qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Qemu-devel] [PATCH v2 2/5] disas/libvixl: Update to libvixl 1.3


From: Peter Maydell
Subject: [Qemu-devel] [PATCH v2 2/5] disas/libvixl: Update to libvixl 1.3
Date: Mon, 28 Apr 2014 16:02:21 +0100

Update our copy of libvixl to upstream's 1.3 release.
Note that this regresses our local fixes for compilation
on 32 bit hosts where they have not yet been integrated
upstream.

Signed-off-by: Peter Maydell <address@hidden>
---
 disas/libvixl/a64/assembler-a64.h     | 407 +++++++++++++++++++++-------------
 disas/libvixl/a64/constants-a64.h     |  36 ++-
 disas/libvixl/a64/decoder-a64.cc      |  36 +--
 disas/libvixl/a64/disasm-a64.cc       | 189 ++++++++++------
 disas/libvixl/a64/disasm-a64.h        |   1 +
 disas/libvixl/a64/instructions-a64.cc |  32 +--
 disas/libvixl/a64/instructions-a64.h  |  47 ++--
 disas/libvixl/globals.h               |  33 ++-
 disas/libvixl/platform.h              |   4 +-
 disas/libvixl/utils.cc                |  30 +--
 disas/libvixl/utils.h                 |  86 ++++++-
 11 files changed, 576 insertions(+), 325 deletions(-)

diff --git a/disas/libvixl/a64/assembler-a64.h 
b/disas/libvixl/a64/assembler-a64.h
index 93b3011..f8486d8 100644
--- a/disas/libvixl/a64/assembler-a64.h
+++ b/disas/libvixl/a64/assembler-a64.h
@@ -38,6 +38,7 @@ namespace vixl {
 typedef uint64_t RegList;
 static const int kRegListSizeInBits = sizeof(RegList) * 8;
 
+
 // Registers.
 
 // Some CPURegister methods can return Register and FPRegister types, so we
@@ -58,62 +59,62 @@ class CPURegister {
   };
 
   CPURegister() : code_(0), size_(0), type_(kNoRegister) {
-    ASSERT(!IsValid());
-    ASSERT(IsNone());
+    VIXL_ASSERT(!IsValid());
+    VIXL_ASSERT(IsNone());
   }
 
   CPURegister(unsigned code, unsigned size, RegisterType type)
       : code_(code), size_(size), type_(type) {
-    ASSERT(IsValidOrNone());
+    VIXL_ASSERT(IsValidOrNone());
   }
 
   unsigned code() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return code_;
   }
 
   RegisterType type() const {
-    ASSERT(IsValidOrNone());
+    VIXL_ASSERT(IsValidOrNone());
     return type_;
   }
 
   RegList Bit() const {
-    ASSERT(code_ < (sizeof(RegList) * 8));
+    VIXL_ASSERT(code_ < (sizeof(RegList) * 8));
     return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
   }
 
   unsigned size() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return size_;
   }
 
   int SizeInBytes() const {
-    ASSERT(IsValid());
-    ASSERT(size() % 8 == 0);
+    VIXL_ASSERT(IsValid());
+    VIXL_ASSERT(size() % 8 == 0);
     return size_ / 8;
   }
 
   int SizeInBits() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return size_;
   }
 
   bool Is32Bits() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return size_ == 32;
   }
 
   bool Is64Bits() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return size_ == 64;
   }
 
   bool IsValid() const {
     if (IsValidRegister() || IsValidFPRegister()) {
-      ASSERT(!IsNone());
+      VIXL_ASSERT(!IsNone());
       return true;
     } else {
-      ASSERT(IsNone());
+      VIXL_ASSERT(IsNone());
       return false;
     }
   }
@@ -132,25 +133,25 @@ class CPURegister {
 
   bool IsNone() const {
     // kNoRegister types should always have size 0 and code 0.
-    ASSERT((type_ != kNoRegister) || (code_ == 0));
-    ASSERT((type_ != kNoRegister) || (size_ == 0));
+    VIXL_ASSERT((type_ != kNoRegister) || (code_ == 0));
+    VIXL_ASSERT((type_ != kNoRegister) || (size_ == 0));
 
     return type_ == kNoRegister;
   }
 
   bool Is(const CPURegister& other) const {
-    ASSERT(IsValidOrNone() && other.IsValidOrNone());
+    VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
     return (code_ == other.code_) && (size_ == other.size_) &&
            (type_ == other.type_);
   }
 
   inline bool IsZero() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return IsRegister() && (code_ == kZeroRegCode);
   }
 
   inline bool IsSP() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return IsRegister() && (code_ == kSPRegInternalCode);
   }
 
@@ -188,13 +189,13 @@ class Register : public CPURegister {
   explicit Register() : CPURegister() {}
   inline explicit Register(const CPURegister& other)
       : CPURegister(other.code(), other.size(), other.type()) {
-    ASSERT(IsValidRegister());
+    VIXL_ASSERT(IsValidRegister());
   }
   explicit Register(unsigned code, unsigned size)
       : CPURegister(code, size, kRegister) {}
 
   bool IsValid() const {
-    ASSERT(IsRegister() || IsNone());
+    VIXL_ASSERT(IsRegister() || IsNone());
     return IsValidRegister();
   }
 
@@ -216,13 +217,13 @@ class FPRegister : public CPURegister {
   inline FPRegister() : CPURegister() {}
   inline explicit FPRegister(const CPURegister& other)
       : CPURegister(other.code(), other.size(), other.type()) {
-    ASSERT(IsValidFPRegister());
+    VIXL_ASSERT(IsValidFPRegister());
   }
   inline FPRegister(unsigned code, unsigned size)
       : CPURegister(code, size, kFPRegister) {}
 
   bool IsValid() const {
-    ASSERT(IsFPRegister() || IsNone());
+    VIXL_ASSERT(IsFPRegister() || IsNone());
     return IsValidFPRegister();
   }
 
@@ -306,30 +307,30 @@ class CPURegList {
                              CPURegister reg4 = NoCPUReg)
       : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
         size_(reg1.size()), type_(reg1.type()) {
-    ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
-    ASSERT(IsValid());
+    VIXL_ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
+    VIXL_ASSERT(IsValid());
   }
 
   inline CPURegList(CPURegister::RegisterType type, unsigned size, RegList 
list)
       : list_(list), size_(size), type_(type) {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
   }
 
   inline CPURegList(CPURegister::RegisterType type, unsigned size,
                     unsigned first_reg, unsigned last_reg)
       : size_(size), type_(type) {
-    ASSERT(((type == CPURegister::kRegister) &&
-            (last_reg < kNumberOfRegisters)) ||
-           ((type == CPURegister::kFPRegister) &&
-            (last_reg < kNumberOfFPRegisters)));
-    ASSERT(last_reg >= first_reg);
-    list_ = (1UL << (last_reg + 1)) - 1;
-    list_ &= ~((1UL << first_reg) - 1);
-    ASSERT(IsValid());
+    VIXL_ASSERT(((type == CPURegister::kRegister) &&
+                 (last_reg < kNumberOfRegisters)) ||
+                ((type == CPURegister::kFPRegister) &&
+                 (last_reg < kNumberOfFPRegisters)));
+    VIXL_ASSERT(last_reg >= first_reg);
+    list_ = (UINT64_C(1) << (last_reg + 1)) - 1;
+    list_ &= ~((UINT64_C(1) << first_reg) - 1);
+    VIXL_ASSERT(IsValid());
   }
 
   inline CPURegister::RegisterType type() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return type_;
   }
 
@@ -337,9 +338,9 @@ class CPURegList {
   // this list are left unchanged. The type and size of the registers in the
   // 'other' list must match those in this list.
   void Combine(const CPURegList& other) {
-    ASSERT(IsValid());
-    ASSERT(other.type() == type_);
-    ASSERT(other.RegisterSizeInBits() == size_);
+    VIXL_ASSERT(IsValid());
+    VIXL_ASSERT(other.type() == type_);
+    VIXL_ASSERT(other.RegisterSizeInBits() == size_);
     list_ |= other.list();
   }
 
@@ -347,44 +348,49 @@ class CPURegList {
   // do not exist in this list are ignored. The type and size of the registers
   // in the 'other' list must match those in this list.
   void Remove(const CPURegList& other) {
-    ASSERT(IsValid());
-    ASSERT(other.type() == type_);
-    ASSERT(other.RegisterSizeInBits() == size_);
+    VIXL_ASSERT(IsValid());
+    VIXL_ASSERT(other.type() == type_);
+    VIXL_ASSERT(other.RegisterSizeInBits() == size_);
     list_ &= ~other.list();
   }
 
   // Variants of Combine and Remove which take a single register.
   inline void Combine(const CPURegister& other) {
-    ASSERT(other.type() == type_);
-    ASSERT(other.size() == size_);
+    VIXL_ASSERT(other.type() == type_);
+    VIXL_ASSERT(other.size() == size_);
     Combine(other.code());
   }
 
   inline void Remove(const CPURegister& other) {
-    ASSERT(other.type() == type_);
-    ASSERT(other.size() == size_);
+    VIXL_ASSERT(other.type() == type_);
+    VIXL_ASSERT(other.size() == size_);
     Remove(other.code());
   }
 
   // Variants of Combine and Remove which take a single register by its code;
   // the type and size of the register is inferred from this list.
   inline void Combine(int code) {
-    ASSERT(IsValid());
-    ASSERT(CPURegister(code, size_, type_).IsValid());
-    list_ |= (1UL << code);
+    VIXL_ASSERT(IsValid());
+    VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
+    list_ |= (UINT64_C(1) << code);
   }
 
   inline void Remove(int code) {
-    ASSERT(IsValid());
-    ASSERT(CPURegister(code, size_, type_).IsValid());
-    list_ &= ~(1UL << code);
+    VIXL_ASSERT(IsValid());
+    VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
+    list_ &= ~(UINT64_C(1) << code);
   }
 
   inline RegList list() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return list_;
   }
 
+  inline void set_list(RegList new_list) {
+    VIXL_ASSERT(IsValid());
+    list_ = new_list;
+  }
+
   // Remove all callee-saved registers from the list. This can be useful when
   // preparing registers for an AAPCS64 function call, for example.
   void RemoveCalleeSaved();
@@ -401,28 +407,33 @@ class CPURegList {
   static CPURegList GetCallerSavedFP(unsigned size = kDRegSize);
 
   inline bool IsEmpty() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return list_ == 0;
   }
 
   inline bool IncludesAliasOf(const CPURegister& other) const {
-    ASSERT(IsValid());
-    return (type_ == other.type()) && (other.Bit() & list_);
+    VIXL_ASSERT(IsValid());
+    return (type_ == other.type()) && ((other.Bit() & list_) != 0);
+  }
+
+  inline bool IncludesAliasOf(int code) const {
+    VIXL_ASSERT(IsValid());
+    return ((code & list_) != 0);
   }
 
   inline int Count() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return CountSetBits(list_, kRegListSizeInBits);
   }
 
   inline unsigned RegisterSizeInBits() const {
-    ASSERT(IsValid());
+    VIXL_ASSERT(IsValid());
     return size_;
   }
 
   inline unsigned RegisterSizeInBytes() const {
     int size_in_bits = RegisterSizeInBits();
-    ASSERT((size_in_bits % 8) == 0);
+    VIXL_ASSERT((size_in_bits % 8) == 0);
     return size_in_bits / 8;
   }
 
@@ -471,33 +482,34 @@ class Operand {
   bool IsImmediate() const;
   bool IsShiftedRegister() const;
   bool IsExtendedRegister() const;
+  bool IsZero() const;
 
   // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
   // which helps in the encoding of instructions that use the stack pointer.
   Operand ToExtendedRegister() const;
 
   int64_t immediate() const {
-    ASSERT(IsImmediate());
+    VIXL_ASSERT(IsImmediate());
     return immediate_;
   }
 
   Register reg() const {
-    ASSERT(IsShiftedRegister() || IsExtendedRegister());
+    VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
     return reg_;
   }
 
   Shift shift() const {
-    ASSERT(IsShiftedRegister());
+    VIXL_ASSERT(IsShiftedRegister());
     return shift_;
   }
 
   Extend extend() const {
-    ASSERT(IsExtendedRegister());
+    VIXL_ASSERT(IsExtendedRegister());
     return extend_;
   }
 
   unsigned shift_amount() const {
-    ASSERT(IsShiftedRegister() || IsExtendedRegister());
+    VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
     return shift_amount_;
   }
 
@@ -556,7 +568,7 @@ class Label {
   Label() : is_bound_(false), link_(NULL), target_(NULL) {}
   ~Label() {
     // If the label has been linked to, it needs to be bound to a target.
-    ASSERT(!IsLinked() || IsBound());
+    VIXL_ASSERT(!IsLinked() || IsBound());
   }
 
   inline Instruction* link() const { return link_; }
@@ -643,7 +655,7 @@ class Assembler {
   void bind(Label* label);
   int UpdateAndGetByteOffsetTo(Label* label);
   inline int UpdateAndGetInstructionOffsetTo(Label* label) {
-    ASSERT(Label::kEndOfChain == 0);
+    VIXL_ASSERT(Label::kEndOfChain == 0);
     return UpdateAndGetByteOffsetTo(label) >> kInstructionSizeLog2;
   }
 
@@ -716,8 +728,12 @@ class Assembler {
   // Add.
   void add(const Register& rd,
            const Register& rn,
-           const Operand& operand,
-           FlagsUpdate S = LeaveFlags);
+           const Operand& operand);
+
+  // Add and update status flags.
+  void adds(const Register& rd,
+            const Register& rn,
+            const Operand& operand);
 
   // Compare negative.
   void cmn(const Register& rn, const Operand& operand);
@@ -725,40 +741,62 @@ class Assembler {
   // Subtract.
   void sub(const Register& rd,
            const Register& rn,
-           const Operand& operand,
-           FlagsUpdate S = LeaveFlags);
+           const Operand& operand);
+
+  // Subtract and update status flags.
+  void subs(const Register& rd,
+            const Register& rn,
+            const Operand& operand);
 
   // Compare.
   void cmp(const Register& rn, const Operand& operand);
 
   // Negate.
   void neg(const Register& rd,
-           const Operand& operand,
-           FlagsUpdate S = LeaveFlags);
+           const Operand& operand);
+
+  // Negate and update status flags.
+  void negs(const Register& rd,
+            const Operand& operand);
 
   // Add with carry bit.
   void adc(const Register& rd,
            const Register& rn,
-           const Operand& operand,
-           FlagsUpdate S = LeaveFlags);
+           const Operand& operand);
+
+  // Add with carry bit and update status flags.
+  void adcs(const Register& rd,
+            const Register& rn,
+            const Operand& operand);
 
   // Subtract with carry bit.
   void sbc(const Register& rd,
            const Register& rn,
-           const Operand& operand,
-           FlagsUpdate S = LeaveFlags);
+           const Operand& operand);
+
+  // Subtract with carry bit and update status flags.
+  void sbcs(const Register& rd,
+            const Register& rn,
+            const Operand& operand);
 
   // Negate with carry bit.
   void ngc(const Register& rd,
-           const Operand& operand,
-           FlagsUpdate S = LeaveFlags);
+           const Operand& operand);
+
+  // Negate with carry bit and update status flags.
+  void ngcs(const Register& rd,
+            const Operand& operand);
 
   // Logical instructions.
   // Bitwise and (A & B).
   void and_(const Register& rd,
             const Register& rn,
-            const Operand& operand,
-            FlagsUpdate S = LeaveFlags);
+            const Operand& operand);
+
+  // Bitwise and (A & B) and update status flags.
+  void ands(const Register& rd,
+            const Register& rn,
+            const Operand& operand);
 
   // Bit test and set flags.
   void tst(const Register& rn, const Operand& operand);
@@ -766,8 +804,12 @@ class Assembler {
   // Bit clear (A & ~B).
   void bic(const Register& rd,
            const Register& rn,
-           const Operand& operand,
-           FlagsUpdate S = LeaveFlags);
+           const Operand& operand);
+
+  // Bit clear (A & ~B) and update status flags.
+  void bics(const Register& rd,
+            const Register& rn,
+            const Operand& operand);
 
   // Bitwise or (A | B).
   void orr(const Register& rd, const Register& rn, const Operand& operand);
@@ -818,8 +860,8 @@ class Assembler {
                   const Register& rn,
                   unsigned lsb,
                   unsigned width) {
-    ASSERT(width >= 1);
-    ASSERT(lsb + width <= rn.size());
+    VIXL_ASSERT(width >= 1);
+    VIXL_ASSERT(lsb + width <= rn.size());
     bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
   }
 
@@ -828,15 +870,15 @@ class Assembler {
                     const Register& rn,
                     unsigned lsb,
                     unsigned width) {
-    ASSERT(width >= 1);
-    ASSERT(lsb + width <= rn.size());
+    VIXL_ASSERT(width >= 1);
+    VIXL_ASSERT(lsb + width <= rn.size());
     bfm(rd, rn, lsb, lsb + width - 1);
   }
 
   // Sbfm aliases.
   // Arithmetic shift right.
   inline void asr(const Register& rd, const Register& rn, unsigned shift) {
-    ASSERT(shift < rd.size());
+    VIXL_ASSERT(shift < rd.size());
     sbfm(rd, rn, shift, rd.size() - 1);
   }
 
@@ -845,8 +887,8 @@ class Assembler {
                     const Register& rn,
                     unsigned lsb,
                     unsigned width) {
-    ASSERT(width >= 1);
-    ASSERT(lsb + width <= rn.size());
+    VIXL_ASSERT(width >= 1);
+    VIXL_ASSERT(lsb + width <= rn.size());
     sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
   }
 
@@ -855,8 +897,8 @@ class Assembler {
                    const Register& rn,
                    unsigned lsb,
                    unsigned width) {
-    ASSERT(width >= 1);
-    ASSERT(lsb + width <= rn.size());
+    VIXL_ASSERT(width >= 1);
+    VIXL_ASSERT(lsb + width <= rn.size());
     sbfm(rd, rn, lsb, lsb + width - 1);
   }
 
@@ -879,13 +921,13 @@ class Assembler {
   // Logical shift left.
   inline void lsl(const Register& rd, const Register& rn, unsigned shift) {
     unsigned reg_size = rd.size();
-    ASSERT(shift < reg_size);
+    VIXL_ASSERT(shift < reg_size);
     ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
   }
 
   // Logical shift right.
   inline void lsr(const Register& rd, const Register& rn, unsigned shift) {
-    ASSERT(shift < rd.size());
+    VIXL_ASSERT(shift < rd.size());
     ubfm(rd, rn, shift, rd.size() - 1);
   }
 
@@ -894,8 +936,8 @@ class Assembler {
                     const Register& rn,
                     unsigned lsb,
                     unsigned width) {
-    ASSERT(width >= 1);
-    ASSERT(lsb + width <= rn.size());
+    VIXL_ASSERT(width >= 1);
+    VIXL_ASSERT(lsb + width <= rn.size());
     ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
   }
 
@@ -904,8 +946,8 @@ class Assembler {
                    const Register& rn,
                    unsigned lsb,
                    unsigned width) {
-    ASSERT(width >= 1);
-    ASSERT(lsb + width <= rn.size());
+    VIXL_ASSERT(width >= 1);
+    VIXL_ASSERT(lsb + width <= rn.size());
     ubfm(rd, rn, lsb, lsb + width - 1);
   }
 
@@ -1111,6 +1153,7 @@ class Assembler {
 
   // Load literal to FP register.
   void ldr(const FPRegister& ft, double imm);
+  void ldr(const FPRegister& ft, float imm);
 
   // Move instructions. The default shift of -1 indicates that the move
   // instruction will calculate an appropriate 16-bit immediate and left shift
@@ -1160,6 +1203,15 @@ class Assembler {
   // System hint.
   void hint(SystemHint code);
 
+  // Data memory barrier.
+  void dmb(BarrierDomain domain, BarrierType type);
+
+  // Data synchronization barrier.
+  void dsb(BarrierDomain domain, BarrierType type);
+
+  // Instruction synchronization barrier.
+  void isb();
+
   // Alias for system instructions.
   // No-op.
   void nop() {
@@ -1169,6 +1221,7 @@ class Assembler {
   // FP instructions.
   // Move immediate to FP register.
   void fmov(FPRegister fd, double imm);
+  void fmov(FPRegister fd, float imm);
 
   // Move FP register to register.
   void fmov(Register rd, FPRegister fn);
@@ -1188,12 +1241,30 @@ class Assembler {
   // FP multiply.
   void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
 
-  // FP multiply and subtract.
+  // FP fused multiply and add.
+  void fmadd(const FPRegister& fd,
+             const FPRegister& fn,
+             const FPRegister& fm,
+             const FPRegister& fa);
+
+  // FP fused multiply and subtract.
   void fmsub(const FPRegister& fd,
              const FPRegister& fn,
              const FPRegister& fm,
              const FPRegister& fa);
 
+  // FP fused multiply, add and negate.
+  void fnmadd(const FPRegister& fd,
+              const FPRegister& fn,
+              const FPRegister& fm,
+              const FPRegister& fa);
+
+  // FP fused multiply, subtract and negate.
+  void fnmsub(const FPRegister& fd,
+              const FPRegister& fn,
+              const FPRegister& fm,
+              const FPRegister& fa);
+
   // FP divide.
   void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
 
@@ -1203,6 +1274,12 @@ class Assembler {
   // FP minimum.
   void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
 
+  // FP maximum number.
+  void fmaxnm(const FPRegister& fd, const FPRegister& fn, const FPRegister& 
fm);
+
+  // FP minimum number.
+  void fminnm(const FPRegister& fd, const FPRegister& fn, const FPRegister& 
fm);
+
   // FP absolute.
   void fabs(const FPRegister& fd, const FPRegister& fn);
 
@@ -1212,6 +1289,9 @@ class Assembler {
   // FP square root.
   void fsqrt(const FPRegister& fd, const FPRegister& fn);
 
+  // FP round to integer (nearest with ties to away).
+  void frinta(const FPRegister& fd, const FPRegister& fn);
+
   // FP round to integer (nearest with ties to even).
   void frintn(const FPRegister& fd, const FPRegister& fn);
 
@@ -1244,6 +1324,12 @@ class Assembler {
   // FP convert between single and double precision.
   void fcvt(const FPRegister& fd, const FPRegister& fn);
 
+  // Convert FP to unsigned integer (nearest with ties to away).
+  void fcvtau(const Register& rd, const FPRegister& fn);
+
+  // Convert FP to signed integer (nearest with ties to away).
+  void fcvtas(const Register& rd, const FPRegister& fn);
+
   // Convert FP to unsigned integer (round towards -infinity).
   void fcvtmu(const Register& rd, const FPRegister& fn);
 
@@ -1282,14 +1368,14 @@ class Assembler {
   // character. The instruction pointer (pc_) is then aligned correctly for
   // subsequent instructions.
   void EmitStringData(const char * string) {
-    ASSERT(string != NULL);
+    VIXL_ASSERT(string != NULL);
 
     size_t len = strlen(string) + 1;
     EmitData(string, len);
 
