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1 Introduction

The zernikes_and_derivatives_cartesian_OSA function calculates the Zernike polynomials and their
partial derivatives in Cartesian coordinates. For this purpose, it uses the algorithm described in refer-
ence [1]. However, it should be noted that in the cited article the author use unit-normalized Zernike
polynomials arranged according to the azimuthal scheme set forth by Rimmer and Wyant [2], while to
implement the function has been used the OSA/ANSI standard notation described in references [3, 4].
This means the index scheme is di�erent and, moreover, the polynomials are not unit-normalized but
normalized to π.

2 Notation

Zernike's polynomials are usually ordered by a double-index, Zm
n , being n the radial order and m the

angular frequency, both integers. Although in programming it is usually utilized a single index, Zj .
The scheme used in reference [1], consider a double-index with n ≥ 0 and 0 ≤ m ≤ n. However, the

standard OSA/ANSI1 uses a double-index with n ≥ 0 and −n ≤ m ≤ n, as shown in the following table:

Rimmer&Wyant schema OSA standard
ñ m̃ n m
0 0 0 0
1 0, 1 1 -1, 1
2 0, 1, 2 2 -2, 0, 2
3 0, 1, 2, 3 3 -3, -1, 1, 3
4 0, 1, 2, 3, 4 4 -4, -2, 0, 2, 4
...

...
...

...

Therefore, by the way of example, the following polynomials �using the two schemes seen� are equiv-
alent:

Rimmer&Wyant schema OSA standard
Z0
1 (x, y) Z−1

1 (x, y)
Z0
3 (x, y) Z−3

3 (x, y)
Z1
3 (x, y) Z−1

3 (x, y)
Z4
4 (x, y) Z4

4 (x, y)
Z6
8 (x, y) Z4

8 (x, y)

Using (ñ, m̃) to denote the R&W indices, and (n,m) those of the OSA scheme, both pairs of indices
are related as follow:

n = ñ m = 2 · m̃− ñ (1)

1In fact, this double index schema is the most usual, and is employed by other notations than the standard OSA/ANSI.
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2.1 Single index

As said before, it is more convenient to use a simple index to program. In the OSA standard, the
conversion of indices is as follows:

j =
n (n+ 2) +m

2

n = roundup

[
−3 +

√
9 + 8 j

2

]
m = 2 j − n (n+ 2)

2.2 U-polynomials

Employing the notation used in reference [1], the unit-normalized Zernike's polynomials are called Unm,
and are related to the π-normalized ones as follows:

Zm
n (x, y) = Nnm · Unm (x, y)

with

Nnm =

√
2 (n+ 1)

1 + δm0
being δm0 =

{
1 m = 0
0 m 6= 0

3 Algorithm

It is well known that for high-order Zernike's polynomials, computing the values using explicit expressions
is not the best strategy, since it is ine�cient and su�er form large cancellation errors. So, several schemes
using recurrence relations have been devised.

Reference [1] presents one recurrence relation with coe�cients that do not depend on radial or az-
imuthal orders and which contains no singularities. In addition, it also presents a recurrence relation to
compute the partial derivatives in Cartesian coordinates.

3.1 Recurrence relations in Cartesian coordinates for Zernike U-polynomials

The general recurrence relation is

Uñ,m̃ = xUñ−1,m̃ + yUñ−1,ñ−1−m̃ + xUñ−1,m̃−1 − yUñ−1,ñ−m̃ − Uñ−2,m̃−1

But there are several exceptions:

