From MAILER-DAEMON Thu Jul 02 07:15:43 2020
Received: from list by lists.gnu.org with archive (Exim 4.90_1)
id 1jqxBv-0000y7-07
for mharc-axiom-developer@gnu.org; Thu, 02 Jul 2020 07:15:43 -0400
Received: from eggs.gnu.org ([2001:470:142:3::10]:54586)
by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256)
(Exim 4.90_1) (envelope-from )
id 1jqxBr-0000tW-W5
for axiom-developer@nongnu.org; Thu, 02 Jul 2020 07:15:40 -0400
Received: from mail-qk1-x72c.google.com ([2607:f8b0:4864:20::72c]:40184)
by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_128_GCM_SHA256:128)
(Exim 4.90_1) (envelope-from )
id 1jqxBo-0003f7-CF
for axiom-developer@nongnu.org; Thu, 02 Jul 2020 07:15:39 -0400
Received: by mail-qk1-x72c.google.com with SMTP id 80so25197170qko.7
for ; Thu, 02 Jul 2020 04:15:35 -0700 (PDT)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20161025;
h=mime-version:in-reply-to:references:from:date:message-id:subject:to
:content-transfer-encoding;
bh=NCgTjL6ktHAQkUS/G3JUgb8k3Jk/XrHtXy7a7u06Hug=;
b=LwyKjIvcPTxCbNi7byKR+wNPNWhtuL81/NT9gx0nLvhO5dzWBy1oLHGTT47BQNaFo9
Qk6dI9r+tfx/ozjQReLTBvQyi3TpiDzC0PINMDaRIXlV4Jsq69rQskuFntQDF+PibIxW
2IL72X97k/Ct2cA/lNdO3ku+vncZP2KTIkISGhyceR/P9sosrDyRA7eEkppXLJ/7SS/O
+W0igUBYL2duK6O+NY9T1NEyPmUY5pHYHDc/63qt2RZ6967YwiCWB3LLSmihy4RXKD64
9d6FGo3KqufGnK0Twskx2gEq8XtuvKBpVLB44WG9GE+gizvtOtGc7Kg4xap3+tNr4uyC
yrKg==
X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
d=1e100.net; s=20161025;
h=x-gm-message-state:mime-version:in-reply-to:references:from:date
:message-id:subject:to:content-transfer-encoding;
bh=NCgTjL6ktHAQkUS/G3JUgb8k3Jk/XrHtXy7a7u06Hug=;
b=h8OvSJ7fxfX/IRNbnmS77DFy3GDkIY14oG5Chv2anYOrPRLFA19sH6fuwt/O1ChstX
O+mVV4oDQ+E2uQsgtcU2ccwchxfK2tlgMwxq39atQjIdadDI7lhrrz0g5uMknZ30LSBN
4WQK67IrxORHFXrcj6loWpjid6QVNzXOPWNvaLM/jOB21T7+LjAn+9zx/tIbOXW7Vp2S
IQMdlGYZwjmnyiyaPiQOoMrxB/SJb9wXYw2FIoBi8wcgsTm6HEb5aP19mQ9BIW6hCCPf
xLZ4WcDAUOhNn+UUMSTdyY9xg4XgUdnmKzp+Uy4K+FZ4ejUU+u9aPg2UALB+c7Jgu3cR
Ba7A==
X-Gm-Message-State: AOAM530AGvBUxvvLiP3cSlQuVuIkUUOB5nqp2XUiovN3lWvtn180f752
tozACcAvaEVnwa/idcfC9DChBvznkEA17ZatwyDsJeOh
X-Google-Smtp-Source: ABdhPJyIa4C8dwu4HYEecMYwxK6as+wroyYmCUrB23tilHV+d6kz5tNKOYLkR1EuuVgEp2+VhJcreC5oWQGGa/QOo/U=
X-Received: by 2002:a05:620a:65a:: with SMTP id
a26mr28912512qka.290.1593688534076;
Thu, 02 Jul 2020 04:15:34 -0700 (PDT)
MIME-Version: 1.0
Received: by 2002:ad4:4ea4:0:0:0:0:0 with HTTP;
Thu, 2 Jul 2020 04:15:33 -0700 (PDT)
In-Reply-To:
References:
From: Tim Daly
Date: Thu, 2 Jul 2020 07:15:33 -0400
Message-ID:
Subject: Re: Axiom musings...
To: axiom-dev , Tim Daly
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Received-SPF: pass client-ip=2607:f8b0:4864:20::72c;
envelope-from=axiomcas@gmail.com; helo=mail-qk1-x72c.google.com
X-detected-operating-system: by eggs.gnu.org: No matching host in p0f cache.
That's all we know.
X-Spam_score_int: -20
X-Spam_score: -2.1
X-Spam_bar: --
X-Spam_report: (-2.1 / 5.0 requ) BAYES_00=-1.9, DKIM_SIGNED=0.1,
DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1, FREEMAIL_FROM=0.001,
RCVD_IN_DNSWL_NONE=-0.0001, SPF_HELO_NONE=0.001, SPF_PASS=-0.001,
URIBL_BLOCKED=0.001 autolearn=_AUTOLEARN
X-Spam_action: no action
X-BeenThere: axiom-developer@nongnu.org
X-Mailman-Version: 2.1.23
Precedence: list
List-Id: Axiom Developers
List-Unsubscribe: ,
List-Archive:
List-Post:
List-Help:
List-Subscribe: ,
X-List-Received-Date: Thu, 02 Jul 2020 11:15:40 -0000
Time for another update.
The latest Intel processors, available only to data centers
so far, have a built-in FPGA. This allows you to design
your own circuits and have them loaded "on the fly",
running in parallel with the CPU.
I bought a Lattice ICEstick FPGA development board. For
the first time there are open source tools that support it so
it is a great test bench for ideas and development. It is a
USB drive so it can be easily ported to any PC.
(https://www.latticesemi.com/products/developmentboardsandkits/icestick)
I also bought a large Intel Cyclone FPGA development board.
(http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=3DEnglish&No=3D=
836)
which has 2 embedded ARM processors. Unfortunately
the tools (which are freely available) are not open source.
It has sufficient size and power to do anything.
I've got 2 threads of work in progress, both of which
involve FPGAs (Field Programmable Gate Arrays).
Thread 1
The first thread involves proving programs correct. Once
a proof has been made it is rather easier to check the proof.
If code is shipped with a proof, the proof can be loaded into
an FPGA running a proof-checker which verifies the program
in parallel with running the code on the CPU.
I am researching the question of writing a proof checker that
runs on an FPGA, thus verifying the code "down to the metal".
The Lean proof checker is the current target.
The idea is to make "Oracle" algorithms that, because they
are proven correct and verified at runtime, can be trusted
by other mathematical software (e.g. Lean, Coq, Agda)
when used in proofs.
Thread 2
The second thread involves arithmetic. Axiom currently ships
with numeric routines (BLAS and LAPACK, see bookvol10.5).
These routines have a known set of numeric failures such as
cancellation, underflow, and scaling.
John Gustafson has designed a 'unum' numeric format that can
eliminate many of these errors. (See
Gustafson, John "The End of Error" CRC Press 2015
https://www.amazon.com/End-Error-Computing-Chapman-Computational/dp/1482239=
868/ref=3Dsr_1_1?dchild=3D1&keywords=3Dgustafson+the+end+of+error&qid=3D159=
3685423&sr=3D8-1)
The research goal is to implement Axiom's floating-point
arithmetic that can be offloaded onto an FPGA implementing
the unum format. Such a system would radically simplify
the implementation of BLAS and LAPACK as most of the
errors can't occur. The impact would be similar to using
multi-precision integer arithmetic, only now its floating-point.
SANE, the greater goal.
The Axiom SANE compiler / interpreter can use both of
these tools to implement trusted mathematical software.
It's a long, ambitious research effort but even if only pieces
of it succeed, it changes computational mathematics.