     // Pad with NULL characters until pc_ is aligned.
     const char pad[] = {'\0', '\0', '\0', '\0'};
-    ASSERT(sizeof(pad) == kInstructionSize);
+    VIXL_STATIC_ASSERT(sizeof(pad) == kInstructionSize);
     Instruction* next_pc = AlignUp(pc_, kInstructionSize);
     EmitData(&pad, next_pc - pc_);
   }
@@ -1298,44 +1384,44 @@ class Assembler {
 
   // Register encoding.
   static Instr Rd(CPURegister rd) {
-    ASSERT(rd.code() != kSPRegInternalCode);
+    VIXL_ASSERT(rd.code() != kSPRegInternalCode);
     return rd.code() << Rd_offset;
   }
 
   static Instr Rn(CPURegister rn) {
-    ASSERT(rn.code() != kSPRegInternalCode);
+    VIXL_ASSERT(rn.code() != kSPRegInternalCode);
     return rn.code() << Rn_offset;
   }
 
   static Instr Rm(CPURegister rm) {
-    ASSERT(rm.code() != kSPRegInternalCode);
+    VIXL_ASSERT(rm.code() != kSPRegInternalCode);
     return rm.code() << Rm_offset;
   }
 
   static Instr Ra(CPURegister ra) {
-    ASSERT(ra.code() != kSPRegInternalCode);
+    VIXL_ASSERT(ra.code() != kSPRegInternalCode);
     return ra.code() << Ra_offset;
   }
 
   static Instr Rt(CPURegister rt) {
-    ASSERT(rt.code() != kSPRegInternalCode);
+    VIXL_ASSERT(rt.code() != kSPRegInternalCode);
     return rt.code() << Rt_offset;
   }
 
   static Instr Rt2(CPURegister rt2) {
-    ASSERT(rt2.code() != kSPRegInternalCode);
+    VIXL_ASSERT(rt2.code() != kSPRegInternalCode);
     return rt2.code() << Rt2_offset;
   }
 
   // These encoding functions allow the stack pointer to be encoded, and
   // disallow the zero register.
   static Instr RdSP(Register rd) {
-    ASSERT(!rd.IsZero());
+    VIXL_ASSERT(!rd.IsZero());
     return (rd.code() & kRegCodeMask) << Rd_offset;
   }
 
   static Instr RnSP(Register rn) {
-    ASSERT(!rn.IsZero());
+    VIXL_ASSERT(!rn.IsZero());
     return (rn.code() & kRegCodeMask) << Rn_offset;
   }
 
@@ -1346,7 +1432,7 @@ class Assembler {
     } else if (S == LeaveFlags) {
       return 0 << FlagsUpdate_offset;
     }
-    UNREACHABLE();
+    VIXL_UNREACHABLE();
     return 0;
   }
 
@@ -1356,7 +1442,7 @@ class Assembler {
 
   // PC-relative address encoding.
   static Instr ImmPCRelAddress(int imm21) {
-    ASSERT(is_int21(imm21));
+    VIXL_ASSERT(is_int21(imm21));
     Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
     Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
     Instr immlo = imm << ImmPCRelLo_offset;
@@ -1365,27 +1451,27 @@ class Assembler {
 
   // Branch encoding.
   static Instr ImmUncondBranch(int imm26) {
-    ASSERT(is_int26(imm26));
+    VIXL_ASSERT(is_int26(imm26));
     return truncate_to_int26(imm26) << ImmUncondBranch_offset;
   }
 
   static Instr ImmCondBranch(int imm19) {
-    ASSERT(is_int19(imm19));
+    VIXL_ASSERT(is_int19(imm19));
     return truncate_to_int19(imm19) << ImmCondBranch_offset;
   }
 
   static Instr ImmCmpBranch(int imm19) {
-    ASSERT(is_int19(imm19));
+    VIXL_ASSERT(is_int19(imm19));
     return truncate_to_int19(imm19) << ImmCmpBranch_offset;
   }
 
   static Instr ImmTestBranch(int imm14) {
-    ASSERT(is_int14(imm14));
+    VIXL_ASSERT(is_int14(imm14));
     return truncate_to_int14(imm14) << ImmTestBranch_offset;
   }
 
   static Instr ImmTestBranchBit(unsigned bit_pos) {
-    ASSERT(is_uint6(bit_pos));
+    VIXL_ASSERT(is_uint6(bit_pos));
     // Subtract five from the shift offset, as we need bit 5 from bit_pos.
     unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
     unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
@@ -1400,7 +1486,7 @@ class Assembler {
   }
 
   static Instr ImmAddSub(int64_t imm) {
-    ASSERT(IsImmAddSub(imm));
+    VIXL_ASSERT(IsImmAddSub(imm));
     if (is_uint12(imm)) {  // No shift required.
       return imm << ImmAddSub_offset;
     } else {
@@ -1409,55 +1495,55 @@ class Assembler {
   }
 
   static inline Instr ImmS(unsigned imms, unsigned reg_size) {
-    ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
+    VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
            ((reg_size == kWRegSize) && is_uint5(imms)));
     USE(reg_size);
     return imms << ImmS_offset;
   }
 
   static inline Instr ImmR(unsigned immr, unsigned reg_size) {
-    ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+    VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
            ((reg_size == kWRegSize) && is_uint5(immr)));
     USE(reg_size);
-    ASSERT(is_uint6(immr));
+    VIXL_ASSERT(is_uint6(immr));
     return immr << ImmR_offset;
   }
 
   static inline Instr ImmSetBits(unsigned imms, unsigned reg_size) {
-    ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
-    ASSERT(is_uint6(imms));
-    ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
+    VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+    VIXL_ASSERT(is_uint6(imms));
+    VIXL_ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
     USE(reg_size);
     return imms << ImmSetBits_offset;
   }
 
   static inline Instr ImmRotate(unsigned immr, unsigned reg_size) {
-    ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
-    ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+    VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+    VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
            ((reg_size == kWRegSize) && is_uint5(immr)));
     USE(reg_size);
     return immr << ImmRotate_offset;
   }
 
   static inline Instr ImmLLiteral(int imm19) {
-    ASSERT(is_int19(imm19));
+    VIXL_ASSERT(is_int19(imm19));
     return truncate_to_int19(imm19) << ImmLLiteral_offset;
   }
 
   static inline Instr BitN(unsigned bitn, unsigned reg_size) {
-    ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
-    ASSERT((reg_size == kXRegSize) || (bitn == 0));
+    VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+    VIXL_ASSERT((reg_size == kXRegSize) || (bitn == 0));
     USE(reg_size);
     return bitn << BitN_offset;
   }
 
   static Instr ShiftDP(Shift shift) {
-    ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
+    VIXL_ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
     return shift << ShiftDP_offset;
   }
 
   static Instr ImmDPShift(unsigned amount) {
-    ASSERT(is_uint6(amount));
+    VIXL_ASSERT(is_uint6(amount));
     return amount << ImmDPShift_offset;
   }
 
@@ -1466,12 +1552,12 @@ class Assembler {
   }
 
   static Instr ImmExtendShift(unsigned left_shift) {
-    ASSERT(left_shift <= 4);
+    VIXL_ASSERT(left_shift <= 4);
     return left_shift << ImmExtendShift_offset;
   }
 
   static Instr ImmCondCmp(unsigned imm) {
-    ASSERT(is_uint5(imm));
+    VIXL_ASSERT(is_uint5(imm));
     return imm << ImmCondCmp_offset;
   }
 
@@ -1481,55 +1567,65 @@ class Assembler {
 
   // MemOperand offset encoding.
   static Instr ImmLSUnsigned(int imm12) {
-    ASSERT(is_uint12(imm12));
+    VIXL_ASSERT(is_uint12(imm12));
     return imm12 << ImmLSUnsigned_offset;
   }
 
   static Instr ImmLS(int imm9) {
-    ASSERT(is_int9(imm9));
+    VIXL_ASSERT(is_int9(imm9));
     return truncate_to_int9(imm9) << ImmLS_offset;
   }
 
   static Instr ImmLSPair(int imm7, LSDataSize size) {
-    ASSERT(((imm7 >> size) << size) == imm7);
+    VIXL_ASSERT(((imm7 >> size) << size) == imm7);
     int scaled_imm7 = imm7 >> size;
-    ASSERT(is_int7(scaled_imm7));
+    VIXL_ASSERT(is_int7(scaled_imm7));
     return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
   }
 
   static Instr ImmShiftLS(unsigned shift_amount) {
-    ASSERT(is_uint1(shift_amount));
+    VIXL_ASSERT(is_uint1(shift_amount));
     return shift_amount << ImmShiftLS_offset;
   }
 
   static Instr ImmException(int imm16) {
-    ASSERT(is_uint16(imm16));
+    VIXL_ASSERT(is_uint16(imm16));
     return imm16 << ImmException_offset;
   }
 
   static Instr ImmSystemRegister(int imm15) {
-    ASSERT(is_uint15(imm15));
+    VIXL_ASSERT(is_uint15(imm15));
     return imm15 << ImmSystemRegister_offset;
   }
 
   static Instr ImmHint(int imm7) {
-    ASSERT(is_uint7(imm7));
+    VIXL_ASSERT(is_uint7(imm7));
     return imm7 << ImmHint_offset;
   }
 
+  static Instr ImmBarrierDomain(int imm2) {
+    VIXL_ASSERT(is_uint2(imm2));
+    return imm2 << ImmBarrierDomain_offset;
+  }
+
+  static Instr ImmBarrierType(int imm2) {
+    VIXL_ASSERT(is_uint2(imm2));
+    return imm2 << ImmBarrierType_offset;
+  }
+
   static LSDataSize CalcLSDataSize(LoadStoreOp op) {
-    ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
+    VIXL_ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
     return static_cast<LSDataSize>(op >> SizeLS_offset);
   }
 
   // Move immediates encoding.
   static Instr ImmMoveWide(uint64_t imm) {
-    ASSERT(is_uint16(imm));
+    VIXL_ASSERT(is_uint16(imm));
     return imm << ImmMoveWide_offset;
   }
 
   static Instr ShiftMoveWide(int64_t shift) {
-    ASSERT(is_uint2(shift));
+    VIXL_ASSERT(is_uint2(shift));
     return shift << ShiftMoveWide_offset;
   }
 
@@ -1543,20 +1639,20 @@ class Assembler {
   }
 
   static Instr FPScale(unsigned scale) {
-    ASSERT(is_uint6(scale));
+    VIXL_ASSERT(is_uint6(scale));
     return scale << FPScale_offset;
   }
 
   // Size of the code generated in bytes
   uint64_t SizeOfCodeGenerated() const {
-    ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_)));
+    VIXL_ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_)));
     return pc_ - buffer_;
   }
 
   // Size of the code generated since label to the current position.
   uint64_t SizeOfCodeGeneratedSince(Label* label) const {
-    ASSERT(label->IsBound());
-    ASSERT((pc_ >= label->target()) && (pc_ < (buffer_ + buffer_size_)));
+    VIXL_ASSERT(label->IsBound());
+    VIXL_ASSERT((pc_ >= label->target()) && (pc_ < (buffer_ + buffer_size_)));
     return pc_ - label->target();
   }
 
@@ -1568,7 +1664,7 @@ class Assembler {
   inline void ReleaseLiteralPool() {
     if (--literal_pool_monitor_ == 0) {
       // Has the literal pool been blocked for too long?
-      ASSERT(literals_.empty() ||
+      VIXL_ASSERT(literals_.empty() ||
              (pc_ < (literals_.back()->pc_ + kMaxLoadLiteralRange)));
     }
   }
@@ -1622,6 +1718,9 @@ class Assembler {
                        FlagsUpdate S,
                        AddSubWithCarryOp op);
 