• for m̃ = 0 Uñ,0 = xUñ−1,0 + yUñ−1,ñ−1

• for m̃ = ñ Uñ,ñ = xUñ−1,ñ−1 − yUñ−1,0

• for ñ odd and m̃ =
ñ− 1

2

Uñ,m̃ = yUñ−1,ñ−1−m̃ + xUñ−1,m̃−1 − yUñ−1,ñ−m̃ − Uñ−2,m̃−1

• for ñ odd and m̃ =
ñ− 1

2
+ 1

Uñ,m̃ = xUñ−1,m̃ + yUñ−1,ñ−1−m̃ + yUñ−1,m̃−1 − Uñ−2,m̃−1

• for ñ even and m̃ =
ñ

2

Uñ,m̃ = 2xUñ−1,m̃ + 2yUñ−1,m̃−1 − Uñ−2,m̃−1

The starting polynomials being

U0,0 = 1, U1,0 = y, U1,1 = x .
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3.2 Recurrence relations for the OSA/ANSI scheme

If we now �translate� the previous equations into the OSA scheme, we obtain that the general recurrence
relation is

Un.m = xUn−1,m+1 + yUn−1,−(m+1) + xUn−1,m−1 − yUn−1,1−m − Un−2,m

the exceptions are given by

• for m = −n Un,−n = xUn−1,1−n + yUn−1,n−1

• for m = n Un,n = xUn−1,n−1 − yUn−1,1−n

• for m = −1 Un,−1 = yUn−1,0 + xUn−1,−2 − yUn−1,2 − Un−2,−1

• for m = 1 Un,1 = xUn−1,2 + yUn−1,−2 + xUn−1,0 − Un−2,1

• for m = 0 Un,0 = 2xUn−1,1 + 2yUn−1,−1 − Un−2,0

and the starting polynomials are

U0,0 = 1, U1,−1 = y U1,1 = x .

Note that using the OSA scheme the conditions of the exceptions have been simpli�ed, which makes
it easier to compute.

3.2.1 Recurrence relations with a single index

As mentioned earlier, when programming it is more convenient to use a simple index. In this case,
recurrence relations are given as follows. Let us start now with the exceptions:

• for m = −n ⇒ j =
(n+ 1)n

n
Uj = xUj−n + yUj−1

• for m = n ⇒ j =
n (n+ 3)

2
Uj = xUj−(n+1) − yUj−2n

• for m = −1 ⇒ j =
n (n+ 2)− 1

2

Uj = xUj−(n+1) + yUj−n − yUj−(n−1) − Uj−2n

• for m = 1 ⇒ j =
n (n+ 2) + 1

2

Uj = xUj−n + xUj−(n+1) + yUj−(n+2) − Uj−2n

• for m = 0 ⇒ j =
n (n+ 2)

2

Uj = 2xUj−n + 2yUj−(n+1) − Uj−2n .

The general case is

Uj = xUj−n + yUj−(n+m+1) + xUj−(n+1) − yUj−(m+m) − Uj−2n

and the starting polynomials are

U0 = 1, U1 = y, U2 = x .

3



3.3 Recurrence relations for Cartesian derivatives for Zernike U-polynomials

The general recursive relations for partial derivatives are:

∂Uñ,m̃

∂x
= ñUñ−1,m̃ + ñUñ−1,m̃−1 +

∂Uñ−2,m̃−1

∂x

and
∂Uñ,m̃

∂y
= ñUñ−1 − ñUñ−1,ñ−m̃ +

∂Uñ−2,m̃−1

∂y

But, as before, there are several exceptions:

• for m̃ = 0
∂Uñ,0

∂x
= ñUñ−1,0

∂Uñ,0

∂y
= ñUñ−1,ñ−1

• for m̃ = ñ
∂Uñ,ñ

∂x
= −ñUñ−1,ñ−1

∂Uñ,ñ

∂y
= −ñUñ−1,0

• for ñ odd and m̃ =
ñ− 1

2

∂Uñ,m̃

∂x
= ñUñ−1,m̃−1 +

∂Uñ−2,m̃−1

∂x

∂Uñ,m̃

∂y
= ñUñ−1,ñ−m̃−1 − ñUñ−1,ñ−m̃ +

∂Uñ−2,m̃−1

∂y

• for ñ odd and m̃ =
ñ− 1

2
+ 1

∂Uñ,m̃

∂x
= ñUñ−1,m̃ + ñUñ−1,m̃−1 +

∂Uñ−2,m̃−1

∂x

∂Uñ,m̃

∂y
= ñUñ−1,ñ−m̃−1 +

∂Uñ−2,m̃−1

∂y

• for ñ even and m̃ =
ñ

2

∂Uñ,m̃

∂x
= 2ñUñ−1,m̃ +

∂Uñ−2,m̃−1

∂x

∂Uñ,m̃

∂y
= 2ñUñ−1,ñ−m̃−1 +

∂Uñ−2,m̃−1

∂y

The starting expressions for the Cartesian derivatives being:

