i = 0; i < ra->size; ++i) {
+        container_printf_as_uint32_array(ra->containers[i], ra->typecodes[i],
+                                         ((uint32_t)ra->keys[i]) << 16);
+
+        if (i + 1 < ra->size) {
+            printf(",");
+        }
+    }
+    printf("}");
+}
+
+void roaring_bitmap_printf_describe(const roaring_bitmap_t *r) {
+    const roaring_array_t *ra = &r->high_low_container;
+
+    printf("{");
+    for (int i = 0; i < ra->size; ++i) {
+        printf("%d: %s (%d)", ra->keys[i],
+               get_full_container_name(ra->containers[i], ra->typecodes[i]),
+               container_get_cardinality(ra->containers[i], ra->typecodes[i]));
+        if (ra->typecodes[i] == SHARED_CONTAINER_TYPE) {
+            printf("(shared count = %" PRIu32 " )",
+                   croaring_refcount_get(
+                       &(CAST_shared(ra->containers[i])->counter)));
+        }
+
+        if (i + 1 < ra->size) {
+            printf(", ");
+        }
+    }
+    printf("}");
+}
+
+/**
+ *  (For advanced users.)
+ * Collect statistics about the bitmap
+ */
+void roaring_bitmap_statistics(const roaring_bitmap_t *r,
+                               roaring_statistics_t *stat) {
+    const roaring_array_t *ra = &r->high_low_container;
+
+    memset(stat, 0, sizeof(*stat));
+    stat->n_containers = ra->size;
+    stat->min_value = roaring_bitmap_minimum(r);
+    stat->max_value = roaring_bitmap_maximum(r);
+
+    for (int i = 0; i < ra->size; ++i) {
+        uint8_t truetype =
+            get_container_type(ra->containers[i], ra->typecodes[i]);
+        uint32_t card =
+            container_get_cardinality(ra->containers[i], ra->typecodes[i]);
+        uint32_t sbytes =
+            container_size_in_bytes(ra->containers[i], ra->typecodes[i]);
+        stat->cardinality += card;
+        switch (truetype) {
+            case BITSET_CONTAINER_TYPE:
+                stat->n_bitset_containers++;
+                stat->n_values_bitset_containers += card;
+                stat->n_bytes_bitset_containers += sbytes;
+                break;
+            case ARRAY_CONTAINER_TYPE:
+                stat->n_array_containers++;
+                stat->n_values_array_containers += card;
+                stat->n_bytes_array_containers += sbytes;
+                break;
+            case RUN_CONTAINER_TYPE:
+                stat->n_run_containers++;
+                stat->n_values_run_containers += card;
+                stat->n_bytes_run_containers += sbytes;
+                break;
+            default:
+                assert(false);
+                roaring_unreachable;
+        }
+    }
+}
+
+/*
+ * Checks that:
+ * - Array containers are sorted and contain no duplicates
+ * - Range containers are sorted and contain no overlapping ranges
+ * - Roaring containers are sorted by key and there are no duplicate keys
+ * - The correct container type is use for each container (e.g. bitmaps aren't
+ * used for small containers)
+ */
+bool roaring_bitmap_internal_validate(const roaring_bitmap_t *r,
+                                      const char **reason) {
+    const char *reason_local;
+    if (reason == NULL) {
+        // Always allow assigning through *reason
+        reason = &reason_local;
+    }
+    *reason = NULL;
+    const roaring_array_t *ra = &r->high_low_container;
+    if (ra->size < 0) {
+        *reason = "negative size";
+        return false;
+    }
+    if (ra->allocation_size < 0) {
+        *reason = "negative allocation size";
+        return false;
+    }
+    if (ra->size > ra->allocation_size) {
+        *reason = "more containers than allocated space";
+        return false;
+    }
+    if (ra->flags & ~(ROARING_FLAG_COW | ROARING_FLAG_FROZEN)) {
+        *reason = "invalid flags";
+        return false;
+    }
+    if (ra->size == 0) {
+        return true;
+    }
+
+    if (ra->keys == NULL) {
+        *reason = "keys is NULL";
+        return false;
+    }
+    if (ra->typecodes == NULL) {
+        *reason = "typecodes is NULL";
+        return false;
+    }
+    if (ra->containers == NULL) {
+        *reason = "containers is NULL";
+        return false;
+    }
+
+    uint32_t prev_key = ra->keys[0];
+    for (int32_t i = 1; i < ra->size; ++i) {
+        if (ra->keys[i] <= prev_key) {
+            *reason = "keys not strictly increasing";
+            return false;
+        }
+        prev_key = ra->keys[i];
+    }
+
+    for (int32_t i = 0; i < ra->size; ++i) {
+        if (!container_internal_validate(ra->containers[i], ra->typecodes[i],
+                                         reason)) {
+            // reason should already be set
+            if (*reason == NULL) {
+                *reason = "container failed to validate but no reason given";
+            }
+            return false;
+        }
+    }
+
+    return true;
+}
+
+roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r) {
+    roaring_bitmap_t *ans =
+        (roaring_bitmap_t *)roaring_malloc(sizeof(roaring_bitmap_t));
+    if (!ans) {
+        return NULL;
+    }
+    if (!ra_init_with_capacity(  // allocation of list of containers can fail
+            &ans->high_low_container, r->high_low_container.size)) {
+        roaring_free(ans);
+        return NULL;
+    }
+    if (!ra_overwrite(  // memory allocation of individual containers may fail
+            &r->high_low_container, &ans->high_low_container, is_cow(r))) {
+        roaring_bitmap_free(ans);  // overwrite should leave in freeable state
+        return NULL;
+    }
+    roaring_bitmap_set_copy_on_write(ans, is_cow(r));
+    return ans;
+}
+
+bool roaring_bitmap_overwrite(roaring_bitmap_t *dest,
+                              const roaring_bitmap_t *src) {
+    roaring_bitmap_set_copy_on_write(dest, is_cow(src));
+    return ra_overwrite(&src->high_low_container, &dest->high_low_container,
+                        is_cow(src));
+}
+
+void roaring_bitmap_free(const roaring_bitmap_t *r) {
+    if (r == NULL) {
+        return;
+    }
+    if (!is_frozen(r)) {
+        ra_clear((roaring_array_t *)&r->high_low_container);
+    }
+    roaring_free((roaring_bitmap_t *)r);
+}
+
+void roaring_bitmap_clear(roaring_bitmap_t *r) {
+    ra_reset(&r->high_low_container);
+}
+
+void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t val) {
+    roaring_array_t *ra = &r->high_low_container;
+
+    const uint16_t hb = val >> 16;
+    const int i = ra_get_index(ra, hb);
+    uint8_t typecode;
+    if (i >= 0) {
+        ra_unshare_container_at_index(ra, (uint16_t)i);
+        container_t *container =
+            ra_get_container_at_index(ra, (uint16_t)i, &typecode);
+        uint8_t newtypecode = typecode;
+        container_t *container2 =
+            container_add(container, val & 0xFFFF, typecode, &newtypecode);
+        if (container2 != container) {
+            container_free(container, typecode);
+            ra_set_container_at_index(&r->high_low_container, i, container2,
+                                      newtypecode);
+        }
+    } else {
+        array_container_t *newac = array_container_create();
+        container_t *container =
+            container_add(newac, val & 0xFFFF, ARRAY_CONTAINER_TYPE, 
&typecode);
+        // we could just assume that it stays an array container
+        ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb,
+                                   container, typecode);
+    }
+}
+
+bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t val) {
+    const uint16_t hb = val >> 16;
+    const int i = ra_get_index(&r->high_low_container, hb);
+    uint8_t typecode;
+    bool result = false;
+    if (i >= 0) {
+        ra_unshare_container_at_index(&r->high_low_container, (uint16_t)i);
+        container_t *container = ra_get_container_at_index(
+            &r->high_low_container, (uint16_t)i, &typecode);
+
+        const int oldCardinality =
+            container_get_cardinality(container, typecode);
+
+        uint8_t newtypecode = typecode;
+        container_t *container2 =
+            container_add(container, val & 0xFFFF, typecode, &newtypecode);
+        if (container2 != container) {
+            container_free(container, typecode);
+            ra_set_container_at_index(&r->high_low_container, i, container2,
+                                      newtypecode);
+            result = true;
+        } else {
+            const int newCardinality =
+                container_get_cardinality(container, newtypecode);
+
+            result = oldCardinality != newCardinality;
+        }
+    } else {
+        array_container_t *newac = array_container_create();
+        container_t *container =
+            container_add(newac, val & 0xFFFF, ARRAY_CONTAINER_TYPE, 
&typecode);
+        // we could just assume that it stays an array container
+        ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb,
+                                   container, typecode);
+        result = true;
+    }
+
+    return result;
+}
+
+void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t val) {
+    const uint16_t hb = val >> 16;
+    const int i = ra_get_index(&r->high_low_container, hb);
+    uint8_t typecode;
+    if (i >= 0) {
+        ra_unshare_container_at_index(&r->high_low_container, (uint16_t)i);
+        container_t *container = ra_get_container_at_index(
+            &r->high_low_container, (uint16_t)i, &typecode);
+        uint8_t newtypecode = typecode;
+        container_t *container2 =
+            container_remove(container, val & 0xFFFF, typecode, &newtypecode);
+        if (container2 != container) {
+            container_free(container, typecode);
+            ra_set_container_at_index(&r->high_low_container, i, container2,
+                                      newtypecode);
+        }
+        if (container_get_cardinality(container2, newtypecode) != 0) {
+            ra_set_container_at_index(&r->high_low_container, i, container2,
+                                      newtypecode);
+        } else {
+            ra_remove_at_index_and_free(&r->high_low_container, i);
+        }
+    }
+}
+
+bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t val) {
+    const uint16_t hb = val >> 16;
+    const int i = ra_get_index(&r->high_low_container, hb);
+    uint8_t typecode;
+    bool result = false;
+    if (i >= 0) {
+        ra_unshare_container_at_index(&r->high_low_container, (uint16_t)i);
+        container_t *container = ra_get_container_at_index(
+            &r->high_low_container, (uint16_t)i, &typecode);
+
+        const int oldCardinality =
+            container_get_cardinality(container, typecode);
+
+        uint8_t newtypecode = typecode;
+        container_t *container2 =
+            container_remove(container, val & 0xFFFF, typecode, &newtypecode);
+        if (container2 != container) {
+            container_free(container, typecode);
+            ra_set_container_at_index(&r->high_low_container, i, container2,
+                                      newtypecode);
+        }
+
+        const int newCardinality =
+            container_get_cardinality(container2, newtypecode);
+
+        if (newCardinality != 0) {
+            ra_set_container_at_index(&r->high_low_container, i, container2,
+                                      newtypecode);
+        } else {
+            ra_remove_at_index_and_free(&r->high_low_container, i);
+        }
+
+        result = oldCardinality != newCardinality;
+    }
+    return result;
+}
+
+void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args,
+                                const uint32_t *vals) {
+    if (n_args == 0 || r->high_low_container.size == 0) {
+        return;
+    }
+    int32_t pos =
+        -1;  // position of the container used in the previous iteration
+    for (size_t i = 0; i < n_args; i++) {
+        uint16_t key = (uint16_t)(vals[i] >> 16);
+        if (pos < 0 || key != r->high_low_container.keys[pos]) {
+            pos = ra_get_index(&r->high_low_container, key);
+        }
+        if (pos >= 0) {
+            uint8_t new_typecode;
+            container_t *new_container;
+            new_container = container_remove(
+                r->high_low_container.containers[pos], vals[i] & 0xffff,
+                r->high_low_container.typecodes[pos], &new_typecode);
+            if (new_container != r->high_low_container.containers[pos]) {
+                container_free(r->high_low_container.containers[pos],
+                               r->high_low_container.typecodes[pos]);
+                ra_replace_key_and_container_at_index(&r->high_low_container,
+                                                      pos, key, new_container,
+                                                      new_typecode);
+            }
+            if (!container_nonzero_cardinality(new_container, new_typecode)) {
+                container_free(new_container, new_typecode);
+                ra_remove_at_index(&r->high_low_container, pos);
+                pos = -1;
+            }
+        }
+    }
+}
+
+// there should be some SIMD optimizations possible here
+roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *x1,
+                                     const roaring_bitmap_t *x2) {
+    uint8_t result_type = 0;
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    uint32_t neededcap = length1 > length2 ? length2 : length1;
+    roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(neededcap);
+    roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
+
+    int pos1 = 0, pos2 = 0;
+
+    while (pos1 < length1 && pos2 < length2) {
+        const uint16_t s1 =
+            ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+        const uint16_t s2 =
+            ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+        if (s1 == s2) {
+            uint8_t type1, type2;
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            container_t *c = container_and(c1, type1, c2, type2, &result_type);
+
+            if (container_nonzero_cardinality(c, result_type)) {
+                ra_append(&answer->high_low_container, s1, c, result_type);
+            } else {
+                container_free(c, result_type);  // otherwise: memory leak!
+            }
+            ++pos1;
+            ++pos2;
+        } else if (s1 < s2) {  // s1 < s2
+            pos1 = ra_advance_until(&x1->high_low_container, s2, pos1);
+        } else {  // s1 > s2
+            pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+        }
+    }
+    return answer;
+}
+
+/**
+ * Compute the union of 'number' bitmaps.
+ */
+roaring_bitmap_t *roaring_bitmap_or_many(size_t number,
+                                         const roaring_bitmap_t **x) {
+    if (number == 0) {
+        return roaring_bitmap_create();
+    }
+    if (number == 1) {
+        return roaring_bitmap_copy(x[0]);
+    }
+    roaring_bitmap_t *answer =
+        roaring_bitmap_lazy_or(x[0], x[1], LAZY_OR_BITSET_CONVERSION);
+    for (size_t i = 2; i < number; i++) {
+        roaring_bitmap_lazy_or_inplace(answer, x[i], 
LAZY_OR_BITSET_CONVERSION);
+    }
+    roaring_bitmap_repair_after_lazy(answer);
+    return answer;
+}
+
+/**
+ * Compute the xor of 'number' bitmaps.
+ */
+roaring_bitmap_t *roaring_bitmap_xor_many(size_t number,
+                                          const roaring_bitmap_t **x) {
+    if (number == 0) {
+        return roaring_bitmap_create();
+    }
+    if (number == 1) {
+        return roaring_bitmap_copy(x[0]);
+    }
+    roaring_bitmap_t *answer = roaring_bitmap_lazy_xor(x[0], x[1]);
+    for (size_t i = 2; i < number; i++) {
+        roaring_bitmap_lazy_xor_inplace(answer, x[i]);
+    }
+    roaring_bitmap_repair_after_lazy(answer);
+    return answer;
+}
+
+// inplace and (modifies its first argument).
+void roaring_bitmap_and_inplace(roaring_bitmap_t *x1,
+                                const roaring_bitmap_t *x2) {
+    if (x1 == x2) return;
+    int pos1 = 0, pos2 = 0, intersection_size = 0;
+    const int length1 = ra_get_size(&x1->high_low_container);
+    const int length2 = ra_get_size(&x2->high_low_container);
+
+    // any skipped-over or newly emptied containers in x1
+    // have to be freed.
+    while (pos1 < length1 && pos2 < length2) {
+        const uint16_t s1 =
+            ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+        const uint16_t s2 =
+            ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+        if (s1 == s2) {
+            uint8_t type1, type2, result_type;
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+
+            // We do the computation "in place" only when c1 is not a shared
+            // container. Rationale: using a shared container safely with in
+            // place computation would require making a copy and then doing the
+            // computation in place which is likely less efficient than 
avoiding
+            // in place entirely and always generating a new container.
+            container_t *c =
+                (type1 == SHARED_CONTAINER_TYPE)
+                    ? container_and(c1, type1, c2, type2, &result_type)
+                    : container_iand(c1, type1, c2, type2, &result_type);
+
+            if (c != c1) {  // in this instance a new container was created, 
and
+                            // we need to free the old one
+                container_free(c1, type1);
+            }
+            if (container_nonzero_cardinality(c, result_type)) {
+                ra_replace_key_and_container_at_index(&x1->high_low_container,
+                                                      intersection_size, s1, c,
+                                                      result_type);
+                intersection_size++;
+            } else {
+                container_free(c, result_type);
+            }
+            ++pos1;
+            ++pos2;
+        } else if (s1 < s2) {
+            pos1 = ra_advance_until_freeing(&x1->high_low_container, s2, pos1);
+        } else {  // s1 > s2
+            pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+        }
+    }
+
+    // if we ended early because x2 ran out, then all remaining in x1 should be
+    // freed
+    while (pos1 < length1) {
+        container_free(x1->high_low_container.containers[pos1],
+                       x1->high_low_container.typecodes[pos1]);
+        ++pos1;
+    }
+
+    // all containers after this have either been copied or freed
+    ra_downsize(&x1->high_low_container, intersection_size);
+}
+
+roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *x1,
+                                    const roaring_bitmap_t *x2) {
+    uint8_t result_type = 0;
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    if (0 == length1) {
+        return roaring_bitmap_copy(x2);
+    }
+    if (0 == length2) {
+        return roaring_bitmap_copy(x1);
+    }
+    roaring_bitmap_t *answer =
+        roaring_bitmap_create_with_capacity(length1 + length2);
+    roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
+    int pos1 = 0, pos2 = 0;
+    uint8_t type1, type2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+    while (true) {
+        if (s1 == s2) {
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            container_t *c = container_or(c1, type1, c2, type2, &result_type);
+
+            // since we assume that the initial containers are non-empty, the
+            // result here
+            // can only be non-empty
+            ra_append(&answer->high_low_container, s1, c, result_type);
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            // c1 = container_clone(c1, type1);
+            c1 = get_copy_of_container(c1, &type1, is_cow(x1));
+            if (is_cow(x1)) {
+                ra_set_container_at_index(&x1->high_low_container, pos1, c1,
+                                          type1);
+            }
+            ra_append(&answer->high_low_container, s1, c1, type1);
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+        } else {  // s1 > s2
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            // c2 = container_clone(c2, type2);
+            c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          type2);
+            }
+            ra_append(&answer->high_low_container, s2, c2, type2);
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x2->high_low_container, pos2, length2,
+                             is_cow(x2));
+    } else if (pos2 == length2) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x1->high_low_container, pos1, length1,
+                             is_cow(x1));
+    }
+    return answer;
+}
+
+// inplace or (modifies its first argument).
+void roaring_bitmap_or_inplace(roaring_bitmap_t *x1,
+                               const roaring_bitmap_t *x2) {
+    uint8_t result_type = 0;
+    int length1 = x1->high_low_container.size;
+    const int length2 = x2->high_low_container.size;
+
+    if (0 == length2) return;
+
+    if (0 == length1) {
+        roaring_bitmap_overwrite(x1, x2);
+        return;
+    }
+    int pos1 = 0, pos2 = 0;
+    uint8_t type1, type2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+    while (true) {
+        if (s1 == s2) {
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            if (!container_is_full(c1, type1)) {
+                container_t *c2 = ra_get_container_at_index(
+                    &x2->high_low_container, (uint16_t)pos2, &type2);
+                container_t *c =
+                    (type1 == SHARED_CONTAINER_TYPE)
+                        ? container_or(c1, type1, c2, type2, &result_type)
+                        : container_ior(c1, type1, c2, type2, &result_type);
+
+                if (c != c1) {  // in this instance a new container was 
created,
+                                // and we need to free the old one
+                    container_free(c1, type1);
+                }
+                ra_set_container_at_index(&x1->high_low_container, pos1, c,
+                                          result_type);
+            }
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+        } else {  // s1 > s2
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          type2);
+            }
+
+            // container_t *c2_clone = container_clone(c2, type2);
+            ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
+                                       type2);
+            pos1++;
+            length1++;
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
+                             pos2, length2, is_cow(x2));
+    }
+}
+
+roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *x1,
+                                     const roaring_bitmap_t *x2) {
+    uint8_t result_type = 0;
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    if (0 == length1) {
+        return roaring_bitmap_copy(x2);
+    }
+    if (0 == length2) {
+        return roaring_bitmap_copy(x1);
+    }
+    roaring_bitmap_t *answer =
+        roaring_bitmap_create_with_capacity(length1 + length2);
+    roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
+    int pos1 = 0, pos2 = 0;
+    uint8_t type1, type2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+    while (true) {
+        if (s1 == s2) {
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            container_t *c = container_xor(c1, type1, c2, type2, &result_type);
+
+            if (container_nonzero_cardinality(c, result_type)) {
+                ra_append(&answer->high_low_container, s1, c, result_type);
+            } else {
+                container_free(c, result_type);
+            }
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            c1 = get_copy_of_container(c1, &type1, is_cow(x1));
+            if (is_cow(x1)) {
+                ra_set_container_at_index(&x1->high_low_container, pos1, c1,
+                                          type1);
+            }
+            ra_append(&answer->high_low_container, s1, c1, type1);
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+        } else {  // s1 > s2
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          type2);
+            }
+            ra_append(&answer->high_low_container, s2, c2, type2);
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x2->high_low_container, pos2, length2,
+                             is_cow(x2));
+    } else if (pos2 == length2) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x1->high_low_container, pos1, length1,
+                             is_cow(x1));
+    }
+    return answer;
+}
+
+// inplace xor (modifies its first argument).
+
+void roaring_bitmap_xor_inplace(roaring_bitmap_t *x1,
+                                const roaring_bitmap_t *x2) {
+    assert(x1 != x2);
+    uint8_t result_type = 0;
+    int length1 = x1->high_low_container.size;
+    const int length2 = x2->high_low_container.size;
+
+    if (0 == length2) return;
+
+    if (0 == length1) {
+        roaring_bitmap_overwrite(x1, x2);
+        return;
+    }
+
+    // XOR can have new containers inserted from x2, but can also
+    // lose containers when x1 and x2 are nonempty and identical.
+
+    int pos1 = 0, pos2 = 0;
+    uint8_t type1, type2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+    while (true) {
+        if (s1 == s2) {
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+
+            // We do the computation "in place" only when c1 is not a shared
+            // container. Rationale: using a shared container safely with in
+            // place computation would require making a copy and then doing the
+            // computation in place which is likely less efficient than 
avoiding
+            // in place entirely and always generating a new container.