+  static bool IsImmFP32(float imm);
+  static bool IsImmFP64(double imm);
+
   // Functions for emulating operands not directly supported by the instruction
   // set.
   void EmitShift(const Register& rd,
@@ -1706,17 +1805,13 @@ class Assembler {
                                const FPRegister& fa,
                                FPDataProcessing3SourceOp op);
 
-  // Encoding helpers.
-  static bool IsImmFP32(float imm);
-  static bool IsImmFP64(double imm);
-
   void RecordLiteral(int64_t imm, unsigned size);
 
   // Emit the instruction at pc_.
   void Emit(Instr instruction) {
-    ASSERT(sizeof(*pc_) == 1);
-    ASSERT(sizeof(instruction) == kInstructionSize);
-    ASSERT((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_));
+    VIXL_STATIC_ASSERT(sizeof(*pc_) == 1);
+    VIXL_STATIC_ASSERT(sizeof(instruction) == kInstructionSize);
+    VIXL_ASSERT((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_));
 
 #ifdef DEBUG
     finalized_ = false;
@@ -1729,8 +1824,8 @@ class Assembler {
 
   // Emit data inline in the instruction stream.
   void EmitData(void const * data, unsigned size) {
-    ASSERT(sizeof(*pc_) == 1);
-    ASSERT((pc_ + size) <= (buffer_ + buffer_size_));
+    VIXL_STATIC_ASSERT(sizeof(*pc_) == 1);
+    VIXL_ASSERT((pc_ + size) <= (buffer_ + buffer_size_));
 
 #ifdef DEBUG
     finalized_ = false;
@@ -1744,7 +1839,7 @@ class Assembler {
   }
 
   inline void CheckBufferSpace() {
-    ASSERT(pc_ < (buffer_ + buffer_size_));
+    VIXL_ASSERT(pc_ < (buffer_ + buffer_size_));
     if (pc_ > next_literal_pool_check_) {
       CheckLiteralPool();
     }
diff --git a/disas/libvixl/a64/constants-a64.h 
b/disas/libvixl/a64/constants-a64.h
index 2e0336d..99677c1 100644
--- a/disas/libvixl/a64/constants-a64.h
+++ b/disas/libvixl/a64/constants-a64.h
@@ -116,6 +116,8 @@ V_(ImmCmpBranch, 23, 5, SignedBits)                         
                   \
 V_(ImmLLiteral, 23, 5, SignedBits)                                             
\
 V_(ImmException, 20, 5, Bits)                                                  
\
 V_(ImmHint, 11, 5, Bits)                                                       
\
+V_(ImmBarrierDomain, 11, 10, Bits)                                             
\
+V_(ImmBarrierType, 9, 8, Bits)                                                 
\
                                                                                
\
 /* System (MRS, MSR) */                                                        
\
 V_(ImmSystemRegister, 19, 5, Bits)                                             
\
@@ -181,7 +183,7 @@ enum Condition {
 inline Condition InvertCondition(Condition cond) {
   // Conditions al and nv behave identically, as "always true". They can't be
   // inverted, because there is no "always false" condition.
-  ASSERT((cond != al) && (cond != nv));
+  VIXL_ASSERT((cond != al) && (cond != nv));
   return static_cast<Condition>(cond ^ 1);
 }
 
@@ -246,6 +248,20 @@ enum SystemHint {
   SEVL  = 5
 };
 
+enum BarrierDomain {
+  OuterShareable = 0,
+  NonShareable   = 1,
+  InnerShareable = 2,
+  FullSystem     = 3
+};
+
+enum BarrierType {
+  BarrierOther  = 0,
+  BarrierReads  = 1,
+  BarrierWrites = 2,
+  BarrierAll    = 3
+};
+
 // System/special register names.
 // This information is not encoded as one field but as the concatenation of
 // multiple fields (Op0<0>, Op1, Crn, Crm, Op2).
@@ -274,7 +290,7 @@ enum SystemRegister {
 //
 // The enumerations can be used like this:
 //
-// ASSERT(instr->Mask(PCRelAddressingFMask) == PCRelAddressingFixed);
+// VIXL_ASSERT(instr->Mask(PCRelAddressingFMask) == PCRelAddressingFixed);
 // switch(instr->Mask(PCRelAddressingMask)) {
 //   case ADR:  Format("adr 'Xd, 'AddrPCRelByte"); break;
 //   case ADRP: Format("adrp 'Xd, 'AddrPCRelPage"); break;
@@ -560,6 +576,15 @@ enum ExceptionOp {
   DCPS3          = ExceptionFixed | 0x00A00003
 };
 
+enum MemBarrierOp {
+  MemBarrierFixed = 0xD503309F,
+  MemBarrierFMask = 0xFFFFF09F,
+  MemBarrierMask  = 0xFFFFF0FF,
+  DSB             = MemBarrierFixed | 0x00000000,
+  DMB             = MemBarrierFixed | 0x00000020,
+  ISB             = MemBarrierFixed | 0x00000040
+};
+
 // Any load or store.
 enum LoadStoreAnyOp {
   LoadStoreAnyFMask = 0x0a000000,
@@ -927,17 +952,22 @@ enum FPDataProcessing1SourceOp {
   FRINTN   = FRINTN_s,
   FRINTP_s = FPDataProcessing1SourceFixed | 0x00048000,
   FRINTP_d = FPDataProcessing1SourceFixed | FP64 | 0x00048000,
+  FRINTP   = FRINTP_s,
   FRINTM_s = FPDataProcessing1SourceFixed | 0x00050000,
   FRINTM_d = FPDataProcessing1SourceFixed | FP64 | 0x00050000,
+  FRINTM   = FRINTM_s,
   FRINTZ_s = FPDataProcessing1SourceFixed | 0x00058000,
   FRINTZ_d = FPDataProcessing1SourceFixed | FP64 | 0x00058000,
   FRINTZ   = FRINTZ_s,
   FRINTA_s = FPDataProcessing1SourceFixed | 0x00060000,
   FRINTA_d = FPDataProcessing1SourceFixed | FP64 | 0x00060000,
+  FRINTA   = FRINTA_s,
   FRINTX_s = FPDataProcessing1SourceFixed | 0x00070000,
   FRINTX_d = FPDataProcessing1SourceFixed | FP64 | 0x00070000,
+  FRINTX   = FRINTX_s,
   FRINTI_s = FPDataProcessing1SourceFixed | 0x00078000,
-  FRINTI_d = FPDataProcessing1SourceFixed | FP64 | 0x00078000
+  FRINTI_d = FPDataProcessing1SourceFixed | FP64 | 0x00078000,
+  FRINTI   = FRINTI_s
 };
 
 // Floating point data processing 2 source.
diff --git a/disas/libvixl/a64/decoder-a64.cc b/disas/libvixl/a64/decoder-a64.cc
index 9e9033c..8450eb3 100644
--- a/disas/libvixl/a64/decoder-a64.cc
+++ b/disas/libvixl/a64/decoder-a64.cc
@@ -132,7 +132,7 @@ void Decoder::InsertVisitorBefore(DecoderVisitor* 
new_visitor,
   }
   // We reached the end of the list. The last element must be
   // registered_visitor.
-  ASSERT(*it == registered_visitor);
+  VIXL_ASSERT(*it == registered_visitor);
   visitors_.insert(it, new_visitor);
 }
 
@@ -150,7 +150,7 @@ void Decoder::InsertVisitorAfter(DecoderVisitor* 
new_visitor,
   }
   // We reached the end of the list. The last element must be
   // registered_visitor.
-  ASSERT(*it == registered_visitor);
+  VIXL_ASSERT(*it == registered_visitor);
   visitors_.push_back(new_visitor);
 }
 
@@ -161,16 +161,16 @@ void Decoder::RemoveVisitor(DecoderVisitor* visitor) {
 
 
 void Decoder::DecodePCRelAddressing(Instruction* instr) {
-  ASSERT(instr->Bits(27, 24) == 0x0);
+  VIXL_ASSERT(instr->Bits(27, 24) == 0x0);
   // We know bit 28 is set, as <b28:b27> = 0 is filtered out at the top level
   // decode.
-  ASSERT(instr->Bit(28) == 0x1);
+  VIXL_ASSERT(instr->Bit(28) == 0x1);
   VisitPCRelAddressing(instr);
 }
 
 
 void Decoder::DecodeBranchSystemException(Instruction* instr) {
-  ASSERT((instr->Bits(27, 24) == 0x4) ||
+  VIXL_ASSERT((instr->Bits(27, 24) == 0x4) ||
          (instr->Bits(27, 24) == 0x5) ||
          (instr->Bits(27, 24) == 0x6) ||
          (instr->Bits(27, 24) == 0x7) );
@@ -271,7 +271,7 @@ void Decoder::DecodeBranchSystemException(Instruction* 
instr) {
 
 
 void Decoder::DecodeLoadStore(Instruction* instr) {
-  ASSERT((instr->Bits(27, 24) == 0x8) ||
+  VIXL_ASSERT((instr->Bits(27, 24) == 0x8) ||
          (instr->Bits(27, 24) == 0x9) ||
          (instr->Bits(27, 24) == 0xC) ||
          (instr->Bits(27, 24) == 0xD) );
@@ -390,7 +390,7 @@ void Decoder::DecodeLoadStore(Instruction* instr) {
 
 
 void Decoder::DecodeLogical(Instruction* instr) {
-  ASSERT(instr->Bits(27, 24) == 0x2);
+  VIXL_ASSERT(instr->Bits(27, 24) == 0x2);
 
   if (instr->Mask(0x80400000) == 0x00400000) {
     VisitUnallocated(instr);
@@ -409,7 +409,7 @@ void Decoder::DecodeLogical(Instruction* instr) {
 
 
 void Decoder::DecodeBitfieldExtract(Instruction* instr) {
-  ASSERT(instr->Bits(27, 24) == 0x3);
+  VIXL_ASSERT(instr->Bits(27, 24) == 0x3);
 
   if ((instr->Mask(0x80400000) == 0x80000000) ||
       (instr->Mask(0x80400000) == 0x00400000) ||
@@ -434,7 +434,7 @@ void Decoder::DecodeBitfieldExtract(Instruction* instr) {
 
 
 void Decoder::DecodeAddSubImmediate(Instruction* instr) {
-  ASSERT(instr->Bits(27, 24) == 0x1);
+  VIXL_ASSERT(instr->Bits(27, 24) == 0x1);
   if (instr->Bit(23) == 1) {
     VisitUnallocated(instr);
   } else {
@@ -444,8 +444,8 @@ void Decoder::DecodeAddSubImmediate(Instruction* instr) {
 
 
 void Decoder::DecodeDataProcessing(Instruction* instr) {
-  ASSERT((instr->Bits(27, 24) == 0xA) ||
-         (instr->Bits(27, 24) == 0xB) );
+  VIXL_ASSERT((instr->Bits(27, 24) == 0xA) ||
+              (instr->Bits(27, 24) == 0xB));
 
   if (instr->Bit(24) == 0) {
     if (instr->Bit(28) == 0) {
@@ -559,8 +559,8 @@ void Decoder::DecodeDataProcessing(Instruction* instr) {
 
 
 void Decoder::DecodeFP(Instruction* instr) {
-  ASSERT((instr->Bits(27, 24) == 0xE) ||
-         (instr->Bits(27, 24) == 0xF) );
+  VIXL_ASSERT((instr->Bits(27, 24) == 0xE) ||
+              (instr->Bits(27, 24) == 0xF));
 
   if (instr->Bit(28) == 0) {
     DecodeAdvSIMDDataProcessing(instr);
@@ -665,14 +665,14 @@ void Decoder::DecodeFP(Instruction* instr) {
                     VisitFPConditionalSelect(instr);
                     break;
                   }
-                  default: UNREACHABLE();
+                  default: VIXL_UNREACHABLE();
                 }
               }
             }
           }
         } else {
           // Bit 30 == 1 has been handled earlier.
-          ASSERT(instr->Bit(30) == 0);
+          VIXL_ASSERT(instr->Bit(30) == 0);
           if (instr->Mask(0xA0800000) != 0) {
             VisitUnallocated(instr);
           } else {
@@ -687,21 +687,21 @@ void Decoder::DecodeFP(Instruction* instr) {
 
 void Decoder::DecodeAdvSIMDLoadStore(Instruction* instr) {
   // TODO: Implement Advanced SIMD load/store instruction decode.
-  ASSERT(instr->Bits(29, 25) == 0x6);
+  VIXL_ASSERT(instr->Bits(29, 25) == 0x6);
   VisitUnimplemented(instr);
 }
 
 
 void Decoder::DecodeAdvSIMDDataProcessing(Instruction* instr) {
   // TODO: Implement Advanced SIMD data processing instruction decode.
-  ASSERT(instr->Bits(27, 25) == 0x7);
+  VIXL_ASSERT(instr->Bits(27, 25) == 0x7);
   VisitUnimplemented(instr);
 }
 
