qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[PATCH v7 02/17] fuzz: Add generic virtual-device fuzzer


From: Alexander Bulekov
Subject: [PATCH v7 02/17] fuzz: Add generic virtual-device fuzzer
Date: Fri, 23 Oct 2020 11:07:31 -0400

This is a generic fuzzer designed to fuzz a virtual device's
MemoryRegions, as long as they exist within the Memory or Port IO (if it
exists) AddressSpaces. The fuzzer's input is interpreted into a sequence
of qtest commands (outb, readw, etc). The interpreted commands are
separated by a magic seaparator, which should be easy for the fuzzer to
guess. Without ASan, the separator can be specified as a "dictionary
value" using the -dict argument (see libFuzzer documentation).

Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Alexander Bulekov <alxndr@bu.edu>
---
 tests/qtest/fuzz/generic_fuzz.c | 516 ++++++++++++++++++++++++++++++++
 tests/qtest/fuzz/meson.build    |   1 +
 2 files changed, 517 insertions(+)
 create mode 100644 tests/qtest/fuzz/generic_fuzz.c

diff --git a/tests/qtest/fuzz/generic_fuzz.c b/tests/qtest/fuzz/generic_fuzz.c
new file mode 100644
index 0000000000..6e3faf4e92
--- /dev/null
+++ b/tests/qtest/fuzz/generic_fuzz.c
@@ -0,0 +1,516 @@
+/*
+ * Generic Virtual-Device Fuzzing Target
+ *
+ * Copyright Red Hat Inc., 2020
+ *
+ * Authors:
+ *  Alexander Bulekov   <alxndr@bu.edu>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ */
+
+#include "qemu/osdep.h"
+
+#include <wordexp.h>
+
+#include "hw/core/cpu.h"
+#include "tests/qtest/libqos/libqtest.h"
+#include "fuzz.h"
+#include "fork_fuzz.h"
+#include "exec/address-spaces.h"
+#include "string.h"
+#include "exec/memory.h"
+#include "exec/ramblock.h"
+#include "exec/address-spaces.h"
+#include "hw/qdev-core.h"
+
+/*
+ * SEPARATOR is used to separate "operations" in the fuzz input
+ */
+#define SEPARATOR "FUZZ"
+
+enum cmds {
+    OP_IN,
+    OP_OUT,
+    OP_READ,
+    OP_WRITE,
+    OP_CLOCK_STEP,
+};
+
+#define DEFAULT_TIMEOUT_US 100000
+#define USEC_IN_SEC 1000000000
+
+typedef struct {
+    ram_addr_t addr;
+    ram_addr_t size; /* The number of bytes until the end of the I/O region */
+} address_range;
+
+static useconds_t timeout = DEFAULT_TIMEOUT_US;
+
+static bool qtest_log_enabled;
+
+/*
+ * List of memory regions that are children of QOM objects specified by the
+ * user for fuzzing.
+ */
+static GHashTable *fuzzable_memoryregions;
+
+struct get_io_cb_info {
+    int index;
+    int found;
+    address_range result;
+};
+
+static int get_io_address_cb(Int128 start, Int128 size,
+                          const MemoryRegion *mr, void *opaque) {
+    struct get_io_cb_info *info = opaque;
+    if (g_hash_table_lookup(fuzzable_memoryregions, mr)) {
+        if (info->index == 0) {
+            info->result.addr = (ram_addr_t)start;
+            info->result.size = (ram_addr_t)size;
+            info->found = 1;
+            return 1;
+        }
+        info->index--;
+    }
+    return 0;
+}
+
+/*
+ * Here we want to convert a fuzzer-provided [io-region-index, offset] to
+ * a physical address. To do this, we iterate over all of the matched
+ * MemoryRegions. Check whether each region exists within the particular io
+ * space. Return the absolute address of the offset within the index'th region
+ * that is a subregion of the io_space and the distance until the end of the
+ * memory region.
+ */
+static bool get_io_address(address_range *result, AddressSpace *as,
+                            uint8_t index,
+                            uint32_t offset) {
+    FlatView *view;
+    view = as->current_map;
+    g_assert(view);
+    struct get_io_cb_info cb_info = {};
+
+    cb_info.index = index;
+
+    /*
+     * Loop around the FlatView until we match "index" number of
+     * fuzzable_memoryregions, or until we know that there are no matching
+     * memory_regions.
+     */
+    do {
+        flatview_for_each_range(view, get_io_address_cb , &cb_info);
+    } while (cb_info.index != index && !cb_info.found);
+
+    *result = cb_info.result;
+    return cb_info.found;
+}
+
+static bool get_pio_address(address_range *result,
+                            uint8_t index, uint16_t offset)
+{
+    /*
+     * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result
+     * can contain an addr that extends past the PIO space. When we pass this
+     * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end