∂U0,0

∂x
=
∂U0,0

∂y
= 0,

∂U1,0

∂x
=
∂U1,1

∂y
= 0,

∂U1,1

∂x
=
∂U1,0

∂y
= 1

3.3.1 Recurrence relations for the OSA/ANSI scheme

If we now �translate� the previous equations into the OSA scheme, we obtain that the general recurrence
relations for partial derivativess are

∂Un,m

∂x
= nUn−1,m+1 + nUn−1,m−1 +

∂Un−2,m

∂x

and
∂Un,m

∂y
= nUn−1,−(m+1) − nUn−1,1−m +

∂Un−2,m

∂y

the exceptions are give by

• for m = −n ∂Un,−n

∂x
= nUn−1,1−n

∂Un,−n

∂y
= nUn−1,n−1

• for m = n
∂Un,−n

∂x
= nUn−1,n−1

∂Un,−n

∂y
= −nUn−1,1−n

• for m = −1

∂Un,−1

∂x
= nUn−1,−2 +

∂Un−2,−1

∂x

∂Un,−1

∂y
= nUn−1,0 − nUn−1,2 +

∂Un−2,−1

∂y
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• for m = 1

∂Un,1

∂x
= nUn−1,2 + nUn−1,0 +

∂Un−2,1

∂x

∂Un,1

∂y
= nUn−1,−2 +

∂Un−2,1

∂y

• for m = 0
∂Un,0

∂x
= 2nUn−1,1 +

∂Un−2,0

∂x

∂Un,0

∂y
= 2nUn−1,−1 +

∂Un−2,0

∂y

and the starting derivatives are

∂U0,0

∂x
=
∂U0,0

∂y
= 0,

∂U1,−1

∂x
=
∂U1,1

∂y
= 0,

∂U1,1

∂x
=
∂U1,−1

∂y
= 1

3.3.2 Recurrence relations with a single index

Let us start now with the exceptions:

• for m = −n ⇒ j =
(n+ 1)n

n

∂Uj

∂x
= nUj−n

∂Uj

∂y
= nUj−1

• for m = n ⇒ j =
n (n+ 3)

2

∂Uj

∂x
= nUj−(n+1)

∂Uj

∂y
= −nUj−2n

• for m = −1 ⇒ j =
n (n+ 2)− 1

2

∂Uj

∂x
= nUj−(n+1) +

∂Uj−2n

∂x

∂Uj

∂y
= nUj−n − nUj−(n−1) +

∂Uj−2n

∂y

• for m = 1 ⇒ j =
n (n+ 2) + 1

2

∂Uj

∂x
= nUj−n + nUj−(n+1) +

∂Uj−2n

∂x

∂Uj

∂y
= nUj−(n+2) +

∂Uj−2n

∂y

• for m = 0 ⇒ j =
n (n+ 2)

2

∂Uj

∂x
= 2nUj−n +

∂Uj−2n

∂x

∂Uj

∂y
= 2nUj−(n+1) +

∂Uj−2n

∂y

The general case is

∂Uj

∂x
= nUj−n + nUj−(n+1) +

∂Uj−2n

∂x

∂Uj

∂y
= nUj−(n+m+1) − nUj−(n+m) +

∂Uj−2n

∂y

and the starting derivatives are

∂U0

∂x
=
∂U0

∂y
= 0,

∂U1

∂x
=
∂U2

∂y
= 0,

∂U2

∂x
=
∂U1

∂y
= 1
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