 
 #define DEFINE_VISITOR_CALLERS(A)                                              
\
   void Decoder::Visit##A(Instruction *instr) {                                 
\
-    ASSERT(instr->Mask(A##FMask) == A##Fixed);                                 
\
+    VIXL_ASSERT(instr->Mask(A##FMask) == A##Fixed);                            
\
     std::list<DecoderVisitor*>::iterator it;                                   
\
     for (it = visitors_.begin(); it != visitors_.end(); it++) {                
\
       (*it)->Visit##A(instr);                                                  
\
diff --git a/disas/libvixl/a64/disasm-a64.cc b/disas/libvixl/a64/disasm-a64.cc
index 5f172da..4a2a6df 100644
--- a/disas/libvixl/a64/disasm-a64.cc
+++ b/disas/libvixl/a64/disasm-a64.cc
@@ -95,7 +95,7 @@ void Disassembler::VisitAddSubImmediate(Instruction* instr) {
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -142,7 +142,7 @@ void Disassembler::VisitAddSubShifted(Instruction* instr) {
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -180,7 +180,7 @@ void Disassembler::VisitAddSubExtended(Instruction* instr) {
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -215,7 +215,7 @@ void Disassembler::VisitAddSubWithCarry(Instruction* instr) 
{
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -258,30 +258,30 @@ void Disassembler::VisitLogicalImmediate(Instruction* 
instr) {
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
 
 
 bool Disassembler::IsMovzMovnImm(unsigned reg_size, uint64_t value) {
-  ASSERT((reg_size == kXRegSize) ||
-         ((reg_size == kWRegSize) && (value <= 0xffffffff)));
+  VIXL_ASSERT((reg_size == kXRegSize) ||
+              ((reg_size == kWRegSize) && (value <= 0xffffffff)));
 
   // Test for movz: 16 bits set at positions 0, 16, 32 or 48.
-  if (((value & 0xffffffffffff0000ULL) == 0ULL) ||
-      ((value & 0xffffffff0000ffffULL) == 0ULL) ||
-      ((value & 0xffff0000ffffffffULL) == 0ULL) ||
-      ((value & 0x0000ffffffffffffULL) == 0ULL)) {
+  if (((value & 0xffffffffffff0000) == 0) ||
+      ((value & 0xffffffff0000ffff) == 0) ||
+      ((value & 0xffff0000ffffffff) == 0) ||
+      ((value & 0x0000ffffffffffff) == 0)) {
     return true;
   }
 
   // Test for movn: NOT(16 bits set at positions 0, 16, 32 or 48).
   if ((reg_size == kXRegSize) &&
-      (((value & 0xffffffffffff0000ULL) == 0xffffffffffff0000ULL) ||
-       ((value & 0xffffffff0000ffffULL) == 0xffffffff0000ffffULL) ||
-       ((value & 0xffff0000ffffffffULL) == 0xffff0000ffffffffULL) ||
-       ((value & 0x0000ffffffffffffULL) == 0x0000ffffffffffffULL))) {
+      (((value & 0xffffffffffff0000) == 0xffffffffffff0000) ||
+       ((value & 0xffffffff0000ffff) == 0xffffffff0000ffff) ||
+       ((value & 0xffff0000ffffffff) == 0xffff0000ffffffff) ||
+       ((value & 0x0000ffffffffffff) == 0x0000ffffffffffff))) {
     return true;
   }
   if ((reg_size == kWRegSize) &&
@@ -337,7 +337,7 @@ void Disassembler::VisitLogicalShifted(Instruction* instr) {
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
 
   Format(instr, mnemonic, form);
@@ -353,7 +353,7 @@ void 
Disassembler::VisitConditionalCompareRegister(Instruction* instr) {
     case CCMN_x: mnemonic = "ccmn"; break;
     case CCMP_w:
     case CCMP_x: mnemonic = "ccmp"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -368,7 +368,7 @@ void 
Disassembler::VisitConditionalCompareImmediate(Instruction* instr) {
     case CCMN_x_imm: mnemonic = "ccmn"; break;
     case CCMP_w_imm:
     case CCMP_x_imm: mnemonic = "ccmp"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -421,7 +421,7 @@ void Disassembler::VisitConditionalSelect(Instruction* 
instr) {
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -520,7 +520,7 @@ void Disassembler::VisitExtract(Instruction* instr) {
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -538,7 +538,7 @@ void Disassembler::VisitPCRelAddressing(Instruction* instr) 
{
 void Disassembler::VisitConditionalBranch(Instruction* instr) {
   switch (instr->Mask(ConditionalBranchMask)) {
     case B_cond: Format(instr, "b.'CBrn", "'BImmCond"); break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
 }
 
@@ -570,7 +570,7 @@ void Disassembler::VisitUnconditionalBranch(Instruction* 
instr) {
   switch (instr->Mask(UnconditionalBranchMask)) {
     case B: mnemonic = "b"; break;
     case BL: mnemonic = "bl"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -591,7 +591,7 @@ void Disassembler::VisitDataProcessing1Source(Instruction* 
instr) {
     FORMAT(CLS, "cls");
     #undef FORMAT
     case REV32_x: mnemonic = "rev32"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -690,7 +690,7 @@ void Disassembler::VisitDataProcessing3Source(Instruction* 
instr) {
       form = form_xxx;
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -705,7 +705,7 @@ void Disassembler::VisitCompareBranch(Instruction* instr) {
     case CBZ_x: mnemonic = "cbz"; break;
     case CBNZ_w:
     case CBNZ_x: mnemonic = "cbnz"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -722,7 +722,7 @@ void Disassembler::VisitTestBranch(Instruction* instr) {
   switch (instr->Mask(TestBranchMask)) {
     case TBZ: mnemonic = "tbz"; break;
     case TBNZ: mnemonic = "tbnz"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -742,7 +742,7 @@ void Disassembler::VisitMoveWideImmediate(Instruction* 
instr) {
     case MOVZ_x: mnemonic = "movz"; break;
     case MOVK_w:
     case MOVK_x: mnemonic = "movk"; form = "'Rd, 'IMoveLSL"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -981,7 +981,7 @@ void Disassembler::VisitFPConditionalSelect(Instruction* 
instr) {
   switch (instr->Mask(FPConditionalSelectMask)) {
     case FCSEL_s:
     case FCSEL_d: mnemonic = "fcsel"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -1033,7 +1033,7 @@ void 
Disassembler::VisitFPDataProcessing2Source(Instruction* instr) {
     FORMAT(FMINNM, "fminnm");
     FORMAT(FNMUL, "fnmul");
     #undef FORMAT
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -1052,7 +1052,7 @@ void 
Disassembler::VisitFPDataProcessing3Source(Instruction* instr) {
     FORMAT(FNMADD, "fnmadd");
     FORMAT(FNMSUB, "fnmsub");
     #undef FORMAT
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -1065,7 +1065,7 @@ void Disassembler::VisitFPImmediate(Instruction* instr) {
   switch (instr->Mask(FPImmediateMask)) {
     case FMOV_s_imm: mnemonic = "fmov"; form = "'Sd, 'IFPSingle"; break;
     case FMOV_d_imm: mnemonic = "fmov"; form = "'Dd, 'IFPDouble"; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -1082,6 +1082,14 @@ void Disassembler::VisitFPIntegerConvert(Instruction* 
instr) {
     case FMOV_xd: mnemonic = "fmov"; form = form_rf; break;
     case FMOV_sw:
     case FMOV_dx: mnemonic = "fmov"; form = form_fr; break;
+    case FCVTAS_ws:
+    case FCVTAS_xs:
+    case FCVTAS_wd:
+    case FCVTAS_xd: mnemonic = "fcvtas"; form = form_rf; break;
+    case FCVTAU_ws:
+    case FCVTAU_xs:
+    case FCVTAU_wd:
+    case FCVTAU_xd: mnemonic = "fcvtau"; form = form_rf; break;
     case FCVTMS_ws:
     case FCVTMS_xs:
     case FCVTMS_wd:
@@ -1141,7 +1149,7 @@ void Disassembler::VisitFPFixedPointConvert(Instruction* 
instr) {
     case UCVTF_sx_fixed:
     case UCVTF_dw_fixed:
     case UCVTF_dx_fixed: mnemonic = "ucvtf"; form = form_fr; break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   Format(instr, mnemonic, form);
 }
@@ -1176,7 +1184,7 @@ void Disassembler::VisitSystem(Instruction* instr) {
       }
     }
   } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
-    ASSERT(instr->Mask(SystemHintMask) == HINT);
+    VIXL_ASSERT(instr->Mask(SystemHintMask) == HINT);
     switch (instr->ImmHint()) {
       case NOP: {
         mnemonic = "nop";
@@ -1184,6 +1192,24 @@ void Disassembler::VisitSystem(Instruction* instr) {
         break;
       }
     }
+  } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) {
+    switch (instr->Mask(MemBarrierMask)) {
+      case DMB: {
+        mnemonic = "dmb";
+        form = "'M";
+        break;
+      }
+      case DSB: {
+        mnemonic = "dsb";
+        form = "'M";
+        break;
+      }
+      case ISB: {
+        mnemonic = "isb";
+        form = NULL;
+        break;
+      }
+    }
   }
 
   Format(instr, mnemonic, form);
@@ -1226,7 +1252,7 @@ void Disassembler::ProcessOutput(Instruction* /*instr*/) {
 
 void Disassembler::Format(Instruction* instr, const char* mnemonic,
                           const char* format) {
-  ASSERT(mnemonic != NULL);
+  VIXL_ASSERT(mnemonic != NULL);
   ResetOutput();
   Substitute(instr, mnemonic);
   if (format != NULL) {
@@ -1268,8 +1294,9 @@ int Disassembler::SubstituteField(Instruction* instr, 
const char* format) {
     case 'A': return SubstitutePCRelAddressField(instr, format);
     case 'B': return SubstituteBranchTargetField(instr, format);
     case 'O': return SubstituteLSRegOffsetField(instr, format);
+    case 'M': return SubstituteBarrierField(instr, format);
     default: {
-      UNREACHABLE();
+      VIXL_UNREACHABLE();
       return 1;
     }
   }
@@ -1294,7 +1321,7 @@ int Disassembler::SubstituteRegisterField(Instruction* 
instr,
       }
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
 