+     * up fuzzing a completely different MemoryRegion/Device. Therefore, check
+     * that the address here is within the PIO space limits.
+     */
+    bool found = get_io_address(result, &address_space_io, index, offset);
+    return result->addr <= 0xFFFF ? found : false;
+}
+
+static bool get_mmio_address(address_range *result,
+                             uint8_t index, uint32_t offset)
+{
+    return get_io_address(result, &address_space_memory, index, offset);
+}
+
+static void op_in(QTestState *s, const unsigned char * data, size_t len)
+{
+    enum Sizes {Byte, Word, Long, end_sizes};
+    struct {
+        uint8_t size;
+        uint8_t base;
+        uint16_t offset;
+    } a;
+    address_range abs;
+
+    if (len < sizeof(a)) {
+        return;
+    }
+    memcpy(&a, data, sizeof(a));
+    if (get_pio_address(&abs, a.base, a.offset) == 0) {
+        return;
+    }
+
+    switch (a.size %= end_sizes) {
+    case Byte:
+        qtest_inb(s, abs.addr);
+        break;
+    case Word:
+        if (abs.size >= 2) {
+            qtest_inw(s, abs.addr);
+        }
+        break;
+    case Long:
+        if (abs.size >= 4) {
+            qtest_inl(s, abs.addr);
+        }
+        break;
+    }
+}
+
+static void op_out(QTestState *s, const unsigned char * data, size_t len)
+{
+    enum Sizes {Byte, Word, Long, end_sizes};
+    struct {
+        uint8_t size;
+        uint8_t base;
+        uint16_t offset;
+        uint32_t value;
+    } a;
+    address_range abs;
+
+    if (len < sizeof(a)) {
+        return;
+    }
+    memcpy(&a, data, sizeof(a));
+
+    if (get_pio_address(&abs, a.base, a.offset) == 0) {
+        return;
+    }
+
+    switch (a.size %= end_sizes) {
+    case Byte:
+        qtest_outb(s, abs.addr, a.value & 0xFF);
+        break;
+    case Word:
+        if (abs.size >= 2) {
+            qtest_outw(s, abs.addr, a.value & 0xFFFF);
+        }
+        break;
+    case Long:
+        if (abs.size >= 4) {
+            qtest_outl(s, abs.addr, a.value);
+        }
+        break;
+    }
+}
+
+static void op_read(QTestState *s, const unsigned char * data, size_t len)
+{
+    enum Sizes {Byte, Word, Long, Quad, end_sizes};
+    struct {
+        uint8_t size;
+        uint8_t base;
+        uint32_t offset;
+    } a;
+    address_range abs;
+
+    if (len < sizeof(a)) {
+        return;
+    }
+    memcpy(&a, data, sizeof(a));
+
+    if (get_mmio_address(&abs, a.base, a.offset) == 0) {
+        return;
+    }
+
+    switch (a.size %= end_sizes) {
+    case Byte:
+        qtest_readb(s, abs.addr);
+        break;
+    case Word:
+        if (abs.size >= 2) {
+            qtest_readw(s, abs.addr);
+        }
+        break;
+    case Long:
+        if (abs.size >= 4) {
+            qtest_readl(s, abs.addr);
+        }
+        break;
+    case Quad:
+        if (abs.size >= 8) {
+            qtest_readq(s, abs.addr);
+        }
+        break;
+    }
+}
+
+static void op_write(QTestState *s, const unsigned char * data, size_t len)
+{
+    enum Sizes {Byte, Word, Long, Quad, end_sizes};
+    struct {
+        uint8_t size;
+        uint8_t base;
+        uint32_t offset;
+        uint64_t value;
+    } a;
+    address_range abs;
+
+    if (len < sizeof(a)) {
+        return;
+    }
+    memcpy(&a, data, sizeof(a));
+
+    if (get_mmio_address(&abs, a.base, a.offset) == 0) {
+        return;
+    }
+
+    switch (a.size %= end_sizes) {
+    case Byte:
+            qtest_writeb(s, abs.addr, a.value & 0xFF);
+        break;
+    case Word:
+        if (abs.size >= 2) {
+            qtest_writew(s, abs.addr, a.value & 0xFFFF);
+        }
+        break;
+    case Long:
+        if (abs.size >= 4) {
+            qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF);
+        }
+        break;
+    case Quad:
+        if (abs.size >= 8) {
+            qtest_writeq(s, abs.addr, a.value);
+        }
+        break;
+    }
+}
+
+static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
+{
+    qtest_clock_step_next(s);
+}
+
+static void handle_timeout(int sig)
+{
+    if (qtest_log_enabled) {
+        fprintf(stderr, "[Timeout]\n");
+        fflush(stderr);
+    }
+    _Exit(0);
+}
+
+/*
+ * Here, we interpret random bytes from the fuzzer, as a sequence of commands.
+ * Some commands can be variable-width, so we use a separator, SEPARATOR, to
