

Proposal for GSoC 2020

Improved TeXmacs Converters

About Me

PERSONAL

INFORMATION

Name: ​Xiang Yue

Email: ​yx1107@foxmail.com

GitHub Account: ​Blickwinkel1107

EDUCATION Nanjing University,​ Nanjing, Jiangsu, China

Computer Science, expected graduation July 2020

RELATED

EXPERIENCE

● Three-year C++/Java and Back-end development experience. Led

several group projects, like second-hand transaction platform

application, independent parkour game and so on.

● Developed an outdated requirement tracer as an add-on of Eclipse IDE,

to help developers find which requirement document is possible to be

outdated after commit code changes.

● Participated in natural language processing researches and in

proceedings of machine translation track of IJCAI 2020.

● Interned in Intel to help maintain open-source development of the

Analytics Zoo framework.

Project

Project Name

Improved TeXmacs Converters

https://www.gnu.org/software/soc-projects/ideas-2020.html#texmacs

Summary

GNU TeXmacs is a free scientific editing platform designed to create beautiful technical

documents. It also provides options for users to convert documental form between TeXmacs

document and other forms (eg. Html, BibTex, LaTeX). However, with the development of

technique and documental forms, TeXmacs users need more conversion options for more

documental forms, which requires contributors to spend much time developing new

converters from scratches. To optimize this phenomenon, the proposal aims to develop a

new converter for conversion of markdown documents while offering a general framework

for converters development. On the one hand, markdown converter will appeal more users to

use TeXmacs; on the other hand, the basic framework helps contributors create and write

new converters. The proposal lists a detailed development timeline as well. This upgrade will

make TeXmacs attract more contributors to join TeXmacs and develop various converters. In

1

https://www.gnu.org/software/soc-projects/ideas-2020.html#texmacs

addition, this will also bring users more options to import/export and appeal to more users

who enjoy using Html5, markdown, and other documental forms.

Benefits

1. More Powerful Converter

Today, users on Internet have various options to choose the document to write

things, like Jupyter, markdown, MS Office Word, and so on, which means the

contributor of TeXmacs needs to upgrade the modules of conversion to enable

TeXmacs to support more documents or file format. Not only for better user

experience but also for the improvement of TeXmacs itself.

Converters now support conversion to/from Html, BibTex, XML, and LaTeX while

users require conversions to more documents in the mainstream, like markdown. So,

the development of a markdown converter is the first priority. Most websites use

markdown to write help or comments, like Github, Reddit, Diaspora, SourceForge,

and so on. This explains why once TeXmacs supports markdown conversion, more

users will be attracted.

Also, contributors always meet troubles when developing new converters one and

another from the very beginning. To handle this, TeXmacs needs a new, easy-to-use

framework for converters. For contributors, the framework aims to provide basic

functions to create new converters and development and save their time reviewing

other parts of codes; for users, new converters provide them a better experience to

import/export document forms. TeXmancs also needs to prepare some basic tools

and frameworks for contributors to develop converters based on these.

The extension of converters and the development of the framework will further

empower the current TeXmacs converter functionality and improve the quality of

TeXmacs.

2. More Contributors to the GNU community

As a GNU project, TeXmacs need to get more opensource people to maintain. A

converter framework satisfies contributors who want to add more converters in

TeXmacs. They use and refer to the basic functions that the framework provides, and

develop more things to empower TeXmacs conversion functionality. My development

proposal is only a start, and there can be some bugs within the module. But, the new

contributors attracted by these will possibly join us and help maintain the new

module, even the whole TeXmacs project. Their contribution will make GNU sphere

better and attract more people to join. In the end, good cycle forms, and the GNU

community will be larger and stronger.

3. More Users of TeXmacs

Better TeXmacs means more users to use our product. Conversion to more

documental forms is crucial to attracting users. For instance, if it is possible for

conversion between TeXmacs and markdown, TeXmacs will receive a big circle of

users since there are thousands of people knowing how to write .md. Also, most of the

webpage has applied Html5, so the extension for Html5 converters will draw the

attention of plentiful web developers to join TeXmacs. The above all explain why

2

TeXmacs need more powerful converters. So the join of more contributors will bring

TeXmacs more converters, which helps TeXmacs receive more users.

Deliverables

1. Front End - the Place to Show Conversion Options

The framework should make contributors think less about minor code and pay more

attention to the algorithm part - the conversion part. So the converter framework

needs to help contributors firstly create Front-End items automatically. To achieve

Figure 1: Conversion Options between different document forms

this, I need to figure out where the conversion options are presented in TeXmacs, and

what codes produce them.