   // Increase field length for registers tagged as stack.
@@ -1331,7 +1358,7 @@ int Disassembler::SubstituteRegisterField(Instruction* 
instr,
 
 int Disassembler::SubstituteImmediateField(Instruction* instr,
                                            const char* format) {
-  ASSERT(format[0] == 'I');
+  VIXL_ASSERT(format[0] == 'I');
 
   switch (format[1]) {
     case 'M': {  // IMoveImm or IMoveLSL.
@@ -1339,10 +1366,10 @@ int Disassembler::SubstituteImmediateField(Instruction* 
instr,
         uint64_t imm = instr->ImmMoveWide() << (16 * instr->ShiftMoveWide());
         AppendToOutput("#0x%" PRIx64, imm);
       } else {
-        ASSERT(format[5] == 'L');
+        VIXL_ASSERT(format[5] == 'L');
         AppendToOutput("#0x%" PRIx64, instr->ImmMoveWide());
         if (instr->ShiftMoveWide() > 0) {
-          AppendToOutput(", lsl #%" PRId64, 16 * instr->ShiftMoveWide());
+          AppendToOutput(", lsl #%d", 16 * instr->ShiftMoveWide());
         }
       }
       return 8;
@@ -1384,14 +1411,14 @@ int Disassembler::SubstituteImmediateField(Instruction* 
instr,
       return 6;
     }
     case 'A': {  // IAddSub.
-      ASSERT(instr->ShiftAddSub() <= 1);
+      VIXL_ASSERT(instr->ShiftAddSub() <= 1);
       int64_t imm = instr->ImmAddSub() << (12 * instr->ShiftAddSub());
       AppendToOutput("#0x%" PRIx64 " (%" PRId64 ")", imm, imm);
       return 7;
     }
     case 'F': {  // IFPSingle, IFPDouble or IFPFBits.
       if (format[3] == 'F') {  // IFPFbits.
-        AppendToOutput("#%" PRId64, 64 - instr->FPScale());
+        AppendToOutput("#%d", 64 - instr->FPScale());
         return 8;
       } else {
         AppendToOutput("#0x%" PRIx64 " (%.4f)", instr->ImmFP(),
@@ -1412,27 +1439,27 @@ int Disassembler::SubstituteImmediateField(Instruction* 
instr,
       return 5;
     }
     case 'P': {  // IP - Conditional compare.
-      AppendToOutput("#%" PRId64, instr->ImmCondCmp());
+      AppendToOutput("#%d", instr->ImmCondCmp());
       return 2;
     }
     case 'B': {  // Bitfields.
       return SubstituteBitfieldImmediateField(instr, format);
     }
     case 'E': {  // IExtract.
-      AppendToOutput("#%" PRId64, instr->ImmS());
+      AppendToOutput("#%d", instr->ImmS());
       return 8;
     }
     case 'S': {  // IS - Test and branch bit.
-      AppendToOutput("#%" PRId64, (instr->ImmTestBranchBit5() << 5) |
-                                  instr->ImmTestBranchBit40());
+      AppendToOutput("#%d", (instr->ImmTestBranchBit5() << 5) |
+                            instr->ImmTestBranchBit40());
       return 2;
     }
     case 'D': {  // IDebug - HLT and BRK instructions.
-      AppendToOutput("#0x%" PRIx64, instr->ImmException());
+      AppendToOutput("#0x%x", instr->ImmException());
       return 6;
     }
     default: {
-      UNIMPLEMENTED();
+      VIXL_UNIMPLEMENTED();
       return 0;
     }
   }
@@ -1441,7 +1468,7 @@ int Disassembler::SubstituteImmediateField(Instruction* 
instr,
 
 int Disassembler::SubstituteBitfieldImmediateField(Instruction* instr,
                                                    const char* format) {
-  ASSERT((format[0] == 'I') && (format[1] == 'B'));
+  VIXL_ASSERT((format[0] == 'I') && (format[1] == 'B'));
   unsigned r = instr->ImmR();
   unsigned s = instr->ImmS();
 
@@ -1455,19 +1482,19 @@ int 
Disassembler::SubstituteBitfieldImmediateField(Instruction* instr,
         AppendToOutput("#%d", s + 1);
         return 5;
       } else {
-        ASSERT(format[3] == '-');
+        VIXL_ASSERT(format[3] == '-');
         AppendToOutput("#%d", s - r + 1);
         return 7;
       }
     }
     case 'Z': {  // IBZ-r.
-      ASSERT((format[3] == '-') && (format[4] == 'r'));
+      VIXL_ASSERT((format[3] == '-') && (format[4] == 'r'));
       unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize : 
kWRegSize;
       AppendToOutput("#%d", reg_size - r);
       return 5;
     }
     default: {
-      UNREACHABLE();
+      VIXL_UNREACHABLE();
       return 0;
     }
   }
@@ -1476,7 +1503,7 @@ int 
Disassembler::SubstituteBitfieldImmediateField(Instruction* instr,
 
 int Disassembler::SubstituteLiteralField(Instruction* instr,
                                          const char* format) {
-  ASSERT(strncmp(format, "LValue", 6) == 0);
+  VIXL_ASSERT(strncmp(format, "LValue", 6) == 0);
   USE(format);
 
   switch (instr->Mask(LoadLiteralMask)) {
@@ -1484,7 +1511,7 @@ int Disassembler::SubstituteLiteralField(Instruction* 
instr,
     case LDR_x_lit:
     case LDR_s_lit:
     case LDR_d_lit: AppendToOutput("(addr %p)", instr->LiteralAddress()); 
break;
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
 
   return 6;
@@ -1492,12 +1519,12 @@ int Disassembler::SubstituteLiteralField(Instruction* 
instr,
 
 
 int Disassembler::SubstituteShiftField(Instruction* instr, const char* format) 
{
-  ASSERT(format[0] == 'H');
-  ASSERT(instr->ShiftDP() <= 0x3);
+  VIXL_ASSERT(format[0] == 'H');
+  VIXL_ASSERT(instr->ShiftDP() <= 0x3);
 
   switch (format[1]) {
     case 'D': {  // HDP.
-      ASSERT(instr->ShiftDP() != ROR);
+      VIXL_ASSERT(instr->ShiftDP() != ROR);
     }  // Fall through.
     case 'L': {  // HLo.
       if (instr->ImmDPShift() != 0) {
@@ -1508,7 +1535,7 @@ int Disassembler::SubstituteShiftField(Instruction* 
instr, const char* format) {
       return 3;
     }
     default:
-      UNIMPLEMENTED();
+      VIXL_UNIMPLEMENTED();
       return 0;
   }
 }
@@ -1516,7 +1543,7 @@ int Disassembler::SubstituteShiftField(Instruction* 
instr, const char* format) {
 
 int Disassembler::SubstituteConditionField(Instruction* instr,
                                            const char* format) {
-  ASSERT(format[0] == 'C');
+  VIXL_ASSERT(format[0] == 'C');
   const char* condition_code[] = { "eq", "ne", "hs", "lo",
                                    "mi", "pl", "vs", "vc",
                                    "hi", "ls", "ge", "lt",
@@ -1538,27 +1565,27 @@ int Disassembler::SubstituteConditionField(Instruction* 
instr,
 int Disassembler::SubstitutePCRelAddressField(Instruction* instr,
                                               const char* format) {
   USE(format);
-  ASSERT(strncmp(format, "AddrPCRel", 9) == 0);
+  VIXL_ASSERT(strncmp(format, "AddrPCRel", 9) == 0);
 
   int offset = instr->ImmPCRel();
 
   // Only ADR (AddrPCRelByte) is supported.
-  ASSERT(strcmp(format, "AddrPCRelByte") == 0);
+  VIXL_ASSERT(strcmp(format, "AddrPCRelByte") == 0);
 
   char sign = '+';
   if (offset < 0) {
     offset = -offset;
     sign = '-';
   }
-  // TODO: Extend this to support printing the target address.
-  AppendToOutput("#%c0x%x", sign, offset);
+  VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
+  AppendToOutput("#%c0x%x (addr %p)", sign, offset, instr + offset);
   return 13;
 }
 
 
 int Disassembler::SubstituteBranchTargetField(Instruction* instr,
                                               const char* format) {
-  ASSERT(strncmp(format, "BImm", 4) == 0);
+  VIXL_ASSERT(strncmp(format, "BImm", 4) == 0);
 
   int64_t offset = 0;
   switch (format[5]) {
@@ -1570,7 +1597,7 @@ int 
Disassembler::SubstituteBranchTargetField(Instruction* instr,
     case 'm': offset = instr->ImmCmpBranch(); break;
     // BImmTest - test and branch immediate.
     case 'e': offset = instr->ImmTestBranch(); break;
-    default: UNIMPLEMENTED();
+    default: VIXL_UNIMPLEMENTED();
   }
   offset <<= kInstructionSizeLog2;
   char sign = '+';
@@ -1578,15 +1605,16 @@ int 
Disassembler::SubstituteBranchTargetField(Instruction* instr,
     offset = -offset;
     sign = '-';
   }
-  AppendToOutput("#%c0x%" PRIx64, sign, offset);
+  VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
+  AppendToOutput("#%c0x%" PRIx64 " (addr %p)", sign, offset, instr + offset);
   return 8;
 }
 
 
 int Disassembler::SubstituteExtendField(Instruction* instr,
                                         const char* format) {
-  ASSERT(strncmp(format, "Ext", 3) == 0);
-  ASSERT(instr->ExtendMode() <= 7);
+  VIXL_ASSERT(strncmp(format, "Ext", 3) == 0);
+  VIXL_ASSERT(instr->ExtendMode() <= 7);
   USE(format);
 
   const char* extend_mode[] = { "uxtb", "uxth", "uxtw", "uxtx",
@@ -1598,12 +1626,12 @@ int Disassembler::SubstituteExtendField(Instruction* 
instr,
       (((instr->ExtendMode() == UXTW) && (instr->SixtyFourBits() == 0)) ||
        (instr->ExtendMode() == UXTX))) {
     if (instr->ImmExtendShift() > 0) {
-      AppendToOutput(", lsl #%" PRId64, instr->ImmExtendShift());
+      AppendToOutput(", lsl #%d", instr->ImmExtendShift());
     }
   } else {
     AppendToOutput(", %s", extend_mode[instr->ExtendMode()]);
     if (instr->ImmExtendShift() > 0) {
-      AppendToOutput(" #%" PRId64, instr->ImmExtendShift());
+      AppendToOutput(" #%d", instr->ImmExtendShift());
     }
   }
   return 3;
@@ -1612,7 +1640,7 @@ int Disassembler::SubstituteExtendField(Instruction* 
instr,
 
 int Disassembler::SubstituteLSRegOffsetField(Instruction* instr,
                                              const char* format) {
-  ASSERT(strncmp(format, "Offsetreg", 9) == 0);
+  VIXL_ASSERT(strncmp(format, "Offsetreg", 9) == 0);
   const char* extend_mode[] = { "undefined", "undefined", "uxtw", "lsl",
                                 "undefined", "undefined", "sxtw", "sxtx" };
   USE(format);
@@ -1632,7 +1660,7 @@ int Disassembler::SubstituteLSRegOffsetField(Instruction* 
instr,
   if (!((ext == UXTX) && (shift == 0))) {
     AppendToOutput(", %s", extend_mode[ext]);
     if (shift != 0) {
-      AppendToOutput(" #%" PRId64, instr->SizeLS());
+      AppendToOutput(" #%d", instr->SizeLS());
     }
   }
   return 9;
@@ -1641,7 +1669,7 @@ int Disassembler::SubstituteLSRegOffsetField(Instruction* 
instr,
 
 int Disassembler::SubstitutePrefetchField(Instruction* instr,
                                           const char* format) {
-  ASSERT(format[0] == 'P');
+  VIXL_ASSERT(format[0] == 'P');
   USE(format);
 
   int prefetch_mode = instr->PrefetchMode();
@@ -1654,6 +1682,23 @@ int Disassembler::SubstitutePrefetchField(Instruction* 
instr,
   return 6;
 }
 