Tim
"A person's reach should exceed their grasp,
or what's a computer for?" (misquoting Robert Browning)
(https://www.quotetab.com/quote/by-robert-browning/ah-but-a-mans-reach-shou=
ld-exceed-his-grasp-or-whats-a-heaven-for)
On 6/16/20, Tim Daly wrote:
> WHY PROVE AXIOM CORRECT (SANE)?
>
> Historically, Axiom credits CLU, the Cluster language by
> Barbara Liskov, with the essential ideas behind the Spad
> language. Barbara gave a talk (a partial transcript below)
> that gives the rational behind the ``where clause'' used by
> Spad.
>
> She talks about the limits of the compile time capablity.
> In particular, she says:
>
> To go further, where we would say that T,
> in addition, has to be an equality relation, that requires
> much more sophisticated techniques that, even today, are
> beyond the capabilities of the compiler.
>
> Showing that the ``equal'' function satisfies the equality
> relation is no longer ``beyond the capabilities of the compiler''.
> We have the required formalisms and mechanisms to
> prove properties at compile time.
>
> The SANE effort is essentially trying to push compile
> time checking into proving that, for categories that use
> ``equal'', we prove that the equal function implements
> equality.
>
> I strongly encourage you to watch her video.
>
> Tim
>
> =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D
> Barbara Liskov
> May 2012
> MIT CSAIL
> Programming the Turing Machine
> https://www.youtube.com/watch?v=3DibRar7sWulM
>
> POLYMORPHISM
>
> We don't just want a set, we want polymorphism or
> generics, as they are called today. We wanted to
> have a generic set which was paramaterized by type
> so you could instantiate it as:
>
> Set =3D [T:type] create, insert,...
> % representation for Set object
> % implementation of Set operations
> Set
>
> Set[int] s :=3D Set[int]$create()
> Set[int]$insert(s,3)
>
> We wanted a static solution to this problem. The
> problem is, not every type makes sense as a parameter
> to Set of T. For sets, per se, you need an equality
> relation. If it has been a sorted set we would have
> some ordering relation. And a type that didn't have
> one of those things would not have been a legitimate
> parameter. We needed a way of expressing that in a
> compile-time, checkable manner. Otherwise we would
> have had to resort to runtime checking.
>
> Our solution was
>
> Set =3D [T: ] create, insert,...
> T equal: (T,T) (bool)
>
>
> Our solution, what we call the ``where clause''. So we
> added this to the header. The ``where clause'' tells you
> what operations the parameter type has to have.
>
> If you have the ``where'' clause you can do the static
> checking because when you instantiate, when you provide
> an actual type, the compiler can check that the type has
> the operations that are required. And then, when you write
> the implementation of Set the compiler knows it's ok to
> call those operations because you can guarantee they are
> actually there when you get around to running.
>
> Of course, you notice that there's just syntax here; there's
> no semantics.
>
> As I'm sure you all know, compile-time type checking is
> basically a proof technique of a very limited sort and
> this was about as far as we can push what you could get out of the
> static analysis. To go further, where we would say that T,
> in addition, has to be an equality relation, that requires
> much more sophisticated techniques that, even today, are
> beyond the capabilities of the compiler.
>
>
>
>
> On 3/24/20, Tim Daly wrote:
>> I've spent entirely too much time studing the legal issues
>> of free and open source software. There are copyright,
>> trademark, and intellectual property laws. I have read
>> several books, listened to lectures, and read papers on
>> the subject. I've spoken to lawyers about it. I've even
>> been required, by law, to coerce people I respect.
>> You would think it was all perfectly clear. It isn't.
>>
>> The most entertaining and enlightening lectures were
>> by Robert Lefkowitz at OSCON 2004. His talk is
>> "The Semasiology of Open Source", which sounds
>> horrible but I assure you, this is a real treat.
>>
>> THE THESIS
>>
>> Semasiology, n. The science of meanings or
>> sense development (of words); the explanation
>> of the development and changes of the meanings
>> of words. Source: Webster's Revised Unabridged
>> Dictionary, =C3=AF=C2=BF=C2=BD 1996, 1998 MICRA, Inc.
>>
>> "Open source doesn't just mean access to the
>> source code." So begins the Open Source Definition.
>> What then, does access to the source code mean?
>> Seen through the lens of an Enterprise user, what
>> does open source mean? When is (or isn't) it
>> significant? And a catalogue of open source
>> related arbitrage opportunities.
>>
>> http://origin.conversationsnetwork.org/Robert%20Lefkowitz%20-%20The%20Se=
masiology%20of%20Open%20Source.mp3
>>
>> Computer source code has words and sentence
>> structure like actual prose or even poetry. Writing
>> code for the computer is like writing an essay. It
>> should be written for other people to read,
>> understand and modify. These are some of the
>> thoughts behind literate programming proposed
>> by Donald Knuth. This is also one of the ideas
>> behind Open Source.
>>
>> THE ANTITHESIS
>>
>> "Open Source" is a phrase like "Object Oriented"
>> - weird at first, but when it became popular, the
>> meaning began to depend on the context of the
>> speaker or listener. "Object Oriented" meant that
>> PERL, C++, Java, Smalltalk, Basic and the newest
>> version of Cobol are all "Object Oriented" - for some
>> specific definition of "Object Oriented". Similar is
>> the case of the phrase "Open Source".
>>
>> In Part I, Lefkowitz talked about the shift of the
>> meaning of "Open Source" away from any reference
>> to the actual "source code," and more towards other
>> phases of the software development life cycle. In
>> Part II, he returns to the consideration of the
>> relationship between "open source" and the actual
>> "source code," and reflects upon both the way
>> forward and the road behind, drawing inspiration
>> from Charlemagne, King Louis XIV, Donald Knuth,
>> and others.
>>
>> http://origin.conversationsnetwork.org/ITC.OSCON05-RobertLefkowitz-2005.=
08.03.mp3
>>
>> THE SYNTHESIS
>>
>> In a fascinating synthesis, Robert =E2=80=9Cr0ml=E2=80=9D Lefkowitz
>> polishes up his exposition on the evolving meaning
>> of the term =E2=80=98open source=E2=80=99. This intellectual joy-ride
>> draws on some of the key ideas in artificial intelligence
>> to probe the role of language, meaning and context
>> in computing and the software development process.
>> Like Wittgenstein=E2=80=99s famous thought experiment, the
>> open source =E2=80=98beetle in a box=E2=80=99 can represent different
>> things to different people, bearing interesting fruit for
>> philosophers and software creators alike.
>>
>> http://itc.conversationsnetwork.org/audio/download/itconversations-1502.=
mp3
>>
>>
>> On 3/7/20, Tim Daly wrote:
>>> I've pushed the lastest version of Axiom. The plan, followed
>>> so far, is to push once a month on the 7th.
>>>
>>> After some chat room interactions it was brought home
>>> again that the proof world really does not seem to like the
>>> idea of proving programs correct. And, given that it was is
>>> of the main Axiom goals and a point of friction during the fork,
>>> the computer algebra world does not like the idea of proving
>>> programs correct either.
>>>
>>> So the idea of "computational mathematics", which includes
>>> both disciplines (as well as type theory) seems still a long
>>> way off.
>>>
>>> Nevertheless, the primary change in these past and future
>>> updates is focused on merging proof and computer algebra.
>>>
>>> Proof systems are able to split the problem of creating a
>>> proof and the problem of verifying a proof, which is much
>>> cheaper. Ideally the proof checker would run on verified
>>> hardware so the proof is checked "down to the metal".
>>>
>>> I have a background in Field Programmable Gate Arrays
>>> (FPGAs) as I tried to do a startup using them. So now I'm
>>> looking at creating a hardware proof checker using a
>>> dedicated instruction set, one designed to be verifed.
>>> New CPUs used in data centers (not yet available to us
>>> mortals) have built-in FPGAs so it would be possible to
>>> "side-load" a proof of a program to be checked while the
>>> program is run. I have the FPGA and am doing a gate-level
>>> special instruction design for such a proof checker.
>>>
>>>
>>> On 2/7/20, Tim Daly wrote:
>>>> As a mathematician, it is difficult to use a system like Axiom,
>>>> mostly because it keeps muttering about Types. If you're not
>>>> familiar with type theory (most mathematicians aren't) then it
>>>> seems pointless and painful.
