qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [PATCH v2 06/10] softfloat: Implement float128_muladd


From: Alex Bennée
Subject: Re: [PATCH v2 06/10] softfloat: Implement float128_muladd
Date: Fri, 16 Oct 2020 17:31:50 +0100
User-agent: mu4e 1.5.5; emacs 28.0.50

Richard Henderson <richard.henderson@linaro.org> writes:

> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
> ---
>  include/fpu/softfloat.h |   2 +
>  fpu/softfloat.c         | 416 +++++++++++++++++++++++++++++++++++++++-
>  tests/fp/fp-test.c      |   2 +-
>  tests/fp/wrap.c.inc     |  12 ++
>  4 files changed, 430 insertions(+), 2 deletions(-)
>
> diff --git a/include/fpu/softfloat.h b/include/fpu/softfloat.h
> index 78ad5ca738..a38433deb4 100644
> --- a/include/fpu/softfloat.h
> +++ b/include/fpu/softfloat.h
> @@ -1196,6 +1196,8 @@ float128 float128_sub(float128, float128, float_status 
> *status);
>  float128 float128_mul(float128, float128, float_status *status);
>  float128 float128_div(float128, float128, float_status *status);
>  float128 float128_rem(float128, float128, float_status *status);
> +float128 float128_muladd(float128, float128, float128, int,
> +                         float_status *status);
>  float128 float128_sqrt(float128, float_status *status);
>  FloatRelation float128_compare(float128, float128, float_status *status);
>  FloatRelation float128_compare_quiet(float128, float128, float_status 
> *status);
> diff --git a/fpu/softfloat.c b/fpu/softfloat.c
> index e038434a07..49de31fec2 100644
> --- a/fpu/softfloat.c
> +++ b/fpu/softfloat.c
> @@ -512,11 +512,19 @@ static inline __attribute__((unused)) bool 
> is_qnan(FloatClass c)
>  
>  typedef struct {
>      uint64_t frac;
> -    int32_t  exp;
> +    int32_t exp;
>      FloatClass cls;
>      bool sign;
>  } FloatParts;
>  
> +/* Similar for float128.  */
> +typedef struct {
> +    uint64_t frac0, frac1;
> +    int32_t exp;
> +    FloatClass cls;
> +    bool sign;
> +} FloatParts128;
> +
>  #define DECOMPOSED_BINARY_POINT    (64 - 2)
>  #define DECOMPOSED_IMPLICIT_BIT    (1ull << DECOMPOSED_BINARY_POINT)
>  #define DECOMPOSED_OVERFLOW_BIT    (DECOMPOSED_IMPLICIT_BIT << 1)
> @@ -4574,6 +4582,46 @@ static void
>  
>  }
>  
> +/*----------------------------------------------------------------------------
> +| Returns the parts of floating-point value `a'.
> +*----------------------------------------------------------------------------*/
> +
> +static void float128_unpack(FloatParts128 *p, float128 a, float_status 
> *status)
> +{
> +    p->sign = extractFloat128Sign(a);
> +    p->exp = extractFloat128Exp(a);
> +    p->frac0 = extractFloat128Frac0(a);
> +    p->frac1 = extractFloat128Frac1(a);

Here we are deviating from the exiting style, it would be nice if we
could separate the raw unpack and have something like:

static const FloatFmt float128_params = {
    FLOAT_PARAMS(15, 112)
}

static inline FloatParts128 unpack128_raw(FloatFmt fmt, uint128_t raw)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;

    return (FloatParts128) {
        .cls = float_class_unclassified,
        .sign = extract128(raw, sign_pos, 1),
        .exp = extract128(raw, fmt.frac_size, fmt.exp_size),
        .frac1 = extract128_lo(raw, 0, fmt.frac_size),
        .frac2 = extract128_hi(raw, 0, fmt.frac_size),
    };
}

So even if we end up duplicating a chunk of the code the form will be
similar so when we side-by-side the logic we can see it works the same
way.

