
1

GLPK — GNU Linear Programming Kit
A note on modeling piecewise linear functions in GLPK

SOS2 constraints in GLPK
Typeset from an ASCII posting to <help-glpk@gnu.org> from Andrew Makhorin on 02 June
2007. Additional note provided on 22 December 2008. Minor changes made to the text.
Prepared by Robbie Morrison <robbie@actrix.co.nz>. 23 December 2008. Release 02.

Additional note: piecewise linear functions expressed through SOS2 may be used to model
not only non-linear objectives, but also non-linear equality and inequality constraints. This
then allows general NLP (non-linear programming) problems to be reformulated as MIP
(mixed-integer linear programming) problems.

SOS2 constraints: special ordered sets of type 2 (SOS2) constraints are normally used to
model piecewise linear functions in convex and non-convex separable programming.

In the general case, an SOS2 constraint is completely defined by specifying a set of variables

{ t1 , t2 , , tn } and this is equivalent to the following three constraints:

● t1 , t2 , , tn ≥ 0

● t1t 2t n = 1

● only two adjacent variables, t i and potentially ti1 , can be non-zero.

Given that we need to model the piecewise linear continuous function

y= f  x

specified by its n node points x1 , y 1 ,  x2 , y2  ,  , xn , yn as shown below.

The standard description using an SOS2 constraint is the following:

● x = x 1 t1x2 t2xn t n

● y = y1 t 1 y2 t2y n t n

● SOS2: { t1 , t2 , , tn }

where the SOS2 variables t1 , t2 , , tn play the role of interpolation parameters.

The implementation of SOS2 constraints within the simplex method assumes an additional
rule to choose the variable to enter the basis. Namely, if t i is basic, only ti−1 or ti1 can be
basic, while all other SOS2 variables have to be non-basic (and therefore fixed at zero).

y

x

(x
1
, y

1
)

(x
2
, y

2
)

(x
n
, y

n
)

(x
3
, y

3
)

etc

2

However, since the set of feasible solutions may be non-convex, such a version of the
simplex method enables only a local optimum to be obtained.

Modeling piecewise linear functions in GLPK: SOS2 constraints are not implemented in
GLPK, but a piecewise linear function can be easily modeled using binary variables as follows.

Let z1 , z2 , , zn−1 be binary variables, such that z i∈{0,1} , where:

● z i= 1 means that xi ≤ x ≤ xi1 and yi≤ y≤ yi1

then, with s1 , s2 , , sn−1 segment variables, such that si ∈ℝ :

● z1 z2zn−1 = 1

● 0 ≤ s i≤ z i for i = 1, 2,  , n−1

● x =  x1 z1  x2−x1 s1

 x2 z2  x3−x2 s2

⋯
 x i z i  x i1−xi si
⋯
 xn−1 zn−1  xn−xn−1  sn−1

● y =  y1 z1   y2−y1 s1

 y2 z 2   y3−y2 s2

⋯
 y i zi   yi1− yi  si
⋯
 yn−1 zn−1   yn−yn−1  sn−1

The main advantage of this description is that the MIP solver is always able to find a global
optimum.

Modeling SOS2 constraints in GLPK: if necessary, SOS2 constraints can be modeled
independently when modeling a piecewise linear function thus,

Let { t1 , t2 , , tn } be an SOS2 constraint. Then its equivalent description is the following:

● z1 z2 zn−1 = 1

● 0 ≤ s i≤ z i for i = 1, 2,  , n−1

●

[
t1 = z1 − s1

t2 = z2 − s2  s1

⋯

ti = z i− si si−1

⋯
tn−1 = zn−1 − sn−1  sn−2

tn = sn−1

where z1 , z2 , , zn−1 are binary variables and z i= 1 means that only ti and

potentially ti1 are non-zero.

Copyright : © 2008 Robbie Morrison. All rights reserved. License : Unrestricted reuse in any form, for any purpose.
Filename : glpk-sos2_02.odt|pdf
Last mod : 23-Dec-2008