There are mainly two steps to locate the Front-End part.

First of all, it is important for any developer to locate where users can experience new

features at the interface, which is also imperative for inverse engineering. TeXmacs

shows conversion options as ​File->Import/Export->[File Type]​ in ​Figure 1​. So the

ultimate objective is to add “Markdown” or other documental form items in

submenus of Import and Export options.

Second, locating the source code of front-end view. The front-end codes are at

$TEXMACS_PATH/TeXmacs/progs/texmacs/menus/file-menu.scm.

Line 236~238 shows “Import” and “Export” options. And line 108~131 shows

submenus, the dynamic options of conversion. We can see these words match what

shows in the user-end view. The Scheme codes were written well there, and it is

possible for me to figure out the important class within the critical parts.

3

After getting familiar with them, I can follow the codes written before and link up the

front-end modification with framework codes in a short period of time. Still,

compilation and testing work is in need and may cost a lot of time.

2. Back-End - How Contributors Write New Converters

To further help contributors focus on algorithm part of converters, I need to learn the

procedures to write a converter in the Back-End part and try to extend converters.

Since markdown and Html5 prevail in communities, I choose to write these two

converters as a trial. Also, I do this for the improvement of current converters.

Fortunately, to write the core parts of the converter is just the same as writing a

function - declare and implement. TeXmacs offers friendly ways to declare converters

and data formats

(​http://www.texmacs.org/tmweb/manual/webman-convert.en.html​) with high

abstraction as follows:

(​define-format​ ​format

 (:​name​ ​format-name​)

 ​options​)

(​converter​ ​from-format-name to-format-name

 ​options​)

Moreover, we can see example in $/TEXMACS_PATH/progs/convert/init-html.scm.

This directory shows how converter converts TeXmacs doc to Html. We can locate

declaration of “Html” format (line 36) and converter from “texmacs-stree” to several

html-related data formats (line 48~68).

So, in the same way, I can declare a new converter in a new directory with

init-xxx.scm. The more important matter is to implement the conversion.

1) Markdown converter

The ​first task ​of the proposal is to import a fresh new markdown converter

to TeXmacs. Mere transplanting converter module is not that hard though,

more important thing is to verify whether or not the converter can process

conversion perfectly. So, my core works are as follows:

1. Module Transplant

Contributors of TeXmacs have published a markdown converter.

(​https://bitbucket.org/mdbenito/tm2md/src/master/​). So, I just need

to transplant the module into the TeXmacs code instead of developing

markdown converters from scratches.

Transplanting seems easy enough though, I shall not only transplant

source code of the markdown converter but also display markdown

converter options in the user interface. Besides coding, basic testing

and verification are also in need.

In addition, thanks to the existence of the markdown converter, I can

also focus on developing general converter frameworks to help more

contributors transplant their converters into TeXmacs, just like what I

do.

2. Conversion Bug Fixing

Another problem is how to verify the functionality of the markdown

converter. Transplanting not means everything is fine, on the contrary,

4

http://www.texmacs.org/tmweb/manual/webman-convert.en.html
https://bitbucket.org/mdbenito/tm2md/src/master/

it will possibly bring more bugs and errors to the project. Also, users

want a perfect converter, not a semi-manufacture. The best way to find

bugs is to use a TeXmacs document as a testing sample and make it be

converted to markdown format as perfect as possible. Bugs like some

text cannot be converted successfully can be found, and then it is my

task to fix this.

The ultimate goal is to make the converter supporting “perfect

conversion” for “markdown-to-TeXmacs” and

“TeXmacs-to-markdown”.

2) Html5 converter

Since TeXmacs contains a converter for Html, contributors can follow the

development of the Html converter and figure out differences between Html

and Html5. Clarifying what they need to develop is important because some

features that TeXmacs does not support or does not need (for instance, Html5

includes more features regarding multi-media though, TeXmacs document

does not need those features).

Some details of Html5 v.s. Html features are as follows:

● Html5 has lots of new semantic tags: <article> <header> <nav> ...

Html’s tags are most of the low semantics.

Html5 abandons some of Html tags.

● Html5 differs in doctype declaration from Html

● Html5 uses <canvas> to process painting.

● ……

Contributors can implement the feature important to TeXmacs documents,

mimicking the development of the Html converter.