+
+            container_t *c;
+            if (type1 == SHARED_CONTAINER_TYPE) {
+                c = container_xor(c1, type1, c2, type2, &result_type);
+                shared_container_free(CAST_shared(c1));  // so release
+            } else {
+                c = container_ixor(c1, type1, c2, type2, &result_type);
+            }
+
+            if (container_nonzero_cardinality(c, result_type)) {
+                ra_set_container_at_index(&x1->high_low_container, pos1, c,
+                                          result_type);
+                ++pos1;
+            } else {
+                container_free(c, result_type);
+                ra_remove_at_index(&x1->high_low_container, pos1);
+                --length1;
+            }
+
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+        } else {  // s1 > s2
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          type2);
+            }
+
+            ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
+                                       type2);
+            pos1++;
+            length1++;
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
+                             pos2, length2, is_cow(x2));
+    }
+}
+
+roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *x1,
+                                        const roaring_bitmap_t *x2) {
+    uint8_t result_type = 0;
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    if (0 == length1) {
+        roaring_bitmap_t *empty_bitmap = roaring_bitmap_create();
+        roaring_bitmap_set_copy_on_write(empty_bitmap,
+                                         is_cow(x1) || is_cow(x2));
+        return empty_bitmap;
+    }
+    if (0 == length2) {
+        return roaring_bitmap_copy(x1);
+    }
+    roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(length1);
+    roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
+
+    int pos1 = 0, pos2 = 0;
+    uint8_t type1, type2;
+    uint16_t s1 = 0;
+    uint16_t s2 = 0;
+    while (true) {
+        s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+        s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+        if (s1 == s2) {
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            container_t *c =
+                container_andnot(c1, type1, c2, type2, &result_type);
+
+            if (container_nonzero_cardinality(c, result_type)) {
+                ra_append(&answer->high_low_container, s1, c, result_type);
+            } else {
+                container_free(c, result_type);
+            }
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+        } else if (s1 < s2) {  // s1 < s2
+            const int next_pos1 =
+                ra_advance_until(&x1->high_low_container, s2, pos1);
+            ra_append_copy_range(&answer->high_low_container,
+                                 &x1->high_low_container, pos1, next_pos1,
+                                 is_cow(x1));
+            // TODO : perhaps some of the copy_on_write should be based on
+            // answer rather than x1 (more stringent?).  Many similar cases
+            pos1 = next_pos1;
+            if (pos1 == length1) break;
+        } else {  // s1 > s2
+            pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+            if (pos2 == length2) break;
+        }
+    }
+    if (pos2 == length2) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x1->high_low_container, pos1, length1,
+                             is_cow(x1));
+    }
+    return answer;
+}
+
+// inplace andnot (modifies its first argument).
+
+void roaring_bitmap_andnot_inplace(roaring_bitmap_t *x1,
+                                   const roaring_bitmap_t *x2) {
+    assert(x1 != x2);
+
+    uint8_t result_type = 0;
+    int length1 = x1->high_low_container.size;
+    const int length2 = x2->high_low_container.size;
+    int intersection_size = 0;
+
+    if (0 == length2) return;
+
+    if (0 == length1) {
+        roaring_bitmap_clear(x1);
+        return;
+    }
+
+    int pos1 = 0, pos2 = 0;
+    uint8_t type1, type2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+    while (true) {
+        if (s1 == s2) {
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+
+            // We do the computation "in place" only when c1 is not a shared
+            // container. Rationale: using a shared container safely with in
+            // place computation would require making a copy and then doing the
+            // computation in place which is likely less efficient than 
avoiding
+            // in place entirely and always generating a new container.
+
+            container_t *c;
+            if (type1 == SHARED_CONTAINER_TYPE) {
+                c = container_andnot(c1, type1, c2, type2, &result_type);
+                shared_container_free(CAST_shared(c1));  // release
+            } else {
+                c = container_iandnot(c1, type1, c2, type2, &result_type);
+            }
+
+            if (container_nonzero_cardinality(c, result_type)) {
+                ra_replace_key_and_container_at_index(&x1->high_low_container,
+                                                      intersection_size++, s1,
+                                                      c, result_type);
+            } else {
+                container_free(c, result_type);
+            }
+
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            if (pos1 != intersection_size) {
+                container_t *c1 = ra_get_container_at_index(
+                    &x1->high_low_container, (uint16_t)pos1, &type1);
+
+                ra_replace_key_and_container_at_index(
+                    &x1->high_low_container, intersection_size, s1, c1, type1);
+            }
+            intersection_size++;
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+        } else {  // s1 > s2
+            pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+        }
+    }
+
+    if (pos1 < length1) {
+        // all containers between intersection_size and
+        // pos1 are junk.  However, they have either been moved
+        // (thus still referenced) or involved in an iandnot
+        // that will clean up all containers that could not be reused.
+        // Thus we should not free the junk containers between
+        // intersection_size and pos1.
+        if (pos1 > intersection_size) {
+            // left slide of remaining items
+            ra_copy_range(&x1->high_low_container, pos1, length1,
+                          intersection_size);
+        }
+        // else current placement is fine
+        intersection_size += (length1 - pos1);
+    }
+    ra_downsize(&x1->high_low_container, intersection_size);
+}
+
+uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *r) {
+    const roaring_array_t *ra = &r->high_low_container;
+
+    uint64_t card = 0;
+    for (int i = 0; i < ra->size; ++i)
+        card += container_get_cardinality(ra->containers[i], ra->typecodes[i]);
+    return card;
+}
+
+uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *r,
+                                          uint64_t range_start,
+                                          uint64_t range_end) {
+    if (range_start >= range_end || range_start > (uint64_t)UINT32_MAX + 1) {
+        return 0;
+    }
+    return roaring_bitmap_range_cardinality_closed(r, (uint32_t)range_start,
+                                                   (uint32_t)(range_end - 1));
+}
+
+uint64_t roaring_bitmap_range_cardinality_closed(const roaring_bitmap_t *r,
+                                                 uint32_t range_start,
+                                                 uint32_t range_end) {
+    const roaring_array_t *ra = &r->high_low_container;
+
+    if (range_start > range_end) {
+        return 0;
+    }
+
+    // now we have: 0 <= range_start <= range_end <= UINT32_MAX
+
+    uint16_t minhb = (uint16_t)(range_start >> 16);
+    uint16_t maxhb = (uint16_t)(range_end >> 16);
+
+    uint64_t card = 0;
+
+    int i = ra_get_index(ra, minhb);
+    if (i >= 0) {
+        if (minhb == maxhb) {
+            card += container_rank(ra->containers[i], ra->typecodes[i],
+                                   range_end & 0xffff);
+        } else {
+            card +=
+                container_get_cardinality(ra->containers[i], ra->typecodes[i]);
+        }
+        if ((range_start & 0xffff) != 0) {
+            card -= container_rank(ra->containers[i], ra->typecodes[i],
+                                   (range_start & 0xffff) - 1);
+        }
+        i++;
+    } else {
+        i = -i - 1;
+    }
+
+    for (; i < ra->size; i++) {
+        uint16_t key = ra->keys[i];
+        if (key < maxhb) {
+            card +=
+                container_get_cardinality(ra->containers[i], ra->typecodes[i]);
+        } else if (key == maxhb) {
+            card += container_rank(ra->containers[i], ra->typecodes[i],
+                                   range_end & 0xffff);
+            break;
+        } else {
+            break;
+        }
+    }
+
+    return card;
+}
+
+bool roaring_bitmap_is_empty(const roaring_bitmap_t *r) {
+    return r->high_low_container.size == 0;
+}
+
+void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *r, uint32_t *ans) {
+    ra_to_uint32_array(&r->high_low_container, ans);
+}
+
+bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *r, size_t 
offset,
+                                       size_t limit, uint32_t *ans) {
+    return ra_range_uint32_array(&r->high_low_container, offset, limit, ans);
+}
+
+/** convert array and bitmap containers to run containers when it is more
+ * efficient;
+ * also convert from run containers when more space efficient.  Returns
+ * true if the result has at least one run container.
+ */
+bool roaring_bitmap_run_optimize(roaring_bitmap_t *r) {
+    bool answer = false;
+    for (int i = 0; i < r->high_low_container.size; i++) {
+        uint8_t type_original, type_after;
+        ra_unshare_container_at_index(
+            &r->high_low_container,
+            (uint16_t)i);  // TODO: this introduces extra cloning!
+        container_t *c = ra_get_container_at_index(&r->high_low_container,
+                                                   (uint16_t)i, 
&type_original);
+        container_t *c1 = convert_run_optimize(c, type_original, &type_after);
+        if (type_after == RUN_CONTAINER_TYPE) {
+            answer = true;
+        }
+        ra_set_container_at_index(&r->high_low_container, i, c1, type_after);
+    }
+    return answer;
+}
+
+size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r) {
+    size_t answer = 0;
+    for (int i = 0; i < r->high_low_container.size; i++) {
+        uint8_t type_original;
+        container_t *c = ra_get_container_at_index(&r->high_low_container,
+                                                   (uint16_t)i, 
&type_original);
+        answer += container_shrink_to_fit(c, type_original);
+    }
+    answer += ra_shrink_to_fit(&r->high_low_container);
+    return answer;
+}
+
+/**
+ *  Remove run-length encoding even when it is more space efficient
+ *  return whether a change was applied
+ */
+bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r) {
+    bool answer = false;
+    for (int i = 0; i < r->high_low_container.size; i++) {
+        uint8_t type_original, type_after;
+        container_t *c = ra_get_container_at_index(&r->high_low_container,
+                                                   (uint16_t)i, 
&type_original);
+        if (get_container_type(c, type_original) == RUN_CONTAINER_TYPE) {
+            answer = true;
+            if (type_original == SHARED_CONTAINER_TYPE) {
+                run_container_t *truec = CAST_run(CAST_shared(c)->container);
+                int32_t card = run_container_cardinality(truec);
+                container_t *c1 = convert_to_bitset_or_array_container(
+                    truec, card, &type_after);
+                shared_container_free(CAST_shared(c));  // frees run as needed
+                ra_set_container_at_index(&r->high_low_container, i, c1,
+                                          type_after);
+
+            } else {
+                int32_t card = run_container_cardinality(CAST_run(c));
+                container_t *c1 = convert_to_bitset_or_array_container(
+                    CAST_run(c), card, &type_after);
+                run_container_free(CAST_run(c));
+                ra_set_container_at_index(&r->high_low_container, i, c1,
+                                          type_after);
+            }
+        }
+    }
+    return answer;
+}
+
+size_t roaring_bitmap_serialize(const roaring_bitmap_t *r, char *buf) {
+    size_t portablesize = roaring_bitmap_portable_size_in_bytes(r);
+    uint64_t cardinality = roaring_bitmap_get_cardinality(r);
+    uint64_t sizeasarray = cardinality * sizeof(uint32_t) + sizeof(uint32_t);
+    if (portablesize < sizeasarray) {
+        buf[0] = CROARING_SERIALIZATION_CONTAINER;
+        return roaring_bitmap_portable_serialize(r, buf + 1) + 1;
+    } else {
+        buf[0] = CROARING_SERIALIZATION_ARRAY_UINT32;
+        memcpy(buf + 1, &cardinality, sizeof(uint32_t));
+        roaring_bitmap_to_uint32_array(
+            r, (uint32_t *)(buf + 1 + sizeof(uint32_t)));
+        return 1 + (size_t)sizeasarray;
+    }
+}
+
+size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *r) {
+    size_t portablesize = roaring_bitmap_portable_size_in_bytes(r);
+    uint64_t sizeasarray =
+        roaring_bitmap_get_cardinality(r) * sizeof(uint32_t) + 
sizeof(uint32_t);
+    return portablesize < sizeasarray ? portablesize + 1
+                                      : (size_t)sizeasarray + 1;
+}
+
+size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *r) {
+    return ra_portable_size_in_bytes(&r->high_low_container);
+}
+
+roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf,
+                                                           size_t maxbytes) {
+    roaring_bitmap_t *ans =
+        (roaring_bitmap_t *)roaring_malloc(sizeof(roaring_bitmap_t));
+    if (ans == NULL) {
+        return NULL;
+    }
+    size_t bytesread;
+    bool is_ok = ra_portable_deserialize(&ans->high_low_container, buf,
+                                         maxbytes, &bytesread);
+    if (!is_ok) {
+        roaring_free(ans);
+        return NULL;
+    }
+    roaring_bitmap_set_copy_on_write(ans, false);
+    if (!is_ok) {
+        roaring_free(ans);
+        return NULL;
+    }
+    return ans;
+}
+
+roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf) {
+    return roaring_bitmap_portable_deserialize_safe(buf, SIZE_MAX);
+}
+
+size_t roaring_bitmap_portable_deserialize_size(const char *buf,
+                                                size_t maxbytes) {
+    return ra_portable_deserialize_size(buf, maxbytes);
+}
+
+size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *r, char *buf) 
{
+    return ra_portable_serialize(&r->high_low_container, buf);
+}
+
+roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf) {
+    const char *bufaschar = (const char *)buf;
+    if (bufaschar[0] == CROARING_SERIALIZATION_ARRAY_UINT32) {
+        /* This looks like a compressed set of uint32_t elements */
+        uint32_t card;
+
+        memcpy(&card, bufaschar + 1, sizeof(uint32_t));
+
+        const uint32_t *elems =
+            (const uint32_t *)(bufaschar + 1 + sizeof(uint32_t));
+
+        roaring_bitmap_t *bitmap = roaring_bitmap_create();
+        if (bitmap == NULL) {
+            return NULL;
+        }
+        roaring_bulk_context_t context = CROARING_ZERO_INITIALIZER;
+        for (uint32_t i = 0; i < card; i++) {
+            // elems may not be aligned, read with memcpy
+            uint32_t elem;
+            memcpy(&elem, elems + i, sizeof(elem));
+            roaring_bitmap_add_bulk(bitmap, &context, elem);
+        }
+        return bitmap;
+
+    } else if (bufaschar[0] == CROARING_SERIALIZATION_CONTAINER) {
+        return roaring_bitmap_portable_deserialize(bufaschar + 1);
+    } else
+        return (NULL);
+}
+
+roaring_bitmap_t *roaring_bitmap_deserialize_safe(const void *buf,
+                                                  size_t maxbytes) {
+    if (maxbytes < 1) {
+        return NULL;
+    }
+
+    const char *bufaschar = (const char *)buf;
+    if (bufaschar[0] == CROARING_SERIALIZATION_ARRAY_UINT32) {
+        if (maxbytes < 1 + sizeof(uint32_t)) {
+            return NULL;
+        }
+
+        /* This looks like a compressed set of uint32_t elements */
+        uint32_t card;
+        memcpy(&card, bufaschar + 1, sizeof(uint32_t));
+
+        // Check the buffer is big enough to contain card uint32_t elements
+        if (maxbytes < 1 + sizeof(uint32_t) + card * sizeof(uint32_t)) {
+            return NULL;
+        }
+
+        const uint32_t *elems =
+            (const uint32_t *)(bufaschar + 1 + sizeof(uint32_t));
+
+        roaring_bitmap_t *bitmap = roaring_bitmap_create();
+        if (bitmap == NULL) {
+            return NULL;
+        }
+        roaring_bulk_context_t context = CROARING_ZERO_INITIALIZER;
+        for (uint32_t i = 0; i < card; i++) {
+            // elems may not be aligned, read with memcpy
+            uint32_t elem;
+            memcpy(&elem, elems + i, sizeof(elem));
+            roaring_bitmap_add_bulk(bitmap, &context, elem);
+        }
+        return bitmap;
+
+    } else if (bufaschar[0] == CROARING_SERIALIZATION_CONTAINER) {
+        return roaring_bitmap_portable_deserialize_safe(bufaschar + 1,
+                                                        maxbytes - 1);
+    } else
+        return (NULL);
+}
+
+bool roaring_iterate(const roaring_bitmap_t *r, roaring_iterator iterator,
+                     void *ptr) {
+    const roaring_array_t *ra = &r->high_low_container;
+
+    for (int i = 0; i < ra->size; ++i)
+        if (!container_iterate(ra->containers[i], ra->typecodes[i],
+                               ((uint32_t)ra->keys[i]) << 16, iterator, ptr)) {
+            return false;
+        }
+    return true;
+}
+
+bool roaring_iterate64(const roaring_bitmap_t *r, roaring_iterator64 iterator,
+                       uint64_t high_bits, void *ptr) {
+    const roaring_array_t *ra = &r->high_low_container;
+
+    for (int i = 0; i < ra->size; ++i)
+        if (!container_iterate64(ra->containers[i], ra->typecodes[i],
+                                 ((uint32_t)ra->keys[i]) << 16, iterator,
+                                 high_bits, ptr)) {
+            return false;
+        }
+    return true;
+}
+
+/****
+ * begin roaring_uint32_iterator_t
+ *****/
+
+/**
+ * Partially initializes the iterator. Leaves it in either state:
+ * 1. Invalid due to `has_value = false`, or
+ * 2. At a container, with the high bits set, `has_value = true`.
+ */
+CROARING_WARN_UNUSED static bool iter_new_container_partial_init(
+    roaring_uint32_iterator_t *newit) {
+    newit->current_value = 0;
+    if (newit->container_index >= newit->parent->high_low_container.size ||
+        newit->container_index < 0) {
+        newit->current_value = UINT32_MAX;
+        return (newit->has_value = false);
+    }
+    newit->has_value = true;
+    // we precompute container, typecode and highbits so that successive
+    // iterators do not have to grab them from odd memory locations
+    // and have to worry about the (easily predicted) container_unwrap_shared
+    // call.
+    newit->container =
+        newit->parent->high_low_container.containers[newit->container_index];
+    newit->typecode =
+        newit->parent->high_low_container.typecodes[newit->container_index];
+    newit->highbits =
+        ((uint32_t)
+             newit->parent->high_low_container.keys[newit->container_index])
+        << 16;
+    newit->container =
+        container_unwrap_shared(newit->container, &(newit->typecode));
+    return true;
+}
+
+/**
+ * Positions the iterator at the first value of the current container that the
+ * iterator points at, if available.
+ */
+CROARING_WARN_UNUSED static bool loadfirstvalue(
+    roaring_uint32_iterator_t *newit) {
+    if (iter_new_container_partial_init(newit)) {
+        uint16_t value = 0;
+        newit->container_it =
+            container_init_iterator(newit->container, newit->typecode, &value);
+        newit->current_value = newit->highbits | value;
+    }
+    return newit->has_value;
+}
+
+/**
+ * Positions the iterator at the last value of the current container that the
+ * iterator points at, if available.
+ */
+CROARING_WARN_UNUSED static bool loadlastvalue(
+    roaring_uint32_iterator_t *newit) {
+    if (iter_new_container_partial_init(newit)) {
+        uint16_t value = 0;
+        newit->container_it = container_init_iterator_last(
+            newit->container, newit->typecode, &value);
+        newit->current_value = newit->highbits | value;
+    }
+    return newit->has_value;
+}
+
+/**
+ * Positions the iterator at the smallest value that is larger than or equal to
+ * `val` within the current container that the iterator points at. Assumes such
+ * a value exists within the current container.