+ * specify the boundaries between commands. SEPARATOR is used to separate
+ * "operations" in the fuzz input. Why use a separator, instead of just using
+ * the operations' length to identify operation boundaries?
+ *   1. This is a simple way to support variable-length operations
+ *   2. This adds "stability" to the input.
+ *      For example take the input "AbBcgDefg", where there is no separator and
+ *      Opcodes are capitalized.
+ *      Simply, by removing the first byte, we end up with a very different
+ *      sequence:
+ *      BbcGdefg...
+ *      By adding a separator, we avoid this problem:
+ *      Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg
+ *      Since B uses two additional bytes as operands, the first "B" will be
+ *      ignored. The fuzzer actively tries to reduce inputs, so such unused
+ *      bytes are likely to be pruned, eventually.
+ *
+ *  SEPARATOR is trivial for the fuzzer to discover when using ASan. 
Optionally,
+ *  SEPARATOR can be manually specified as a dictionary value (see libfuzzer's
+ *  -dict), though this should not be necessary.
+ *
+ * As a result, the stream of bytes is converted into a sequence of commands.
+ * In a simplified example where SEPARATOR is 0xFF:
+ * 00 01 02 FF 03 04 05 06 FF 01 FF ...
+ * becomes this sequence of commands:
+ * 00 01 02    -> op00 (0102)   -> in (0102, 2)
+ * 03 04 05 06 -> op03 (040506) -> write (040506, 3)
+ * 01          -> op01 (-,0)    -> out (-,0)
+ * ...
+ *
+ * Note here that it is the job of the individual opcode functions to check
+ * that enough data was provided. I.e. in the last command out (,0), out needs
+ * to check that there is not enough data provided to select an address/value
+ * for the operation.
+ */
+static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
+{
+    void (*ops[]) (QTestState *s, const unsigned char* , size_t) = {
+        [OP_IN]                 = op_in,
+        [OP_OUT]                = op_out,
+        [OP_READ]               = op_read,
+        [OP_WRITE]              = op_write,
+        [OP_CLOCK_STEP]         = op_clock_step,
+    };
+    const unsigned char *cmd = Data;
+    const unsigned char *nextcmd;
+    size_t cmd_len;
+    uint8_t op;
+
+    if (fork() == 0) {
+        /*
+         * Sometimes the fuzzer will find inputs that take quite a long time to
+         * process. Often times, these inputs do not result in new coverage.
+         * Even if these inputs might be interesting, they can slow down the
+         * fuzzer, overall. Set a timeout to avoid hurting performance, too 
much
+         */
+        if (timeout) {
+            struct sigaction sact;
+            struct itimerval timer;
+
+            sigemptyset(&sact.sa_mask);
+            sact.sa_flags   = SA_NODEFER;
+            sact.sa_handler = handle_timeout;
+            sigaction(SIGALRM, &sact, NULL);
+
+            memset(&timer, 0, sizeof(timer));
+            timer.it_value.tv_sec = timeout / USEC_IN_SEC;
+            timer.it_value.tv_usec = timeout % USEC_IN_SEC;
+            setitimer(ITIMER_VIRTUAL, &timer, NULL);
+        }
+
+        while (cmd && Size) {
+            /* Get the length until the next command or end of input */
+            nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
+            cmd_len = nextcmd ? nextcmd - cmd : Size;
+
+            if (cmd_len > 0) {
+                /* Interpret the first byte of the command as an opcode */
+                op = *cmd % (sizeof(ops) / sizeof((ops)[0]));
+                ops[op](s, cmd + 1, cmd_len - 1);
+
+                /* Run the main loop */
+                flush_events(s);
+            }
+            /* Advance to the next command */
+            cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
+            Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
+        }
+        _Exit(0);
+    } else {
+        flush_events(s);
+        wait(0);
+    }
+}
+
+static void usage(void)
+{
+    printf("Please specify the following environment variables:\n");
+    printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
+    printf("QEMU_FUZZ_OBJECTS= "
+            "a space separated list of QOM type names for objects to fuzz\n");
+    printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). "
+            "0 to disable. %d by default\n", timeout);
+    exit(0);
+}
+
+static int locate_fuzz_memory_regions(Object *child, void *opaque)