> +
> +    if (p->exp == 0) {
> +        if ((p->frac0 | p->frac1) == 0) {
> +            p->cls = float_class_zero;
> +        } else if (status->flush_inputs_to_zero) {
> +            float_raise(float_flag_input_denormal, status);
> +            p->cls = float_class_zero;
> +            p->frac0 = p->frac1 = 0;
> +        } else {
> +            normalizeFloat128Subnormal(p->frac0, p->frac1, &p->exp,
> +                                       &p->frac0, &p->frac1);
> +            p->exp -= 0x3fff;
> +            p->cls = float_class_normal;
> +        }

and also we can get avoid introducing the magic numbers into the code.

> +    } else if (p->exp == 0x7fff) {
> +        if ((p->frac0 | p->frac1) == 0) {
> +            p->cls = float_class_inf;
> +        } else if (float128_is_signaling_nan(a, status)) {
> +            p->cls = float_class_snan;
> +        } else {
> +            p->cls = float_class_qnan;
> +        }
> +    } else {
> +        /* Add the implicit bit. */
> +        p->frac0 |= UINT64_C(0x0001000000000000);
> +        p->exp -= 0x3fff;
> +        p->cls = float_class_normal;
> +    }
> +}
> +

and eventually hold out for compilers smart enough to handle unification
at a later date.