+ */
+CROARING_WARN_UNUSED static bool loadfirstvalue_largeorequal(
+    roaring_uint32_iterator_t *newit, uint32_t val) {
+    bool partial_init = iter_new_container_partial_init(newit);
+    assert(partial_init);
+    if (!partial_init) {
+        return false;
+    }
+    uint16_t value = 0;
+    newit->container_it =
+        container_init_iterator(newit->container, newit->typecode, &value);
+    bool found = container_iterator_lower_bound(
+        newit->container, newit->typecode, &newit->container_it, &value,
+        val & 0xFFFF);
+    assert(found);
+    if (!found) {
+        return false;
+    }
+    newit->current_value = newit->highbits | value;
+    return true;
+}
+
+void roaring_iterator_init(const roaring_bitmap_t *r,
+                           roaring_uint32_iterator_t *newit) {
+    newit->parent = r;
+    newit->container_index = 0;
+    newit->has_value = loadfirstvalue(newit);
+}
+
+void roaring_iterator_init_last(const roaring_bitmap_t *r,
+                                roaring_uint32_iterator_t *newit) {
+    newit->parent = r;
+    newit->container_index = newit->parent->high_low_container.size - 1;
+    newit->has_value = loadlastvalue(newit);
+}
+
+roaring_uint32_iterator_t *roaring_iterator_create(const roaring_bitmap_t *r) {
+    roaring_uint32_iterator_t *newit =
+        (roaring_uint32_iterator_t *)roaring_malloc(
+            sizeof(roaring_uint32_iterator_t));
+    if (newit == NULL) return NULL;
+    roaring_iterator_init(r, newit);
+    return newit;
+}
+
+roaring_uint32_iterator_t *roaring_uint32_iterator_copy(
+    const roaring_uint32_iterator_t *it) {
+    roaring_uint32_iterator_t *newit =
+        (roaring_uint32_iterator_t *)roaring_malloc(
+            sizeof(roaring_uint32_iterator_t));
+    memcpy(newit, it, sizeof(roaring_uint32_iterator_t));
+    return newit;
+}
+
+bool roaring_uint32_iterator_move_equalorlarger(roaring_uint32_iterator_t *it,
+                                                uint32_t val) {
+    uint16_t hb = val >> 16;
+    const int i = ra_get_index(&it->parent->high_low_container, hb);
+    if (i >= 0) {
+        uint32_t lowvalue =
+            container_maximum(it->parent->high_low_container.containers[i],
+                              it->parent->high_low_container.typecodes[i]);
+        uint16_t lb = val & 0xFFFF;
+        if (lowvalue < lb) {
+            // will have to load first value of next container
+            it->container_index = i + 1;
+        } else {
+            // the value is necessarily within the range of the container
+            it->container_index = i;
+            it->has_value = loadfirstvalue_largeorequal(it, val);
+            return it->has_value;
+        }
+    } else {
+        // there is no matching, so we are going for the next container
+        it->container_index = -i - 1;
+    }
+    it->has_value = loadfirstvalue(it);
+    return it->has_value;
+}
+
+bool roaring_uint32_iterator_advance(roaring_uint32_iterator_t *it) {
+    if (it->container_index >= it->parent->high_low_container.size) {
+        return (it->has_value = false);
+    }
+    if (it->container_index < 0) {
+        it->container_index = 0;
+        return (it->has_value = loadfirstvalue(it));
+    }
+    uint16_t low16 = (uint16_t)it->current_value;
+    if (container_iterator_next(it->container, it->typecode, &it->container_it,
+                                &low16)) {
+        it->current_value = it->highbits | low16;
+        return (it->has_value = true);
+    }
+    it->container_index++;
+    return (it->has_value = loadfirstvalue(it));
+}
+
+bool roaring_uint32_iterator_previous(roaring_uint32_iterator_t *it) {
+    if (it->container_index < 0) {
+        return (it->has_value = false);
+    }
+    if (it->container_index >= it->parent->high_low_container.size) {
+        it->container_index = it->parent->high_low_container.size - 1;
+        return (it->has_value = loadlastvalue(it));
+    }
+    uint16_t low16 = (uint16_t)it->current_value;
+    if (container_iterator_prev(it->container, it->typecode, &it->container_it,
+                                &low16)) {
+        it->current_value = it->highbits | low16;
+        return (it->has_value = true);
+    }
+    it->container_index--;
+    return (it->has_value = loadlastvalue(it));
+}
+
+uint32_t roaring_uint32_iterator_read(roaring_uint32_iterator_t *it,
+                                      uint32_t *buf, uint32_t count) {
+    uint32_t ret = 0;
+    while (it->has_value && ret < count) {
+        uint32_t consumed;
+        uint16_t low16 = (uint16_t)it->current_value;
+        bool has_value = container_iterator_read_into_uint32(
+            it->container, it->typecode, &it->container_it, it->highbits, buf,
+            count - ret, &consumed, &low16);
+        ret += consumed;
+        buf += consumed;
+        if (has_value) {
+            it->has_value = true;
+            it->current_value = it->highbits | low16;
+            assert(ret == count);
+            return ret;
+        }
+        it->container_index++;
+        it->has_value = loadfirstvalue(it);
+    }
+    return ret;
+}
+
+void roaring_uint32_iterator_free(roaring_uint32_iterator_t *it) {
+    roaring_free(it);
+}
+
+/****
+ * end of roaring_uint32_iterator_t
+ *****/
+
+bool roaring_bitmap_equals(const roaring_bitmap_t *r1,
+                           const roaring_bitmap_t *r2) {
+    const roaring_array_t *ra1 = &r1->high_low_container;
+    const roaring_array_t *ra2 = &r2->high_low_container;
+
+    if (ra1->size != ra2->size) {
+        return false;
+    }
+    for (int i = 0; i < ra1->size; ++i) {
+        if (ra1->keys[i] != ra2->keys[i]) {
+            return false;
+        }
+    }
+    for (int i = 0; i < ra1->size; ++i) {
+        bool areequal = container_equals(ra1->containers[i], ra1->typecodes[i],
+                                         ra2->containers[i], 
ra2->typecodes[i]);
+        if (!areequal) {
+            return false;
+        }
+    }
+    return true;
+}
+
+bool roaring_bitmap_is_subset(const roaring_bitmap_t *r1,
+                              const roaring_bitmap_t *r2) {
+    const roaring_array_t *ra1 = &r1->high_low_container;
+    const roaring_array_t *ra2 = &r2->high_low_container;
+
+    const int length1 = ra1->size, length2 = ra2->size;
+
+    int pos1 = 0, pos2 = 0;
+
+    while (pos1 < length1 && pos2 < length2) {
+        const uint16_t s1 = ra_get_key_at_index(ra1, (uint16_t)pos1);
+        const uint16_t s2 = ra_get_key_at_index(ra2, (uint16_t)pos2);
+
+        if (s1 == s2) {
+            uint8_t type1, type2;
+            container_t *c1 =
+                ra_get_container_at_index(ra1, (uint16_t)pos1, &type1);
+            container_t *c2 =
+                ra_get_container_at_index(ra2, (uint16_t)pos2, &type2);
+            if (!container_is_subset(c1, type1, c2, type2)) return false;
+            ++pos1;
+            ++pos2;
+        } else if (s1 < s2) {  // s1 < s2
+            return false;
+        } else {  // s1 > s2
+            pos2 = ra_advance_until(ra2, s1, pos2);
+        }
+    }
+    if (pos1 == length1)
+        return true;
+    else
+        return false;
+}
+
+static void insert_flipped_container(roaring_array_t *ans_arr,
+                                     const roaring_array_t *x1_arr, uint16_t 
hb,
+                                     uint16_t lb_start, uint16_t lb_end) {
+    const int i = ra_get_index(x1_arr, hb);
+    const int j = ra_get_index(ans_arr, hb);
+    uint8_t ctype_in, ctype_out;
+    container_t *flipped_container = NULL;
+    if (i >= 0) {
+        container_t *container_to_flip =
+            ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in);
+        flipped_container =
+            container_not_range(container_to_flip, ctype_in, 
(uint32_t)lb_start,
+                                (uint32_t)(lb_end + 1), &ctype_out);
+
+        if (container_get_cardinality(flipped_container, ctype_out))
+            ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
+                                       ctype_out);
+        else {
+            container_free(flipped_container, ctype_out);
+        }
+    } else {
+        flipped_container = container_range_of_ones(
+            (uint32_t)lb_start, (uint32_t)(lb_end + 1), &ctype_out);
+        ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
+                                   ctype_out);
+    }
+}
+
+static void inplace_flip_container(roaring_array_t *x1_arr, uint16_t hb,
+                                   uint16_t lb_start, uint16_t lb_end) {
+    const int i = ra_get_index(x1_arr, hb);
+    uint8_t ctype_in, ctype_out;
+    container_t *flipped_container = NULL;
+    if (i >= 0) {
+        container_t *container_to_flip =
+            ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in);
+        flipped_container = container_inot_range(
+            container_to_flip, ctype_in, (uint32_t)lb_start,
+            (uint32_t)(lb_end + 1), &ctype_out);
+        // if a new container was created, the old one was already freed
+        if (container_get_cardinality(flipped_container, ctype_out)) {
+            ra_set_container_at_index(x1_arr, i, flipped_container, ctype_out);
+        } else {
+            container_free(flipped_container, ctype_out);
+            ra_remove_at_index(x1_arr, i);
+        }
+
+    } else {
+        flipped_container = container_range_of_ones(
+            (uint32_t)lb_start, (uint32_t)(lb_end + 1), &ctype_out);
+        ra_insert_new_key_value_at(x1_arr, -i - 1, hb, flipped_container,
+                                   ctype_out);
+    }
+}
+
+static void insert_fully_flipped_container(roaring_array_t *ans_arr,
+                                           const roaring_array_t *x1_arr,
+                                           uint16_t hb) {
+    const int i = ra_get_index(x1_arr, hb);
+    const int j = ra_get_index(ans_arr, hb);
+    uint8_t ctype_in, ctype_out;
+    container_t *flipped_container = NULL;
+    if (i >= 0) {
+        container_t *container_to_flip =
+            ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in);
+        flipped_container =
+            container_not(container_to_flip, ctype_in, &ctype_out);
+        if (container_get_cardinality(flipped_container, ctype_out))
+            ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
+                                       ctype_out);
+        else {
+            container_free(flipped_container, ctype_out);
+        }
+    } else {
+        flipped_container = container_range_of_ones(0U, 0x10000U, &ctype_out);
+        ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
+                                   ctype_out);
+    }
+}
+
+static void inplace_fully_flip_container(roaring_array_t *x1_arr, uint16_t hb) 
{
+    const int i = ra_get_index(x1_arr, hb);
+    uint8_t ctype_in, ctype_out;
+    container_t *flipped_container = NULL;
+    if (i >= 0) {
+        container_t *container_to_flip =
+            ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in);
+        flipped_container =
+            container_inot(container_to_flip, ctype_in, &ctype_out);
+
+        if (container_get_cardinality(flipped_container, ctype_out)) {
+            ra_set_container_at_index(x1_arr, i, flipped_container, ctype_out);
+        } else {
+            container_free(flipped_container, ctype_out);
+            ra_remove_at_index(x1_arr, i);
+        }
+
+    } else {
+        flipped_container = container_range_of_ones(0U, 0x10000U, &ctype_out);
+        ra_insert_new_key_value_at(x1_arr, -i - 1, hb, flipped_container,
+                                   ctype_out);
+    }
+}
+
+roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *x1,
+                                      uint64_t range_start,
+                                      uint64_t range_end) {
+    if (range_start >= range_end || range_start > (uint64_t)UINT32_MAX + 1) {
+        return roaring_bitmap_copy(x1);
+    }
+    return roaring_bitmap_flip_closed(x1, (uint32_t)range_start,
+                                      (uint32_t)(range_end - 1));
+}
+
+roaring_bitmap_t *roaring_bitmap_flip_closed(const roaring_bitmap_t *x1,
+                                             uint32_t range_start,
+                                             uint32_t range_end) {
+    if (range_start > range_end) {
+        return roaring_bitmap_copy(x1);
+    }
+
+    roaring_bitmap_t *ans = roaring_bitmap_create();
+    roaring_bitmap_set_copy_on_write(ans, is_cow(x1));
+
+    uint16_t hb_start = (uint16_t)(range_start >> 16);
+    const uint16_t lb_start = (uint16_t)range_start;  // & 0xFFFF;
+    uint16_t hb_end = (uint16_t)(range_end >> 16);
+    const uint16_t lb_end = (uint16_t)range_end;  // & 0xFFFF;
+
+    ra_append_copies_until(&ans->high_low_container, &x1->high_low_container,
+                           hb_start, is_cow(x1));
+    if (hb_start == hb_end) {
+        insert_flipped_container(&ans->high_low_container,
+                                 &x1->high_low_container, hb_start, lb_start,
+                                 lb_end);
+    } else {
+        // start and end containers are distinct
+        if (lb_start > 0) {
+            // handle first (partial) container
+            insert_flipped_container(&ans->high_low_container,
+                                     &x1->high_low_container, hb_start,
+                                     lb_start, 0xFFFF);
+            ++hb_start;  // for the full containers.  Can't wrap.
+        }
+
+        if (lb_end != 0xFFFF) --hb_end;  // later we'll handle the partial 
block
+
+        for (uint32_t hb = hb_start; hb <= hb_end; ++hb) {
+            insert_fully_flipped_container(&ans->high_low_container,
+                                           &x1->high_low_container,
+                                           (uint16_t)hb);
+        }
+
+        // handle a partial final container
+        if (lb_end != 0xFFFF) {
+            insert_flipped_container(&ans->high_low_container,
+                                     &x1->high_low_container, hb_end + 1, 0,
+                                     lb_end);
+            ++hb_end;
+        }
+    }
+    ra_append_copies_after(&ans->high_low_container, &x1->high_low_container,
+                           hb_end, is_cow(x1));
+    return ans;
+}
+
+void roaring_bitmap_flip_inplace(roaring_bitmap_t *x1, uint64_t range_start,
+                                 uint64_t range_end) {
+    if (range_start >= range_end || range_start > (uint64_t)UINT32_MAX + 1) {
+        return;
+    }
+    roaring_bitmap_flip_inplace_closed(x1, (uint32_t)range_start,
+                                       (uint32_t)(range_end - 1));
+}
+
+void roaring_bitmap_flip_inplace_closed(roaring_bitmap_t *x1,
+                                        uint32_t range_start,
+                                        uint32_t range_end) {
+    if (range_start > range_end) {
+        return;  // empty range
+    }
+
+    uint16_t hb_start = (uint16_t)(range_start >> 16);
+    const uint16_t lb_start = (uint16_t)range_start;
+    uint16_t hb_end = (uint16_t)(range_end >> 16);
+    const uint16_t lb_end = (uint16_t)range_end;
+
+    if (hb_start == hb_end) {
+        inplace_flip_container(&x1->high_low_container, hb_start, lb_start,
+                               lb_end);
+    } else {
+        // start and end containers are distinct
+        if (lb_start > 0) {
+            // handle first (partial) container
+            inplace_flip_container(&x1->high_low_container, hb_start, lb_start,
+                                   0xFFFF);
+            ++hb_start;  // for the full containers.  Can't wrap.
+        }
+
+        if (lb_end != 0xFFFF) --hb_end;
+
+        for (uint32_t hb = hb_start; hb <= hb_end; ++hb) {
+            inplace_fully_flip_container(&x1->high_low_container, 
(uint16_t)hb);
+        }
+        // handle a partial final container
+        if (lb_end != 0xFFFF) {
+            inplace_flip_container(&x1->high_low_container, hb_end + 1, 0,
+                                   lb_end);
+            ++hb_end;
+        }
+    }
+}
+
+static void offset_append_with_merge(roaring_array_t *ra, int k, container_t 
*c,
+                                     uint8_t t) {
+    int size = ra_get_size(ra);
+    if (size == 0 || ra_get_key_at_index(ra, (uint16_t)(size - 1)) != k) {
+        // No merge.
+        ra_append(ra, (uint16_t)k, c, t);
+        return;
+    }
+
+    uint8_t last_t, new_t;
+    container_t *last_c, *new_c;
+
+    // NOTE: we don't need to unwrap here, since we added last_c ourselves
+    // we have the certainty it's not a shared container.
+    // The same applies to c, as it's the result of calling container_offset.
+    last_c = ra_get_container_at_index(ra, (uint16_t)(size - 1), &last_t);
+    new_c = container_ior(last_c, last_t, c, t, &new_t);
+
+    ra_set_container_at_index(ra, size - 1, new_c, new_t);
+
+    // Comparison of pointers of different origin is UB (or so claim some
+    // compiler makers), so we compare their bit representation only.
+    if ((uintptr_t)last_c != (uintptr_t)new_c) {
+        container_free(last_c, last_t);
+    }
+    container_free(c, t);
+}
+
+// roaring_bitmap_add_offset adds the value 'offset' to each and every value in
+// a bitmap, generating a new bitmap in the process. If offset + element is
+// outside of the range [0,2^32), that the element will be dropped.
+// We need "offset" to be 64 bits because we want to support values
+// between -0xFFFFFFFF up to +0xFFFFFFFF.
+roaring_bitmap_t *roaring_bitmap_add_offset(const roaring_bitmap_t *bm,
+                                            int64_t offset) {
+    roaring_bitmap_t *answer;
+    roaring_array_t *ans_ra;
+    int64_t container_offset;
+    uint16_t in_offset;
+
+    const roaring_array_t *bm_ra = &bm->high_low_container;
+    int length = bm_ra->size;
+
+    if (offset == 0) {
+        return roaring_bitmap_copy(bm);
+    }
+
+    container_offset = offset >> 16;
+    in_offset = (uint16_t)(offset - container_offset * (1 << 16));
+
+    answer = roaring_bitmap_create();
+    bool cow = is_cow(bm);
+    roaring_bitmap_set_copy_on_write(answer, cow);
+
+    ans_ra = &answer->high_low_container;
+
+    if (in_offset == 0) {
+        ans_ra = &answer->high_low_container;
+
+        for (int i = 0, j = 0; i < length; ++i) {
+            int64_t key = ra_get_key_at_index(bm_ra, (uint16_t)i);
+            key += container_offset;
+
+            if (key < 0 || key >= (1 << 16)) {
+                continue;
+            }
+            ra_append_copy(ans_ra, bm_ra, (uint16_t)i, cow);
+            ans_ra->keys[j++] = (uint16_t)key;
+        }
+        return answer;
+    }
+
+    uint8_t t;
+    const container_t *c;
+    container_t *lo, *hi, **lo_ptr, **hi_ptr;
+    int64_t k;
+
+    for (int i = 0; i < length; ++i) {
+        lo = hi = NULL;
+        lo_ptr = hi_ptr = NULL;
+
+        k = ra_get_key_at_index(bm_ra, (uint16_t)i) + container_offset;
+        if (k >= 0 && k < (1 << 16)) {
+            lo_ptr = &lo;
+        }
+        if (k + 1 >= 0 && k + 1 < (1 << 16)) {
+            hi_ptr = &hi;
+        }
+        if (lo_ptr == NULL && hi_ptr == NULL) {
+            continue;
+        }
+        c = ra_get_container_at_index(bm_ra, (uint16_t)i, &t);
+        c = container_unwrap_shared(c, &t);
+
+        container_add_offset(c, t, lo_ptr, hi_ptr, in_offset);
+        if (lo != NULL) {
+            offset_append_with_merge(ans_ra, (int)k, lo, t);
+        }
+        if (hi != NULL) {
+            ra_append(ans_ra, (uint16_t)(k + 1), hi, t);
+        }
+        // the `lo` and `hi` container type always keep same as container `c`.
+        // in the case of `container_add_offset` on bitset container, `lo` and
+        // `hi` may has small cardinality, they must be repaired to array
+        // container.
+    }
+
+    roaring_bitmap_repair_after_lazy(answer);  // do required type conversions.
+    return answer;
+}
+
+roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *x1,
+                                         const roaring_bitmap_t *x2,
+                                         const bool bitsetconversion) {
+    uint8_t result_type = 0;
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    if (0 == length1) {
+        return roaring_bitmap_copy(x2);
+    }
+    if (0 == length2) {
+        return roaring_bitmap_copy(x1);
+    }
+    roaring_bitmap_t *answer =
+        roaring_bitmap_create_with_capacity(length1 + length2);
+    roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
+    int pos1 = 0, pos2 = 0;
+    uint8_t type1, type2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+    while (true) {
+        if (s1 == s2) {
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            container_t *c;
+            if (bitsetconversion &&
+                (get_container_type(c1, type1) != BITSET_CONTAINER_TYPE) &&
+                (get_container_type(c2, type2) != BITSET_CONTAINER_TYPE)) {
+                container_t *newc1 =
+                    container_mutable_unwrap_shared(c1, &type1);
+                newc1 = container_to_bitset(newc1, type1);
+                type1 = BITSET_CONTAINER_TYPE;
+                c = container_lazy_ior(newc1, type1, c2, type2, &result_type);
+                if (c != newc1) {  // should not happen
+                    container_free(newc1, type1);
+                }
+            } else {
+                c = container_lazy_or(c1, type1, c2, type2, &result_type);
+            }
+            // since we assume that the initial containers are non-empty,
+            // the
+            // result here
+            // can only be non-empty
+            ra_append(&answer->high_low_container, s1, c, result_type);
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            c1 = get_copy_of_container(c1, &type1, is_cow(x1));
+            if (is_cow(x1)) {
+                ra_set_container_at_index(&x1->high_low_container, pos1, c1,
+                                          type1);
+            }
+            ra_append(&answer->high_low_container, s1, c1, type1);
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+        } else {  // s1 > s2
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          type2);
+            }
+            ra_append(&answer->high_low_container, s2, c2, type2);
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x2->high_low_container, pos2, length2,
+                             is_cow(x2));
+    } else if (pos2 == length2) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x1->high_low_container, pos1, length1,
+                             is_cow(x1));
+    }
+    return answer;
+}
+
+void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *x1,
+                                    const roaring_bitmap_t *x2,
+                                    const bool bitsetconversion) {
+    uint8_t result_type = 0;
+    int length1 = x1->high_low_container.size;
+    const int length2 = x2->high_low_container.size;
+
+    if (0 == length2) return;
+
+    if (0 == length1) {
+        roaring_bitmap_overwrite(x1, x2);
+        return;
+    }
+    int pos1 = 0, pos2 = 0;
+    uint8_t type1, type2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+    while (true) {
+        if (s1 == s2) {
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            if (!container_is_full(c1, type1)) {
+                if ((bitsetconversion == false) ||
+                    (get_container_type(c1, type1) == BITSET_CONTAINER_TYPE)) {
+                    c1 = get_writable_copy_if_shared(c1, &type1);
+                } else {
+                    // convert to bitset
+                    container_t *old_c1 = c1;
+                    uint8_t old_type1 = type1;
+                    c1 = container_mutable_unwrap_shared(c1, &type1);
+                    c1 = container_to_bitset(c1, type1);
+                    container_free(old_c1, old_type1);
+                    type1 = BITSET_CONTAINER_TYPE;
+                }
+
+                container_t *c2 = ra_get_container_at_index(
+                    &x2->high_low_container, (uint16_t)pos2, &type2);
+                container_t *c =
+                    container_lazy_ior(c1, type1, c2, type2, &result_type);
+
+                if (c != c1) {  // in this instance a new container was 
created,
+                                // and we need to free the old one
+                    container_free(c1, type1);
+                }
+
+                ra_set_container_at_index(&x1->high_low_container, pos1, c,
+                                          result_type);
+            }
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+        } else {  // s1 > s2
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            // container_t *c2_clone = container_clone(c2, type2);
+            c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          type2);
+            }
+            ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
+                                       type2);
+            pos1++;
+            length1++;
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
+                             pos2, length2, is_cow(x2));
+    }
+}
+
+roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *x1,
+                                          const roaring_bitmap_t *x2) {
+    uint8_t result_type = 0;
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    if (0 == length1) {
+        return roaring_bitmap_copy(x2);
+    }
+    if (0 == length2) {
+        return roaring_bitmap_copy(x1);
+    }
+    roaring_bitmap_t *answer =
+        roaring_bitmap_create_with_capacity(length1 + length2);
+    roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
+    int pos1 = 0, pos2 = 0;
+    uint8_t type1, type2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+    while (true) {
+        if (s1 == s2) {
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            container_t *c =
+                container_lazy_xor(c1, type1, c2, type2, &result_type);
+
+            if (container_nonzero_cardinality(c, result_type)) {
+                ra_append(&answer->high_low_container, s1, c, result_type);
+            } else {
+                container_free(c, result_type);
+            }
+
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            c1 = get_copy_of_container(c1, &type1, is_cow(x1));
+            if (is_cow(x1)) {
+                ra_set_container_at_index(&x1->high_low_container, pos1, c1,
+                                          type1);
+            }
+            ra_append(&answer->high_low_container, s1, c1, type1);
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+        } else {  // s1 > s2
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          type2);
+            }
+            ra_append(&answer->high_low_container, s2, c2, type2);
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x2->high_low_container, pos2, length2,
+                             is_cow(x2));
+    } else if (pos2 == length2) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x1->high_low_container, pos1, length1,
+                             is_cow(x1));
+    }
+    return answer;
+}
+
+void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *x1,
+                                     const roaring_bitmap_t *x2) {
+    assert(x1 != x2);
+    uint8_t result_type = 0;
+    int length1 = x1->high_low_container.size;
+    const int length2 = x2->high_low_container.size;
+
+    if (0 == length2) return;
+
+    if (0 == length1) {
+        roaring_bitmap_overwrite(x1, x2);
+        return;
+    }
+    int pos1 = 0, pos2 = 0;
+    uint8_t type1, type2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+    while (true) {
+        if (s1 == s2) {
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+
+            // We do the computation "in place" only when c1 is not a shared
+            // container. Rationale: using a shared container safely with in
+            // place computation would require making a copy and then doing the
+            // computation in place which is likely less efficient than 
avoiding
+            // in place entirely and always generating a new container.
+
+            container_t *c;
+            if (type1 == SHARED_CONTAINER_TYPE) {
+                c = container_lazy_xor(c1, type1, c2, type2, &result_type);
+                shared_container_free(CAST_shared(c1));  // release
+            } else {
+                c = container_lazy_ixor(c1, type1, c2, type2, &result_type);
+            }
+
+            if (container_nonzero_cardinality(c, result_type)) {
+                ra_set_container_at_index(&x1->high_low_container, pos1, c,
+                                          result_type);
+                ++pos1;
+            } else {
+                container_free(c, result_type);
+                ra_remove_at_index(&x1->high_low_container, pos1);
+                --length1;
+            }
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+
+        } else {  // s1 > s2
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            // container_t *c2_clone = container_clone(c2, type2);
+            c2 = get_copy_of_container(c2, &type2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          type2);
+            }
+            ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
+                                       type2);
+            pos1++;
+            length1++;
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
+                             pos2, length2, is_cow(x2));
+    }
+}
+
+void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *r) {
+    roaring_array_t *ra = &r->high_low_container;
+
+    for (int i = 0; i < ra->size; ++i) {
+        const uint8_t old_type = ra->typecodes[i];
+        container_t *old_c = ra->containers[i];
+        uint8_t new_type = old_type;
+        container_t *new_c = container_repair_after_lazy(old_c, &new_type);
+        ra->containers[i] = new_c;
+        ra->typecodes[i] = new_type;
+    }
+}
+
+/**
+ * roaring_bitmap_rank returns the number of integers that are smaller or equal
+ * to x.