+int Disassembler::SubstituteBarrierField(Instruction* instr,
+                                         const char* format) {
+  VIXL_ASSERT(format[0] == 'M');
+  USE(format);
+
+  static const char* options[4][4] = {
+    { "sy (0b0000)", "oshld", "oshst", "osh" },
+    { "sy (0b0100)", "nshld", "nshst", "nsh" },
+    { "sy (0b1000)", "ishld", "ishst", "ish" },
+    { "sy (0b1100)", "ld", "st", "sy" }
+  };
+  int domain = instr->ImmBarrierDomain();
+  int type = instr->ImmBarrierType();
+
+  AppendToOutput("%s", options[domain][type]);
+  return 1;
+}
 
 void Disassembler::ResetOutput() {
   buffer_pos_ = 0;
diff --git a/disas/libvixl/a64/disasm-a64.h b/disas/libvixl/a64/disasm-a64.h
index 857a5ac..3a56e15 100644
--- a/disas/libvixl/a64/disasm-a64.h
+++ b/disas/libvixl/a64/disasm-a64.h
@@ -64,6 +64,7 @@ class Disassembler: public DecoderVisitor {
   int SubstituteBranchTargetField(Instruction* instr, const char* format);
   int SubstituteLSRegOffsetField(Instruction* instr, const char* format);
   int SubstitutePrefetchField(Instruction* instr, const char* format);
+  int SubstituteBarrierField(Instruction* instr, const char* format);
 
   inline bool RdIsZROrSP(Instruction* instr) const {
     return (instr->Rd() == kZeroRegCode);
diff --git a/disas/libvixl/a64/instructions-a64.cc 
b/disas/libvixl/a64/instructions-a64.cc
index e87fa3a..c4eb7c4 100644
--- a/disas/libvixl/a64/instructions-a64.cc
+++ b/disas/libvixl/a64/instructions-a64.cc
@@ -33,20 +33,20 @@ namespace vixl {
 static uint64_t RotateRight(uint64_t value,
                             unsigned int rotate,
                             unsigned int width) {
-  ASSERT(width <= 64);
+  VIXL_ASSERT(width <= 64);
   rotate &= 63;
-  return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) |
-         (value >> rotate);
+  return ((value & ((UINT64_C(1) << rotate) - 1)) <<
+          (width - rotate)) | (value >> rotate);
 }
 
 
 static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
                                     uint64_t value,
                                     unsigned width) {
-  ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
-         (width == 32));
-  ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
-  uint64_t result = value & ((1UL << width) - 1UL);
+  VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
+              (width == 32));
+  VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+  uint64_t result = value & ((UINT64_C(1) << width) - 1);
   for (unsigned i = width; i < reg_size; i *= 2) {
     result |= (result << i);
   }
@@ -84,7 +84,7 @@ uint64_t Instruction::ImmLogical() {
     if (imm_s == 0x3F) {
       return 0;
     }
-    uint64_t bits = (1UL << (imm_s + 1)) - 1;
+    uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
     return RotateRight(bits, imm_r, 64);
   } else {
     if ((imm_s >> 1) == 0x1F) {
@@ -96,14 +96,14 @@ uint64_t Instruction::ImmLogical() {
         if ((imm_s & mask) == mask) {
           return 0;
         }
-        uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1;
+        uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
         return RepeatBitsAcrossReg(reg_size,
                                    RotateRight(bits, imm_r & mask, width),
                                    width);
       }
     }
   }
-  UNREACHABLE();
+  VIXL_UNREACHABLE();
   return 0;
 }
 
@@ -155,7 +155,7 @@ Instruction* Instruction::ImmPCOffsetTarget() {
     offset = ImmPCRel();
   } else {
     // All PC-relative branches.
-    ASSERT(BranchType() != UnknownBranchType);
+    VIXL_ASSERT(BranchType() != UnknownBranchType);
     // Relative branch offsets are instruction-size-aligned.
     offset = ImmBranch() << kInstructionSizeLog2;
   }
@@ -169,7 +169,7 @@ inline int Instruction::ImmBranch() const {
     case UncondBranchType: return ImmUncondBranch();
     case CompareBranchType: return ImmCmpBranch();
     case TestBranchType: return ImmTestBranch();
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   return 0;
 }
@@ -186,7 +186,7 @@ void Instruction::SetImmPCOffsetTarget(Instruction* target) 
{
 
 void Instruction::SetPCRelImmTarget(Instruction* target) {
   // ADRP is not supported, so 'this' must point to an ADR instruction.
-  ASSERT(Mask(PCRelAddressingMask) == ADR);
+  VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
 
   Instr imm = Assembler::ImmPCRelAddress(target - this);
 
@@ -195,7 +195,7 @@ void Instruction::SetPCRelImmTarget(Instruction* target) {
 
 
 void Instruction::SetBranchImmTarget(Instruction* target) {
-  ASSERT(((target - this) & 3) == 0);
+  VIXL_ASSERT(((target - this) & 3) == 0);
   Instr branch_imm = 0;
   uint32_t imm_mask = 0;
   int offset = (target - this) >> kInstructionSizeLog2;
@@ -220,14 +220,14 @@ void Instruction::SetBranchImmTarget(Instruction* target) 
{
       imm_mask = ImmTestBranch_mask;
       break;
     }
-    default: UNREACHABLE();
+    default: VIXL_UNREACHABLE();
   }
   SetInstructionBits(Mask(~imm_mask) | branch_imm);
 }
 
 
 void Instruction::SetImmLLiteral(Instruction* source) {
-  ASSERT(((source - this) & 3) == 0);
+  VIXL_ASSERT(((source - this) & 3) == 0);
   int offset = (source - this) >> kLiteralEntrySizeLog2;
   Instr imm = Assembler::ImmLLiteral(offset);
   Instr mask = ImmLLiteral_mask;
diff --git a/disas/libvixl/a64/instructions-a64.h 
b/disas/libvixl/a64/instructions-a64.h
index ba9068c..4eaee58 100644
--- a/disas/libvixl/a64/instructions-a64.h
+++ b/disas/libvixl/a64/instructions-a64.h
@@ -44,28 +44,34 @@ const unsigned kMaxLoadLiteralRange = 1 * MBytes;
 const unsigned kWRegSize = 32;
 const unsigned kWRegSizeLog2 = 5;
 const unsigned kWRegSizeInBytes = kWRegSize / 8;
+const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
 const unsigned kXRegSize = 64;
 const unsigned kXRegSizeLog2 = 6;
 const unsigned kXRegSizeInBytes = kXRegSize / 8;
+const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
 const unsigned kSRegSize = 32;
 const unsigned kSRegSizeLog2 = 5;
 const unsigned kSRegSizeInBytes = kSRegSize / 8;
+const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
 const unsigned kDRegSize = 64;
 const unsigned kDRegSizeLog2 = 6;
 const unsigned kDRegSizeInBytes = kDRegSize / 8;
-const int64_t kWRegMask = 0x00000000ffffffffLL;
-const int64_t kXRegMask = 0xffffffffffffffffLL;
-const int64_t kSRegMask = 0x00000000ffffffffLL;
-const int64_t kDRegMask = 0xffffffffffffffffLL;
-const int64_t kXSignMask = 0x1LL << 63;
-const int64_t kWSignMask = 0x1LL << 31;
-const int64_t kByteMask = 0xffL;
-const int64_t kHalfWordMask = 0xffffL;
-const int64_t kWordMask = 0xffffffffLL;
-const uint64_t kXMaxUInt = 0xffffffffffffffffULL;
-const uint64_t kWMaxUInt = 0xffffffffULL;
-const int64_t kXMaxInt = 0x7fffffffffffffffLL;
-const int64_t kXMinInt = 0x8000000000000000LL;
+const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
+const uint64_t kWRegMask = 0xffffffff;
+const uint64_t kXRegMask = 0xffffffffffffffff;
+const uint64_t kSRegMask = 0xffffffff;
+const uint64_t kDRegMask = 0xffffffffffffffff;
+const uint64_t kSSignMask = 0x80000000;
+const uint64_t kDSignMask = 0x8000000000000000;
+const uint64_t kWSignMask = 0x80000000;
+const uint64_t kXSignMask = 0x8000000000000000;
+const uint64_t kByteMask = 0xff;
+const uint64_t kHalfWordMask = 0xffff;
+const uint64_t kWordMask = 0xffffffff;
+const uint64_t kXMaxUInt = 0xffffffffffffffff;
+const uint64_t kWMaxUInt = 0xffffffff;
+const int64_t kXMaxInt = 0x7fffffffffffffff;
+const int64_t kXMinInt = 0x8000000000000000;
 const int32_t kWMaxInt = 0x7fffffff;
 const int32_t kWMinInt = 0x80000000;
 const unsigned kLinkRegCode = 30;
@@ -81,18 +87,23 @@ const unsigned kFloatExponentBits = 8;
 
 const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
 const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
-const double kFP64PositiveInfinity = rawbits_to_double(0x7ff0000000000000ULL);
-const double kFP64NegativeInfinity = rawbits_to_double(0xfff0000000000000ULL);
+const double kFP64PositiveInfinity = rawbits_to_double(0x7ff0000000000000);
+const double kFP64NegativeInfinity = rawbits_to_double(0xfff0000000000000);
 
 // This value is a signalling NaN as both a double and as a float (taking the
 // least-significant word).
-static const double kFP64SignallingNaN = 
rawbits_to_double(0x7ff000007f800001ULL);
+static const double kFP64SignallingNaN = rawbits_to_double(0x7ff000007f800001);
 static const float kFP32SignallingNaN = rawbits_to_float(0x7f800001);
 
 // A similar value, but as a quiet NaN.
-static const double kFP64QuietNaN = rawbits_to_double(0x7ff800007fc00001ULL);
+static const double kFP64QuietNaN = rawbits_to_double(0x7ff800007fc00001);
 static const float kFP32QuietNaN = rawbits_to_float(0x7fc00001);
 
+// The default NaN values (for FPCR.DN=1).
+static const double kFP64DefaultNaN = rawbits_to_double(0x7ff8000000000000);
+static const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
+
+
 enum LSDataSize {
   LSByte        = 0,
   LSHalfword    = 1,
@@ -325,7 +336,7 @@ class Instruction {
   }
 
   inline Instruction* InstructionAtOffset(int64_t offset) {
-    ASSERT(IsWordAligned(this + offset));
+    VIXL_ASSERT(IsWordAligned(this + offset));
     return this + offset;
   }
 
diff --git a/disas/libvixl/globals.h b/disas/libvixl/globals.h
index a6a3fcc..7bbfc87 100644
--- a/disas/libvixl/globals.h
+++ b/disas/libvixl/globals.h
@@ -27,6 +27,11 @@
 #ifndef VIXL_GLOBALS_H
 #define VIXL_GLOBALS_H
 
+#ifndef __STDC_CONSTANT_MACROS
+#define __STDC_CONSTANT_MACROS
+#endif
+#include <stdint.h>
+
 // Get the standard printf format macros for C99 stdint types.
 #define __STDC_FORMAT_MACROS
 #include <inttypes.h>
@@ -45,21 +50,29 @@ typedef uint8_t byte;
 const int KBytes = 1024;
 const int MBytes = 1024 * KBytes;
 