>>>>
>>>> So Axiom has a steep learning curve.
>>>>
>>>> As a mathematician with an algorithmic approach, it is difficult
>>>> to use a system like Axiom, mostly because you have to find
>>>> or create "domains" or "packages", understand categories
>>>> with their inheritance model, and learn a new language with
>>>> a painful compiler always complaining about types.
>>>>
>>>> So Axiom has a steep learning curve.
>>>>
>>>> The Sane version of Axiom requires knowing the mathematics.
>>>> It also assumes a background in type theory, inductive logic,
>>>> homotopy type theory, ML (meta-language, not machine
>>>> learning (yet)), interactive theorem proving, kernels, tactics,
>>>> and tacticals. Also assumed is knowledge of specification languages,
>>>> Hoare triples, proof techniques, soundness, and completeness.
>>>> Oh, and there is a whole new syntax and semantics added to
>>>> specify definitions, axioms, and theorems, not to mention whole
>>>> libraries of the same.
>>>>
>>>> So Axiom Sane has a steep learning curve.
>>>>
>>>> I've taken 10 courses at CMU and spent the last 4-5 years
>>>> learning to read the leading edge literature (also known
>>>> as "greek studies", since every paper has pages of greek).
>>>>
>>>> I'm trying to unify computer algebra and proof theory into a
>>>> "computational mathematics" framework. I suspect that the only
>>>> way this system will ever be useful is after Universities have a
>>>> "Computational Mathematics" major course of study and degree.
>>>>
>>>> Creating a new department is harder than creating Axiom Sane
>>>> because, you know, ... people.
>>>>
>>>> I think such a department is inevitable given the deep and wide
>>>> impact of computers, just not in my lifetime. That's ok. When I
>>>> started programming there was no computer science degree.
>>>>
>>>> Somebody has to be the first lemming over the cliff.
>>>>
>>>> Tim
>>>>
>>>> On 1/9/20, Tim Daly wrote:
>>>>> When Axiom Sane is paired with a proof checker (e.g. with Lean)
>>>>> there is a certain amount of verification that is involved.
>>>>>
>>>>> Axiom will provide proofs (presumably validated by Lean) for its
>>>>> algorithms. Ideally, when a computation is requested from Lean
>>>>> for a GCD, the result as well as a proof of the GCD algorithm is
>>>>> returned. Lean can the verify that the proof is valid. But it is
>>>>> computationally more efficient if Axiom and Lean use a cryptographic
>>>>> hash, such as SHA1. That way the proof doesn't need to be
>>>>> 'reproven', only a hash computation over the proof text needs to
>>>>> be performed. Hashes are blazingly fast. This allows proofs to be
>>>>> exchanged without re-running the proof mechanism. Since a large
>>>>> computation request from Lean might involve many algorithms
>>>>> there would be considerable overhead to recompute each proof.
>>>>> A hash simplifies the issue yet provides proof integrity.
>>>>>
>>>>> Tim
>>>>>
>>>>>
>>>>> On 1/9/20, Tim Daly wrote:
>>>>>> Provisos.... that is, 'formula SUCH pre/post-conditions'
>>>>>>
>>>>>> A computer algebra system ought to know and ought to provide
>>>>>> information about the domain and range of a resulting formula.
>>>>>> I've been pushing this effort since the 1980s (hence the
>>>>>> SuchThat domain).
>>>>>>
>>>>>> It turns out that computing with, carrying, and combining this
>>>>>> information is difficult if not impossible in the current system.
>>>>>> The information isn't available and isn't computed. In that sense,
>>>>>> the original Axiom system is 'showing its age'.
>>>>>>
>>>>>> In the Sane implementation the information is available. It is
>>>>>> part of the specification and part of the proof steps. With a
>>>>>> careful design it will be possible to provide provisos for each
>>>>>> given result that are carried with the result for use in further
>>>>>> computation.
>>>>>>
>>>>>> This raises interesting questions to be explored. For example,
>>>>>> if the formula is defined over an interval, how is the interval
>>>>>> arithmetic handled?
>>>>>>
>>>>>> Exciting research ahead!
>>>>>>
>>>>>> Tim
>>>>>>
>>>>>>
>>>>>>
>>>>>> On 1/3/20, Tim Daly wrote:
>>>>>>> Trusted Kernel... all the way to the metal.
>>>>>>>
>>>>>>> While building a trusted computer algebra system, the
>>>>>>> SANE version of Axiom, I've been looking at questions of
>>>>>>> trust at all levels.
>>>>>>>
>>>>>>> One of the key tenets (the de Bruijn principle) calls for a
>>>>>>> trusted kernel through which all other computations must
>>>>>>> pass. Coq, Lean, and other systems do this. They base
>>>>>>> their kernel on logic like the Calculus of Construction or
>>>>>>> something similar.
>>>>>>>
>>>>>>> Andrej Bauer has been working on a smaller kernel (a
>>>>>>> nucleus) that separates the trust from the logic. The rules
>>>>>>> for the logic can be specified as needed but checked by
>>>>>>> the nucleus code.
>>>>>>>
>>>>>>> I've been studying Field Programmable Gate Arrays (FPGA)
>>>>>>> that allow you to create your own hardware in a C-like
>>>>>>> language (Verilog). It allows you to check the chip you build
>>>>>>> all the way down to the transistor states. You can create
>>>>>>> things as complex as a whole CPU or as simple as a trusted
>>>>>>> nucleus. (youtube: Building a CPU on an FPGA). ACL2 has a
>>>>>>> history of verifying hardware logic.
>>>>>>>
>>>>>>> It appears that, assuming I can understand Bauers
>>>>>>> Andromeda system, it would be possible and not that hard
>>>>>>> to implement a trusted kernel on an FPGA the size and
>>>>>>> form factor of a USB stick.
>>>>>>>
>>>>>>> Trust "down to the metal".
>>>>>>>
>>>>>>> Tim
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>> On 12/15/19, Tim Daly wrote:
>>>>>>>> Progress in happening on the new Sane Axiom compiler.
>>>>>>>>
>>>>>>>> Recently I've been musing about methods to insert axioms
>>>>>>>> into categories so they could be inherited like signatures.
>>>>>>>> At the moment I've been thinking about adding axioms in
>>>>>>>> the same way that signatures are written, adding them to
>>>>>>>> the appropriate categories.
>>>>>>>>
>>>>>>>> But this is an interesting design question.
>>>>>>>>
>>>>>>>> Axiom already has a mechanism for inheriting signatures
>>>>>>>> from categories. That is, we can bet a plus signature from,
>>>>>>>> say, the Integer category.
>>>>>>>>
>>>>>>>> Suppose we follow the same pattern. Currently Axiom
>>>>>>>> inherits certain so-called "attributes", such as
>>>>>>>> ApproximateAttribute,
>>>>>>>> which implies that the results are only approximate.
>>>>>>>>
>>>>>>>> We could adapt the same mechnaism to inherit the Transitive
>>>>>>>> property by defining it in its own category. In fact, if we
>>>>>>>> follow Carette and Farmer's "tiny theories" architecture,
>>>>>>>> where each property has its own inheritable category,
>>>>>>>> we can "mix and match" the axioms at will.
>>>>>>>>
>>>>>>>> An "axiom" category would also export a function. This function
>>>>>>>> would essentially be a "tactic" used in a proof. It would modify
>>>>>>>> the proof step by applying the function to the step.
>>>>>>>>
>>>>>>>> Theorems would have the same structure.
>>>>>>>>
>>>>>>>> This allows theorems to be constructed at run time (since
>>>>>>>> Axiom supports "First Class Dynamic Types".
>>>>>>>>
>>>>>>>> In addition, this design can be "pushed down" into the Spad
>>>>>>>> language so that Spad statements (e.g. assignment) had
>>>>>>>> proof-related properties. A range such as [1..10] would
>>>>>>>> provide explicit bounds in a proof "by language definition".