+ */
+uint64_t roaring_bitmap_rank(const roaring_bitmap_t *bm, uint32_t x) {
+    uint64_t size = 0;
+    uint32_t xhigh = x >> 16;
+    for (int i = 0; i < bm->high_low_container.size; i++) {
+        uint32_t key = bm->high_low_container.keys[i];
+        if (xhigh > key) {
+            size +=
+                container_get_cardinality(bm->high_low_container.containers[i],
+                                          bm->high_low_container.typecodes[i]);
+        } else if (xhigh == key) {
+            return size + container_rank(bm->high_low_container.containers[i],
+                                         bm->high_low_container.typecodes[i],
+                                         x & 0xFFFF);
+        } else {
+            return size;
+        }
+    }
+    return size;
+}
+void roaring_bitmap_rank_many(const roaring_bitmap_t *bm, const uint32_t 
*begin,
+                              const uint32_t *end, uint64_t *ans) {
+    uint64_t size = 0;
+
+    int i = 0;
+    const uint32_t *iter = begin;
+    while (i < bm->high_low_container.size && iter != end) {
+        uint32_t x = *iter;
+        uint32_t xhigh = x >> 16;
+        uint32_t key = bm->high_low_container.keys[i];
+        if (xhigh > key) {
+            size +=
+                container_get_cardinality(bm->high_low_container.containers[i],
+                                          bm->high_low_container.typecodes[i]);
+            i++;
+        } else if (xhigh == key) {
+            uint32_t consumed = container_rank_many(
+                bm->high_low_container.containers[i],
+                bm->high_low_container.typecodes[i], size, iter, end, ans);
+            iter += consumed;
+            ans += consumed;
+        } else {
+            *(ans++) = size;
+            iter++;
+        }
+    }
+}
+
+/**
+ * roaring_bitmap_get_index returns the index of x, if not exsist return -1.
+ */
+int64_t roaring_bitmap_get_index(const roaring_bitmap_t *bm, uint32_t x) {
+    int64_t index = 0;
+    const uint16_t xhigh = x >> 16;
+    int32_t high_idx = ra_get_index(&bm->high_low_container, xhigh);
+    if (high_idx < 0) return -1;
+
+    for (int i = 0; i < bm->high_low_container.size; i++) {
+        uint32_t key = bm->high_low_container.keys[i];
+        if (xhigh > key) {
+            index +=
+                container_get_cardinality(bm->high_low_container.containers[i],
+                                          bm->high_low_container.typecodes[i]);
+        } else if (xhigh == key) {
+            int32_t low_idx = container_get_index(
+                bm->high_low_container.containers[high_idx],
+                bm->high_low_container.typecodes[high_idx], x & 0xFFFF);
+            if (low_idx < 0) return -1;
+            return index + low_idx;
+        } else {
+            return -1;
+        }
+    }
+    return index;
+}
+
+/**
+ * roaring_bitmap_smallest returns the smallest value in the set.
+ * Returns UINT32_MAX if the set is empty.
+ */
+uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *bm) {
+    if (bm->high_low_container.size > 0) {
+        container_t *c = bm->high_low_container.containers[0];
+        uint8_t type = bm->high_low_container.typecodes[0];
+        uint32_t key = bm->high_low_container.keys[0];
+        uint32_t lowvalue = container_minimum(c, type);
+        return lowvalue | (key << 16);
+    }
+    return UINT32_MAX;
+}
+
+/**
+ * roaring_bitmap_smallest returns the greatest value in the set.
+ * Returns 0 if the set is empty.
+ */
+uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *bm) {
+    if (bm->high_low_container.size > 0) {
+        container_t *container =
+            bm->high_low_container.containers[bm->high_low_container.size - 1];
+        uint8_t typecode =
+            bm->high_low_container.typecodes[bm->high_low_container.size - 1];
+        uint32_t key =
+            bm->high_low_container.keys[bm->high_low_container.size - 1];
+        uint32_t lowvalue = container_maximum(container, typecode);
+        return lowvalue | (key << 16);
+    }
+    return 0;
+}
+
+bool roaring_bitmap_select(const roaring_bitmap_t *bm, uint32_t rank,
+                           uint32_t *element) {
+    container_t *container;
+    uint8_t typecode;
+    uint16_t key;
+    uint32_t start_rank = 0;
+    int i = 0;
+    bool valid = false;
+    while (!valid && i < bm->high_low_container.size) {
+        container = bm->high_low_container.containers[i];
+        typecode = bm->high_low_container.typecodes[i];
+        valid =
+            container_select(container, typecode, &start_rank, rank, element);
+        i++;
+    }
+
+    if (valid) {
+        key = bm->high_low_container.keys[i - 1];
+        *element |= (((uint32_t)key) << 16);  // w/o cast, key promotes signed
+        return true;
+    } else
+        return false;
+}
+
+bool roaring_bitmap_intersect(const roaring_bitmap_t *x1,
+                              const roaring_bitmap_t *x2) {
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    uint64_t answer = 0;
+    int pos1 = 0, pos2 = 0;
+
+    while (pos1 < length1 && pos2 < length2) {
+        const uint16_t s1 =
+            ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+        const uint16_t s2 =
+            ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+        if (s1 == s2) {
+            uint8_t type1, type2;
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            if (container_intersect(c1, type1, c2, type2)) return true;
+            ++pos1;
+            ++pos2;
+        } else if (s1 < s2) {  // s1 < s2
+            pos1 = ra_advance_until(&x1->high_low_container, s2, pos1);
+        } else {  // s1 > s2
+            pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+        }
+    }
+    return answer != 0;
+}
+
+bool roaring_bitmap_intersect_with_range(const roaring_bitmap_t *bm, uint64_t 
x,
+                                         uint64_t y) {
+    if (x >= y) {
+        // Empty range.
+        return false;
+    }
+    roaring_uint32_iterator_t it;
+    roaring_iterator_init(bm, &it);
+    if (!roaring_uint32_iterator_move_equalorlarger(&it, (uint32_t)x)) {
+        // No values above x.
+        return false;
+    }
+    if (it.current_value >= y) {
+        // No values below y.
+        return false;
+    }
+    return true;
+}
+
+uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *x1,
+                                        const roaring_bitmap_t *x2) {
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    uint64_t answer = 0;
+    int pos1 = 0, pos2 = 0;
+    while (pos1 < length1 && pos2 < length2) {
+        const uint16_t s1 =
+            ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
+        const uint16_t s2 =
+            ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
+
+        if (s1 == s2) {
+            uint8_t type1, type2;
+            container_t *c1 = 
ra_get_container_at_index(&x1->high_low_container,
+                                                        (uint16_t)pos1, 
&type1);
+            container_t *c2 = 
ra_get_container_at_index(&x2->high_low_container,
+                                                        (uint16_t)pos2, 
&type2);
+            answer += container_and_cardinality(c1, type1, c2, type2);
+            ++pos1;
+            ++pos2;
+        } else if (s1 < s2) {  // s1 < s2
+            pos1 = ra_advance_until(&x1->high_low_container, s2, pos1);
+        } else {  // s1 > s2
+            pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+        }
+    }
+    return answer;
+}
+
+double roaring_bitmap_jaccard_index(const roaring_bitmap_t *x1,
+                                    const roaring_bitmap_t *x2) {
+    const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
+    const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
+    const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
+    return (double)inter / (double)(c1 + c2 - inter);
+}
+
+uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *x1,
+                                       const roaring_bitmap_t *x2) {
+    const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
+    const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
+    const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
+    return c1 + c2 - inter;
+}
+
+uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *x1,
+                                           const roaring_bitmap_t *x2) {
+    const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
+    const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
+    return c1 - inter;
+}
+
+uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *x1,
+                                        const roaring_bitmap_t *x2) {
+    const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
+    const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
+    const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
+    return c1 + c2 - 2 * inter;
+}
+
+bool roaring_bitmap_contains(const roaring_bitmap_t *r, uint32_t val) {
+    const uint16_t hb = val >> 16;
+    /*
+     * the next function call involves a binary search and lots of branching.
+     */
+    int32_t i = ra_get_index(&r->high_low_container, hb);
+    if (i < 0) return false;
+
+    uint8_t typecode;
+    // next call ought to be cheap
+    container_t *container = ra_get_container_at_index(&r->high_low_container,
+                                                       (uint16_t)i, &typecode);
+    // rest might be a tad expensive, possibly involving another round of 
binary
+    // search
+    return container_contains(container, val & 0xFFFF, typecode);
+}
+
+/**
+ * Check whether a range of values from range_start (included) to range_end
+ * (excluded) is present
+ */
+bool roaring_bitmap_contains_range(const roaring_bitmap_t *r,
+                                   uint64_t range_start, uint64_t range_end) {
+    if (range_start >= range_end || range_start > (uint64_t)UINT32_MAX + 1) {
+        return true;
+    }
+    return roaring_bitmap_contains_range_closed(r, (uint32_t)range_start,
+                                                (uint32_t)(range_end - 1));
+}
+
+/**
+ * Check whether a range of values from range_start (included) to range_end
+ * (included) is present
+ */
+bool roaring_bitmap_contains_range_closed(const roaring_bitmap_t *r,
+                                          uint32_t range_start,
+                                          uint32_t range_end) {
+    if (range_start > range_end) {
+        return true;
+    }  // empty range are always contained!
+    if (range_end == range_start) {
+        return roaring_bitmap_contains(r, (uint32_t)range_start);
+    }
+    uint16_t hb_rs = (uint16_t)(range_start >> 16);
+    uint16_t hb_re = (uint16_t)(range_end >> 16);
+    const int32_t span = hb_re - hb_rs;
+    const int32_t hlc_sz = ra_get_size(&r->high_low_container);
+    if (hlc_sz < span + 1) {
+        return false;
+    }
+    int32_t is = ra_get_index(&r->high_low_container, hb_rs);
+    int32_t ie = ra_get_index(&r->high_low_container, hb_re);
+    if ((ie < 0) || (is < 0) || ((ie - is) != span) || ie >= hlc_sz) {
+        return false;
+    }
+    const uint32_t lb_rs = range_start & 0xFFFF;
+    const uint32_t lb_re = (range_end & 0xFFFF) + 1;
+    uint8_t type;
+    container_t *c =
+        ra_get_container_at_index(&r->high_low_container, (uint16_t)is, &type);
+    if (hb_rs == hb_re) {
+        return container_contains_range(c, lb_rs, lb_re, type);
+    }
+    if (!container_contains_range(c, lb_rs, 1 << 16, type)) {
+        return false;
+    }
+    c = ra_get_container_at_index(&r->high_low_container, (uint16_t)ie, &type);
+    if (!container_contains_range(c, 0, lb_re, type)) {
+        return false;
+    }
+    for (int32_t i = is + 1; i < ie; ++i) {
+        c = ra_get_container_at_index(&r->high_low_container, (uint16_t)i,
+                                      &type);
+        if (!container_is_full(c, type)) {
+            return false;
+        }
+    }
+    return true;
+}
+
+bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *r1,
+                                     const roaring_bitmap_t *r2) {
+    return (roaring_bitmap_get_cardinality(r2) >
+                roaring_bitmap_get_cardinality(r1) &&
+            roaring_bitmap_is_subset(r1, r2));
+}
+
+/*
+ * FROZEN SERIALIZATION FORMAT DESCRIPTION
+ *
+ * -- (beginning must be aligned by 32 bytes) --
+ * <bitset_data> uint64_t[BITSET_CONTAINER_SIZE_IN_WORDS *
+ * num_bitset_containers] <run_data>    rle16_t[total number of rle elements in
+ * all run containers] <array_data>  uint16_t[total number of array elements in
+ * all array containers] <keys>        uint16_t[num_containers] <counts>
+ * uint16_t[num_containers] <typecodes>   uint8_t[num_containers] <header>
+ * uint32_t
+ *
+ * <header> is a 4-byte value which is a bit union of FROZEN_COOKIE (15 bits)
+ * and the number of containers (17 bits).
+ *
+ * <counts> stores number of elements for every container.
+ * Its meaning depends on container type.
+ * For array and bitset containers, this value is the container cardinality
+ * minus one. For run container, it is the number of rle_t elements (n_runs).
+ *
+ * <bitset_data>,<array_data>,<run_data> are flat arrays of elements of
+ * all containers of respective type.
+ *
+ * <*_data> and <keys> are kept close together because they are not accessed
+ * during deserilization. This may reduce IO in case of large mmaped bitmaps.
+ * All members have their native alignments during deserilization except
+ * <header>, which is not guaranteed to be aligned by 4 bytes.
+ */
+
+size_t roaring_bitmap_frozen_size_in_bytes(const roaring_bitmap_t *rb) {
+    const roaring_array_t *ra = &rb->high_low_container;
+    size_t num_bytes = 0;
+    for (int32_t i = 0; i < ra->size; i++) {
+        switch (ra->typecodes[i]) {
+            case BITSET_CONTAINER_TYPE: {
+                num_bytes += BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+                break;
+            }
+            case RUN_CONTAINER_TYPE: {
+                const run_container_t *rc = const_CAST_run(ra->containers[i]);
+                num_bytes += rc->n_runs * sizeof(rle16_t);
+                break;
+            }
+            case ARRAY_CONTAINER_TYPE: {
+                const array_container_t *ac =
+                    const_CAST_array(ra->containers[i]);
+                num_bytes += ac->cardinality * sizeof(uint16_t);
+                break;
+            }
+            default:
+                roaring_unreachable;
+        }
+    }
+    num_bytes += (2 + 2 + 1) * ra->size;  // keys, counts, typecodes
+    num_bytes += 4;                       // header
+    return num_bytes;
+}
+
+inline static void *arena_alloc(char **arena, size_t num_bytes) {
+    char *res = *arena;
+    *arena += num_bytes;
+    return res;
+}
+
+void roaring_bitmap_frozen_serialize(const roaring_bitmap_t *rb, char *buf) {
+    /*
+     * Note: we do not require user to supply a specifically aligned buffer.
+     * Thus we have to use memcpy() everywhere.
+     */
+
+    const roaring_array_t *ra = &rb->high_low_container;
+
+    size_t bitset_zone_size = 0;
+    size_t run_zone_size = 0;
+    size_t array_zone_size = 0;
+    for (int32_t i = 0; i < ra->size; i++) {
+        switch (ra->typecodes[i]) {
+            case BITSET_CONTAINER_TYPE: {
+                bitset_zone_size +=
+                    BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+                break;
+            }
+            case RUN_CONTAINER_TYPE: {
+                const run_container_t *rc = const_CAST_run(ra->containers[i]);
+                run_zone_size += rc->n_runs * sizeof(rle16_t);
+                break;
+            }
+            case ARRAY_CONTAINER_TYPE: {
+                const array_container_t *ac =
+                    const_CAST_array(ra->containers[i]);
+                array_zone_size += ac->cardinality * sizeof(uint16_t);
+                break;
+            }
+            default:
+                roaring_unreachable;
+        }
+    }
+
+    uint64_t *bitset_zone = (uint64_t *)arena_alloc(&buf, bitset_zone_size);
+    rle16_t *run_zone = (rle16_t *)arena_alloc(&buf, run_zone_size);
+    uint16_t *array_zone = (uint16_t *)arena_alloc(&buf, array_zone_size);
+    uint16_t *key_zone = (uint16_t *)arena_alloc(&buf, 2 * ra->size);
+    uint16_t *count_zone = (uint16_t *)arena_alloc(&buf, 2 * ra->size);
+    uint8_t *typecode_zone = (uint8_t *)arena_alloc(&buf, ra->size);
+    uint32_t *header_zone = (uint32_t *)arena_alloc(&buf, 4);
+
+    for (int32_t i = 0; i < ra->size; i++) {
+        uint16_t count;
+        switch (ra->typecodes[i]) {
+            case BITSET_CONTAINER_TYPE: {
+                const bitset_container_t *bc =
+                    const_CAST_bitset(ra->containers[i]);
+                memcpy(bitset_zone, bc->words,
+                       BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t));
+                bitset_zone += BITSET_CONTAINER_SIZE_IN_WORDS;
+                if (bc->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+                    count = (uint16_t)(bc->cardinality - 1);
+                } else {
+                    count =
+                        (uint16_t)(bitset_container_compute_cardinality(bc) -
+                                   1);
+                }
+                break;
+            }
+            case RUN_CONTAINER_TYPE: {
+                const run_container_t *rc = const_CAST_run(ra->containers[i]);
+                size_t num_bytes = rc->n_runs * sizeof(rle16_t);
+                memcpy(run_zone, rc->runs, num_bytes);
+                run_zone += rc->n_runs;
+                count = (uint16_t)rc->n_runs;
+                break;
+            }
+            case ARRAY_CONTAINER_TYPE: {
+                const array_container_t *ac =
+                    const_CAST_array(ra->containers[i]);
+                size_t num_bytes = ac->cardinality * sizeof(uint16_t);
+                memcpy(array_zone, ac->array, num_bytes);
+                array_zone += ac->cardinality;
+                count = (uint16_t)(ac->cardinality - 1);
+                break;
+            }
+            default:
+                roaring_unreachable;
+        }
+        memcpy(&count_zone[i], &count, 2);
+    }
+    memcpy(key_zone, ra->keys, ra->size * sizeof(uint16_t));
+    memcpy(typecode_zone, ra->typecodes, ra->size * sizeof(uint8_t));
+    uint32_t header = ((uint32_t)ra->size << 15) | FROZEN_COOKIE;
+    memcpy(header_zone, &header, 4);
+}
+
+const roaring_bitmap_t *roaring_bitmap_frozen_view(const char *buf,
+                                                   size_t length) {
+    if ((uintptr_t)buf % 32 != 0) {
+        return NULL;
+    }
+
+    // cookie and num_containers
+    if (length < 4) {
+        return NULL;
+    }
+    uint32_t header;
+    memcpy(&header, buf + length - 4, 4);  // header may be misaligned
+    if ((header & 0x7FFF) != FROZEN_COOKIE) {
+        return NULL;
+    }
+    int32_t num_containers = (header >> 15);
+
+    // typecodes, counts and keys
+    if (length < 4 + (size_t)num_containers * (1 + 2 + 2)) {
+        return NULL;
+    }
+    uint16_t *keys = (uint16_t *)(buf + length - 4 - num_containers * 5);
+    uint16_t *counts = (uint16_t *)(buf + length - 4 - num_containers * 3);
+    uint8_t *typecodes = (uint8_t *)(buf + length - 4 - num_containers * 1);
+
+    // {bitset,array,run}_zone
+    int32_t num_bitset_containers = 0;
+    int32_t num_run_containers = 0;
+    int32_t num_array_containers = 0;
+    size_t bitset_zone_size = 0;
+    size_t run_zone_size = 0;
+    size_t array_zone_size = 0;
+    for (int32_t i = 0; i < num_containers; i++) {
+        switch (typecodes[i]) {
+            case BITSET_CONTAINER_TYPE:
+                num_bitset_containers++;
+                bitset_zone_size +=
+                    BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+                break;
+            case RUN_CONTAINER_TYPE:
+                num_run_containers++;
+                run_zone_size += counts[i] * sizeof(rle16_t);
+                break;
+            case ARRAY_CONTAINER_TYPE:
+                num_array_containers++;
+                array_zone_size += (counts[i] + UINT32_C(1)) * 
sizeof(uint16_t);
+                break;
+            default:
+                return NULL;
+        }
+    }
+    if (length != bitset_zone_size + run_zone_size + array_zone_size +
+                      5 * num_containers + 4) {
+        return NULL;
+    }
+    uint64_t *bitset_zone = (uint64_t *)(buf);
+    rle16_t *run_zone = (rle16_t *)(buf + bitset_zone_size);
+    uint16_t *array_zone = (uint16_t *)(buf + bitset_zone_size + 
run_zone_size);
+
+    size_t alloc_size = 0;
+    alloc_size += sizeof(roaring_bitmap_t);
+    alloc_size += num_containers * sizeof(container_t *);
+    alloc_size += num_bitset_containers * sizeof(bitset_container_t);
+    alloc_size += num_run_containers * sizeof(run_container_t);
+    alloc_size += num_array_containers * sizeof(array_container_t);
+
+    char *arena = (char *)roaring_malloc(alloc_size);
+    if (arena == NULL) {
+        return NULL;
+    }
+
+    roaring_bitmap_t *rb =
+        (roaring_bitmap_t *)arena_alloc(&arena, sizeof(roaring_bitmap_t));
+    rb->high_low_container.flags = ROARING_FLAG_FROZEN;
+    rb->high_low_container.allocation_size = num_containers;
+    rb->high_low_container.size = num_containers;
+    rb->high_low_container.keys = (uint16_t *)keys;
+    rb->high_low_container.typecodes = (uint8_t *)typecodes;
+    rb->high_low_container.containers = (container_t **)arena_alloc(
+        &arena, sizeof(container_t *) * num_containers);
+    // Ensure offset of high_low_container.containers is known distance used in
+    // C++ wrapper. sizeof(roaring_bitmap_t) is used as it is the size of the
+    // only allocation that precedes high_low_container.containers. If this is
+    // changed (new allocation or changed order), this offset will also need to
+    // be changed in the C++ wrapper.
