GnuMED DATA ENTRY

GENERAL DESCRIPTION OF EDIT AREA FUNCTIONALITY

Meaning of words used in this document

EditArea = area of screen real estate with text boxes/other controls to accept data input

Section = discrete logical area of clinical practice eg allergies, prescriptions

Pictures are taken from screen dumps from my office visual basic client.

GENERAL DESCRIPTION OF EDIT AREA CONTENTS

Each editing area will have labels and test boxes, and sometimes additional controls such as option or check boxes and buttons, the position of which may be specific to that editing area but they still all function in the same way. To set the spatial context of the information below where various editing areas are described, please refer to a full screen dump of the user interface e.g. at:

http://www.gnumed.net/rterry/full%20screen%20-%20summary%20screen.htm
ON SECTION SELECT

Individual sections are selected from either the menu(Ugh), toolbar buttons, or via dedicated function keys.

1) STARTING POSITION OF CURSOR

The user may be presented with an empty editing area, with the cursor blinking on a blank line. This may or may not be the top line as shown here for vaccines

[image: image1.png]
Default information may have been loaded into the editing area on the basis of user preferences, for example in the requests editing area the users default provider type, and default provider company, and default provider company address is auto-loaded:

[image: image2.png]
In other editing area’s e.g. the prescription section, the user may wish to default to prescription by generic, or say, as is usually the case with Australian GP’s, prescription by drug brand name, in which case the cursor will be on the drug name line:

[image: image3.png]
As the edit area is actually used to re-edit existing data as well as generate new data, it may be populated by such data from a list displaying a data summary, e.g past history data list which the user can modify and re-save:

[image: image4.png]
2) SETTING OF ADJACENT TAB CONTROL

Some sections may need the tab control which holds lists pertinent to some sections, to be set appropriately e.g. if one has just selected the script section, then you will need to set the tab lists to the script lists with default listing of active medications, irrespective of which tab list is currently showing e.g.:

[image: image5.png]
POPUP PHRASE WHEEL IN EDITING AREA

The data entry paradigm used here differs from many windows based medical programs, which by and large have large numbers of checkboxes, option buttons and dedicated lists, and multiple screens of data entry, each with a different data entry paradigm, usually consisting of different size/shape textboxes, pick lists etc.

This is an unwieldy paradigm and not at all well suited to medical records. Having to continually change from keyboard, to mouse, click here, type there is awkward and slow. In medicine as in life “the way we do one thing, is the way we do everything”, except neither doctors nor programmers usually recognise this.

Also when writing clinical records we usually describe patients medical conditions both in medically recognised terms e.g. hypertension, or in our own “high blood pressure”, or the patients own natural language e.g. ‘swollen foot’, ‘feeling lousy’. The terms we may use as clinicians differs from that another colleague may use, as do the descriptions used by each and every patient for similar symptoms or conditions.

Obviously one cannot code infinite number of hard coded lists or other controls to enable use to access this information. For a full description of the evolution of the thinking and the implementation of this paradigm, refer to http://wwww.gnumed.net/rterry/Index.htm
The approach taken by the program is to use pop up lists where possible within the one style of data input device – the edit area as per the following example taken from the past history section . (The term ‘phrase wheel’, was coined by one of the gnuMed developers Karsten Hilbert <Karsten.Hilbert@gmx.net>).

[image: image6.png]
In practice, very few letters need be typed in to display relevant information, the more letters you type the more defined the list, however one can scroll down the list to select the one you want, then hit enter to select.

[image: image7.png]
Incidentally, if the user hits <enter> without scrolling down the list, and the term does not exist, the spell check is invoked to try and help out, or allow new terms to be added:

[image: image8.png]
However, more of that later.

Central to the term selection in the edit area working one has to grasp the following features of the information is obtained and displayed:

a) It may be contextual.

· the program always knows what section is being used

· the program always knows what line of the editing area it is on

· the program knows if the information should be contextual or if a straight list is more appropriate e.g. if in a SOAP section and the doctor has typed in subjective symptoms which have been described by the patient e.g.:

subjective: earache;fever;runny nose;

then when the cursor hits the objective line of the editing area and the doctor types a single letter, here say ‘r’ (because he has seen a red ear drum):

objective: r

 a pop up list could appear which was not just an alphabetical search of the medical terms in the system, but would contain terms that either the system knows are related to earache, combined with terms the doctor has previously used in relationship to objective findings in consultations where he has selected as a subjective symptom the word ‘earache’ on the previous editing line. E.g.