>>>>>>>> Defining the logical properties of language statements in
>>>>>>>> this way would make it easier to construct proofs since the
>>>>>>>> invariants would be partially constructed already.
>>>>>>>>
>>>>>>>> This design merges the computer algebra inheritance
>>>>>>>> structure with the proof of algorithms structure, all under
>>>>>>>> the same mechanism.
>>>>>>>>
>>>>>>>> Tim
>>>>>>>>
>>>>>>>> On 12/11/19, Tim Daly wrote:
>>>>>>>>> I've been reading Stephen Kell's (Univ of Kent
>>>>>>>>> https://www.cs.kent.ac.uk/people/staff/srk21/) on
>>>>>>>>> Seven deadly sins of talking about =E2=80=9Ctypes=E2=80=9D
>>>>>>>>> https://www.cs.kent.ac.uk/people/staff/srk21//blog/2014/10/07/
>>>>>>>>>
>>>>>>>>> He raised an interesting idea toward the end of the essay
>>>>>>>>> that type-checking could be done outside the compiler.
>>>>>>>>>
>>>>>>>>> I can see a way to do this in Axiom's Sane compiler.
>>>>>>>>> It would be possible to run a program over the source code
>>>>>>>>> to collect the information and write a stand-alone type
>>>>>>>>> checker. This "unbundles" type checking and compiling.
>>>>>>>>>
>>>>>>>>> Taken further I can think of several other kinds of checkers
>>>>>>>>> (aka 'linters') that could be unbundled.
>>>>>>>>>
>>>>>>>>> It is certainly something to explore.
>>>>>>>>>
>>>>>>>>> Tim
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> On 12/8/19, Tim Daly wrote:
>>>>>>>>>> The Axiom Sane compiler is being "shaped by the hammer
>>>>>>>>>> blows of reality", to coin a phrase.
>>>>>>>>>>
>>>>>>>>>> There are many goals. One of the primary goals is creating a
>>>>>>>>>> compiler that can be understood, maintained, and modified.
>>>>>>>>>>
>>>>>>>>>> So the latest changes involved adding multiple index files.
>>>>>>>>>> These are documentation (links to where terms are mentioned
>>>>>>>>>> in the text), code (links to the implementation of things),
>>>>>>>>>> error (links to where errors are defined), signatures (links to
>>>>>>>>>> the signatures of lisp functions), figures (links to figures),
>>>>>>>>>> and separate category, domain, and package indexes.
>>>>>>>>>>
>>>>>>>>>> The tikz package is now used to create "railroad diagrams"
>>>>>>>>>> of syntax (ala, the PASCAL report). The implementation of
>>>>>>>>>> those diagrams follows immediately. Collectively these will
>>>>>>>>>> eventually define at least the syntax of the language. In the
>>>>>>>>>> ideal, changing the diagram would change the code but I'm
>>>>>>>>>> not that clever.
>>>>>>>>>>
>>>>>>>>>> Reality shows up with the curent constraint that the
>>>>>>>>>> compiler should accept the current Spad language as
>>>>>>>>>> closely as possible. Of course, plans are to include new
>>>>>>>>>> constructs (e.g. hypothesis, axiom, specification, etc)
>>>>>>>>>> but these are being postponed until "syntax complete".
>>>>>>>>>>
>>>>>>>>>> All parse information is stored in a parse object, which
>>>>>>>>>> is a CLOS object (and therefore a Common Lisp type)
>>>>>>>>>> Fields within the parse object, e.g. variables are also
>>>>>>>>>> CLOS objects (and therefore a Common Lisp type).
>>>>>>>>>> It's types all the way down.
>>>>>>>>>>
>>>>>>>>>> These types are being used as 'signatures' for the
>>>>>>>>>> lisp functions. The goal is to be able to type-check the
>>>>>>>>>> compiler implementation as well as the Sane language.
>>>>>>>>>>
>>>>>>>>>> The parser is designed to "wrap around" so that the
>>>>>>>>>> user-level output of a parse should be the user-level
>>>>>>>>>> input (albeit in a 'canonical" form). This "mirror effect"
>>>>>>>>>> should make it easy to see that the parser properly
>>>>>>>>>> parsed the user input.
>>>>>>>>>>
>>>>>>>>>> The parser is "first class" so it will be available at
>>>>>>>>>> runtime as a domain allowing Spad code to construct
>>>>>>>>>> Spad code.
>>>>>>>>>>
>>>>>>>>>> One plan, not near implementation, is to "unify" some
>>>>>>>>>> CLOS types with the Axiom types (e.g. String). How
>>>>>>>>>> this will happen is still in the land of design. This would
>>>>>>>>>> "ground" Spad in lisp, making them co-equal.
>>>>>>>>>>
>>>>>>>>>> Making lisp "co-equal" is a feature, especially as Spad is
>>>>>>>>>> really just a domain-specific language in lisp. Lisp
>>>>>>>>>> functions (with CLOS types as signatures) would be
>>>>>>>>>> avaiable for implementing Spad functions. This not
>>>>>>>>>> only improves the efficiency, it would make the
>>>>>>>>>> BLAS/LAPACK (see volume 10.5) code "native" to Axiom.
>>>>>>>>>> .
>>>>>>>>>> On the theory front I plan to attend the Formal Methods
>>>>>>>>>> in Mathematics / Lean Together conference, mostly to
>>>>>>>>>> know how little I know, especially that I need to know.
>>>>>>>>>> http://www.andrew.cmu.edu/user/avigad/meetings/fomm2020/
>>>>>>>>>>
>>>>>>>>>> Tim
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>> On 11/28/19, Jacques Carette wrote:
>>>>>>>>>>> The underlying technology to use for building such an algebra
>>>>>>>>>>> library
>>>>>>>>>>> is
>>>>>>>>>>> documented in the paper " Building on the Diamonds between
>>>>>>>>>>> Theories:
>>>>>>>>>>> Theory Presentation Combinators"
>>>>>>>>>>> http://www.cas.mcmaster.ca/~carette/publications/tpcj.pdf [whic=
h
>>>>>>>>>>> will
>>>>>>>>>>> also be on the arxiv by Monday, and has been submitted to a
>>>>>>>>>>> journal].
>>>>>>>>>>>
>>>>>>>>>>> There is a rather full-fledged prototype, very well documented
>>>>>>>>>>> at
>>>>>>>>>>> https://alhassy.github.io/next-700-module-systems/prototype/pac=
kage-former.html
>>>>>>>>>>>
>>>>>>>>>>> (source at https://github.com/alhassy/next-700-module-systems).
>>>>>>>>>>> It
>>>>>>>>>>> is
>>>>>>>>>>> literate source.
>>>>>>>>>>>
>>>>>>>>>>> The old prototype was hard to find - it is now at
>>>>>>>>>>> https://github.com/JacquesCarette/MathScheme.
>>>>>>>>>>>
>>>>>>>>>>> There is also a third prototype in the MMT system, but it does
>>>>>>>>>>> not
>>>>>>>>>>> quite
>>>>>>>>>>> function properly today, it is under repair.
>>>>>>>>>>>
>>>>>>>>>>> The paper "A Language Feature to Unbundle Data at Will"
>>>>>>>>>>> (https://alhassy.github.io/next-700-module-systems/papers/gpce1=
9_a_language_feature_to_unbundle_data_at_will.pdf)
>>>>>>>>>>>
>>>>>>>>>>> is also relevant, as it solves a problem with parametrized
>>>>>>>>>>> theories
>>>>>>>>>>> (parametrized Categories in Axiom terminology) that all current
>>>>>>>>>>> systems
>>>>>>>>>>> suffer from.
>>>>>>>>>>>
>>>>>>>>>>> Jacques
>>>>>>>>>>>
>>>>>>>>>>> On 2019-11-27 11:47 p.m., Tim Daly wrote:
>>>>>>>>>>>> The new Sane compiler is also being tested with the Fricas
>>>>>>>>>>>> algebra code. The compiler knows about the language but
>>>>>>>>>>>> does not depend on the algebra library (so far). It should be
>>>>>>>>>>>> possible, by design, to load different algebra towers.