3) Other converters

As for other converters in general, it is up to contributors to implement. The

development of the converter framework should give them a good

environment to write a core conversion algorithm. Generally, I think there are

two ways to implement the conversion.

First, direct implementation. In this way, contributors need to find the public

part of TeXmacs and Office formats and exclude other meaningless parts.

Then, they should write a conversion process between two encoding formats.

Since the TeXmacs document is content-limited and simple, the conversion is

possible to make.

Second, indirect implementation. This means contributors need open-source

solutions - to include a third-party module in TeXmacs’s code. And the

module needs to process the conversion itself. For example, a “TeXmacs to

Office doc” process can be performed by “pandoc” as “TeXmacs to markdown,

and markdown to Office doc”. This way is more possible but needs to be

careful about the interest of developers.

3. Framework Development

5

After finish getting familiar with Front-End and Back-End codes about converters

while finish developing markdown converter, ​the second task ​is to develop the

converter framework. The above analysis show several features the framework should

support as follows:

1) Front-End: add conversion options in TeXmacs automatically after

contributors declare new converters. This part should be an abstraction to

contributors unless they want to modify this.

2) Back-End: give contributors some fixed declarations and methods for writing

converters, and let them write the core code of algorithm without worrying

about other things. This part should also provide documents and standards to

guide contributors to develop their converters legally.

3) Assume contributors finished converter development already, they need to

test new features to evaluate. The feedback of users is important to give

directions for further development. TeXmacs project has some Google test

samples and testing code

(​https://github.com/texmacs/texmacs/tree/master/tests​). I can add merge

these codes to the framework as a testing part.

Following the above steps can still meet with new ideas and annoying bugs, so I need

to develop functions in iterations.

4. Document Writing

After framework development is completed, I need to update the official document

(​webman-convert.en.html​) to show that TeXmacs includes a converter framework.

Additionally, a summary of my development is nice to have. My experience of writing

papers and documents can help me in this part.

Plan

Date Work

1.Jun. ~ 30.Jun ● Decouple the core codes of Front-End and Back-End parts,

try some modification, and get familiar with compiling and

testing procedures.

● Get familiar with the markdown converter’s source code.

● Transplant markdown converter into TeXmacs. Add new

converter options to the user interface.

● Basic test and verification.

● If there is any modification in the master branch, discuss it

with mentors first.

● Optional: develop a standard converter-dev framework for

contributors to for the better experience of converter

developing.

1.Jul. ~ 5.Aug. ● Develop a standard converter-dev framework for

contributors to for the better experience of converter

developing.

● Find a proper TeXmacs document for conversion tests.

Conduct conversion tests and compare results.

6

https://github.com/texmacs/texmacs/tree/master/tests
http://www.texmacs.org/tmweb/manual/webman-convert.en.html

● Fix “TeXmacs-to-markdown” bugs. Find bugs and try to fix

them, i.e. to figure out why some text cannot be converted.

● Optional: write a “markdown-to-TeXmacs” converter.

● Try the best to realize a perfect conversion and form a

conversion cycle.

6.Aug. ~ 31.Aug. ● Write help documents of markdown converter.

● Write standards documents of the converter framework.

● Write a development summary.

● Fix minor bugs and check code style. Conduct the final

verification.

● Make sure everything in GNU standards.

Figure 2: Working Timeline

Communication

In the upcoming period of time and summer, I will first go to Jiangsu, China, to get my

graduation certificate, and go back to Shandong, China, my hometown. During this time, I

can absorb in development without dealing with other things. Also, I will choose to use

Zoom​ with mentors to communicate face-to-face. Using the ​dev-mail list​, ​email ​or

Gitter ​is also helpful. We may live in a different time zone, so make an appointment before

start communication is necessary.

Qualification

As a senior student in the Computer Science department, I have been working with my friend

to develop lots of team projects. They are great though, I found that I have been merely

making toy programs in university and only have limited experience of developing real

industrial projects. So a real, full-stack development experience is important to me, not to

mention that it is what I need to become a high-caliber developer and software specialist in

the world.

GSoC provides me a good chance to work with great mentors to maintain open-source

projects. I choose to improve TeXmacs because it is close to my academic life and the

product can improve my writing experience. Also, I have some experience developing

user-oriented products. I think my code-decoupling ability, solid coding ability, paper

writing skill, and persistence will help TeXmacs become better.

I hope to join the GNU community and try the best of mine to make TeXmacs greater!

7