+{
+    const char *name;
+    MemoryRegion *mr;
+    if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) {
+        mr = MEMORY_REGION(child);
+        if ((memory_region_is_ram(mr) ||
+            memory_region_is_ram_device(mr) ||
+            memory_region_is_rom(mr)) == false) {
+            name = object_get_canonical_path_component(child);
+            /*
+             * We don't want duplicate pointers to the same MemoryRegion, so
+             * try to remove copies of the pointer, before adding it.
+             */
+            g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
+        }
+    }
+    return 0;
+}
+
+static int locate_fuzz_objects(Object *child, void *opaque)
+{
+    char *pattern = opaque;
+    if (g_pattern_match_simple(pattern, object_get_typename(child))) {
+        /* Find and save ptrs to any child MemoryRegions */
+        object_child_foreach_recursive(child, locate_fuzz_memory_regions, 
NULL);
+
+    } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) {
+        if (g_pattern_match_simple(pattern,
+            object_get_canonical_path_component(child))) {
+            MemoryRegion *mr;
+            mr = MEMORY_REGION(child);
+            if ((memory_region_is_ram(mr) ||
+                 memory_region_is_ram_device(mr) ||
+                 memory_region_is_rom(mr)) == false) {
+                g_hash_table_insert(fuzzable_memoryregions, mr, 
(gpointer)true);
+            }
+        }
+    }
+    return 0;
+}
+
+static void generic_pre_fuzz(QTestState *s)
+{
+    GHashTableIter iter;
+    MemoryRegion *mr;
+    char **result;
+
+    if (!getenv("QEMU_FUZZ_OBJECTS")) {
+        usage();
+    }
+    if (getenv("QTEST_LOG")) {
+        qtest_log_enabled = 1;
+    }
+    if (getenv("QEMU_FUZZ_TIMEOUT")) {
+        timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0);
+    }
+
+    fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
+
+    result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1);
+    for (int i = 0; result[i] != NULL; i++) {
+        printf("Matching objects by name %s\n", result[i]);
+        object_child_foreach_recursive(qdev_get_machine(),
+                                    locate_fuzz_objects,
+                                    result[i]);
+    }
+    g_strfreev(result);
+    printf("This process will try to fuzz the following MemoryRegions:\n");
+
+    g_hash_table_iter_init(&iter, fuzzable_memoryregions);
+    while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) {
+        printf("  * %s (size %lx)\n",
+               object_get_canonical_path_component(&(mr->parent_obj)),
+               (uint64_t)mr->size);
+    }
+
+    if (!g_hash_table_size(fuzzable_memoryregions)) {
+        printf("No fuzzable memory regions found...\n");
+        exit(1);
+    }
+
+    counter_shm_init();
+}
+
+static GString *generic_fuzz_cmdline(FuzzTarget *t)
+{
+    GString *cmd_line = g_string_new(TARGET_NAME);
+    if (!getenv("QEMU_FUZZ_ARGS")) {
+        usage();
+    }
+    g_string_append_printf(cmd_line, " -display none \
+                                      -machine accel=qtest, \
+                                      -m 512M %s ", getenv("QEMU_FUZZ_ARGS"));
+    return cmd_line;
+}
+
+static void register_generic_fuzz_targets(void)
+{
+    fuzz_add_target(&(FuzzTarget){
+            .name = "generic-fuzz",
+            .description = "Fuzz based on any qemu command-line args. ",
+            .get_init_cmdline = generic_fuzz_cmdline,
+            .pre_fuzz = generic_pre_fuzz,
+            .fuzz = generic_fuzz,
+    });
+}
+
+fuzz_target_init(register_generic_fuzz_targets);
diff --git a/tests/qtest/fuzz/meson.build b/tests/qtest/fuzz/meson.build
index b31ace7d5a..5162321f30 100644
--- a/tests/qtest/fuzz/meson.build
+++ b/tests/qtest/fuzz/meson.build
@@ -5,6 +5,7 @@ specific_fuzz_ss.add(files('fuzz.c', 'fork_fuzz.c', 
'qos_fuzz.c',
 specific_fuzz_ss.add(when: 'CONFIG_I440FX', if_true: files('i440fx_fuzz.c'))
 specific_fuzz_ss.add(when: 'CONFIG_VIRTIO_NET', if_true: 
files('virtio_net_fuzz.c'))
 specific_fuzz_ss.add(when: 'CONFIG_VIRTIO_SCSI', if_true: 
files('virtio_scsi_fuzz.c'))
+specific_fuzz_ss.add(files('generic_fuzz.c'))
 
 fork_fuzz = declare_dependency(
   link_args: config_host['FUZZ_EXE_LDFLAGS'].split() +
-- 
2.28.0




reply via email to

[Prev in Thread] Current Thread [Next in Thread]