>>>>>>>>>>>>
>>>>>>>>>>>> In particular, one idea is to support the "tiny theories"
>>>>>>>>>>>> algebra from Carette and Farmer. This would allow much
>>>>>>>>>>>> finer grain separation of algebra and axioms.
>>>>>>>>>>>>
>>>>>>>>>>>> This "flexible algebra" design would allow things like the
>>>>>>>>>>>> Lean theorem prover effort in a more natural style.
>>>>>>>>>>>>
>>>>>>>>>>>> Tim
>>>>>>>>>>>>
>>>>>>>>>>>>
>>>>>>>>>>>> On 11/26/19, Tim Daly wrote:
>>>>>>>>>>>>> The current design and code base (in bookvol15) supports
>>>>>>>>>>>>> multiple back ends. One will clearly be a common lisp.
>>>>>>>>>>>>>
>>>>>>>>>>>>> Another possible design choice is to target the GNU
>>>>>>>>>>>>> GCC intermediate representation, making Axiom "just
>>>>>>>>>>>>> another front-end language" supported by GCC.
>>>>>>>>>>>>>
>>>>>>>>>>>>> The current intermediate representation does not (yet)
>>>>>>>>>>>>> make any decision about the runtime implementation.
>>>>>>>>>>>>>
>>>>>>>>>>>>> Tim
>>>>>>>>>>>>>
>>>>>>>>>>>>>
>>>>>>>>>>>>> On 11/26/19, Tim Daly wrote:
>>>>>>>>>>>>>> Jason Gross and Adam Chlipala ("Parsing Parses") developed
>>>>>>>>>>>>>> a dependently typed general parser for context free grammar
>>>>>>>>>>>>>> in Coq.
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> They used the parser to prove its own completeness.
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> Unfortunately Spad is not a context-free grammar.
>>>>>>>>>>>>>> But it is an intersting thought exercise to consider
>>>>>>>>>>>>>> an "Axiom on Coq" implementation.
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> Tim
>>>>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>
>>>>>>>>
>>>>>>>
>>>>>>
>>>>>
>>>>
>>>
>>
>
From MAILER-DAEMON Thu Jul 02 08:17:49 2020
Received: from list by lists.gnu.org with archive (Exim 4.90_1)
id 1jqyA1-0006YM-73
for mharc-axiom-developer@gnu.org; Thu, 02 Jul 2020 08:17:49 -0400
Received: from eggs.gnu.org ([2001:470:142:3::10]:44712)
by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256)
(Exim 4.90_1) (envelope-from )
id 1jqy9z-0006X9-Rf
for axiom-developer@nongnu.org; Thu, 02 Jul 2020 08:17:47 -0400
Received: from mail-qk1-x72d.google.com ([2607:f8b0:4864:20::72d]:43773)
by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_128_GCM_SHA256:128)
(Exim 4.90_1) (envelope-from )
id 1jqy9x-0006n1-LE
for axiom-developer@nongnu.org; Thu, 02 Jul 2020 08:17:47 -0400
Received: by mail-qk1-x72d.google.com with SMTP id c30so21493921qka.10
for ; Thu, 02 Jul 2020 05:17:44 -0700 (PDT)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20161025;
h=mime-version:in-reply-to:references:from:date:message-id:subject:to;
bh=QriNKA3twRyJ+IBJSnJ82YzlTC8CJ0uRP9i/wIytUeY=;
b=vfztNBpiuAiaYqKfAn5RgFn3w414iyOGA+M0i+z4GkYBefMviOyFi/q78cXEp/Np7U
6G972OJkF+VX1nIPCQ+3Is/Iiv3tLf2jAGM0NUvi7F6DgIrIZ51s5EOQXvu6nmtiCnny
dcxqa9yLeGRyDptNVqvykzHutHDdtEJIILUy58e08drXxKASHJSk83bBfwsnDMgBBbsN
8l+p66Gx9LXr8eFJ6s7l9IiGD7y5Mk2Jk0IJksFhIxa4QLIEBw2+22xvrqehl9x3wRLh
MGenp4XqSvd4NS5oB6qhL1NL5dg3pr3VGLgvJujZJDzOIF4de4VlXCER9C/gVFajy/GF
zrow==
X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
d=1e100.net; s=20161025;
h=x-gm-message-state:mime-version:in-reply-to:references:from:date
:message-id:subject:to;
bh=QriNKA3twRyJ+IBJSnJ82YzlTC8CJ0uRP9i/wIytUeY=;
b=fQjFGoQ1SFEIXxq4PZXU1u6Hli6BYr0T+VF0ggzxPC8uv0cMndaW4UKNaT+Nw7WNWJ
6OLc5W+Z3KJkTvzt8Y65ynh+QS/a9kKbPqzuxUfG51pPIn/kEEoDjkHTeQhS2tVGNpm2
2eYj2GrSkbois+2kpx5TQeqkS3aVxBZ+7aITqHwTSBWyF2pmDazljk/llqNHV+IR9hY1
E/i9cSZsWiilETa03ljBKrBHIclwSy+kog0/whDmA0btiTeNi2ngkGzgVWIpDdapETKK
e5rYLmGFWYA64+nyPm64bASQt+ex/IspI3akbdZ1V9hMShyA7tmE7HokXvImh46qej+w
OBvw==
X-Gm-Message-State: AOAM533Qv+HDi0kMiiDFV0v3RrAFBu6EZQjh1kNlK6Flyqv+HRe1+LWu
IKeymrfNMS4JOSGlGJCsGm8pkL8aQ+2guf/tJd0=
X-Google-Smtp-Source: ABdhPJxKJG+okewRzCBM5v7lkuPl442bG9mUBsrH34FSPYCW9EM8JVKZ598r4QfDtd0N3YuvzF+0nT1UmDzBL0XGhes=
X-Received: by 2002:a05:620a:a1b:: with SMTP id
i27mr30174541qka.429.1593692263427;
Thu, 02 Jul 2020 05:17:43 -0700 (PDT)
MIME-Version: 1.0
Received: by 2002:ad4:4ea4:0:0:0:0:0 with HTTP;
Thu, 2 Jul 2020 05:17:42 -0700 (PDT)
In-Reply-To: <16e84652-789e-003c-270b-283e02aea330@verizon.net>
References:
<16e84652-789e-003c-270b-283e02aea330@verizon.net>
From: Tim Daly
Date: Thu, 2 Jul 2020 08:17:42 -0400
Message-ID:
Subject: Re: Foundations post
To: surow@verizon.net, axiom-developer@nongnu.org, axiomcas@gmail.com
Content-Type: text/plain; charset="UTF-8"
Received-SPF: pass client-ip=2607:f8b0:4864:20::72d;
envelope-from=axiomcas@gmail.com; helo=mail-qk1-x72d.google.com
X-detected-operating-system: by eggs.gnu.org: No matching host in p0f cache.
That's all we know.
X-Spam_score_int: -20
X-Spam_score: -2.1
X-Spam_bar: --
X-Spam_report: (-2.1 / 5.0 requ) BAYES_00=-1.9, DKIM_SIGNED=0.1,
DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1, FREEMAIL_FROM=0.001,
RCVD_IN_DNSWL_NONE=-0.0001, SPF_HELO_NONE=0.001,
SPF_PASS=-0.001 autolearn=_AUTOLEARN
X-Spam_action: no action
X-BeenThere: axiom-developer@nongnu.org
X-Mailman-Version: 2.1.23
Precedence: list
List-Id: Axiom Developers
List-Unsubscribe: ,
List-Archive:
List-Post:
List-Help:
List-Subscribe: ,
X-List-Received-Date: Thu, 02 Jul 2020 12:17:48 -0000
I just saw your email posting about agi/bica.
I have been involved in AI starting in 1975 (in
robotics at Unimation, the people with the first
robot patent). I was a member of the robot group
at IBM Research. I have worked on just about every
known approach to AI (expert systems, knowledge
representation, speech, vision, robots, neural nets,
ML, planning, etc. I've designed a CMOS chip, a
controller board, and gotten hand-dirty on hydraulics
and gears for robots).