+    assert(rb ==
+           (roaring_bitmap_t *)((char *)rb->high_low_container.containers -
+                                sizeof(roaring_bitmap_t)));
+    for (int32_t i = 0; i < num_containers; i++) {
+        switch (typecodes[i]) {
+            case BITSET_CONTAINER_TYPE: {
+                bitset_container_t *bitset = (bitset_container_t *)arena_alloc(
+                    &arena, sizeof(bitset_container_t));
+                bitset->words = bitset_zone;
+                bitset->cardinality = counts[i] + UINT32_C(1);
+                rb->high_low_container.containers[i] = bitset;
+                bitset_zone += BITSET_CONTAINER_SIZE_IN_WORDS;
+                break;
+            }
+            case RUN_CONTAINER_TYPE: {
+                run_container_t *run = (run_container_t *)arena_alloc(
+                    &arena, sizeof(run_container_t));
+                run->capacity = counts[i];
+                run->n_runs = counts[i];
+                run->runs = run_zone;
+                rb->high_low_container.containers[i] = run;
+                run_zone += run->n_runs;
+                break;
+            }
+            case ARRAY_CONTAINER_TYPE: {
+                array_container_t *array = (array_container_t *)arena_alloc(
+                    &arena, sizeof(array_container_t));
+                array->capacity = counts[i] + UINT32_C(1);
+                array->cardinality = counts[i] + UINT32_C(1);
+                array->array = array_zone;
+                rb->high_low_container.containers[i] = array;
+                array_zone += counts[i] + UINT32_C(1);
+                break;
+            }
+            default:
+                roaring_free(arena);
+                return NULL;
+        }
+    }
+
+    return rb;
+}
+
+ALLOW_UNALIGNED
+roaring_bitmap_t *roaring_bitmap_portable_deserialize_frozen(const char *buf) {
+    char *start_of_buf = (char *)buf;
+    uint32_t cookie;
+    int32_t num_containers;
+    uint16_t *descriptive_headers;
+    uint32_t *offset_headers = NULL;
+    const char *run_flag_bitset = NULL;
+    bool hasrun = false;
+
+    // deserialize cookie
+    memcpy(&cookie, buf, sizeof(uint32_t));
+    buf += sizeof(uint32_t);
+    if (cookie == SERIAL_COOKIE_NO_RUNCONTAINER) {
+        memcpy(&num_containers, buf, sizeof(int32_t));
+        buf += sizeof(int32_t);
+        descriptive_headers = (uint16_t *)buf;
+        buf += num_containers * 2 * sizeof(uint16_t);
+        offset_headers = (uint32_t *)buf;
+        buf += num_containers * sizeof(uint32_t);
+    } else if ((cookie & 0xFFFF) == SERIAL_COOKIE) {
+        num_containers = (cookie >> 16) + 1;
+        hasrun = true;
+        int32_t run_flag_bitset_size = (num_containers + 7) / 8;
+        run_flag_bitset = buf;
+        buf += run_flag_bitset_size;
+        descriptive_headers = (uint16_t *)buf;
+        buf += num_containers * 2 * sizeof(uint16_t);
+        if (num_containers >= NO_OFFSET_THRESHOLD) {
+            offset_headers = (uint32_t *)buf;
+            buf += num_containers * sizeof(uint32_t);
+        }
+    } else {
+        return NULL;
+    }
+
+    // calculate total size for allocation
+    int32_t num_bitset_containers = 0;
+    int32_t num_run_containers = 0;
+    int32_t num_array_containers = 0;
+
+    for (int32_t i = 0; i < num_containers; i++) {
+        uint16_t tmp;
+        memcpy(&tmp, descriptive_headers + 2 * i + 1, sizeof(tmp));
+        uint32_t cardinality = tmp + 1;
+        bool isbitmap = (cardinality > DEFAULT_MAX_SIZE);
+        bool isrun = false;
+        if (hasrun) {
+            if ((run_flag_bitset[i / 8] & (1 << (i % 8))) != 0) {
+                isbitmap = false;
+                isrun = true;
+            }
+        }
+
+        if (isbitmap) {
+            num_bitset_containers++;
+        } else if (isrun) {
+            num_run_containers++;
+        } else {
+            num_array_containers++;
+        }
+    }
+
+    size_t alloc_size = 0;
+    alloc_size += sizeof(roaring_bitmap_t);
+    alloc_size += num_containers * sizeof(container_t *);
+    alloc_size += num_bitset_containers * sizeof(bitset_container_t);
+    alloc_size += num_run_containers * sizeof(run_container_t);
+    alloc_size += num_array_containers * sizeof(array_container_t);
+    alloc_size += num_containers * sizeof(uint16_t);  // keys
+    alloc_size += num_containers * sizeof(uint8_t);   // typecodes
+
+    // allocate bitmap and construct containers
+    char *arena = (char *)roaring_malloc(alloc_size);
+    if (arena == NULL) {
+        return NULL;
+    }
+
+    roaring_bitmap_t *rb =
+        (roaring_bitmap_t *)arena_alloc(&arena, sizeof(roaring_bitmap_t));
+    rb->high_low_container.flags = ROARING_FLAG_FROZEN;
+    rb->high_low_container.allocation_size = num_containers;
+    rb->high_low_container.size = num_containers;
+    rb->high_low_container.containers = (container_t **)arena_alloc(
+        &arena, sizeof(container_t *) * num_containers);
+
+    uint16_t *keys =
+        (uint16_t *)arena_alloc(&arena, num_containers * sizeof(uint16_t));
+    uint8_t *typecodes =
+        (uint8_t *)arena_alloc(&arena, num_containers * sizeof(uint8_t));
+
+    rb->high_low_container.keys = keys;
+    rb->high_low_container.typecodes = typecodes;
+
+    for (int32_t i = 0; i < num_containers; i++) {
+        uint16_t tmp;
+        memcpy(&tmp, descriptive_headers + 2 * i + 1, sizeof(tmp));
+        int32_t cardinality = tmp + 1;
+        bool isbitmap = (cardinality > DEFAULT_MAX_SIZE);
+        bool isrun = false;
+        if (hasrun) {
+            if ((run_flag_bitset[i / 8] & (1 << (i % 8))) != 0) {
+                isbitmap = false;
+                isrun = true;
+            }
+        }
+
+        keys[i] = descriptive_headers[2 * i];
+
+        if (isbitmap) {
+            typecodes[i] = BITSET_CONTAINER_TYPE;
+            bitset_container_t *c = (bitset_container_t *)arena_alloc(
+                &arena, sizeof(bitset_container_t));
+            c->cardinality = cardinality;
+            if (offset_headers != NULL) {
+                c->words = (uint64_t *)(start_of_buf + offset_headers[i]);
+            } else {
+                c->words = (uint64_t *)buf;
+                buf += BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+            }
+            rb->high_low_container.containers[i] = c;
+        } else if (isrun) {
+            typecodes[i] = RUN_CONTAINER_TYPE;
+            run_container_t *c =
+                (run_container_t *)arena_alloc(&arena, 
sizeof(run_container_t));
+            c->capacity = cardinality;
+            uint16_t n_runs;
+            if (offset_headers != NULL) {
+                memcpy(&n_runs, start_of_buf + offset_headers[i],
+                       sizeof(uint16_t));
+                c->n_runs = n_runs;
+                c->runs = (rle16_t *)(start_of_buf + offset_headers[i] +
+                                      sizeof(uint16_t));
+            } else {
+                memcpy(&n_runs, buf, sizeof(uint16_t));
+                c->n_runs = n_runs;
+                buf += sizeof(uint16_t);
+                c->runs = (rle16_t *)buf;
+                buf += c->n_runs * sizeof(rle16_t);
+            }
+            rb->high_low_container.containers[i] = c;
+        } else {
+            typecodes[i] = ARRAY_CONTAINER_TYPE;
+            array_container_t *c = (array_container_t *)arena_alloc(
+                &arena, sizeof(array_container_t));
+            c->cardinality = cardinality;
+            c->capacity = cardinality;
+            if (offset_headers != NULL) {
+                c->array = (uint16_t *)(start_of_buf + offset_headers[i]);
+            } else {
+                c->array = (uint16_t *)buf;
+                buf += cardinality * sizeof(uint16_t);
+            }
+            rb->high_low_container.containers[i] = c;
+        }
+    }
+
+    return rb;
+}
+
+bool roaring_bitmap_to_bitset(const roaring_bitmap_t *r, bitset_t *bitset) {
+    uint32_t max_value = roaring_bitmap_maximum(r);
+    size_t new_array_size = (size_t)(max_value / 64 + 1);
+    bool resize_ok = bitset_resize(bitset, new_array_size, true);
+    if (!resize_ok) {
+        return false;
+    }
+    const roaring_array_t *ra = &r->high_low_container;
+    for (int i = 0; i < ra->size; ++i) {
+        uint64_t *words = bitset->array + (ra->keys[i] << 10);
+        uint8_t type = ra->typecodes[i];
+        const container_t *c = ra->containers[i];
+        if (type == SHARED_CONTAINER_TYPE) {
+            c = container_unwrap_shared(c, &type);
+        }
+        switch (type) {
+            case BITSET_CONTAINER_TYPE: {
+                size_t max_word_index = new_array_size - (ra->keys[i] << 10);
+                if (max_word_index > 1024) {
+                    max_word_index = 1024;
+                }
+                const bitset_container_t *src = const_CAST_bitset(c);
+                memcpy(words, src->words, max_word_index * sizeof(uint64_t));
+            } break;
+            case ARRAY_CONTAINER_TYPE: {
+                const array_container_t *src = const_CAST_array(c);
+                bitset_set_list(words, src->array, src->cardinality);
+            } break;
+            case RUN_CONTAINER_TYPE: {
+                const run_container_t *src = const_CAST_run(c);
+                for (int32_t rlepos = 0; rlepos < src->n_runs; ++rlepos) {
+                    rle16_t rle = src->runs[rlepos];
+                    bitset_set_lenrange(words, rle.value, rle.length);
+                }
+            } break;
+            default:
+                roaring_unreachable;
+        }
+    }
+    return true;
+}
+
+#ifdef __cplusplus
+}
+}
+}  // extern "C" { namespace roaring {
+#endif
+/* end file src/roaring.c */
+/* begin file src/roaring64.c */
+#include <assert.h>
+#include <stdarg.h>
+#include <stdint.h>
+#include <string.h>
+
+
+// For serialization / deserialization
+// containers.h last to avoid conflict with ROARING_CONTAINER_T.
+
+#ifdef __cplusplus
+using namespace ::roaring::internal;
+
+extern "C" {
+namespace roaring {
+namespace api {
+#endif
+
+// TODO: Copy on write.
+// TODO: Error on failed allocation.
+
+typedef struct roaring64_bitmap_s {
+    art_t art;
+    uint8_t flags;
+} roaring64_bitmap_t;
+
+// Leaf type of the ART used to keep the high 48 bits of each entry.
+typedef struct roaring64_leaf_s {
+    art_val_t _pad;
+    uint8_t typecode;
+    container_t *container;
+} roaring64_leaf_t;
+
+// Alias to make it easier to work with, since it's an internal-only type
+// anyway.
+typedef struct roaring64_leaf_s leaf_t;
+
+// Iterator struct to hold iteration state.
+typedef struct roaring64_iterator_s {
+    const roaring64_bitmap_t *parent;
+    art_iterator_t art_it;
+    roaring_container_iterator_t container_it;
+    uint64_t high48;  // Key that art_it points to.
+
+    uint64_t value;
+    bool has_value;
+
+    // If has_value is false, then the iterator is saturated. This field
+    // indicates the direction of saturation. If true, there are no more values
+    // in the forward direction. If false, there are no more values in the
+    // backward direction.
+    bool saturated_forward;
+} roaring64_iterator_t;
+
+// Splits the given uint64 key into high 48 bit and low 16 bit components.
+// Expects high48_out to be of length ART_KEY_BYTES.
+static inline uint16_t split_key(uint64_t key, uint8_t high48_out[]) {
+    uint64_t tmp = croaring_htobe64(key);
+    memcpy(high48_out, (uint8_t *)(&tmp), ART_KEY_BYTES);
+    return (uint16_t)key;
+}
+
+// Recombines the high 48 bit and low 16 bit components into a uint64 key.
+// Expects high48_out to be of length ART_KEY_BYTES.
+static inline uint64_t combine_key(const uint8_t high48[], uint16_t low16) {
+    uint64_t result = 0;
+    memcpy((uint8_t *)(&result), high48, ART_KEY_BYTES);
+    return croaring_be64toh(result) | low16;
+}
+
+static inline uint64_t minimum(uint64_t a, uint64_t b) {
+    return (a < b) ? a : b;
+}
+
+static inline leaf_t *create_leaf(container_t *container, uint8_t typecode) {
+    leaf_t *leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
+    leaf->container = container;
+    leaf->typecode = typecode;
+    return leaf;
+}
+
+static inline leaf_t *copy_leaf_container(const leaf_t *leaf) {
+    leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
+    result_leaf->typecode = leaf->typecode;
+    // get_copy_of_container modifies the typecode passed in.
+    result_leaf->container = get_copy_of_container(
+        leaf->container, &result_leaf->typecode, /*copy_on_write=*/false);
+    return result_leaf;
+}
+
+static inline void free_leaf(leaf_t *leaf) { roaring_free(leaf); }
+
+static inline int compare_high48(art_key_chunk_t key1[],
+                                 art_key_chunk_t key2[]) {
+    return art_compare_keys(key1, key2);
+}
+
+static inline bool roaring64_iterator_init_at_leaf_first(
+    roaring64_iterator_t *it) {
+    it->high48 = combine_key(it->art_it.key, 0);
+    leaf_t *leaf = (leaf_t *)it->art_it.value;
+    uint16_t low16 = 0;
+    it->container_it =
+        container_init_iterator(leaf->container, leaf->typecode, &low16);
+    it->value = it->high48 | low16;
+    return (it->has_value = true);
+}
+
+static inline bool roaring64_iterator_init_at_leaf_last(
+    roaring64_iterator_t *it) {
+    it->high48 = combine_key(it->art_it.key, 0);
+    leaf_t *leaf = (leaf_t *)it->art_it.value;
+    uint16_t low16 = 0;
+    it->container_it =
+        container_init_iterator_last(leaf->container, leaf->typecode, &low16);
+    it->value = it->high48 | low16;
+    return (it->has_value = true);
+}
+
+static inline roaring64_iterator_t *roaring64_iterator_init_at(
+    const roaring64_bitmap_t *r, roaring64_iterator_t *it, bool first) {
+    it->parent = r;
+    it->art_it = art_init_iterator(&r->art, first);
+    it->has_value = it->art_it.value != NULL;
+    if (it->has_value) {
+        if (first) {
+            roaring64_iterator_init_at_leaf_first(it);
+        } else {
+            roaring64_iterator_init_at_leaf_last(it);
+        }
+    } else {
+        it->saturated_forward = first;
+    }
+    return it;
+}
+
+roaring64_bitmap_t *roaring64_bitmap_create(void) {
+    roaring64_bitmap_t *r =
+        (roaring64_bitmap_t *)roaring_malloc(sizeof(roaring64_bitmap_t));
+    r->art.root = NULL;
+    r->flags = 0;
+    return r;
+}
+
+void roaring64_bitmap_free(roaring64_bitmap_t *r) {
+    if (!r) {
+        return;
+    }
+    art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+    while (it.value != NULL) {
+        leaf_t *leaf = (leaf_t *)it.value;
+        container_free(leaf->container, leaf->typecode);
+        free_leaf(leaf);
+        art_iterator_next(&it);
+    }
+    art_free(&r->art);
+    roaring_free(r);
+}
+
+roaring64_bitmap_t *roaring64_bitmap_copy(const roaring64_bitmap_t *r) {
+    roaring64_bitmap_t *result = roaring64_bitmap_create();
+
+    art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+    while (it.value != NULL) {
+        leaf_t *leaf = (leaf_t *)it.value;
+        uint8_t result_typecode = leaf->typecode;
+        container_t *result_container = get_copy_of_container(
+            leaf->container, &result_typecode, /*copy_on_write=*/false);
+        leaf_t *result_leaf = create_leaf(result_container, result_typecode);
+        art_insert(&result->art, it.key, (art_val_t *)result_leaf);
+        art_iterator_next(&it);
+    }
+    return result;
+}
+
+/**
+ * Steal the containers from a 32-bit bitmap and insert them into a 64-bit
+ * bitmap (with an offset)
+ *
+ * After calling this function, the original bitmap will be empty, and the
+ * returned bitmap will contain all the values from the original bitmap.
+ */
+static void move_from_roaring32_offset(roaring64_bitmap_t *dst,
+                                       roaring_bitmap_t *src,
+                                       uint32_t high_bits) {
+    uint64_t key_base = ((uint64_t)high_bits) << 32;
+    uint32_t r32_size = ra_get_size(&src->high_low_container);
+    for (uint32_t i = 0; i < r32_size; ++i) {
+        uint16_t key = ra_get_key_at_index(&src->high_low_container, i);
+        uint8_t typecode;
+        container_t *container = ra_get_container_at_index(
+            &src->high_low_container, (uint16_t)i, &typecode);
+
+        uint8_t high48[ART_KEY_BYTES];
+        uint64_t high48_bits = key_base | ((uint64_t)key << 16);
+        split_key(high48_bits, high48);
+        leaf_t *leaf = create_leaf(container, typecode);
+        art_insert(&dst->art, high48, (art_val_t *)leaf);
+    }
+    // We stole all the containers, so leave behind a size of zero
+    src->high_low_container.size = 0;
+}
+
+roaring64_bitmap_t *roaring64_bitmap_move_from_roaring32(
+    roaring_bitmap_t *bitmap32) {
+    roaring64_bitmap_t *result = roaring64_bitmap_create();
+
+    move_from_roaring32_offset(result, bitmap32, 0);
+
+    return result;
+}
+
+roaring64_bitmap_t *roaring64_bitmap_from_range(uint64_t min, uint64_t max,
+                                                uint64_t step) {
+    if (step == 0 || max <= min) {
+        return NULL;
+    }
+    roaring64_bitmap_t *r = roaring64_bitmap_create();
+    if (step >= (1 << 16)) {
+        // Only one value per container.
+        for (uint64_t value = min; value < max; value += step) {
+            roaring64_bitmap_add(r, value);
+            if (value > UINT64_MAX - step) {
+                break;
+            }
+        }
+        return r;
+    }
+    do {
+        uint64_t high_bits = min & 0xFFFFFFFFFFFF0000;
+        uint16_t container_min = min & 0xFFFF;
+        uint32_t container_max = (uint32_t)minimum(max - high_bits, 1 << 16);
+
+        uint8_t typecode;
+        container_t *container = container_from_range(
+            &typecode, container_min, container_max, (uint16_t)step);
+
+        uint8_t high48[ART_KEY_BYTES];
+        split_key(min, high48);
+        leaf_t *leaf = create_leaf(container, typecode);
+        art_insert(&r->art, high48, (art_val_t *)leaf);
+
+        uint64_t gap = container_max - container_min + step - 1;
+        uint64_t increment = gap - (gap % step);
+        if (min > UINT64_MAX - increment) {
+            break;
+        }
+        min += increment;
+    } while (min < max);
+    return r;
+}
+
+roaring64_bitmap_t *roaring64_bitmap_of_ptr(size_t n_args,
+                                            const uint64_t *vals) {
+    roaring64_bitmap_t *r = roaring64_bitmap_create();
+    roaring64_bitmap_add_many(r, n_args, vals);
+    return r;
+}
+
+roaring64_bitmap_t *roaring64_bitmap_of(size_t n_args, ...) {
+    roaring64_bitmap_t *r = roaring64_bitmap_create();
+    roaring64_bulk_context_t context = CROARING_ZERO_INITIALIZER;
+    va_list ap;
+    va_start(ap, n_args);
+    for (size_t i = 0; i < n_args; i++) {
+        uint64_t val = va_arg(ap, uint64_t);
+        roaring64_bitmap_add_bulk(r, &context, val);
+    }
+    va_end(ap);
+    return r;
+}
+
+static inline leaf_t *containerptr_roaring64_bitmap_add(roaring64_bitmap_t *r,
+                                                        uint8_t *high48,
+                                                        uint16_t low16,
+                                                        leaf_t *leaf) {
+    if (leaf != NULL) {
+        uint8_t typecode2;
+        container_t *container2 =
+            container_add(leaf->container, low16, leaf->typecode, &typecode2);
+        if (container2 != leaf->container) {
+            container_free(leaf->container, leaf->typecode);
+            leaf->container = container2;
+            leaf->typecode = typecode2;
+        }
+        return leaf;
+    } else {
+        array_container_t *ac = array_container_create();
+        uint8_t typecode;
+        container_t *container =
+            container_add(ac, low16, ARRAY_CONTAINER_TYPE, &typecode);
+        assert(ac == container);
+        leaf = create_leaf(container, typecode);
+        art_insert(&r->art, high48, (art_val_t *)leaf);
+        return leaf;
+    }
+}
+
+void roaring64_bitmap_add(roaring64_bitmap_t *r, uint64_t val) {
+    uint8_t high48[ART_KEY_BYTES];
+    uint16_t low16 = split_key(val, high48);
+    leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
+    containerptr_roaring64_bitmap_add(r, high48, low16, leaf);
+}
+
+bool roaring64_bitmap_add_checked(roaring64_bitmap_t *r, uint64_t val) {
+    uint8_t high48[ART_KEY_BYTES];
+    uint16_t low16 = split_key(val, high48);
+    leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
+
+    int old_cardinality = 0;
+    if (leaf != NULL) {
+        old_cardinality =
+            container_get_cardinality(leaf->container, leaf->typecode);
+    }
+    leaf = containerptr_roaring64_bitmap_add(r, high48, low16, leaf);
+    int new_cardinality =
+        container_get_cardinality(leaf->container, leaf->typecode);
+    return old_cardinality != new_cardinality;
+}
+
+void roaring64_bitmap_add_bulk(roaring64_bitmap_t *r,
+                               roaring64_bulk_context_t *context,
+                               uint64_t val) {
+    uint8_t high48[ART_KEY_BYTES];
+    uint16_t low16 = split_key(val, high48);
+    if (context->leaf != NULL &&
+        compare_high48(context->high_bytes, high48) == 0) {
+        // We're at a container with the correct high bits.
+        uint8_t typecode2;
+        container_t *container2 =
+            container_add(context->leaf->container, low16,
+                          context->leaf->typecode, &typecode2);
+        if (container2 != context->leaf->container) {
+            container_free(context->leaf->container, context->leaf->typecode);
+            context->leaf->container = container2;
+            context->leaf->typecode = typecode2;
+        }
+    } else {
+        // We're not positioned anywhere yet or the high bits of the key
+        // differ.
+        leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
+        context->leaf =
+            containerptr_roaring64_bitmap_add(r, high48, low16, leaf);
+        memcpy(context->high_bytes, high48, ART_KEY_BYTES);
+    }
+}
+
+void roaring64_bitmap_add_many(roaring64_bitmap_t *r, size_t n_args,
+                               const uint64_t *vals) {
+    if (n_args == 0) {
+        return;
+    }
+    const uint64_t *end = vals + n_args;
+    roaring64_bulk_context_t context = CROARING_ZERO_INITIALIZER;
+    for (const uint64_t *current_val = vals; current_val != end;
+         current_val++) {
+        roaring64_bitmap_add_bulk(r, &context, *current_val);
+    }
+}
+
+static inline void add_range_closed_at(art_t *art, uint8_t *high48,
+                                       uint16_t min, uint16_t max) {
+    leaf_t *leaf = (leaf_t *)art_find(art, high48);
+    if (leaf != NULL) {
+        uint8_t typecode2;
+        container_t *container2 = container_add_range(
+            leaf->container, leaf->typecode, min, max, &typecode2);
+        if (container2 != leaf->container) {
+            container_free(leaf->container, leaf->typecode);
+            leaf->container = container2;
+            leaf->typecode = typecode2;
+        }
+        return;
+    }
+    uint8_t typecode;
+    // container_add_range is inclusive, but `container_range_of_ones` is
+    // exclusive.