Red drum

Bulging ear drum

Etc…

b) It is linked by the coding system used
- if you note in the picture taken from the past history section above, just typing in the letters ‘hyp’ has brought up the terms hypertension, and high blood pressure to the top of the list, because the coding system knows the two are related. If the doctor concerned tended to use ’high blood pressure’ instead of ‘hypertension’ then the order of the top two would be reversed. If he worked in a lipid clinic, then the top term could well be ‘elevated cholesterol’, which the system had learnt was his way of describing hypercholesterolaemia. The ability to pull up disparate terms like this is built into coding systems like ICPC that can be modified by the developers to include per doctor weighting.
c) It is weighted per doctor and becomes user biased
· Even simple weighting systems can add enormously to usability, and the most used terms ‘float to the top of the list’. Hence in the script section if the user consistantly used say amoxycillin trihydrate to treat otitis media, but tended to use the term ‘middle ear infection’ so that patients could understand drug use on the label of the script, the term ‘middle ear infection’ would be on the top of the list on the line
d) May consist of joined lists (via union queries)
- There are situations where the developers may choose to both poll the database and mix or append lists based on other rules, eg when presenting a spell checker one can present both what the spell checker provides, plus, from ones own paradigm words which could be relevent (e.g. weight the spell checker towards medical terms – see example below under spell checking in the editing area)
e) It is provided ‘just in time’
** THIS IS PERHAPS THE MOST CRUCIAL POINT **

· One cannot keep infinite information within a medical program. Information needs to be provided as the user needs it. The whole functioning of the editing area depends very heavily on querying the lookup tables in the database (code lists e.g. icpc, request terms eg pathology, tables containing user habits joined with this sort of data) in real time as the information is needed/changes.

· As the user types in the text box of an editing area, using the above rules regarding context etc, the database is queried, with a time delay set to the users typing speed. I found in practice that for a touch typer such as myself that 300msec was ideal, but whatever the value it needs to be user set as they learn to use the program and see how it responds.
AUTO COMPLETION IN THE EDITING AREA

Extending the above concept, it become evident that much of the drudgery can be taken out of medical data entry, increasingly so as the computer system learns each individual user’s habits.

For example this entire script including authority indications was filled with typing in three letters ‘evi’ and hitting the enter key:

[image: image9.png]
i.e the user gets all the information, dosage, what the drug is used for, most likely authority indication under the australian PBS system.

Similar mechanisms can be used in many areas of the program and will be described in the various sections.

GENERAL KEY BEHAVIOUR IN ALL EDITING AREAS

Key
Behaviour
Comment

TAB
Move to next textbox input/button
Not intuitive, leave for conformity

Shift TAB
Move up (back) one textbox input

If in context of this textbox there is an underlying list to show, pop up the list

See example under this set of tables.

<ENTER>
Move down to next textbox/button
Intuitive – loved by all.

Arrow keys (up and down)
If phrase wheel is visible and user is not yet scrolling the list, scroll to first member of list. If list is visible, scroll down list. If at top of list remove list cursor and cursor back in text box
May seem strange, but never have to use the mouse.

Ctl (Key)
Map to buttons:

Eg ok, cancel or specific buttons on each editing area

Shift Tab Example

User has prescribed a drug, then changes mind about condition or default condition is not correct:

[image: image10.png]
Hits the down arrow key:

[image: image11.png]
then scrolls down list and selects chest infection for reason for prescription (this list by the way is user generated by continued use of script, weighted for reason he prescribes the drug).

KEY PRESS BEHAVIOUR IN EDITING AREA TEXT BOXES AS TYPING

As the user types in any of the text boxes which require the popup phrase wheel the

Database is queried with every key press or at the designated time delay as described above.

Where multiple pieces of information are required on each line, I have found in practice that the semi-colon character is ideal to user as a separator, ie the ‘;’. The key sits conveniently near ones little finger, doesn’t require the shift key, and becomes intuitive to use. When the data is later saved to the database it is used as a delimiter to parse out discrete packets of information.