I created a new language (KROPS) which IBM used
in their FAME Financial and Marketing Expert System.
I co-authored ECLPS, a rule-based system. I used
a neural net to recognize and classify drugs from
drug diagrams. I designed, built, and gave a talk at
MIT on my Design-to-Build planning system using
3D modelling. I wrote a system to reverse-engineer
malware binaries. I worked on a speech system for
banking. I wrote control and vision software for
several different robot systems. My last effort at CMU
involved a man/robot system to change a car tire.
I have written code for RL from the OpenAI sandbox.
I've taken courses, such as Andrew Ng's ML course.
I have a large chess game dataset on my website I
used to attempt to train a deep neural net (badly).
I am enrolled in Autoware's self-driving car course.
I have a mobile robot and a robot arm here at home
that I use to play with ideas.
I have also spent a lot of time reading about AI,
e.g. "Parsing the Turing Test", I've read just about
everything I can find on the subject in CS,
Biology, and Philosophy. I've taken 3 courses in
brain anatomy, studied the cellular level chemistry,
and protein structures in nerve cells. I've studied
the nerve structure of the C. Elegans worm.
I've taken 3 courses in quantum mechanics. I've
read the speculation about how quantum processes
could underlie thinking (microtubules).
I have a theory about consciousness that involves
emergent complexity, chaotic theory, and self-modification.
The resulting mathematics allows an escape from
"the Turing / Godel box". So far, everyone I've presented
to just cringes at ideas like self-modification. (See
Barwise, Jon and Moss, Lawrence "Vicious Circles",
CSLI Publications 1996
https://www.amazon.com/Barwise-Vicious-Circles-Language-Information/dp/B00SCVI0OW/ref=sr_1_2?dchild=1&keywords=Vicious+Circles+barwise&qid=1593692109&sr=8-2)
I don't think I'm any closer than anyone else, but I've
certainly given it a lot of thought and study.
All of THAT noise was to convince you that I am
not naive about the subject.
After 50 years, IN MY PROFESSIONAL OPINION:
Artificial General Intelligence (AGI) is nonsense.
Tim
On 7/1/20, Eugene Surowitz wrote:
> I seem to remember that you had something to do with "AXIOM" ;-)
>
> The AXIOM algebra source could be one component of the prospective project.
> Did you see the "Foundations" post?
>
> What times are good for calls?
>
> Cheers, Gene
>
>
> On 6/30/20 8:05 PM, Tim Daly wrote:
>> And this involves me how?
>>
>> I am so confused.
>>
>> If you want to talk, my home number is 724-899-3136
>>
>>
>> On 6/30/20, Eugene Surowitz wrote:
>>>
>>> I am talking about private support for a project that involves a
>>> solution
>>> to
>>>
>>> $n0,000/yr x 20yr = k X M
>>>
>>> where n is an integer in 5, k is probably 1, M = 10^6, x is
>>> multiplication;
>>> parameters are adjustable.
>>>
>>> The funding is a done deal in the sense that I have complete control of
>>> it.
>>>
>>> A home location for the project is needed;
>>> the legal necessities are being explored.
>>>
>>> Cheers, Gene
>>>
>>> On 6/29/20 8:20 PM, Tim Daly wrote:
>>>> I have no idea what you are talking about.
>>>>
>>>> On 6/29/20, Eugene Surowitz wrote:
>>>>> OK!
>>>>>
>>>>> I need to be a little careful since the effort mentioned
>>>>> in my "Foundations" post is very serious and involves another
>>>>> well known project.
>>>>>
>>>>> I am just starting lining up what needs to be done.
>>>>>
>>>>> Please do not not post this.
>>>>>
>>>>> Gene
>>>>>
>>>>> On 6/28/20 6:08 PM, Tim Daly wrote:
>>>>>> I use this one
>>>>>>
>>>>>> On 6/28/20, Eugene Surowitz wrote:
>>>>>>> Which email address should I use for a private conversation?
>>>>>>>
>>>>>>> Cheers, Gene
>>>>>>>
>>>>>
>>>
>
From MAILER-DAEMON Sat Jul 18 18:28:17 2020
Received: from list by lists.gnu.org with archive (Exim 4.90_1)
id 1jwvJZ-0000UG-Hq
for mharc-axiom-developer@gnu.org; Sat, 18 Jul 2020 18:28:17 -0400
Received: from eggs.gnu.org ([2001:470:142:3::10]:50628)
by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256)
(Exim 4.90_1) (envelope-from )
id 1jwvJY-0000Tn-2j
for axiom-developer@nongnu.org; Sat, 18 Jul 2020 18:28:16 -0400
Received: from mail-qk1-x734.google.com ([2607:f8b0:4864:20::734]:36923)
by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_128_GCM_SHA256:128)
(Exim 4.90_1) (envelope-from )
id 1jwvJT-0005my-R8
for axiom-developer@nongnu.org; Sat, 18 Jul 2020 18:28:15 -0400
Received: by mail-qk1-x734.google.com with SMTP id k18so12030972qke.4
for ; Sat, 18 Jul 2020 15:28:11 -0700 (PDT)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20161025;
h=mime-version:in-reply-to:references:from:date:message-id:subject:to
:content-transfer-encoding;
bh=VJ34ofRNRIzRTEpDJ7PlRjFnfGT6NjXHWwBvgowIdsY=;
b=vHB+wDh4+jBkFyvFodI2EUhJXkgXcAPBgoubZWsZ81WezUD7IKGFV42UChijKR0o+d
exF8D8C/I5JIJ68mnE0X3otW2oxcRaGzzPtcrhwl/l/qMjxZ0iD1vtfEfZht7r4hS+Xq
Z8hKTTT0+AZo4hg7RLdJszD3CcvK0DQUZVBu3EHlMNb3k0Js6a+1eC8COwTPEN+NPBrt
/8/z2trpJXfBZLKVrM5x2TMlkMkmoFrsk3/LrKqEUnW6rR3NQ/PyetzQ1+iBkckmHglY
vT2DWBk3yyzdXk4XsTJgNuCJFFsUIld5MK8aCw2O2YddCbJw38T2M/CmgOt7XFep9yx7
tgmQ==
X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
d=1e100.net; s=20161025;
h=x-gm-message-state:mime-version:in-reply-to:references:from:date
:message-id:subject:to:content-transfer-encoding;
bh=VJ34ofRNRIzRTEpDJ7PlRjFnfGT6NjXHWwBvgowIdsY=;
b=RzdNOOVUtOcKCuOEYOBToNPSoVodBqeNQedcVODi2w3wTT2ouH0s5q9Iku396ainev
zG9mqs34xYr1I6CrGvZjZKakvCxG0nknIXC6jbXpHtJzU6ifYXjiu7d8BBHWDOxtFzWw
AxMJEqTWl32EUkxBYLN7mDrAZ40IbuUsf1Y1fdbozInzk9lDj2pAOdF0ve9uQr4tx7lM
PfU58ZkVO+bpyxTbCtIcfoYxilyimPRTt4FuwOR1hwbviDcZLMcd1P57Qfnn/AmUxMBs
FaLzOq4JFKZs0AZhkCA+DiYQmsST0qFlqMrSGAyq0xTv4SUX+LCSUY/MABrtGnOGGYSY
A6jg==
X-Gm-Message-State: AOAM530wZ65M1IOtGfXwuKtdmX93FWVQ4eAvx4ko8kWsMQuC2nN9a7sd
AZvjN4aL7wk0bQyLbO8pRftrRhEkfQWyQdp4SkWUDuDb
X-Google-Smtp-Source: ABdhPJzI7Hiog6XrfSkPk7OioSBqlfLvCyt7ie5/XVZMMgkm2NghiCEU920euV2Dc8pLri0GEQuvFFf4PrdS7dmGdBc=
X-Received: by 2002:a05:620a:a1b:: with SMTP id
i27mr15292249qka.429.1595111289380;
Sat, 18 Jul 2020 15:28:09 -0700 (PDT)
MIME-Version: 1.0
Received: by 2002:ad4:4ea4:0:0:0:0:0 with HTTP; Sat, 18 Jul 2020 15:28:08
-0700 (PDT)
In-Reply-To:
References:
From: Tim Daly
Date: Sat, 18 Jul 2020 18:28:08 -0400
Message-ID:
Subject: Re: Axiom musings...