+    container_t *container = container_range_of_ones(min, max + 1, &typecode);
+    leaf = create_leaf(container, typecode);
+    art_insert(art, high48, (art_val_t *)leaf);
+}
+
+void roaring64_bitmap_add_range(roaring64_bitmap_t *r, uint64_t min,
+                                uint64_t max) {
+    if (min >= max) {
+        return;
+    }
+    roaring64_bitmap_add_range_closed(r, min, max - 1);
+}
+
+void roaring64_bitmap_add_range_closed(roaring64_bitmap_t *r, uint64_t min,
+                                       uint64_t max) {
+    if (min > max) {
+        return;
+    }
+
+    art_t *art = &r->art;
+    uint8_t min_high48[ART_KEY_BYTES];
+    uint16_t min_low16 = split_key(min, min_high48);
+    uint8_t max_high48[ART_KEY_BYTES];
+    uint16_t max_low16 = split_key(max, max_high48);
+    if (compare_high48(min_high48, max_high48) == 0) {
+        // Only populate range within one container.
+        add_range_closed_at(art, min_high48, min_low16, max_low16);
+        return;
+    }
+
+    // Populate a range across containers. Fill intermediate containers
+    // entirely.
+    add_range_closed_at(art, min_high48, min_low16, 0xffff);
+    uint64_t min_high_bits = min >> 16;
+    uint64_t max_high_bits = max >> 16;
+    for (uint64_t current = min_high_bits + 1; current < max_high_bits;
+         ++current) {
+        uint8_t current_high48[ART_KEY_BYTES];
+        split_key(current << 16, current_high48);
+        add_range_closed_at(art, current_high48, 0, 0xffff);
+    }
+    add_range_closed_at(art, max_high48, 0, max_low16);
+}
+
+bool roaring64_bitmap_contains(const roaring64_bitmap_t *r, uint64_t val) {
+    uint8_t high48[ART_KEY_BYTES];
+    uint16_t low16 = split_key(val, high48);
+    leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
+    if (leaf != NULL) {
+        return container_contains(leaf->container, low16, leaf->typecode);
+    }
+    return false;
+}
+
+bool roaring64_bitmap_contains_range(const roaring64_bitmap_t *r, uint64_t min,
+                                     uint64_t max) {
+    if (min >= max) {
+        return true;
+    }
+
+    uint8_t min_high48[ART_KEY_BYTES];
+    uint16_t min_low16 = split_key(min, min_high48);
+    uint8_t max_high48[ART_KEY_BYTES];
+    uint16_t max_low16 = split_key(max, max_high48);
+    uint64_t max_high48_bits = (max - 1) & 0xFFFFFFFFFFFF0000;  // Inclusive
+
+    art_iterator_t it = art_lower_bound(&r->art, min_high48);
+    if (it.value == NULL || combine_key(it.key, 0) > min) {
+        return false;
+    }
+    uint64_t prev_high48_bits = min & 0xFFFFFFFFFFFF0000;
+    while (it.value != NULL) {
+        uint64_t current_high48_bits = combine_key(it.key, 0);
+        if (current_high48_bits > max_high48_bits) {
+            // We've passed the end of the range with all containers containing
+            // the range.
+            return true;
+        }
+        if (current_high48_bits - prev_high48_bits > 0x10000) {
+            // There is a gap in the iterator that falls in the range.
+            return false;
+        }
+
+        leaf_t *leaf = (leaf_t *)it.value;
+        uint32_t container_min = 0;
+        if (compare_high48(it.key, min_high48) == 0) {
+            container_min = min_low16;
+        }
+        uint32_t container_max = 0xFFFF + 1;  // Exclusive
+        if (compare_high48(it.key, max_high48) == 0) {
+            container_max = max_low16;
+        }
+
+        // For the first and last containers we use container_contains_range,
+        // for the intermediate containers we can use container_is_full.
+        if (container_min == 0 && container_max == 0xFFFF + 1) {
+            if (!container_is_full(leaf->container, leaf->typecode)) {
+                return false;
+            }
+        } else if (!container_contains_range(leaf->container, container_min,
+                                             container_max, leaf->typecode)) {
+            return false;
+        }
+        prev_high48_bits = current_high48_bits;
+        art_iterator_next(&it);
+    }
+    return prev_high48_bits == max_high48_bits;
+}
+
+bool roaring64_bitmap_contains_bulk(const roaring64_bitmap_t *r,
+                                    roaring64_bulk_context_t *context,
+                                    uint64_t val) {
+    uint8_t high48[ART_KEY_BYTES];
+    uint16_t low16 = split_key(val, high48);
+
+    if (context->leaf == NULL ||
+        art_compare_keys(context->high_bytes, high48) != 0) {
+        // We're not positioned anywhere yet or the high bits of the key
+        // differ.
+        leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
+        if (leaf == NULL) {
+            return false;
+        }
+        context->leaf = leaf;
+        memcpy(context->high_bytes, high48, ART_KEY_BYTES);
+    }
+    return container_contains(context->leaf->container, low16,
+                              context->leaf->typecode);
+}
+
+bool roaring64_bitmap_select(const roaring64_bitmap_t *r, uint64_t rank,
+                             uint64_t *element) {
+    art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+    uint64_t start_rank = 0;
+    while (it.value != NULL) {
+        leaf_t *leaf = (leaf_t *)it.value;
+        uint64_t cardinality =
+            container_get_cardinality(leaf->container, leaf->typecode);
+        if (start_rank + cardinality > rank) {
+            uint32_t uint32_start = 0;
+            uint32_t uint32_rank = rank - start_rank;
+            uint32_t uint32_element = 0;
+            if (container_select(leaf->container, leaf->typecode, 
&uint32_start,
+                                 uint32_rank, &uint32_element)) {
+                *element = combine_key(it.key, (uint16_t)uint32_element);
+                return true;
+            }
+            return false;
+        }
+        start_rank += cardinality;
+        art_iterator_next(&it);
+    }
+    return false;
+}
+
+uint64_t roaring64_bitmap_rank(const roaring64_bitmap_t *r, uint64_t val) {
+    uint8_t high48[ART_KEY_BYTES];
+    uint16_t low16 = split_key(val, high48);
+
+    art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+    uint64_t rank = 0;
+    while (it.value != NULL) {
+        leaf_t *leaf = (leaf_t *)it.value;
+        int compare_result = compare_high48(it.key, high48);
+        if (compare_result < 0) {
+            rank += container_get_cardinality(leaf->container, leaf->typecode);
+        } else if (compare_result == 0) {
+            return rank +
+                   container_rank(leaf->container, leaf->typecode, low16);
+        } else {
+            return rank;
+        }
+        art_iterator_next(&it);
+    }
+    return rank;
+}
+
+bool roaring64_bitmap_get_index(const roaring64_bitmap_t *r, uint64_t val,
+                                uint64_t *out_index) {
+    uint8_t high48[ART_KEY_BYTES];
+    uint16_t low16 = split_key(val, high48);
+
+    art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+    uint64_t index = 0;
+    while (it.value != NULL) {
+        leaf_t *leaf = (leaf_t *)it.value;
+        int compare_result = compare_high48(it.key, high48);
+        if (compare_result < 0) {
+            index += container_get_cardinality(leaf->container, 
leaf->typecode);
+        } else if (compare_result == 0) {
+            int index16 =
+                container_get_index(leaf->container, leaf->typecode, low16);
+            if (index16 < 0) {
+                return false;
+            }
+            *out_index = index + index16;
+            return true;
+        } else {
+            return false;
+        }
+        art_iterator_next(&it);
+    }
+    return false;
+}
+
+static inline leaf_t *containerptr_roaring64_bitmap_remove(
+    roaring64_bitmap_t *r, uint8_t *high48, uint16_t low16, leaf_t *leaf) {
+    if (leaf == NULL) {
+        return NULL;
+    }
+
+    container_t *container = leaf->container;
+    uint8_t typecode = leaf->typecode;
+    uint8_t typecode2;
+    container_t *container2 =
+        container_remove(container, low16, typecode, &typecode2);
+    if (container2 != container) {
+        container_free(container, typecode);
+        leaf->container = container2;
+        leaf->typecode = typecode2;
+    }
+    if (!container_nonzero_cardinality(container2, typecode2)) {
+        container_free(container2, typecode2);
+        leaf = (leaf_t *)art_erase(&r->art, high48);
+        if (leaf != NULL) {
+            free_leaf(leaf);
+        }
+        return NULL;
+    }
+    return leaf;
+}
+
+void roaring64_bitmap_remove(roaring64_bitmap_t *r, uint64_t val) {
+    art_t *art = &r->art;
+    uint8_t high48[ART_KEY_BYTES];
+    uint16_t low16 = split_key(val, high48);
+
+    leaf_t *leaf = (leaf_t *)art_find(art, high48);
+    containerptr_roaring64_bitmap_remove(r, high48, low16, leaf);
+}
+
+bool roaring64_bitmap_remove_checked(roaring64_bitmap_t *r, uint64_t val) {
+    art_t *art = &r->art;
+    uint8_t high48[ART_KEY_BYTES];
+    uint16_t low16 = split_key(val, high48);
+    leaf_t *leaf = (leaf_t *)art_find(art, high48);
+
+    if (leaf == NULL) {
+        return false;
+    }
+    int old_cardinality =
+        container_get_cardinality(leaf->container, leaf->typecode);
+    leaf = containerptr_roaring64_bitmap_remove(r, high48, low16, leaf);
+    if (leaf == NULL) {
+        return true;
+    }
+    int new_cardinality =
+        container_get_cardinality(leaf->container, leaf->typecode);
+    return new_cardinality != old_cardinality;
+}
+
+void roaring64_bitmap_remove_bulk(roaring64_bitmap_t *r,
+                                  roaring64_bulk_context_t *context,
+                                  uint64_t val) {
+    art_t *art = &r->art;
+    uint8_t high48[ART_KEY_BYTES];
+    uint16_t low16 = split_key(val, high48);
+    if (context->leaf != NULL &&
+        compare_high48(context->high_bytes, high48) == 0) {
+        // We're at a container with the correct high bits.
+        uint8_t typecode2;
+        container_t *container2 =
+            container_remove(context->leaf->container, low16,
+                             context->leaf->typecode, &typecode2);
+        if (container2 != context->leaf->container) {
+            container_free(context->leaf->container, context->leaf->typecode);
+            context->leaf->container = container2;
+            context->leaf->typecode = typecode2;
+        }
+        if (!container_nonzero_cardinality(container2, typecode2)) {
+            leaf_t *leaf = (leaf_t *)art_erase(art, high48);
+            container_free(container2, typecode2);
+            free_leaf(leaf);
+        }
+    } else {
+        // We're not positioned anywhere yet or the high bits of the key
+        // differ.
+        leaf_t *leaf = (leaf_t *)art_find(art, high48);
+        context->leaf =
+            containerptr_roaring64_bitmap_remove(r, high48, low16, leaf);
+        memcpy(context->high_bytes, high48, ART_KEY_BYTES);
+    }
+}
+
+void roaring64_bitmap_remove_many(roaring64_bitmap_t *r, size_t n_args,
+                                  const uint64_t *vals) {
+    if (n_args == 0) {
+        return;
+    }
+    const uint64_t *end = vals + n_args;
+    roaring64_bulk_context_t context = CROARING_ZERO_INITIALIZER;
+    for (const uint64_t *current_val = vals; current_val != end;
+         current_val++) {
+        roaring64_bitmap_remove_bulk(r, &context, *current_val);
+    }
+}
+
+static inline void remove_range_closed_at(art_t *art, uint8_t *high48,
+                                          uint16_t min, uint16_t max) {
+    leaf_t *leaf = (leaf_t *)art_find(art, high48);
+    if (leaf == NULL) {
+        return;
+    }
+    uint8_t typecode2;
+    container_t *container2 = container_remove_range(
+        leaf->container, leaf->typecode, min, max, &typecode2);
+    if (container2 != leaf->container) {
+        container_free(leaf->container, leaf->typecode);
+        if (container2 != NULL) {
+            leaf->container = container2;
+            leaf->typecode = typecode2;
+        } else {
+            art_erase(art, high48);
+            free_leaf(leaf);
+        }
+    }
+}
+
+void roaring64_bitmap_remove_range(roaring64_bitmap_t *r, uint64_t min,
+                                   uint64_t max) {
+    if (min >= max) {
+        return;
+    }
+    roaring64_bitmap_remove_range_closed(r, min, max - 1);
+}
+
+void roaring64_bitmap_remove_range_closed(roaring64_bitmap_t *r, uint64_t min,
+                                          uint64_t max) {
+    if (min > max) {
+        return;
+    }
+
+    art_t *art = &r->art;
+    uint8_t min_high48[ART_KEY_BYTES];
+    uint16_t min_low16 = split_key(min, min_high48);
+    uint8_t max_high48[ART_KEY_BYTES];
+    uint16_t max_low16 = split_key(max, max_high48);
+    if (compare_high48(min_high48, max_high48) == 0) {
+        // Only remove a range within one container.
+        remove_range_closed_at(art, min_high48, min_low16, max_low16);
+        return;
+    }
+
+    // Remove a range across containers. Remove intermediate containers
+    // entirely.
+    remove_range_closed_at(art, min_high48, min_low16, 0xffff);
+
+    art_iterator_t it = art_upper_bound(art, min_high48);
+    while (it.value != NULL && art_compare_keys(it.key, max_high48) < 0) {
+        leaf_t *leaf = (leaf_t *)art_iterator_erase(art, &it);
+        container_free(leaf->container, leaf->typecode);
+        free_leaf(leaf);
+    }
+    remove_range_closed_at(art, max_high48, 0, max_low16);
+}
+
+void roaring64_bitmap_clear(roaring64_bitmap_t *r) {
+    roaring64_bitmap_remove_range_closed(r, 0, UINT64_MAX);
+}
+
+uint64_t roaring64_bitmap_get_cardinality(const roaring64_bitmap_t *r) {
+    art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+    uint64_t cardinality = 0;
+    while (it.value != NULL) {
+        leaf_t *leaf = (leaf_t *)it.value;
+        cardinality +=
+            container_get_cardinality(leaf->container, leaf->typecode);
+        art_iterator_next(&it);
+    }
+    return cardinality;
+}
+
+uint64_t roaring64_bitmap_range_cardinality(const roaring64_bitmap_t *r,
+                                            uint64_t min, uint64_t max) {
+    if (min >= max) {
+        return 0;
+    }
+    // Convert to a closed range
+    // No underflow here: passing the above condition implies min < max, so
+    // there is a number less than max
+    return roaring64_bitmap_range_closed_cardinality(r, min, max - 1);
+}
+
+uint64_t roaring64_bitmap_range_closed_cardinality(const roaring64_bitmap_t *r,
+                                                   uint64_t min, uint64_t max) 
{
+    if (min > max) {
+        return 0;
+    }
+
+    uint64_t cardinality = 0;
+    uint8_t min_high48[ART_KEY_BYTES];
+    uint16_t min_low16 = split_key(min, min_high48);
+    uint8_t max_high48[ART_KEY_BYTES];
+    uint16_t max_low16 = split_key(max, max_high48);
+
+    art_iterator_t it = art_lower_bound(&r->art, min_high48);
+    while (it.value != NULL) {
+        int max_compare_result = compare_high48(it.key, max_high48);
+        if (max_compare_result > 0) {
+            // We're outside the range.
+            break;
+        }
+
+        leaf_t *leaf = (leaf_t *)it.value;
+        if (max_compare_result == 0) {
+            // We're at the max high key, add only the range up to the low
+            // 16 bits of max.
+            cardinality +=
+                container_rank(leaf->container, leaf->typecode, max_low16);
+        } else {
+            // We're not yet at the max high key, add the full container
+            // range.
+            cardinality +=
+                container_get_cardinality(leaf->container, leaf->typecode);
+        }
+        if (compare_high48(it.key, min_high48) == 0 && min_low16 > 0) {
+            // We're at the min high key, remove the range up to the low 16
+            // bits of min.
+            cardinality -=
+                container_rank(leaf->container, leaf->typecode, min_low16 - 1);
+        }
+        art_iterator_next(&it);
+    }
+    return cardinality;
+}
+
+bool roaring64_bitmap_is_empty(const roaring64_bitmap_t *r) {
+    return art_is_empty(&r->art);
+}
+
+uint64_t roaring64_bitmap_minimum(const roaring64_bitmap_t *r) {
+    art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+    if (it.value == NULL) {
+        return UINT64_MAX;
+    }
+    leaf_t *leaf = (leaf_t *)it.value;
+    return combine_key(it.key,
+                       container_minimum(leaf->container, leaf->typecode));
+}
+
+uint64_t roaring64_bitmap_maximum(const roaring64_bitmap_t *r) {
+    art_iterator_t it = art_init_iterator(&r->art, /*first=*/false);
+    if (it.value == NULL) {
+        return 0;
+    }
+    leaf_t *leaf = (leaf_t *)it.value;
+    return combine_key(it.key,
+                       container_maximum(leaf->container, leaf->typecode));
+}
+
+bool roaring64_bitmap_run_optimize(roaring64_bitmap_t *r) {
+    art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+    bool has_run_container = false;
+    while (it.value != NULL) {
+        leaf_t *leaf = (leaf_t *)it.value;
+        uint8_t new_typecode;
+        // We don't need to free the existing container if a new one was
+        // created, convert_run_optimize does that internally.
+        leaf->container = convert_run_optimize(leaf->container, leaf->typecode,
+                                               &new_typecode);
+        leaf->typecode = new_typecode;
+        has_run_container |= new_typecode == RUN_CONTAINER_TYPE;
+        art_iterator_next(&it);
+    }
+    return has_run_container;
+}
+
+/**
+ *  (For advanced users.)
+ * Collect statistics about the bitmap
+ */
+void roaring64_bitmap_statistics(const roaring64_bitmap_t *r,
+                                 roaring64_statistics_t *stat) {
+    memset(stat, 0, sizeof(*stat));
+    stat->min_value = roaring64_bitmap_minimum(r);
+    stat->max_value = roaring64_bitmap_maximum(r);
+
+    art_iterator_t it = art_init_iterator(&r->art, true);
+    while (it.value != NULL) {
+        leaf_t *leaf = (leaf_t *)it.value;
+        stat->n_containers++;
+        uint8_t truetype = get_container_type(leaf->container, leaf->typecode);
+        uint32_t card =
+            container_get_cardinality(leaf->container, leaf->typecode);
+        uint32_t sbytes =
+            container_size_in_bytes(leaf->container, leaf->typecode);
+        stat->cardinality += card;
+        switch (truetype) {
+            case BITSET_CONTAINER_TYPE:
+                stat->n_bitset_containers++;
+                stat->n_values_bitset_containers += card;
+                stat->n_bytes_bitset_containers += sbytes;
+                break;
+            case ARRAY_CONTAINER_TYPE:
+                stat->n_array_containers++;
+                stat->n_values_array_containers += card;
+                stat->n_bytes_array_containers += sbytes;
+                break;
+            case RUN_CONTAINER_TYPE:
+                stat->n_run_containers++;
+                stat->n_values_run_containers += card;
+                stat->n_bytes_run_containers += sbytes;
+                break;
+            default:
+                assert(false);
+                roaring_unreachable;
+        }
+        art_iterator_next(&it);
+    }
+}
+
+static bool roaring64_leaf_internal_validate(const art_val_t *val,
+                                             const char **reason) {
+    leaf_t *leaf = (leaf_t *)val;
+    return container_internal_validate(leaf->container, leaf->typecode, 
reason);
+}
+
+bool roaring64_bitmap_internal_validate(const roaring64_bitmap_t *r,
+                                        const char **reason) {
+    return art_internal_validate(&r->art, reason,
+                                 roaring64_leaf_internal_validate);
+}
+
+bool roaring64_bitmap_equals(const roaring64_bitmap_t *r1,
+                             const roaring64_bitmap_t *r2) {
+    art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+    art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+    while (it1.value != NULL && it2.value != NULL) {
+        if (compare_high48(it1.key, it2.key) != 0) {
+            return false;
+        }
+        leaf_t *leaf1 = (leaf_t *)it1.value;
+        leaf_t *leaf2 = (leaf_t *)it2.value;
+        if (!container_equals(leaf1->container, leaf1->typecode,
+                              leaf2->container, leaf2->typecode)) {
+            return false;
+        }
+        art_iterator_next(&it1);
+        art_iterator_next(&it2);
+    }
+    return it1.value == NULL && it2.value == NULL;
+}
+
+bool roaring64_bitmap_is_subset(const roaring64_bitmap_t *r1,
+                                const roaring64_bitmap_t *r2) {
+    art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+    art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+    while (it1.value != NULL) {
+        bool it2_present = it2.value != NULL;
+
+        int compare_result = 0;
+        if (it2_present) {
+            compare_result = compare_high48(it1.key, it2.key);
+            if (compare_result == 0) {
+                leaf_t *leaf1 = (leaf_t *)it1.value;
+                leaf_t *leaf2 = (leaf_t *)it2.value;
+                if (!container_is_subset(leaf1->container, leaf1->typecode,
+                                         leaf2->container, leaf2->typecode)) {
+                    return false;
+                }
+                art_iterator_next(&it1);
+                art_iterator_next(&it2);
+            }
+        }
+        if (!it2_present || compare_result < 0) {
+            return false;
+        } else if (compare_result > 0) {
+            art_iterator_lower_bound(&it2, it1.key);
+        }
+    }
+    return true;
+}
+
+bool roaring64_bitmap_is_strict_subset(const roaring64_bitmap_t *r1,
+                                       const roaring64_bitmap_t *r2) {
+    return roaring64_bitmap_get_cardinality(r1) <
+               roaring64_bitmap_get_cardinality(r2) &&
+           roaring64_bitmap_is_subset(r1, r2);
+}
+
+roaring64_bitmap_t *roaring64_bitmap_and(const roaring64_bitmap_t *r1,
+                                         const roaring64_bitmap_t *r2) {
+    roaring64_bitmap_t *result = roaring64_bitmap_create();
+
+    art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+    art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+    while (it1.value != NULL && it2.value != NULL) {
+        // Cases:
+        // 1. it1 <  it2 -> it1++
+        // 2. it1 == it1 -> output it1 & it2, it1++, it2++
+        // 3. it1 >  it2 -> it2++
+        int compare_result = compare_high48(it1.key, it2.key);
+        if (compare_result == 0) {
+            // Case 2: iterators at the same high key position.
+            leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
+            leaf_t *leaf1 = (leaf_t *)it1.value;
+            leaf_t *leaf2 = (leaf_t *)it2.value;
+            result_leaf->container = container_and(
+                leaf1->container, leaf1->typecode, leaf2->container,
+                leaf2->typecode, &result_leaf->typecode);
+
+            if (container_nonzero_cardinality(result_leaf->container,
+                                              result_leaf->typecode)) {
+                art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
+            } else {
+                container_free(result_leaf->container, result_leaf->typecode);
+                free_leaf(result_leaf);
+            }
+            art_iterator_next(&it1);
+            art_iterator_next(&it2);
+        } else if (compare_result < 0) {
+            // Case 1: it1 is before it2.
+            art_iterator_lower_bound(&it1, it2.key);
+        } else {
+            // Case 3: it2 is before it1.