-  #define ABORT() printf("in %s, line %i", __FILE__, __LINE__); abort()
+#define VIXL_ABORT() printf("in %s, line %i", __FILE__, __LINE__); abort()
 #ifdef DEBUG
-  #define ASSERT(condition) assert(condition)
-  #define CHECK(condition) ASSERT(condition)
-  #define UNIMPLEMENTED() printf("UNIMPLEMENTED\t"); ABORT()
-  #define UNREACHABLE() printf("UNREACHABLE\t"); ABORT()
+  #define VIXL_ASSERT(condition) assert(condition)
+  #define VIXL_CHECK(condition) VIXL_ASSERT(condition)
+  #define VIXL_UNIMPLEMENTED() printf("UNIMPLEMENTED\t"); VIXL_ABORT()
+  #define VIXL_UNREACHABLE() printf("UNREACHABLE\t"); VIXL_ABORT()
 #else
-  #define ASSERT(condition) ((void) 0)
-  #define CHECK(condition) assert(condition)
-  #define UNIMPLEMENTED() ((void) 0)
-  #define UNREACHABLE() ((void) 0)
+  #define VIXL_ASSERT(condition) ((void) 0)
+  #define VIXL_CHECK(condition) assert(condition)
+  #define VIXL_UNIMPLEMENTED() ((void) 0)
+  #define VIXL_UNREACHABLE() ((void) 0)
 #endif
+// This is not as powerful as template based assertions, but it is simple.
+// It assumes that the descriptions are unique. If this starts being a problem,
+// we can switch to a different implemention.
+#define VIXL_CONCAT(a, b) a##b
+#define VIXL_STATIC_ASSERT_LINE(line, condition) \
+  typedef char VIXL_CONCAT(STATIC_ASSERT_LINE_, line)[(condition) ? 1 : -1] \
+  __attribute__((unused))
+#define VIXL_STATIC_ASSERT(condition) VIXL_STATIC_ASSERT_LINE(__LINE__, 
condition) //NOLINT
 
 template <typename T> inline void USE(T) {}
 
-#define ALIGNMENT_EXCEPTION() printf("ALIGNMENT EXCEPTION\t"); ABORT()
+#define VIXL_ALIGNMENT_EXCEPTION() printf("ALIGNMENT EXCEPTION\t"); 
VIXL_ABORT()
 
 #endif  // VIXL_GLOBALS_H
diff --git a/disas/libvixl/platform.h b/disas/libvixl/platform.h
index a2600f3..b5c2085 100644
--- a/disas/libvixl/platform.h
+++ b/disas/libvixl/platform.h
@@ -34,9 +34,7 @@ namespace vixl {
 // Currently we assume running the simulator implies running on x86 hardware.
 inline void HostBreakpoint() { asm("int3"); }
 #else
-inline void HostBreakpoint() {
-  // TODO: Implement HostBreakpoint on a64.
-}
+inline void HostBreakpoint() { asm("brk"); }
 #endif
 }  // namespace vixl
 
diff --git a/disas/libvixl/utils.cc b/disas/libvixl/utils.cc
index a45fb95..6e3aa71 100644
--- a/disas/libvixl/utils.cc
+++ b/disas/libvixl/utils.cc
@@ -58,9 +58,9 @@ double rawbits_to_double(uint64_t bits) {
 
 
 int CountLeadingZeros(uint64_t value, int width) {
-  ASSERT((width == 32) || (width == 64));
+  VIXL_ASSERT((width == 32) || (width == 64));
   int count = 0;
-  uint64_t bit_test = 1UL << (width - 1);
+  uint64_t bit_test = UINT64_C(1) << (width - 1);
   while ((count < width) && ((bit_test & value) == 0)) {
     count++;
     bit_test >>= 1;
@@ -70,7 +70,7 @@ int CountLeadingZeros(uint64_t value, int width) {
 
 
 int CountLeadingSignBits(int64_t value, int width) {
-  ASSERT((width == 32) || (width == 64));
+  VIXL_ASSERT((width == 32) || (width == 64));
   if (value >= 0) {
     return CountLeadingZeros(value, width) - 1;
   } else {
@@ -80,7 +80,7 @@ int CountLeadingSignBits(int64_t value, int width) {
 
 
 int CountTrailingZeros(uint64_t value, int width) {
-  ASSERT((width == 32) || (width == 64));
+  VIXL_ASSERT((width == 32) || (width == 64));
   int count = 0;
   while ((count < width) && (((value >> count) & 1) == 0)) {
     count++;
@@ -92,10 +92,10 @@ int CountTrailingZeros(uint64_t value, int width) {
 int CountSetBits(uint64_t value, int width) {
   // TODO: Other widths could be added here, as the implementation already
   // supports them.
-  ASSERT((width == 32) || (width == 64));
+  VIXL_ASSERT((width == 32) || (width == 64));
 
   // Mask out unused bits to ensure that they are not counted.
-  value &= (0xffffffffffffffffULL >> (64-width));
+  value &= (0xffffffffffffffff >> (64-width));
 
   // Add up the set bits.
   // The algorithm works by adding pairs of bit fields together iteratively,
@@ -108,18 +108,12 @@ int CountSetBits(uint64_t value, int width) {
   // value =   h+g+f+e     d+c+b+a
   //                  \          |
   // value =       h+g+f+e+d+c+b+a
-  value = ((value >> 1) & 0x5555555555555555ULL) +
-           (value & 0x5555555555555555ULL);
-  value = ((value >> 2) & 0x3333333333333333ULL) +
-           (value & 0x3333333333333333ULL);
-  value = ((value >> 4) & 0x0f0f0f0f0f0f0f0fULL) +
-           (value & 0x0f0f0f0f0f0f0f0fULL);
-  value = ((value >> 8) & 0x00ff00ff00ff00ffULL) +
-           (value & 0x00ff00ff00ff00ffULL);
-  value = ((value >> 16) & 0x0000ffff0000ffffULL) +
-           (value & 0x0000ffff0000ffffULL);
-  value = ((value >> 32) & 0x00000000ffffffffULL) +
-           (value & 0x00000000ffffffffULL);
+  value = ((value >> 1) & 0x5555555555555555) + (value & 0x5555555555555555);
+  value = ((value >> 2) & 0x3333333333333333) + (value & 0x3333333333333333);
+  value = ((value >> 4) & 0x0f0f0f0f0f0f0f0f) + (value & 0x0f0f0f0f0f0f0f0f);
+  value = ((value >> 8) & 0x00ff00ff00ff00ff) + (value & 0x00ff00ff00ff00ff);
+  value = ((value >> 16) & 0x0000ffff0000ffff) + (value & 0x0000ffff0000ffff);
+  value = ((value >> 32) & 0x00000000ffffffff) + (value & 0x00000000ffffffff);
 
   return value;
 }
diff --git a/disas/libvixl/utils.h b/disas/libvixl/utils.h
index 029341e..bed70c6 100644
--- a/disas/libvixl/utils.h
+++ b/disas/libvixl/utils.h
@@ -27,7 +27,7 @@
 #ifndef VIXL_UTILS_H
 #define VIXL_UTILS_H
 
-
+#include <math.h>
 #include <string.h>
 #include "globals.h"
 
@@ -35,19 +35,19 @@ namespace vixl {
 
 // Check number width.
 inline bool is_intn(unsigned n, int64_t x) {
-  ASSERT((0 < n) && (n < 64));
-  int64_t limit = 1ULL << (n - 1);
+  VIXL_ASSERT((0 < n) && (n < 64));
+  int64_t limit = INT64_C(1) << (n - 1);
   return (-limit <= x) && (x < limit);
 }
 
 inline bool is_uintn(unsigned n, int64_t x) {
-  ASSERT((0 < n) && (n < 64));
+  VIXL_ASSERT((0 < n) && (n < 64));
   return !(x >> n);
 }
 
 inline unsigned truncate_to_intn(unsigned n, int64_t x) {
-  ASSERT((0 < n) && (n < 64));
-  return (x & ((1ULL << n) - 1));
+  VIXL_ASSERT((0 < n) && (n < 64));
+  return (x & ((INT64_C(1) << n) - 1));
 }
 
 #define INT_1_TO_63_LIST(V)                                                    
\
@@ -90,13 +90,67 @@ inline int64_t signed_bitextract_64(int msb, int lsb, 
int64_t x) {
   return (x << (63 - msb)) >> (lsb + 63 - msb);
 }
 
-// floating point representation
+// Floating point representation.
 uint32_t float_to_rawbits(float value);
 uint64_t double_to_rawbits(double value);
 float rawbits_to_float(uint32_t bits);
 double rawbits_to_double(uint64_t bits);
 
-// Bits counting.
+
+// NaN tests.
+inline bool IsSignallingNaN(double num) {
+  const uint64_t kFP64QuietNaNMask = 0x0008000000000000;
+  uint64_t raw = double_to_rawbits(num);
+  if (isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
+    return true;
+  }
+  return false;
+}
+
+
+inline bool IsSignallingNaN(float num) {
+  const uint32_t kFP32QuietNaNMask = 0x00400000;
+  uint32_t raw = float_to_rawbits(num);
+  if (isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
+    return true;
+  }
+  return false;
+}
+
+
+template <typename T>
+inline bool IsQuietNaN(T num) {
+  return isnan(num) && !IsSignallingNaN(num);
+}
+
+
+// Convert the NaN in 'num' to a quiet NaN.
+inline double ToQuietNaN(double num) {
+  const uint64_t kFP64QuietNaNMask = 0x0008000000000000;
+  VIXL_ASSERT(isnan(num));
+  return rawbits_to_double(double_to_rawbits(num) | kFP64QuietNaNMask);
+}
+
+
+inline float ToQuietNaN(float num) {
+  const uint32_t kFP32QuietNaNMask = 0x00400000;
+  VIXL_ASSERT(isnan(num));
+  return rawbits_to_float(float_to_rawbits(num) | kFP32QuietNaNMask);
+}
+
+
+// Fused multiply-add.
+inline double FusedMultiplyAdd(double op1, double op2, double a) {
+  return fma(op1, op2, a);
+}
+
+
+inline float FusedMultiplyAdd(float op1, float op2, float a) {
+  return fmaf(op1, op2, a);
+}
+
+
+// Bit counting.
 int CountLeadingZeros(uint64_t value, int width);
 int CountLeadingSignBits(int64_t value, int width);
 int CountTrailingZeros(uint64_t value, int width);
@@ -106,20 +160,30 @@ int CountSetBits(uint64_t value, int width);
 // TODO: rename/refactor to make it specific to instructions.
 template<typename T>
 bool IsWordAligned(T pointer) {
-  ASSERT(sizeof(pointer) == sizeof(intptr_t));   // NOLINT(runtime/sizeof)
+  VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t));   // NOLINT(runtime/sizeof)
   return (reinterpret_cast<intptr_t>(pointer) & 3) == 0;
 }
 
 // Increment a pointer until it has the specified alignment.
 template<class T>
 T AlignUp(T pointer, size_t alignment) {
-  ASSERT(sizeof(pointer) == sizeof(uintptr_t));
+  VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(uintptr_t));
   uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer);
   size_t align_step = (alignment - pointer_raw) % alignment;
-  ASSERT((pointer_raw + align_step) % alignment == 0);
+  VIXL_ASSERT((pointer_raw + align_step) % alignment == 0);
   return reinterpret_cast<T>(pointer_raw + align_step);
 }
 
+// Decrement a pointer until it has the specified alignment.
+template<class T>
+T AlignDown(T pointer, size_t alignment) {
+  VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(uintptr_t));
+  uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer);
+  size_t align_step = pointer_raw % alignment;
+  VIXL_ASSERT((pointer_raw - align_step) % alignment == 0);
+  return reinterpret_cast<T>(pointer_raw - align_step);
+}
+
 
 }  // namespace vixl
 
-- 
1.9.2




reply via email to

[Prev in Thread] Current Thread [Next in Thread]