To: axiom-dev , Tim Daly
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Received-SPF: pass client-ip=2607:f8b0:4864:20::734;
envelope-from=axiomcas@gmail.com; helo=mail-qk1-x734.google.com
X-detected-operating-system: by eggs.gnu.org: No matching host in p0f cache.
That's all we know.
X-Spam_score_int: -20
X-Spam_score: -2.1
X-Spam_bar: --
X-Spam_report: (-2.1 / 5.0 requ) BAYES_00=-1.9, DKIM_SIGNED=0.1,
DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1, FREEMAIL_FROM=0.001,
RCVD_IN_DNSWL_NONE=-0.0001, SPF_HELO_NONE=0.001, SPF_PASS=-0.001,
URIBL_BLOCKED=0.001 autolearn=ham autolearn_force=no
X-Spam_action: no action
X-BeenThere: axiom-developer@nongnu.org
X-Mailman-Version: 2.1.23
Precedence: list
List-Id: Axiom Developers
List-Unsubscribe: ,
List-Archive:
List-Post:
List-Help:
List-Subscribe: ,
X-List-Received-Date: Sat, 18 Jul 2020 22:28:16 -0000
Richard Hamming gave a great talk. "You and Your Research"
https://www.youtube.com/watch?v=3Da1zDuOPkMSw
His big question is:
"What is the most important problem in your field
and why aren't you working on it?"
To my mind, the most important problem in the field of
computational mathematics is grounding computer
algebra in proofs.
Computer mathematical algorithms that "maybe,
possibly, give correct answers sometimes" is a problem.
Indeed, for computer algebra, it is the most important
problem. We need proven algorithms.
New algorithms, better graphics, better documentation,
are all "nice to have" but, as Hamming would say,
they are not "the most important problem".
Tim
On 7/2/20, Tim Daly wrote:
> Time for another update.
>
> The latest Intel processors, available only to data centers
> so far, have a built-in FPGA. This allows you to design
> your own circuits and have them loaded "on the fly",
> running in parallel with the CPU.
>
> I bought a Lattice ICEstick FPGA development board. For
> the first time there are open source tools that support it so
> it is a great test bench for ideas and development. It is a
> USB drive so it can be easily ported to any PC.
> (https://www.latticesemi.com/products/developmentboardsandkits/icestick)
>
> I also bought a large Intel Cyclone FPGA development board.
> (http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=3DEnglish&No=
=3D836)
> which has 2 embedded ARM processors. Unfortunately
> the tools (which are freely available) are not open source.
> It has sufficient size and power to do anything.
>
>
> I've got 2 threads of work in progress, both of which
> involve FPGAs (Field Programmable Gate Arrays).
>
> Thread 1
>
> The first thread involves proving programs correct. Once
> a proof has been made it is rather easier to check the proof.
> If code is shipped with a proof, the proof can be loaded into
> an FPGA running a proof-checker which verifies the program
> in parallel with running the code on the CPU.
>
> I am researching the question of writing a proof checker that
> runs on an FPGA, thus verifying the code "down to the metal".
> The Lean proof checker is the current target.
>
> The idea is to make "Oracle" algorithms that, because they
> are proven correct and verified at runtime, can be trusted
> by other mathematical software (e.g. Lean, Coq, Agda)
> when used in proofs.
>
> Thread 2
>
>
> The second thread involves arithmetic. Axiom currently ships
> with numeric routines (BLAS and LAPACK, see bookvol10.5).
> These routines have a known set of numeric failures such as
> cancellation, underflow, and scaling.
>
> John Gustafson has designed a 'unum' numeric format that can
> eliminate many of these errors. (See
> Gustafson, John "The End of Error" CRC Press 2015
> https://www.amazon.com/End-Error-Computing-Chapman-Computational/dp/14822=
39868/ref=3Dsr_1_1?dchild=3D1&keywords=3Dgustafson+the+end+of+error&qid=3D1=
593685423&sr=3D8-1)
>
> The research goal is to implement Axiom's floating-point
> arithmetic that can be offloaded onto an FPGA implementing
> the unum format. Such a system would radically simplify
> the implementation of BLAS and LAPACK as most of the
> errors can't occur. The impact would be similar to using
> multi-precision integer arithmetic, only now its floating-point.
>
> SANE, the greater goal.
>
> The Axiom SANE compiler / interpreter can use both of
> these tools to implement trusted mathematical software.
> It's a long, ambitious research effort but even if only pieces
> of it succeed, it changes computational mathematics.
>
> Tim
>
> "A person's reach should exceed their grasp,
> or what's a computer for?" (misquoting Robert Browning)
>
> (https://www.quotetab.com/quote/by-robert-browning/ah-but-a-mans-reach-sh=
ould-exceed-his-grasp-or-whats-a-heaven-for)
>
>
>
>
> On 6/16/20, Tim Daly wrote:
>> WHY PROVE AXIOM CORRECT (SANE)?
>>
>> Historically, Axiom credits CLU, the Cluster language by
>> Barbara Liskov, with the essential ideas behind the Spad
>> language. Barbara gave a talk (a partial transcript below)
>> that gives the rational behind the ``where clause'' used by
>> Spad.
>>
>> She talks about the limits of the compile time capablity.
>> In particular, she says:
>>
>> To go further, where we would say that T,
>> in addition, has to be an equality relation, that requires
>> much more sophisticated techniques that, even today, are
>> beyond the capabilities of the compiler.
>>
>> Showing that the ``equal'' function satisfies the equality
>> relation is no longer ``beyond the capabilities of the compiler''.
>> We have the required formalisms and mechanisms to
>> prove properties at compile time.
>>
>> The SANE effort is essentially trying to push compile
>> time checking into proving that, for categories that use
>> ``equal'', we prove that the equal function implements
>> equality.
>>
>> I strongly encourage you to watch her video.
>>
>> Tim
>>
>> =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D
>> Barbara Liskov
>> May 2012
>> MIT CSAIL
>> Programming the Turing Machine
>> https://www.youtube.com/watch?v=3DibRar7sWulM
>>
>> POLYMORPHISM
>>
>> We don't just want a set, we want polymorphism or
>> generics, as they are called today. We wanted to
>> have a generic set which was paramaterized by type
>> so you could instantiate it as:
>>
>> Set =3D [T:type] create, insert,...
>> % representation for Set object
>> % implementation of Set operations
>> Set
>>
>> Set[int] s :=3D Set[int]$create()
>> Set[int]$insert(s,3)
>>
>> We wanted a static solution to this problem. The
>> problem is, not every type makes sense as a parameter
>> to Set of T. For sets, per se, you need an equality
>> relation. If it has been a sorted set we would have
>> some ordering relation. And a type that didn't have
>> one of those things would not have been a legitimate
>> parameter. We needed a way of expressing that in a
>> compile-time, checkable manner. Otherwise we would
>> have had to resort to runtime checking.
>>
>> Our solution was
>>
>> Set =3D [T: ] create, insert,...
>> T equal: (T,T) (bool)
>>
>>
>> Our solution, what we call the ``where clause''. So we
>> added this to the header. The ``where clause'' tells you
>> what operations the parameter type has to have.
>>
>> If you have the ``where'' clause you can do the static
>> checking because when you instantiate, when you provide
>> an actual type, the compiler can check that the type has
>> the operations that are required. And then, when you write
>> the implementation of Set the compiler knows it's ok to
>> call those operations because you can guarantee they are
>> actually there when you get around to running.
>>
>> Of course, you notice that there's just syntax here; there's
>> no semantics.
>>
>> As I'm sure you all know, compile-time type checking is
>> basically a proof technique of a very limited sort and
>> this was about as far as we can push what you could get out of the
>> static analysis. To go further, where we would say that T,
>> in addition, has to be an equality relation, that requires
>> much more sophisticated techniques that, even today, are
>> beyond the capabilities of the compiler.