>  
> /*----------------------------------------------------------------------------
>  | Packs the sign `zSign', the exponent `zExp', and the significand formed
>  | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
> @@ -7205,6 +7253,372 @@ float128 float128_mul(float128 a, float128 b, 
> float_status *status)
>  
>  }
>  
> +typedef struct UInt256 {
> +    /* Indexed big-endian, to match the rest of softfloat numbering. */
> +    uint64_t w[4];
> +} UInt256;
> +
> +static inline uint64_t shl_double(uint64_t h, uint64_t l, unsigned lsh)
> +{
> +    return lsh ? (h << lsh) | (l >> (64 - lsh)) : h;
> +}
> +
> +static inline uint64_t shr_double(uint64_t h, uint64_t l, unsigned rsh)
> +{
> +    return rsh ? (h << (64 - rsh)) | (l >> rsh) : l;
> +}
> +
> +static void shortShift256Left(UInt256 *p, unsigned lsh)
> +{
> +    if (lsh != 0) {
> +        p->w[0] = shl_double(p->w[0], p->w[1], lsh);
> +        p->w[1] = shl_double(p->w[1], p->w[2], lsh);
> +        p->w[2] = shl_double(p->w[2], p->w[3], lsh);
> +        p->w[3] <<= lsh;
> +    }
> +}
> +
> +static inline void shift256RightJamming(UInt256 *p, unsigned count)
> +{
> +    uint64_t out, p0, p1, p2, p3;
> +
> +    p0 = p->w[0];
> +    p1 = p->w[1];
> +    p2 = p->w[2];
> +    p3 = p->w[3];
> +
> +    if (unlikely(count == 0)) {
> +        return;
> +    } else if (likely(count < 64)) {
> +        out = 0;
> +    } else if (likely(count < 256)) {
> +        if (count < 128) {
> +            out = p3;
> +            p3 = p2;
> +            p2 = p1;
> +            p1 = p0;
> +            p0 = 0;
> +        } else if (count < 192) {
> +            out = p2 | p3;
> +            p3 = p1;
> +            p2 = p0;
> +            p1 = 0;
> +            p0 = 0;
> +        } else {
> +            out = p1 | p2 | p3;
> +            p3 = p0;
> +            p2 = 0;
> +            p1 = 0;
> +            p0 = 0;
> +        }
> +        count &= 63;
> +        if (count == 0) {
> +            goto done;
> +        }
> +    } else {
> +        out = p0 | p1 | p2 | p3;
> +        p3 = 0;
> +        p2 = 0;
> +        p1 = 0;
> +        p0 = 0;
> +        goto done;
> +    }
> +
> +    out |= shr_double(p3, 0, count);
> +    p3 = shr_double(p2, p3, count);
> +    p2 = shr_double(p1, p2, count);
> +    p1 = shr_double(p0, p1, count);
> +    p0 = p0 >> count;
> +
> + done:
> +    p->w[3] = p3 | (out != 0);
> +    p->w[2] = p2;
> +    p->w[1] = p1;
> +    p->w[0] = p0;
> +}
> +
> +/* R = A - B */
> +static void sub256(UInt256 *r, UInt256 *a, UInt256 *b)
> +{
> +    bool borrow = false;
> +
> +    for (int i = 3; i >= 0; --i) {
> +        uint64_t at = a->w[i];
> +        uint64_t bt = b->w[i];
> +        uint64_t rt = at - bt;
> +
> +        if (borrow) {
> +            borrow = at <= bt;
> +            rt -= 1;
> +        } else {
> +            borrow = at < bt;
> +        }
> +        r->w[i] = rt;
> +    }
> +}
> +
> +/* A = -A */
> +static void neg256(UInt256 *a)
> +{
> +    /*
> +     * Recall that -X - 1 = ~X, and that since this is negation,
> +     * once we find a non-zero number, all subsequent words will
> +     * have borrow-in, and thus use NOT.
> +     */
> +    uint64_t t = a->w[3];
> +    if (likely(t)) {
> +        a->w[3] = -t;
> +        goto not2;
> +    }
> +    t = a->w[2];
> +    if (likely(t)) {
> +        a->w[2] = -t;
> +        goto not1;
> +    }
> +    t = a->w[1];
> +    if (likely(t)) {
> +        a->w[1] = -t;
> +        goto not0;
> +    }
> +    a->w[0] = -a->w[0];
> +    return;
> + not2:
> +    a->w[2] = ~a->w[2];
> + not1:
> +    a->w[1] = ~a->w[1];
> + not0:
> +    a->w[0] = ~a->w[0];
> +}
> +
> +/* A += B */
> +static void add256(UInt256 *a, UInt256 *b)
> +{
> +    bool carry = false;
> +
> +    for (int i = 3; i >= 0; --i) {
> +        uint64_t bt = b->w[i];
> +        uint64_t at = a->w[i] + bt;
> +
> +        if (carry) {
> +            at += 1;
> +            carry = at <= bt;
> +        } else {
> +            carry = at < bt;
> +        }
> +        a->w[i] = at;
> +    }
> +}
> +
> +float128 float128_muladd(float128 a_f, float128 b_f, float128 c_f,
> +                         int flags, float_status *status)
> +{
> +    bool inf_zero, p_sign, sign_flip;
> +    int p_exp, exp_diff, shift, ab_mask, abc_mask;
> +    FloatParts128 a, b, c;
> +    FloatClass p_cls;
> +    UInt256 p_frac, c_frac;
> +
> +    float128_unpack(&a, a_f, status);
