## Copyright (C) 2000, 2006, 2007 Kai Habel ## Copyright (C) 2008 Marco Caliari ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {Function File} address@hidden =} legendre (@var{n}, @var{X}) ## @deftypefnx {Function File} address@hidden =} legendre (@var{n}, @var{X}, "unnorm") ## ## Legendre Function of degree n and order m ## where all values for m = address@hidden are returned. ## @var{n} must be a scalar in the range [0..255]. ## The return value has one dimension more than @var{x}. ## ## @example ## The Legendre Function of degree n and order m ## ## @group ## m m 2 m/2 d^m ## P(x) = (-1) * (1-x ) * ---- P (x) ## n dx^m n ## @end group ## ## with: ## Legendre polynomial of degree n ## ## @group ## 1 d^n 2 n ## P (x) = ------ [----(x - 1) ] ## n 2^n n! dx^n ## @end group ## ## legendre(3,[-1.0 -0.9 -0.8]) returns the matrix ## ## @group ## x | -1.0 | -0.9 | -0.8 ## ------------------------------------ ## m=0 | -1.00000 | -0.47250 | -0.08000 ## m=1 | 0.00000 | -1.99420 | -1.98000 ## m=2 | 0.00000 | -2.56500 | -4.32000 ## m=3 | 0.00000 | -1.24229 | -3.24000 ## @end group ## @end example ## ## @deftypefnx {Function File} address@hidden =} legendre (@var{n}, @var{X}, "sch") ## ## Computes the Schmidt semi-normalized associated Legendre function. ## The Schmidt semi-normalized associated Legendre function is related ## to the unnormalized Legendre functions by ## ## @example ## For Legendre functions of degree n and order 0 ## ## @group ## 0 0 ## SP (x) = P (x) ## n n ## @end group ## ## For Legendre functions of degree n and order m ## ## @group ## m m m 2(n-m)! 0.5 ## SP (x) = P (x) * (-1) * [-------] ## n n (n+m)! ## @end group ## @end example ## ## @deftypefnx {Function File} address@hidden =} legendre (@var{n}, @var{X}, "norm") ## ## Computes the fully normalized associated Legendre function. ## The fully normalized associated Legendre function is related ## to the unnormalized Legendre functions by ## ## @example ## For Legendre functions of degree n and order m ## ## @group ## m m m (n+0.5)(n-m)! 0.5 ## NP (x) = P (x) * (-1) * [-------------] ## n n (n+m)! ## @end group ## @end example ## ## @end deftypefn ## Author: Marco Caliari function L = legendre (n, x, normalization) if (nargin < 2 || nargin > 3) print_usage (); endif if nargin == 3 normalization = lower (normalization); else normalization = "unnorm"; endif if (! isscalar (n) || n < 0 || n != fix (n)) error ("n must be a integer between 0 and 255]"); endif if (! isvector (x) || any (x < -1 || x > 1)) error ("x must be vector in range -1 <= x <= 1"); endif switch normalization case "norm" scale1 = sqrt (n+0.5); case "sch" scale1 = sqrt (2); case "unnorm" scale1 = 1; otherwise print_usage (); endswitch scale2 = x .* scale1; ## Based on the recurrence relation below ## m m m ## (n-m+1) * P (x) = (2*n+1)*x*P (x) - (n+1)*P (x) ## n+1 n n-1 ## http://en.wikipedia.org/wiki/Associated_Legendre_function underflow = false; for m = 1:n LPM = zeros(n+2-m,length(x)); LPM(1,:) = scale1; LPM(2,:) = (2*m-1) .* scale2; for l = m+1:n a = (2*l-1) .* x .* LPM(l-m+1,:); b = (l+m-2) .* LPM(l-m,:); LPM(l-m+2,:) = ((2*l-1) .* x .* LPM(l-m+1,:)... -(l+m-2) .* LPM(l-m,:))/(l-m+1); endfor L(m,:) = LPM(n+2-m,:); if (strcmp (normalization, "unnorm")) scale1 = -scale1 * (2*m-1); scale2 = -scale2 * (2*m-1); else ## normalization == "sch" or normalization == "norm" scale1 = scale1 / sqrt ((n-m+1)*(n+m))*(2*m-1); scale2 = scale2 / sqrt ((n-m+1)*(n+m))*(2*m-1); endif scale1 = scale1 .* sqrt(1-x.^2); scale2 = scale2 .* sqrt(1-x.^2); endfor L(n+1,:) = scale1; if (strcmp (normalization, "sch")) L(1,:) = L(1,:) / sqrt (2); endif endfunction %!test %! result=legendre(3,[-1.0 -0.9 -0.8]); %! expected = [ %! -1.00000 -0.47250 -0.08000 %! 0.00000 -1.99420 -1.98000 %! 0.00000 -2.56500 -4.32000 %! 0.00000 -1.24229 -3.24000 %! ]; %! assert(result,expected,1e-5); %!test %! result=legendre(3,[-1.0 -0.9 -0.8], "sch"); %! expected = [ %! -1.00000 -0.47250 -0.08000 %! 0.00000 0.81413 0.80833 %! -0.00000 -0.33114 -0.55771 %! 0.00000 0.06547 0.17076 %! ]; %! assert(result,expected,1e-5); %!test %! result=legendre(3,[-1.0 -0.9 -0.8], "norm"); %! expected = [ %! -1.87083 -0.88397 -0.14967 %! 0.00000 1.07699 1.06932 %! -0.00000 -0.43806 -0.73778 %! 0.00000 0.08661 0.22590 %! ]; %! assert(result,expected,1e-5);