+            art_iterator_lower_bound(&it2, it1.key);
+        }
+    }
+    return result;
+}
+
+uint64_t roaring64_bitmap_and_cardinality(const roaring64_bitmap_t *r1,
+                                          const roaring64_bitmap_t *r2) {
+    uint64_t result = 0;
+
+    art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+    art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+    while (it1.value != NULL && it2.value != NULL) {
+        // Cases:
+        // 1. it1 <  it2 -> it1++
+        // 2. it1 == it1 -> output cardinaltiy it1 & it2, it1++, it2++
+        // 3. it1 >  it2 -> it2++
+        int compare_result = compare_high48(it1.key, it2.key);
+        if (compare_result == 0) {
+            // Case 2: iterators at the same high key position.
+            leaf_t *leaf1 = (leaf_t *)it1.value;
+            leaf_t *leaf2 = (leaf_t *)it2.value;
+            result +=
+                container_and_cardinality(leaf1->container, leaf1->typecode,
+                                          leaf2->container, leaf2->typecode);
+            art_iterator_next(&it1);
+            art_iterator_next(&it2);
+        } else if (compare_result < 0) {
+            // Case 1: it1 is before it2.
+            art_iterator_lower_bound(&it1, it2.key);
+        } else {
+            // Case 3: it2 is before it1.
+            art_iterator_lower_bound(&it2, it1.key);
+        }
+    }
+    return result;
+}
+
+// Inplace and (modifies its first argument).
+void roaring64_bitmap_and_inplace(roaring64_bitmap_t *r1,
+                                  const roaring64_bitmap_t *r2) {
+    if (r1 == r2) {
+        return;
+    }
+    art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+    art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+    while (it1.value != NULL) {
+        // Cases:
+        // 1. !it2_present -> erase it1
+        // 2. it2_present
+        //    a. it1 <  it2 -> erase it1
+        //    b. it1 == it2 -> output it1 & it2, it1++, it2++
+        //    c. it1 >  it2 -> it2++
+        bool it2_present = it2.value != NULL;
+        int compare_result = 0;
+        if (it2_present) {
+            compare_result = compare_high48(it1.key, it2.key);
+            if (compare_result == 0) {
+                // Case 2a: iterators at the same high key position.
+                leaf_t *leaf1 = (leaf_t *)it1.value;
+                leaf_t *leaf2 = (leaf_t *)it2.value;
+
+                // We do the computation "in place" only when c1 is not a
+                // shared container. Rationale: using a shared container
+                // safely with in place computation would require making a
+                // copy and then doing the computation in place which is
+                // likely less efficient than avoiding in place entirely and
+                // always generating a new container.
+                uint8_t typecode2;
+                container_t *container2;
+                if (leaf1->typecode == SHARED_CONTAINER_TYPE) {
+                    container2 = container_and(
+                        leaf1->container, leaf1->typecode, leaf2->container,
+                        leaf2->typecode, &typecode2);
+                } else {
+                    container2 = container_iand(
+                        leaf1->container, leaf1->typecode, leaf2->container,
+                        leaf2->typecode, &typecode2);
+                }
+
+                if (container2 != leaf1->container) {
+                    container_free(leaf1->container, leaf1->typecode);
+                    leaf1->container = container2;
+                    leaf1->typecode = typecode2;
+                }
+                if (!container_nonzero_cardinality(container2, typecode2)) {
+                    container_free(container2, typecode2);
+                    art_iterator_erase(&r1->art, &it1);
+                    free_leaf(leaf1);
+                } else {
+                    // Only advance the iterator if we didn't delete the
+                    // leaf, as erasing advances by itself.
+                    art_iterator_next(&it1);
+                }
+                art_iterator_next(&it2);
+            }
+        }
+
+        if (!it2_present || compare_result < 0) {
+            // Cases 1 and 3a: it1 is the only iterator or is before it2.
+            leaf_t *leaf = (leaf_t *)art_iterator_erase(&r1->art, &it1);
+            assert(leaf != NULL);
+            container_free(leaf->container, leaf->typecode);
+            free_leaf(leaf);
+        } else if (compare_result > 0) {
+            // Case 2c: it1 is after it2.
+            art_iterator_lower_bound(&it2, it1.key);
+        }
+    }
+}
+
+bool roaring64_bitmap_intersect(const roaring64_bitmap_t *r1,
+                                const roaring64_bitmap_t *r2) {
+    bool intersect = false;
+    art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+    art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+    while (it1.value != NULL && it2.value != NULL) {
+        // Cases:
+        // 1. it1 <  it2 -> it1++
+        // 2. it1 == it1 -> intersect |= it1 & it2, it1++, it2++
+        // 3. it1 >  it2 -> it2++
+        int compare_result = compare_high48(it1.key, it2.key);
+        if (compare_result == 0) {
+            // Case 2: iterators at the same high key position.
+            leaf_t *leaf1 = (leaf_t *)it1.value;
+            leaf_t *leaf2 = (leaf_t *)it2.value;
+            intersect |= container_intersect(leaf1->container, leaf1->typecode,
+                                             leaf2->container, 
leaf2->typecode);
+            art_iterator_next(&it1);
+            art_iterator_next(&it2);
+        } else if (compare_result < 0) {
+            // Case 1: it1 is before it2.
+            art_iterator_lower_bound(&it1, it2.key);
+        } else {
+            // Case 3: it2 is before it1.
+            art_iterator_lower_bound(&it2, it1.key);
+        }
+    }
+    return intersect;
+}
+
+bool roaring64_bitmap_intersect_with_range(const roaring64_bitmap_t *r,
+                                           uint64_t min, uint64_t max) {
+    if (min >= max) {
+        return false;
+    }
+    roaring64_iterator_t it;
+    roaring64_iterator_init_at(r, &it, /*first=*/true);
+    if (!roaring64_iterator_move_equalorlarger(&it, min)) {
+        return false;
+    }
+    return roaring64_iterator_has_value(&it) &&
+           roaring64_iterator_value(&it) < max;
+}
+
+double roaring64_bitmap_jaccard_index(const roaring64_bitmap_t *r1,
+                                      const roaring64_bitmap_t *r2) {
+    uint64_t c1 = roaring64_bitmap_get_cardinality(r1);
+    uint64_t c2 = roaring64_bitmap_get_cardinality(r2);
+    uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2);
+    return (double)inter / (double)(c1 + c2 - inter);
+}
+
+roaring64_bitmap_t *roaring64_bitmap_or(const roaring64_bitmap_t *r1,
+                                        const roaring64_bitmap_t *r2) {
+    roaring64_bitmap_t *result = roaring64_bitmap_create();
+
+    art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+    art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+    while (it1.value != NULL || it2.value != NULL) {
+        bool it1_present = it1.value != NULL;
+        bool it2_present = it2.value != NULL;
+
+        // Cases:
+        // 1. it1_present  && !it2_present -> output it1, it1++
+        // 2. !it1_present && it2_present  -> output it2, it2++
+        // 3. it1_present  && it2_present
+        //    a. it1 <  it2 -> output it1, it1++
+        //    b. it1 == it2 -> output it1 | it2, it1++, it2++
+        //    c. it1 >  it2 -> output it2, it2++
+        int compare_result = 0;
+        if (it1_present && it2_present) {
+            compare_result = compare_high48(it1.key, it2.key);
+            if (compare_result == 0) {
+                // Case 3b: iterators at the same high key position.
+                leaf_t *leaf1 = (leaf_t *)it1.value;
+                leaf_t *leaf2 = (leaf_t *)it2.value;
+                leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
+                result_leaf->container = container_or(
+                    leaf1->container, leaf1->typecode, leaf2->container,
+                    leaf2->typecode, &result_leaf->typecode);
+                art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
+                art_iterator_next(&it1);
+                art_iterator_next(&it2);
+            }
+        }
+        if ((it1_present && !it2_present) || compare_result < 0) {
+            // Cases 1 and 3a: it1 is the only iterator or is before it2.
+            leaf_t *result_leaf = copy_leaf_container((leaf_t *)it1.value);
+            art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
+            art_iterator_next(&it1);
+        } else if ((!it1_present && it2_present) || compare_result > 0) {
+            // Cases 2 and 3c: it2 is the only iterator or is before it1.
+            leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value);
+            art_insert(&result->art, it2.key, (art_val_t *)result_leaf);
+            art_iterator_next(&it2);
+        }
+    }
+    return result;
+}
+
+uint64_t roaring64_bitmap_or_cardinality(const roaring64_bitmap_t *r1,
+                                         const roaring64_bitmap_t *r2) {
+    uint64_t c1 = roaring64_bitmap_get_cardinality(r1);
+    uint64_t c2 = roaring64_bitmap_get_cardinality(r2);
+    uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2);
+    return c1 + c2 - inter;
+}
+
+void roaring64_bitmap_or_inplace(roaring64_bitmap_t *r1,
+                                 const roaring64_bitmap_t *r2) {
+    if (r1 == r2) {
+        return;
+    }
+    art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+    art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+    while (it1.value != NULL || it2.value != NULL) {
+        bool it1_present = it1.value != NULL;
+        bool it2_present = it2.value != NULL;
+
+        // Cases:
+        // 1. it1_present  && !it2_present -> it1++
+        // 2. !it1_present && it2_present  -> add it2, it2++
+        // 3. it1_present  && it2_present
+        //    a. it1 <  it2 -> it1++
+        //    b. it1 == it2 -> it1 | it2, it1++, it2++
+        //    c. it1 >  it2 -> add it2, it2++
+        int compare_result = 0;
+        if (it1_present && it2_present) {
+            compare_result = compare_high48(it1.key, it2.key);
+            if (compare_result == 0) {
+                // Case 3b: iterators at the same high key position.
+                leaf_t *leaf1 = (leaf_t *)it1.value;
+                leaf_t *leaf2 = (leaf_t *)it2.value;
+                uint8_t typecode2;
+                container_t *container2;
+                if (leaf1->typecode == SHARED_CONTAINER_TYPE) {
+                    container2 = container_or(leaf1->container, 
leaf1->typecode,
+                                              leaf2->container, 
leaf2->typecode,
+                                              &typecode2);
+                } else {
+                    container2 = container_ior(
+                        leaf1->container, leaf1->typecode, leaf2->container,
+                        leaf2->typecode, &typecode2);
+                }
+                if (container2 != leaf1->container) {
+                    container_free(leaf1->container, leaf1->typecode);
+                    leaf1->container = container2;
+                    leaf1->typecode = typecode2;
+                }
+                art_iterator_next(&it1);
+                art_iterator_next(&it2);
+            }
+        }
+        if ((it1_present && !it2_present) || compare_result < 0) {
+            // Cases 1 and 3a: it1 is the only iterator or is before it2.
+            art_iterator_next(&it1);
+        } else if ((!it1_present && it2_present) || compare_result > 0) {
+            // Cases 2 and 3c: it2 is the only iterator or is before it1.
+            leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value);
+            art_iterator_insert(&r1->art, &it1, it2.key,
+                                (art_val_t *)result_leaf);
+            art_iterator_next(&it2);
+        }
+    }
+}
+
+roaring64_bitmap_t *roaring64_bitmap_xor(const roaring64_bitmap_t *r1,
+                                         const roaring64_bitmap_t *r2) {
+    roaring64_bitmap_t *result = roaring64_bitmap_create();
+
+    art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+    art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+    while (it1.value != NULL || it2.value != NULL) {
+        bool it1_present = it1.value != NULL;
+        bool it2_present = it2.value != NULL;
+
+        // Cases:
+        // 1. it1_present  && !it2_present -> output it1, it1++
+        // 2. !it1_present && it2_present  -> output it2, it2++
+        // 3. it1_present  && it2_present
+        //    a. it1 <  it2 -> output it1, it1++
+        //    b. it1 == it2 -> output it1 ^ it2, it1++, it2++
+        //    c. it1 >  it2 -> output it2, it2++
+        int compare_result = 0;
+        if (it1_present && it2_present) {
+            compare_result = compare_high48(it1.key, it2.key);
+            if (compare_result == 0) {
+                // Case 3b: iterators at the same high key position.
+                leaf_t *leaf1 = (leaf_t *)it1.value;
+                leaf_t *leaf2 = (leaf_t *)it2.value;
+                leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
+                result_leaf->container = container_xor(
+                    leaf1->container, leaf1->typecode, leaf2->container,
+                    leaf2->typecode, &result_leaf->typecode);
+                if (container_nonzero_cardinality(result_leaf->container,
+                                                  result_leaf->typecode)) {
+                    art_insert(&result->art, it1.key, (art_val_t 
*)result_leaf);
+                } else {
+                    container_free(result_leaf->container,
+                                   result_leaf->typecode);
+                    free_leaf(result_leaf);
+                }
+                art_iterator_next(&it1);
+                art_iterator_next(&it2);
+            }
+        }
+        if ((it1_present && !it2_present) || compare_result < 0) {
+            // Cases 1 and 3a: it1 is the only iterator or is before it2.
+            leaf_t *result_leaf = copy_leaf_container((leaf_t *)it1.value);
+            art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
+            art_iterator_next(&it1);
+        } else if ((!it1_present && it2_present) || compare_result > 0) {
+            // Cases 2 and 3c: it2 is the only iterator or is before it1.
+            leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value);
+            art_insert(&result->art, it2.key, (art_val_t *)result_leaf);
+            art_iterator_next(&it2);
+        }
+    }
+    return result;
+}
+
+uint64_t roaring64_bitmap_xor_cardinality(const roaring64_bitmap_t *r1,
+                                          const roaring64_bitmap_t *r2) {
+    uint64_t c1 = roaring64_bitmap_get_cardinality(r1);
+    uint64_t c2 = roaring64_bitmap_get_cardinality(r2);
+    uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2);
+    return c1 + c2 - 2 * inter;
+}
+
+void roaring64_bitmap_xor_inplace(roaring64_bitmap_t *r1,
+                                  const roaring64_bitmap_t *r2) {
+    assert(r1 != r2);
+    art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+    art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+    while (it1.value != NULL || it2.value != NULL) {
+        bool it1_present = it1.value != NULL;
+        bool it2_present = it2.value != NULL;
+
+        // Cases:
+        // 1.  it1_present && !it2_present -> it1++
+        // 2. !it1_present &&  it2_present -> add it2, it2++
+        // 3.  it1_present &&  it2_present
+        //    a. it1 <  it2 -> it1++
+        //    b. it1 == it2 -> it1 ^ it2, it1++, it2++
+        //    c. it1 >  it2 -> add it2, it2++
+        int compare_result = 0;
+        if (it1_present && it2_present) {
+            compare_result = compare_high48(it1.key, it2.key);
+            if (compare_result == 0) {
+                // Case 3b: iterators at the same high key position.
+                leaf_t *leaf1 = (leaf_t *)it1.value;
+                leaf_t *leaf2 = (leaf_t *)it2.value;
+                container_t *container1 = leaf1->container;
+                uint8_t typecode1 = leaf1->typecode;
+                uint8_t typecode2;
+                container_t *container2;
+                if (leaf1->typecode == SHARED_CONTAINER_TYPE) {
+                    container2 = container_xor(
+                        leaf1->container, leaf1->typecode, leaf2->container,
+                        leaf2->typecode, &typecode2);
+                    if (container2 != container1) {
+                        // We only free when doing container_xor, not
+                        // container_ixor, as ixor frees the original
+                        // internally.
+                        container_free(container1, typecode1);
+                    }
+                } else {
+                    container2 = container_ixor(
+                        leaf1->container, leaf1->typecode, leaf2->container,
+                        leaf2->typecode, &typecode2);
+                }
+                leaf1->container = container2;
+                leaf1->typecode = typecode2;
+
+                if (!container_nonzero_cardinality(container2, typecode2)) {
+                    container_free(container2, typecode2);
+                    art_iterator_erase(&r1->art, &it1);
+                    free_leaf(leaf1);
+                } else {
+                    // Only advance the iterator if we didn't delete the
+                    // leaf, as erasing advances by itself.
+                    art_iterator_next(&it1);
+                }
+                art_iterator_next(&it2);
+            }
+        }
+        if ((it1_present && !it2_present) || compare_result < 0) {
+            // Cases 1 and 3a: it1 is the only iterator or is before it2.
+            art_iterator_next(&it1);
+        } else if ((!it1_present && it2_present) || compare_result > 0) {
+            // Cases 2 and 3c: it2 is the only iterator or is before it1.
+            leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value);
+            if (it1_present) {
+                art_iterator_insert(&r1->art, &it1, it2.key,
+                                    (art_val_t *)result_leaf);
+                art_iterator_next(&it1);
+            } else {
+                art_insert(&r1->art, it2.key, (art_val_t *)result_leaf);
+            }
+            art_iterator_next(&it2);
+        }
+    }
+}
+
+roaring64_bitmap_t *roaring64_bitmap_andnot(const roaring64_bitmap_t *r1,
+                                            const roaring64_bitmap_t *r2) {
+    roaring64_bitmap_t *result = roaring64_bitmap_create();
+
+    art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+    art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+    while (it1.value != NULL) {
+        // Cases:
+        // 1. it1_present && !it2_present -> output it1, it1++
+        // 2. it1_present && it2_present
+        //    a. it1 <  it2 -> output it1, it1++
+        //    b. it1 == it2 -> output it1 - it2, it1++, it2++
+        //    c. it1 >  it2 -> it2++
+        bool it2_present = it2.value != NULL;
+        int compare_result = 0;
+        if (it2_present) {
+            compare_result = compare_high48(it1.key, it2.key);
+            if (compare_result == 0) {
+                // Case 2b: iterators at the same high key position.
+                leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
+                leaf_t *leaf1 = (leaf_t *)it1.value;
+                leaf_t *leaf2 = (leaf_t *)it2.value;
+                result_leaf->container = container_andnot(
+                    leaf1->container, leaf1->typecode, leaf2->container,
+                    leaf2->typecode, &result_leaf->typecode);
+
+                if (container_nonzero_cardinality(result_leaf->container,
+                                                  result_leaf->typecode)) {
+                    art_insert(&result->art, it1.key, (art_val_t 
*)result_leaf);
+                } else {
+                    container_free(result_leaf->container,
+                                   result_leaf->typecode);
+                    free_leaf(result_leaf);
+                }
+                art_iterator_next(&it1);
+                art_iterator_next(&it2);
+            }
+        }
+        if (!it2_present || compare_result < 0) {
+            // Cases 1 and 2a: it1 is the only iterator or is before it2.
+            leaf_t *result_leaf = copy_leaf_container((leaf_t *)it1.value);
+            art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
+            art_iterator_next(&it1);
+        } else if (compare_result > 0) {
+            // Case 2c: it1 is after it2.
+            art_iterator_next(&it2);
+        }
+    }
+    return result;
+}
+
+uint64_t roaring64_bitmap_andnot_cardinality(const roaring64_bitmap_t *r1,
+                                             const roaring64_bitmap_t *r2) {
+    uint64_t c1 = roaring64_bitmap_get_cardinality(r1);
+    uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2);
+    return c1 - inter;
+}
+
+void roaring64_bitmap_andnot_inplace(roaring64_bitmap_t *r1,
+                                     const roaring64_bitmap_t *r2) {
+    art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
+    art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
+
+    while (it1.value != NULL) {
+        // Cases:
+        // 1. it1_present && !it2_present -> it1++
+        // 2. it1_present &&  it2_present
+        //    a. it1 <  it2 -> it1++
+        //    b. it1 == it2 -> it1 - it2, it1++, it2++
+        //    c. it1 >  it2 -> it2++
+        bool it2_present = it2.value != NULL;
+        int compare_result = 0;
+        if (it2_present) {
+            compare_result = compare_high48(it1.key, it2.key);
+            if (compare_result == 0) {
+                // Case 2b: iterators at the same high key position.
+                leaf_t *leaf1 = (leaf_t *)it1.value;
+                leaf_t *leaf2 = (leaf_t *)it2.value;
+                container_t *container1 = leaf1->container;
+                uint8_t typecode1 = leaf1->typecode;
+                uint8_t typecode2;
+                container_t *container2;
+                if (leaf1->typecode == SHARED_CONTAINER_TYPE) {
+                    container2 = container_andnot(
+                        leaf1->container, leaf1->typecode, leaf2->container,
+                        leaf2->typecode, &typecode2);
+                    if (container2 != container1) {
+                        // We only free when doing container_andnot, not
+                        // container_iandnot, as iandnot frees the original
+                        // internally.
+                        container_free(container1, typecode1);
+                    }
+                } else {
+                    container2 = container_iandnot(
+                        leaf1->container, leaf1->typecode, leaf2->container,
+                        leaf2->typecode, &typecode2);
+                }
+                if (container2 != container1) {
+                    leaf1->container = container2;
+                    leaf1->typecode = typecode2;
+                }
+
+                if (!container_nonzero_cardinality(container2, typecode2)) {
+                    container_free(container2, typecode2);
+                    art_iterator_erase(&r1->art, &it1);
+                    free_leaf(leaf1);
+                } else {
+                    // Only advance the iterator if we didn't delete the
+                    // leaf, as erasing advances by itself.
+                    art_iterator_next(&it1);
+                }
+                art_iterator_next(&it2);
+            }
+        }
+        if (!it2_present || compare_result < 0) {
+            // Cases 1 and 2a: it1 is the only iterator or is before it2.
+            art_iterator_next(&it1);
+        } else if (compare_result > 0) {
+            // Case 2c: it1 is after it2.
+            art_iterator_next(&it2);
+        }
+    }
+}
+
+/**
+ * Flips the leaf at high48 in the range [min, max), returning a new leaf with 
a
+ * new container. If the high48 key is not found in the existing bitmap, a new
+ * container is created. Returns null if the negation results in an empty 
range.
+ */
+static leaf_t *roaring64_flip_leaf(const roaring64_bitmap_t *r,
+                                   uint8_t high48[], uint32_t min,
+                                   uint32_t max) {
+    leaf_t *leaf1 = (leaf_t *)art_find(&r->art, high48);
+    container_t *container2;
+    uint8_t typecode2;
+    if (leaf1 == NULL) {
+        // No container at this key, create a full container.
+        container2 = container_range_of_ones(min, max, &typecode2);
+    } else if (min == 0 && max > 0xFFFF) {
+        // Flip whole container.
+        container2 =
+            container_not(leaf1->container, leaf1->typecode, &typecode2);
+    } else {
+        // Partially flip a container.
+        container2 = container_not_range(leaf1->container, leaf1->typecode, 
min,
+                                         max, &typecode2);
+    }
+    if (container_nonzero_cardinality(container2, typecode2)) {
+        return create_leaf(container2, typecode2);
+    }
+    container_free(container2, typecode2);
+    return NULL;
+}
+
+/**
+ * Flips the leaf at high48 in the range [min, max). If the high48 key is not
+ * found in the bitmap, a new container is created. Deletes the leaf and
+ * associated container if the negation results in an empty range.
+ */
+static void roaring64_flip_leaf_inplace(roaring64_bitmap_t *r, uint8_t 
high48[],
+                                        uint32_t min, uint32_t max) {
+    leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
+    container_t *container2;
+    uint8_t typecode2;
+    if (leaf == NULL) {
+        // No container at this key, insert a full container.