> +    float128_unpack(&b, b_f, status);
> +    float128_unpack(&c, c_f, status);
> +
> +    ab_mask = float_cmask(a.cls) | float_cmask(b.cls);
> +    abc_mask = float_cmask(c.cls) | ab_mask;
> +    inf_zero = ab_mask == float_cmask_infzero;
> +
> +    /* If any input is a NaN, select the required result. */
> +    if (unlikely(abc_mask & float_cmask_anynan)) {
> +        if (unlikely(abc_mask & float_cmask_snan)) {
> +            float_raise(float_flag_invalid, status);
> +        }
> +
> +        int which = pickNaNMulAdd(a.cls, b.cls, c.cls, inf_zero, status);
> +        if (status->default_nan_mode) {
> +            which = 3;
> +        }
> +        switch (which) {
> +        case 0:
> +            break;
> +        case 1:
> +            a_f = b_f;
> +            a.cls = b.cls;
> +            break;
> +        case 2:
> +            a_f = c_f;
> +            a.cls = c.cls;
> +            break;
> +        case 3:
> +            return float128_default_nan(status);
> +        }
> +        if (is_snan(a.cls)) {
> +            return float128_silence_nan(a_f, status);
> +        }
> +        return a_f;
> +    }
> +
> +    /* After dealing with input NaNs, look for Inf * Zero. */
> +    if (unlikely(inf_zero)) {
> +        float_raise(float_flag_invalid, status);
> +        return float128_default_nan(status);
> +    }
> +
> +    p_sign = a.sign ^ b.sign;
> +
> +    if (flags & float_muladd_negate_c) {
> +        c.sign ^= 1;
> +    }
> +    if (flags & float_muladd_negate_product) {
> +        p_sign ^= 1;
> +    }
> +    sign_flip = (flags & float_muladd_negate_result);
> +
> +    if (ab_mask & float_cmask_inf) {
> +        p_cls = float_class_inf;
> +    } else if (ab_mask & float_cmask_zero) {
> +        p_cls = float_class_zero;
> +    } else {
> +        p_cls = float_class_normal;
> +    }
> +
> +    if (c.cls == float_class_inf) {
> +        if (p_cls == float_class_inf && p_sign != c.sign) {
> +            /* +Inf + -Inf = NaN */
> +            float_raise(float_flag_invalid, status);
> +            return float128_default_nan(status);
> +        }
> +        /* Inf + Inf = Inf of the proper sign; reuse the return below. */
> +        p_cls = float_class_inf;
> +        p_sign = c.sign;
> +    }
> +
> +    if (p_cls == float_class_inf) {
> +        return packFloat128(p_sign ^ sign_flip, 0x7fff, 0, 0);
> +    }
> +
> +    if (p_cls == float_class_zero) {
> +        if (c.cls == float_class_zero) {
> +            if (p_sign != c.sign) {
> +                p_sign = status->float_rounding_mode == float_round_down;
> +            }
> +            return packFloat128(p_sign ^ sign_flip, 0, 0, 0);
> +        }
> +
> +        if (flags & float_muladd_halve_result) {
> +            c.exp -= 1;
> +        }
> +        return roundAndPackFloat128(c.sign ^ sign_flip,
> +                                    c.exp + 0x3fff - 1,
> +                                    c.frac0, c.frac1, 0, status);
> +    }
> +
> +    /* a & b should be normals now... */
> +    assert(a.cls == float_class_normal && b.cls == float_class_normal);
> +
> +    /* Multiply of 2 113-bit numbers produces a 226-bit result.  */
> +    mul128To256(a.frac0, a.frac1, b.frac0, b.frac1,
> +                &p_frac.w[0], &p_frac.w[1], &p_frac.w[2], &p_frac.w[3]);
> +
> +    /* Realign the binary point at bit 48 of p_frac[0].  */
> +    shift = clz64(p_frac.w[0]) - 15;
> +    shortShift256Left(&p_frac, shift);
> +    p_exp = a.exp + b.exp - (shift - 16);
> +    exp_diff = p_exp - c.exp;
> +
> +    /* Extend the fraction part of the addend to 256 bits.  */
> +    c_frac.w[0] = c.frac0;
> +    c_frac.w[1] = c.frac1;
> +    c_frac.w[2] = 0;
> +    c_frac.w[3] = 0;
> +
> +    /* Add or subtract C from the intermediate product. */
> +    if (c.cls == float_class_zero) {
> +        /* Fall through to rounding after addition (with zero). */
> +    } else if (p_sign != c.sign) {
> +        /* Subtraction */
> +        if (exp_diff < 0) {
> +            shift256RightJamming(&p_frac, -exp_diff);
> +            sub256(&p_frac, &c_frac, &p_frac);
> +            p_exp = c.exp;
> +            p_sign ^= 1;
> +        } else if (exp_diff > 0) {
> +            shift256RightJamming(&c_frac, exp_diff);
> +            sub256(&p_frac, &p_frac, &c_frac);
> +        } else {
> +            /* Low 128 bits of C are known to be zero. */
