Catastrophe Risk Derivatives: A New Approach

Show more

References

[1] H. Cox, J. Fairchild and H. Pederson, “Valuation of Structured Risk Management Products,” Insurance: Mathematics and Economics, Vol. 34, No. 2, 2004, pp. 259-272.

http://dx.doi.org/10.1016/j.insmatheco.2003.12.006

[2] H. Geman and M. Yor, “Stochastic Time Change in CAT Option Pricing,” Insurance: Mathematics and Economics, Vol. 21, No. 2, 1997, pp. 185-193. http://dx.doi.org/10.1016/S0167-6687(97)00017-6

[3] A. Muerman, “Actuarially Consistent Valuation of CAT Derivatives,” Working Paper of the Wharton Financial Institution Center, 2003, 3-18.

[4] S. Jaimungal and T. Wang, “Catastrophe Options with Stochastic Interest Rates and Compound Poisson Losses,” Insurance: Mathematics and Economics, Vol. 38, No. 3, 2006, pp. 469-483. http://dx.doi.org/10.1016/j.insmatheco.2005.11.008

[5] A. Dasios and J.-W. Jang, “Pricing of Catastrophe Reinsurance and Derivatives Using the Cox Process with Shot Noise Intensity,” Finance and Stochastics, Vol. 7, No. 1, 2003, pp. 73-95. http://dx.doi.org/10.1007/s007800200079

[6] J. C. Duan and S. Giambastiani, “Faire Insurance Guaranty Premia in Presence of Risk Based Capital Regulations, Stochastic Interest Rate and Catastrophe Risk,” Journal of Banking and Finance, Vol. 28, No. 10, 2005, pp. 2435-2454.

http://dx.doi.org/10.1016/j.jbankfin.2004.08.012

[7] T. Fujita, N. Ishimura and D. Tanaka, “An Arbitrage Approach to the Pricing of Catastrophe Options Involving the Cox Process,” Hitotsubashi Journal of Economics, Vol. 49, No. 2, 2008, pp. 67-74.

[8] H. Kanamori, “Earthquake Prediction: An Overview,” IASPEI Handbook of Earthquake and Engineering Seismology, 2000.

[9] S. Coles, “An Introduction to Statistical Modelling of Extreme Values,” Springer Series in Statistics, 2001.

http://dx.doi.org/10.1007/978-1-4471-3675-0

[10] I. A. Fraga and C. Neves, “Extreme Value Distributions,” International Encyclopedia of Statistical Science, 2011.

http://dx.doi.org/10.1007/978-3-642-04898-2_246

[11] M. Evans, N. Hastings and J. Peacock, “Statistical Distributions,” 3rd Edition, Wiley, New York, 2000.

[12] N. L. Johnson, S. Kotz and A. W. Kemp, “Univariate Discrete Distributions”, 2nd Edition, John Wiley and Sons, New York, 1992.

[13] F. Esscher, “On the Probability Function in the Collective Theory of Risk,” Skandinavisk Aktuarietidskrift, Vol. 15, No. 3, 1932, pp. 175-195.

http://dx.doi.org/10.1080/03461238.1932.10405883

[14] U. H. Gerber and E. S. W. Shiu, “Martingale Approach to Pricing Perpetual American Options,” ASTIN Bulletin, Vol. 24, No 2, 1994, pp. 1995-220. http://dx.doi.org/10.2143/AST.24.2.2005065

[15] H. R. Schradin, “PCS Catastrophe Insurance Options a New Instrument for Managing Catastrophe Risk,” Zeitschrift für die gesamte Versicherungswissenschaft, Vol. 83, 1994, pp. 633-682.

[16] F. Biagini, Y. Bergman and T. Meyer-Brandis, “Pricing of Catastrophe Insurance Options under Immediate Loss Reestimation,” Journal of Applied Probability, Vol. 45, No. 3, 2008, pp. 831-845. http://dx.doi.org/10.1239/jap/1222441832

[17] R. C. Merton, “Option Prices When Underlying Stock Returns Are Discontinuous,” Journal of Financial Economics, Vol. 3, No. 1-2, 1976, pp. 125-144. http://dx.doi.org/10.1016/0304-405X(76)90022-2