+        container2 = container_range_of_ones(min, max, &typecode2);
+        art_insert(&r->art, high48,
+                   (art_val_t *)create_leaf(container2, typecode2));
+        return;
+    }
+
+    if (min == 0 && max > 0xFFFF) {
+        // Flip whole container.
+        container2 =
+            container_inot(leaf->container, leaf->typecode, &typecode2);
+    } else {
+        // Partially flip a container.
+        container2 = container_inot_range(leaf->container, leaf->typecode, min,
+                                          max, &typecode2);
+    }
+
+    leaf->container = container2;
+    leaf->typecode = typecode2;
+
+    if (!container_nonzero_cardinality(leaf->container, leaf->typecode)) {
+        art_erase(&r->art, high48);
+        container_free(leaf->container, leaf->typecode);
+        free_leaf(leaf);
+    }
+}
+
+roaring64_bitmap_t *roaring64_bitmap_flip(const roaring64_bitmap_t *r,
+                                          uint64_t min, uint64_t max) {
+    if (min >= max) {
+        return roaring64_bitmap_copy(r);
+    }
+    return roaring64_bitmap_flip_closed(r, min, max - 1);
+}
+
+roaring64_bitmap_t *roaring64_bitmap_flip_closed(const roaring64_bitmap_t *r1,
+                                                 uint64_t min, uint64_t max) {
+    if (min > max) {
+        return roaring64_bitmap_copy(r1);
+    }
+    uint8_t min_high48_key[ART_KEY_BYTES];
+    uint16_t min_low16 = split_key(min, min_high48_key);
+    uint8_t max_high48_key[ART_KEY_BYTES];
+    uint16_t max_low16 = split_key(max, max_high48_key);
+    uint64_t min_high48_bits = (min & 0xFFFFFFFFFFFF0000ULL) >> 16;
+    uint64_t max_high48_bits = (max & 0xFFFFFFFFFFFF0000ULL) >> 16;
+
+    roaring64_bitmap_t *r2 = roaring64_bitmap_create();
+    art_iterator_t it = art_init_iterator(&r1->art, /*first=*/true);
+
+    // Copy the containers before min unchanged.
+    while (it.value != NULL && compare_high48(it.key, min_high48_key) < 0) {
+        leaf_t *leaf1 = (leaf_t *)it.value;
+        uint8_t typecode2 = leaf1->typecode;
+        container_t *container2 = get_copy_of_container(
+            leaf1->container, &typecode2, /*copy_on_write=*/false);
+        art_insert(&r2->art, it.key,
+                   (art_val_t *)create_leaf(container2, typecode2));
+        art_iterator_next(&it);
+    }
+
+    // Flip the range (including non-existent containers!) between min and max.
+    for (uint64_t high48_bits = min_high48_bits; high48_bits <= 
max_high48_bits;
+         high48_bits++) {
+        uint8_t current_high48_key[ART_KEY_BYTES];
+        split_key(high48_bits << 16, current_high48_key);
+
+        uint32_t min_container = 0;
+        if (high48_bits == min_high48_bits) {
+            min_container = min_low16;
+        }
+        uint32_t max_container = 0xFFFF + 1;  // Exclusive range.
+        if (high48_bits == max_high48_bits) {
+            max_container = max_low16 + 1;  // Exclusive.
+        }
+
+        leaf_t *leaf = roaring64_flip_leaf(r1, current_high48_key,
+                                           min_container, max_container);
+        if (leaf != NULL) {
+            art_insert(&r2->art, current_high48_key, (art_val_t *)leaf);
+        }
+    }
+
+    // Copy the containers after max unchanged.
+    it = art_upper_bound(&r1->art, max_high48_key);
+    while (it.value != NULL) {
+        leaf_t *leaf1 = (leaf_t *)it.value;
+        uint8_t typecode2 = leaf1->typecode;
+        container_t *container2 = get_copy_of_container(
+            leaf1->container, &typecode2, /*copy_on_write=*/false);
+        art_insert(&r2->art, it.key,
+                   (art_val_t *)create_leaf(container2, typecode2));
+        art_iterator_next(&it);
+    }
+
+    return r2;
+}
+
+void roaring64_bitmap_flip_inplace(roaring64_bitmap_t *r, uint64_t min,
+                                   uint64_t max) {
+    if (min >= max) {
+        return;
+    }
+    roaring64_bitmap_flip_closed_inplace(r, min, max - 1);
+}
+
+void roaring64_bitmap_flip_closed_inplace(roaring64_bitmap_t *r, uint64_t min,
+                                          uint64_t max) {
+    if (min > max) {
+        return;
+    }
+    uint16_t min_low16 = (uint16_t)min;
+    uint16_t max_low16 = (uint16_t)max;
+    uint64_t min_high48_bits = (min & 0xFFFFFFFFFFFF0000ULL) >> 16;
+    uint64_t max_high48_bits = (max & 0xFFFFFFFFFFFF0000ULL) >> 16;
+
+    // Flip the range (including non-existent containers!) between min and max.
+    for (uint64_t high48_bits = min_high48_bits; high48_bits <= 
max_high48_bits;
+         high48_bits++) {
+        uint8_t current_high48_key[ART_KEY_BYTES];
+        split_key(high48_bits << 16, current_high48_key);
+
+        uint32_t min_container = 0;
+        if (high48_bits == min_high48_bits) {
+            min_container = min_low16;
+        }
+        uint32_t max_container = 0xFFFF + 1;  // Exclusive range.
+        if (high48_bits == max_high48_bits) {
+            max_container = max_low16 + 1;  // Exclusive.
+        }
+
+        roaring64_flip_leaf_inplace(r, current_high48_key, min_container,
+                                    max_container);
+    }
+}
+
+// Returns the number of distinct high 32-bit entries in the bitmap.
+static inline uint64_t count_high32(const roaring64_bitmap_t *r) {
+    art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+    uint64_t high32_count = 0;
+    uint32_t prev_high32 = 0;
+    while (it.value != NULL) {
+        uint32_t current_high32 = (uint32_t)(combine_key(it.key, 0) >> 32);
+        if (high32_count == 0 || prev_high32 != current_high32) {
+            high32_count++;
+            prev_high32 = current_high32;
+        }
+        art_iterator_next(&it);
+    }
+    return high32_count;
+}
+
+// Frees the (32-bit!) bitmap without freeing the containers.
+static inline void roaring_bitmap_free_without_containers(roaring_bitmap_t *r) 
{
+    ra_clear_without_containers(&r->high_low_container);
+    roaring_free(r);
+}
+
+size_t roaring64_bitmap_portable_size_in_bytes(const roaring64_bitmap_t *r) {
+    // 
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
+    size_t size = 0;
+
+    // Write as uint64 the distinct number of "buckets", where a bucket is
+    // defined as the most significant 32 bits of an element.
+    uint64_t high32_count;
+    size += sizeof(high32_count);
+
+    art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+    uint32_t prev_high32 = 0;
+    roaring_bitmap_t *bitmap32 = NULL;
+
+    // Iterate through buckets ordered by increasing keys.
+    while (it.value != NULL) {
+        uint32_t current_high32 = (uint32_t)(combine_key(it.key, 0) >> 32);
+        if (bitmap32 == NULL || prev_high32 != current_high32) {
+            if (bitmap32 != NULL) {
+                // Write as uint32 the most significant 32 bits of the bucket.
+                size += sizeof(prev_high32);
+
+                // Write the 32-bit Roaring bitmaps representing the least
+                // significant bits of a set of elements.
+                size += roaring_bitmap_portable_size_in_bytes(bitmap32);
+                roaring_bitmap_free_without_containers(bitmap32);
+            }
+
+            // Start a new 32-bit bitmap with the current high 32 bits.
+            art_iterator_t it2 = it;
+            uint32_t containers_with_high32 = 0;
+            while (it2.value != NULL && (uint32_t)(combine_key(it2.key, 0) >>
+                                                   32) == current_high32) {
+                containers_with_high32++;
+                art_iterator_next(&it2);
+            }
+            bitmap32 =
+                roaring_bitmap_create_with_capacity(containers_with_high32);
+
+            prev_high32 = current_high32;
+        }
+        leaf_t *leaf = (leaf_t *)it.value;
+        ra_append(&bitmap32->high_low_container,
+                  (uint16_t)(current_high32 >> 16), leaf->container,
+                  leaf->typecode);
+        art_iterator_next(&it);
+    }
+
+    if (bitmap32 != NULL) {
+        // Write as uint32 the most significant 32 bits of the bucket.
+        size += sizeof(prev_high32);
+
+        // Write the 32-bit Roaring bitmaps representing the least
+        // significant bits of a set of elements.
+        size += roaring_bitmap_portable_size_in_bytes(bitmap32);
+        roaring_bitmap_free_without_containers(bitmap32);
+    }
+
+    return size;
+}
+
+size_t roaring64_bitmap_portable_serialize(const roaring64_bitmap_t *r,
+                                           char *buf) {
+    // 
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
+    if (buf == NULL) {
+        return 0;
+    }
+    const char *initial_buf = buf;
+
+    // Write as uint64 the distinct number of "buckets", where a bucket is
+    // defined as the most significant 32 bits of an element.
+    uint64_t high32_count = count_high32(r);
+    memcpy(buf, &high32_count, sizeof(high32_count));
+    buf += sizeof(high32_count);
+
+    art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+    uint32_t prev_high32 = 0;
+    roaring_bitmap_t *bitmap32 = NULL;
+
+    // Iterate through buckets ordered by increasing keys.
+    while (it.value != NULL) {
+        uint64_t current_high48 = combine_key(it.key, 0);
+        uint32_t current_high32 = (uint32_t)(current_high48 >> 32);
+        if (bitmap32 == NULL || prev_high32 != current_high32) {
+            if (bitmap32 != NULL) {
+                // Write as uint32 the most significant 32 bits of the bucket.
+                memcpy(buf, &prev_high32, sizeof(prev_high32));
+                buf += sizeof(prev_high32);
+
+                // Write the 32-bit Roaring bitmaps representing the least
+                // significant bits of a set of elements.
+                buf += roaring_bitmap_portable_serialize(bitmap32, buf);
+                roaring_bitmap_free_without_containers(bitmap32);
+            }
+
+            // Start a new 32-bit bitmap with the current high 32 bits.
+            art_iterator_t it2 = it;
+            uint32_t containers_with_high32 = 0;
+            while (it2.value != NULL &&
+                   (uint32_t)combine_key(it2.key, 0) == current_high32) {
+                containers_with_high32++;
+                art_iterator_next(&it2);
+            }
+            bitmap32 =
+                roaring_bitmap_create_with_capacity(containers_with_high32);
+
+            prev_high32 = current_high32;
+        }
+        leaf_t *leaf = (leaf_t *)it.value;
+        ra_append(&bitmap32->high_low_container,
+                  (uint16_t)(current_high48 >> 16), leaf->container,
+                  leaf->typecode);
+        art_iterator_next(&it);
+    }
+
+    if (bitmap32 != NULL) {
+        // Write as uint32 the most significant 32 bits of the bucket.
+        memcpy(buf, &prev_high32, sizeof(prev_high32));
+        buf += sizeof(prev_high32);
+
+        // Write the 32-bit Roaring bitmaps representing the least
+        // significant bits of a set of elements.
+        buf += roaring_bitmap_portable_serialize(bitmap32, buf);
+        roaring_bitmap_free_without_containers(bitmap32);
+    }
+
+    return buf - initial_buf;
+}
+
+size_t roaring64_bitmap_portable_deserialize_size(const char *buf,
+                                                  size_t maxbytes) {
+    // 
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
+    if (buf == NULL) {
+        return 0;
+    }
+    size_t read_bytes = 0;
+
+    // Read as uint64 the distinct number of "buckets", where a bucket is
+    // defined as the most significant 32 bits of an element.
+    uint64_t buckets;
+    if (read_bytes + sizeof(buckets) > maxbytes) {
+        return 0;
+    }
+    memcpy(&buckets, buf, sizeof(buckets));
+    buf += sizeof(buckets);
+    read_bytes += sizeof(buckets);
+
+    // Buckets should be 32 bits with 4 bits of zero padding.
+    if (buckets > UINT32_MAX) {
+        return 0;
+    }
+
+    // Iterate through buckets ordered by increasing keys.
+    for (uint64_t bucket = 0; bucket < buckets; ++bucket) {
+        // Read as uint32 the most significant 32 bits of the bucket.
+        uint32_t high32;
+        if (read_bytes + sizeof(high32) > maxbytes) {
+            return 0;
+        }
+        buf += sizeof(high32);
+        read_bytes += sizeof(high32);
+
+        // Read the 32-bit Roaring bitmaps representing the least significant
+        // bits of a set of elements.
+        size_t bitmap32_size = roaring_bitmap_portable_deserialize_size(
+            buf, maxbytes - read_bytes);
+        if (bitmap32_size == 0) {
+            return 0;
+        }
+        buf += bitmap32_size;
+        read_bytes += bitmap32_size;
+    }
+    return read_bytes;
+}
+
+roaring64_bitmap_t *roaring64_bitmap_portable_deserialize_safe(
+    const char *buf, size_t maxbytes) {
+    // 
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
+    if (buf == NULL) {
+        return NULL;
+    }
+    size_t read_bytes = 0;
+
+    // Read as uint64 the distinct number of "buckets", where a bucket is
+    // defined as the most significant 32 bits of an element.
+    uint64_t buckets;
+    if (read_bytes + sizeof(buckets) > maxbytes) {
+        return NULL;
+    }
+    memcpy(&buckets, buf, sizeof(buckets));
+    buf += sizeof(buckets);
+    read_bytes += sizeof(buckets);
+
+    // Buckets should be 32 bits with 4 bits of zero padding.
+    if (buckets > UINT32_MAX) {
+        return NULL;
+    }
+
+    roaring64_bitmap_t *r = roaring64_bitmap_create();
+    // Iterate through buckets ordered by increasing keys.
+    int64_t previous_high32 = -1;
+    for (uint64_t bucket = 0; bucket < buckets; ++bucket) {
+        // Read as uint32 the most significant 32 bits of the bucket.
+        uint32_t high32;
+        if (read_bytes + sizeof(high32) > maxbytes) {
+            roaring64_bitmap_free(r);
+            return NULL;
+        }
+        memcpy(&high32, buf, sizeof(high32));
+        buf += sizeof(high32);
+        read_bytes += sizeof(high32);
+        // High 32 bits must be strictly increasing.
+        if (high32 <= previous_high32) {
+            roaring64_bitmap_free(r);
+            return NULL;
+        }
+        previous_high32 = high32;
+
+        // Read the 32-bit Roaring bitmaps representing the least significant
+        // bits of a set of elements.
+        size_t bitmap32_size = roaring_bitmap_portable_deserialize_size(
+            buf, maxbytes - read_bytes);
+        if (bitmap32_size == 0) {
+            roaring64_bitmap_free(r);
+            return NULL;
+        }
+
+        roaring_bitmap_t *bitmap32 = roaring_bitmap_portable_deserialize_safe(
+            buf, maxbytes - read_bytes);
+        if (bitmap32 == NULL) {
+            roaring64_bitmap_free(r);
+            return NULL;
+        }
+        buf += bitmap32_size;
+        read_bytes += bitmap32_size;
+
+        // While we don't attempt to validate much, we must ensure that there
+        // is no duplication in the high 48 bits - inserting into the ART
+        // assumes (or UB) no duplicate keys. The top 32 bits must be unique
+        // because we check for strict increasing values of  high32, but we
+        // must also ensure the top 16 bits within each 32-bit bitmap are also
+        // at least unique (we ensure they're strictly increasing as well,
+        // which they must be for a _valid_ bitmap, since it's cheaper to 
check)
+        int32_t last_bitmap_key = -1;
+        for (int i = 0; i < bitmap32->high_low_container.size; i++) {
+            uint16_t key = bitmap32->high_low_container.keys[i];
+            if (key <= last_bitmap_key) {
+                roaring_bitmap_free(bitmap32);
+                roaring64_bitmap_free(r);
+                return NULL;
+            }
+            last_bitmap_key = key;
+        }
+
+        // Insert all containers of the 32-bit bitmap into the 64-bit bitmap.
+        move_from_roaring32_offset(r, bitmap32, high32);
+        roaring_bitmap_free(bitmap32);
+    }
+    return r;
+}
+
+bool roaring64_bitmap_iterate(const roaring64_bitmap_t *r,
+                              roaring_iterator64 iterator, void *ptr) {
+    art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
+    while (it.value != NULL) {
+        uint64_t high48 = combine_key(it.key, 0);
+        uint64_t high32 = high48 & 0xFFFFFFFF00000000ULL;
+        uint32_t low32 = high48;
+        leaf_t *leaf = (leaf_t *)it.value;
+        if (!container_iterate64(leaf->container, leaf->typecode, low32,
+                                 iterator, high32, ptr)) {
+            return false;
+        }
+        art_iterator_next(&it);
+    }
+    return true;
+}
+
+void roaring64_bitmap_to_uint64_array(const roaring64_bitmap_t *r,
+                                      uint64_t *out) {
+    roaring64_iterator_t it;  // gets initialized in the next line
+    roaring64_iterator_init_at(r, &it, /*first=*/true);
+    roaring64_iterator_read(&it, out, UINT64_MAX);
+}
+
+roaring64_iterator_t *roaring64_iterator_create(const roaring64_bitmap_t *r) {
+    roaring64_iterator_t *it =
+        (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t));
+    return roaring64_iterator_init_at(r, it, /*first=*/true);
+}
+
+roaring64_iterator_t *roaring64_iterator_create_last(
+    const roaring64_bitmap_t *r) {
+    roaring64_iterator_t *it =
+        (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t));
+    return roaring64_iterator_init_at(r, it, /*first=*/false);
+}
+
+void roaring64_iterator_reinit(const roaring64_bitmap_t *r,
+                               roaring64_iterator_t *it) {
+    roaring64_iterator_init_at(r, it, /*first=*/true);
+}
+
+void roaring64_iterator_reinit_last(const roaring64_bitmap_t *r,
+                                    roaring64_iterator_t *it) {
+    roaring64_iterator_init_at(r, it, /*first=*/false);
+}
+
+roaring64_iterator_t *roaring64_iterator_copy(const roaring64_iterator_t *it) {
+    roaring64_iterator_t *new_it =
+        (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t));
+    memcpy(new_it, it, sizeof(*it));
+    return new_it;
+}
+
+void roaring64_iterator_free(roaring64_iterator_t *it) { roaring_free(it); }
+
+bool roaring64_iterator_has_value(const roaring64_iterator_t *it) {
+    return it->has_value;
+}
+
+uint64_t roaring64_iterator_value(const roaring64_iterator_t *it) {
+    return it->value;
+}
+
+bool roaring64_iterator_advance(roaring64_iterator_t *it) {
+    if (it->art_it.value == NULL) {
+        if (it->saturated_forward) {
+            return (it->has_value = false);
+        }
+        roaring64_iterator_init_at(it->parent, it, /*first=*/true);
+        return it->has_value;
+    }
+    leaf_t *leaf = (leaf_t *)it->art_it.value;
+    uint16_t low16 = (uint16_t)it->value;
+    if (container_iterator_next(leaf->container, leaf->typecode,
+                                &it->container_it, &low16)) {
+        it->value = it->high48 | low16;
+        return (it->has_value = true);
+    }
+    if (art_iterator_next(&it->art_it)) {
+        return roaring64_iterator_init_at_leaf_first(it);
+    }
+    it->saturated_forward = true;
+    return (it->has_value = false);
+}
+
+bool roaring64_iterator_previous(roaring64_iterator_t *it) {
+    if (it->art_it.value == NULL) {
+        if (!it->saturated_forward) {
+            // Saturated backward.
+            return (it->has_value = false);
+        }
+        roaring64_iterator_init_at(it->parent, it, /*first=*/false);
+        return it->has_value;
+    }
+    leaf_t *leaf = (leaf_t *)it->art_it.value;
+    uint16_t low16 = (uint16_t)it->value;
+    if (container_iterator_prev(leaf->container, leaf->typecode,
+                                &it->container_it, &low16)) {
+        it->value = it->high48 | low16;
+        return (it->has_value = true);
+    }
+    if (art_iterator_prev(&it->art_it)) {
+        return roaring64_iterator_init_at_leaf_last(it);
+    }
+    it->saturated_forward = false;  // Saturated backward.
+    return (it->has_value = false);
+}
+
+bool roaring64_iterator_move_equalorlarger(roaring64_iterator_t *it,
+                                           uint64_t val) {
+    uint8_t val_high48[ART_KEY_BYTES];
+    uint16_t val_low16 = split_key(val, val_high48);
+    if (!it->has_value || it->high48 != (val & 0xFFFFFFFFFFFF0000)) {
+        // The ART iterator is before or after the high48 bits of `val` (or
+        // beyond the ART altogether), so we need to move to a leaf with a key
+        // equal or greater.
+        if (!art_iterator_lower_bound(&it->art_it, val_high48)) {
+            // Only smaller keys found.
+            it->saturated_forward = true;
+            return (it->has_value = false);
+        }
+        it->high48 = combine_key(it->art_it.key, 0);
+        // Fall through to the next if statement.
+    }
+
+    if (it->high48 == (val & 0xFFFFFFFFFFFF0000)) {
+        // We're at equal high bits, check if a suitable value can be found in
+        // this container.
+        leaf_t *leaf = (leaf_t *)it->art_it.value;
+        uint16_t low16 = (uint16_t)it->value;
+        if (container_iterator_lower_bound(leaf->container, leaf->typecode,
+                                           &it->container_it, &low16,
+                                           val_low16)) {
+            it->value = it->high48 | low16;
+            return (it->has_value = true);
+        }
+        // Only smaller entries in this container, move to the next.
+        if (!art_iterator_next(&it->art_it)) {
+            it->saturated_forward = true;
+            return (it->has_value = false);
+        }
+    }
+
+    // We're at a leaf with high bits greater than `val`, so the first entry in
+    // this container is our result.
+    return roaring64_iterator_init_at_leaf_first(it);
+}
+
+uint64_t roaring64_iterator_read(roaring64_iterator_t *it, uint64_t *buf,
+                                 uint64_t count) {
+    uint64_t consumed = 0;
+    while (it->has_value && consumed < count) {
+        uint32_t container_consumed;
+        leaf_t *leaf = (leaf_t *)it->art_it.value;
+        uint16_t low16 = (uint16_t)it->value;
+        uint32_t container_count = UINT32_MAX;
+        if (count - consumed < (uint64_t)UINT32_MAX) {
+            container_count = count - consumed;
+        }
+        bool has_value = container_iterator_read_into_uint64(
+            leaf->container, leaf->typecode, &it->container_it, it->high48, 
buf,
+            container_count, &container_consumed, &low16);
+        consumed += contain