> +            sub128(p_frac.w[0], p_frac.w[1], c_frac.w[0], c_frac.w[1],
> +                   &p_frac.w[0], &p_frac.w[1]);
> +            /*
> +             * Since we have normalized to bit 48 of p_frac[0],
> +             * a negative result means C > P and we need to invert.
> +             */
> +            if ((int64_t)p_frac.w[0] < 0) {
> +                neg256(&p_frac);
> +                p_sign ^= 1;
> +            }
> +        }
> +
> +        /*
> +         * Gross normalization of the 256-bit subtraction result.
> +         * Fine tuning below shared with addition.
> +         */
> +        if (p_frac.w[0] != 0) {
> +            /* nothing to do */
> +        } else if (p_frac.w[1] != 0) {
> +            p_exp -= 64;
> +            p_frac.w[0] = p_frac.w[1];
> +            p_frac.w[1] = p_frac.w[2];
> +            p_frac.w[2] = p_frac.w[3];
> +            p_frac.w[3] = 0;
> +        } else if (p_frac.w[2] != 0) {
> +            p_exp -= 128;
> +            p_frac.w[0] = p_frac.w[2];
> +            p_frac.w[1] = p_frac.w[3];
> +            p_frac.w[2] = 0;
> +            p_frac.w[3] = 0;
> +        } else if (p_frac.w[3] != 0) {
> +            p_exp -= 192;
> +            p_frac.w[0] = p_frac.w[3];
> +            p_frac.w[1] = 0;
> +            p_frac.w[2] = 0;
> +            p_frac.w[3] = 0;
> +        } else {
> +            /* Subtraction was exact: result is zero. */
> +            p_sign = status->float_rounding_mode == float_round_down;
> +            return packFloat128(p_sign ^ sign_flip, 0, 0, 0);
> +        }
> +    } else {
> +        /* Addition */
> +        if (exp_diff <= 0) {
> +            shift256RightJamming(&p_frac, -exp_diff);
> +            /* Low 128 bits of C are known to be zero. */
> +            add128(p_frac.w[0], p_frac.w[1], c_frac.w[0], c_frac.w[1],
> +                   &p_frac.w[0], &p_frac.w[1]);
> +            p_exp = c.exp;
> +        } else {
> +            shift256RightJamming(&c_frac, exp_diff);
> +            add256(&p_frac, &c_frac);
> +        }
> +    }
> +
> +    /* Fine normalization of the 256-bit result: p_frac[0] != 0. */
> +    shift = clz64(p_frac.w[0]) - 15;
> +    if (shift < 0) {
> +        shift256RightJamming(&p_frac, -shift);
> +    } else if (shift > 0) {
> +        shortShift256Left(&p_frac, shift);
> +    }
> +    p_exp -= shift;
> +
> +    if (flags & float_muladd_halve_result) {
> +        p_exp -= 1;
> +    }
> +    return roundAndPackFloat128(p_sign ^ sign_flip,
> +                                p_exp + 0x3fff - 1,
> +                                p_frac.w[0], p_frac.w[1],
> +                                p_frac.w[2] | (p_frac.w[3] != 0),
> +                                status);
> +}
> +
>  
> /*----------------------------------------------------------------------------
>  | Returns the result of dividing the quadruple-precision floating-point value
>  | `a' by the corresponding value `b'.  The operation is performed according 
> to
> diff --git a/tests/fp/fp-test.c b/tests/fp/fp-test.c
> index 06ffebd6db..9bbb0dba67 100644
> --- a/tests/fp/fp-test.c
> +++ b/tests/fp/fp-test.c
> @@ -717,7 +717,7 @@ static void do_testfloat(int op, int rmode, bool exact)
>          test_abz_f128(true_abz_f128M, subj_abz_f128M);
>          break;
>      case F128_MULADD:
> -        not_implemented();
> +        test_abcz_f128(slow_f128M_mulAdd, qemu_f128_mulAdd);
>          break;
>      case F128_SQRT:
>          test_az_f128(slow_f128M_sqrt, qemu_f128M_sqrt);
> diff --git a/tests/fp/wrap.c.inc b/tests/fp/wrap.c.inc
> index 0cbd20013e..65a713deae 100644
> --- a/tests/fp/wrap.c.inc
> +++ b/tests/fp/wrap.c.inc
> @@ -574,6 +574,18 @@ WRAP_MULADD(qemu_f32_mulAdd, float32_muladd, float32)
>  WRAP_MULADD(qemu_f64_mulAdd, float64_muladd, float64)
>  #undef WRAP_MULADD
>  
> +static void qemu_f128_mulAdd(const float128_t *ap, const float128_t *bp,
> +                             const float128_t *cp, float128_t *res)
> +{
> +    float128 a, b, c, ret;
> +
> +    a = soft_to_qemu128(*ap);
> +    b = soft_to_qemu128(*bp);
> +    c = soft_to_qemu128(*cp);
> +    ret = float128_muladd(a, b, c, 0, &qsf);
> +    *res = qemu_to_soft128(ret);
> +}
> +
>  #define WRAP_CMP16(name, func, retcond)         \
>      static bool name(float16_t a, float16_t b)  \
>      {                                           \


-- 
Alex Bennée



reply via email to

[Prev in Thread] Current Thread [Next in Thread]