[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
## Re: Integration

**From**: |
Patrick Alken |

**Subject**: |
Re: Integration |

**Date**: |
Thu, 5 Mar 2020 06:49:14 -0700 |

**User-agent**: |
Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 Thunderbird/68.4.1 |

Hello, did you try transforming the integral to have finite limits (i.e.
https://www.youtube.com/watch?v=fkxAlCfZ67E). Once you have it in this
form, I would suggest trying the CQUAD algorithm:
https://www.gnu.org/software/gsl/doc/html/integration.html#cquad-doubly-adaptive-integration
Patrick
On 3/5/20 2:02 AM, Patrick Dupre wrote:
>* Hello,*
>
>
>* Can I collect your suggestions:*
>
>* I need to make the following integration:*
>
>* int_a^b g(x) f(x) dx*
>
>* where a can be 0 of -infinity, and b +infinity*
>* g(x) is a Gaussian function*
>* f(x) = sum (1/((x-x0)^2 + g)) / (1 + S* sum (1 / ((x-x0)^2 + g)))*
>
>* Typically, f(x) is a fraction whose numerator is a sum of Lorentzians*
>* and the denominator is 1 + the same sum of Lorentzians weighted by a factor.*
>
>* Thank for your suggestions*
>
>* ===========================================================================*
>* Patrick DUPRÃ‰ | | email: address@hidden*
>* Laboratoire interdisciplinaire Carnot de Bourgogne*
>* 9 Avenue Alain Savary, BP 47870, 21078 DIJON Cedex FRANCE*
>* Tel: +33 (0)380395988*
>* ===========================================================================*
>
>