As an example here we have been ordering pathology tests in the Requests section:

[image: image12.png]
As the user types a term, which each key press, the code written by the programmer must make decisions, for example:

· as the user types if the key is alpha-numeric search database for data for the phrase wheel and present as appropriate

· trim off characters which could destroy a search, eg user may be typing in clinical notes wanting to say for example ?carcinoma, so may type in ?car, so the “?” character must be ignored whilst searching the database for words related to car eg carcinoma etc

· If a ‘;’ is pressed by the user, assume the term is complete, remove pop up phrase wheel list as term is complete (or could be a new term in users language not in the database if in say SOAP section) and reset cursor to end of line assuming new search will begin

· If an <enter> is encountered then add a ‘;’ to the end of line and place cursor at end of line, reset search engine to treat new text stream as text to search by

· Hit <enter> twice = move to new line

· Double click over a letter – parse line, select text between two ‘;’ and highlight to allow operation on it e.g.:

[image: image13.png]
· Intercept delete key, insert key, overtype key. Allow only logical decisions on these e.g only allow deletion of complete terms, do not allow insert in middle of ‘fixed’ terms ie terms belonging to say the LOINC pathology terms etc (as these may have to be kept identical to those in the database), but allow insertion/correction of user defined terms.

· There are many more combinations that may be section specific and will be referred to in the documentation for that section.

SPELL CHECKER USAGE IN EDITING AREA’S

It is essential there be some sort of mechanism to assist the user with spelling, and to prevent ‘bad data’ going into the database.

Personally I believe that one should not rigidly enforce spelling to the exclusion of the user being able to have the final say.

If you do, sure you will end up with 100% of terms in your user entered data conforming to spelling and the terms used in your coding system, but you will also end up with inaccurate information as the user will cease to describe what they are doing in natural language terms.

This is one of the big disadvantages of electronic medical record systems, in that your data can become biased by forcing the user to conform to the text displayed by some coding systems.

I will describe a compromise below.

The spell checker needs to have the ability to pick up ordinary English (sorry whatever language you use) words, and to additionally prompt for more likely medical terms.

There are many spelling algorithms around and I don’t pretend to begin to know them. I chose a compromise with my dictionary. I used the only available English dictionary I could find at the time, which happened to be american.vtd, but I compiled another dictionary I called medical.vtd - a binary list of terms from a well known coding system and all the brand names of drugs on the Australian market at the time!

The dictionary could also allow you to save words you knew to be correct into a text file that was also used during the spell check process.

For example you could add Dr SkyzfzHim if he was one of your referring doctors so as not to have to click ignore every time you put in a diagnosis with clinical notes that he was the surgeon:

[image: image14.png]
In addition I did a union query of suggested words + likely medical terms and then presented the result in the word pick window:

For example here (and I’ve scrolled the list down a little in the picture so there were a previous couple of words on top actually in the list but not shown here) I was going to type in typhoid, but mis-spelled it as typi and accidentally hit the enter key:

[image: image15.png]
At the top of the list from the conventional list comes up a couple of words that are highly unlikely in the medical context which for your interest I have defined below:

typic

 adj : being or serving as an illustration of a type; "the free

 discussion that is emblematic of democracy"; "an action

 exemplary of his conduct"; [syn: emblematic, exemplary]

tipi

 n : a native American tent; usually of conical shape [syn: tepee,

 teepee]

However it correctly brings up some more relevant medical guesses, including the word we are after.

Contrast this to Microsoft word spell checker, which I tested out with the same letter combination, Mmmm, well…. What can I say….

[image: image16.png]
OTHER CONTROLS WITHIN THE EDIT AREA

By and large these will be described in the pertinent sections, however two buttons have a consistent function, the ‘OK’ and the “CLEAR”
buttons.

Bear in mind that the ultimate function of the editing area is as the name implies, an area where clinical information is worked on.

The information is either:

1) Totally new, e.g. prescribing a new drug, and is not yet part of the medical record, and has not been accepted as part of even the unsaved medical record

2) Previously generated, saved, or unsaved information being edited or changed.

Hitting the CLEAR button, obviously clears all the contents of the editing area, resets all defaults etc.

Hitting the <OK> button saves all the data into whatever mechanism the developers have chosen to hold the data in that particular section, and clears the contents of the editing area and resets the defaults.

END OF GENERAL DESCRIPTION OF EDIT AREA FUNCTIONALITY