>>
>>
>>
>>
>> On 3/24/20, Tim Daly wrote:
>>> I've spent entirely too much time studing the legal issues
>>> of free and open source software. There are copyright,
>>> trademark, and intellectual property laws. I have read
>>> several books, listened to lectures, and read papers on
>>> the subject. I've spoken to lawyers about it. I've even
>>> been required, by law, to coerce people I respect.
>>> You would think it was all perfectly clear. It isn't.
>>>
>>> The most entertaining and enlightening lectures were
>>> by Robert Lefkowitz at OSCON 2004. His talk is
>>> "The Semasiology of Open Source", which sounds
>>> horrible but I assure you, this is a real treat.
>>>
>>> THE THESIS
>>>
>>> Semasiology, n. The science of meanings or
>>> sense development (of words); the explanation
>>> of the development and changes of the meanings
>>> of words. Source: Webster's Revised Unabridged
>>> Dictionary, =C3=AF=C2=BF=C2=BD 1996, 1998 MICRA, Inc.
>>>
>>> "Open source doesn't just mean access to the
>>> source code." So begins the Open Source Definition.
>>> What then, does access to the source code mean?
>>> Seen through the lens of an Enterprise user, what
>>> does open source mean? When is (or isn't) it
>>> significant? And a catalogue of open source
>>> related arbitrage opportunities.
>>>
>>> http://origin.conversationsnetwork.org/Robert%20Lefkowitz%20-%20The%20S=
emasiology%20of%20Open%20Source.mp3
>>>
>>> Computer source code has words and sentence
>>> structure like actual prose or even poetry. Writing
>>> code for the computer is like writing an essay. It
>>> should be written for other people to read,
>>> understand and modify. These are some of the
>>> thoughts behind literate programming proposed
>>> by Donald Knuth. This is also one of the ideas
>>> behind Open Source.
>>>
>>> THE ANTITHESIS
>>>
>>> "Open Source" is a phrase like "Object Oriented"
>>> - weird at first, but when it became popular, the
>>> meaning began to depend on the context of the
>>> speaker or listener. "Object Oriented" meant that
>>> PERL, C++, Java, Smalltalk, Basic and the newest
>>> version of Cobol are all "Object Oriented" - for some
>>> specific definition of "Object Oriented". Similar is
>>> the case of the phrase "Open Source".
>>>
>>> In Part I, Lefkowitz talked about the shift of the
>>> meaning of "Open Source" away from any reference
>>> to the actual "source code," and more towards other
>>> phases of the software development life cycle. In
>>> Part II, he returns to the consideration of the
>>> relationship between "open source" and the actual
>>> "source code," and reflects upon both the way
>>> forward and the road behind, drawing inspiration
>>> from Charlemagne, King Louis XIV, Donald Knuth,
>>> and others.
>>>
>>> http://origin.conversationsnetwork.org/ITC.OSCON05-RobertLefkowitz-2005=
.08.03.mp3
>>>
>>> THE SYNTHESIS
>>>
>>> In a fascinating synthesis, Robert =E2=80=9Cr0ml=E2=80=9D Lefkowitz
>>> polishes up his exposition on the evolving meaning
>>> of the term =E2=80=98open source=E2=80=99. This intellectual joy-ride
>>> draws on some of the key ideas in artificial intelligence
>>> to probe the role of language, meaning and context
>>> in computing and the software development process.
>>> Like Wittgenstein=E2=80=99s famous thought experiment, the
>>> open source =E2=80=98beetle in a box=E2=80=99 can represent different
>>> things to different people, bearing interesting fruit for
>>> philosophers and software creators alike.
>>>
>>> http://itc.conversationsnetwork.org/audio/download/itconversations-1502=
.mp3
>>>
>>>
>>> On 3/7/20, Tim Daly wrote:
>>>> I've pushed the lastest version of Axiom. The plan, followed
>>>> so far, is to push once a month on the 7th.
>>>>
>>>> After some chat room interactions it was brought home
>>>> again that the proof world really does not seem to like the
>>>> idea of proving programs correct. And, given that it was is
>>>> of the main Axiom goals and a point of friction during the fork,
>>>> the computer algebra world does not like the idea of proving
>>>> programs correct either.
>>>>
>>>> So the idea of "computational mathematics", which includes
>>>> both disciplines (as well as type theory) seems still a long
>>>> way off.
>>>>
>>>> Nevertheless, the primary change in these past and future
>>>> updates is focused on merging proof and computer algebra.
>>>>
>>>> Proof systems are able to split the problem of creating a
>>>> proof and the problem of verifying a proof, which is much
>>>> cheaper. Ideally the proof checker would run on verified
>>>> hardware so the proof is checked "down to the metal".
>>>>
>>>> I have a background in Field Programmable Gate Arrays
>>>> (FPGAs) as I tried to do a startup using them. So now I'm
>>>> looking at creating a hardware proof checker using a
>>>> dedicated instruction set, one designed to be verifed.
>>>> New CPUs used in data centers (not yet available to us
>>>> mortals) have built-in FPGAs so it would be possible to
>>>> "side-load" a proof of a program to be checked while the
>>>> program is run. I have the FPGA and am doing a gate-level
>>>> special instruction design for such a proof checker.
>>>>
>>>>
>>>> On 2/7/20, Tim Daly wrote:
>>>>> As a mathematician, it is difficult to use a system like Axiom,
>>>>> mostly because it keeps muttering about Types. If you're not
>>>>> familiar with type theory (most mathematicians aren't) then it
>>>>> seems pointless and painful.
>>>>>
>>>>> So Axiom has a steep learning curve.
>>>>>
>>>>> As a mathematician with an algorithmic approach, it is difficult
>>>>> to use a system like Axiom, mostly because you have to find
>>>>> or create "domains" or "packages", understand categories
>>>>> with their inheritance model, and learn a new language with
>>>>> a painful compiler always complaining about types.
>>>>>
>>>>> So Axiom has a steep learning curve.
>>>>>
>>>>> The Sane version of Axiom requires knowing the mathematics.
>>>>> It also assumes a background in type theory, inductive logic,
>>>>> homotopy type theory, ML (meta-language, not machine
>>>>> learning (yet)), interactive theorem proving, kernels, tactics,
>>>>> and tacticals. Also assumed is knowledge of specification languages,
>>>>> Hoare triples, proof techniques, soundness, and completeness.
>>>>> Oh, and there is a whole new syntax and semantics added to
>>>>> specify definitions, axioms, and theorems, not to mention whole
>>>>> libraries of the same.
>>>>>
>>>>> So Axiom Sane has a steep learning curve.
>>>>>
>>>>> I've taken 10 courses at CMU and spent the last 4-5 years
>>>>> learning to read the leading edge literature (also known
>>>>> as "greek studies", since every paper has pages of greek).
>>>>>
>>>>> I'm trying to unify computer algebra and proof theory into a
>>>>> "computational mathematics" framework. I suspect that the only
>>>>> way this system will ever be useful is after Universities have a
>>>>> "Computational Mathematics" major course of study and degree.
>>>>>
>>>>> Creating a new department is harder than creating Axiom Sane
>>>>> because, you know, ... people.
>>>>>
>>>>> I think such a department is inevitable given the deep and wide
>>>>> impact of computers, just not in my lifetime. That's ok. When I
>>>>> started programming there was no computer science degree.
>>>>>
>>>>> Somebody has to be the first lemming over the cliff.
>>>>>
>>>>> Tim
>>>>>
>>>>> On 1/9/20, Tim Daly wrote:
>>>>>> When Axiom Sane is paired with a proof checker (e.g. with Lean)
>>>>>> there is a certain amount of verification that is involved.
>>>>>>
>>>>>> Axiom will provide proofs (presumably validated by Lean) for its
>>>>>> algorithms. Ideally, when a computation is requested from Lean
>>>>>> for a GCD, the result as well as a proof of the GCD algorithm is
>>>>>> returned. Lean can the verify that the proof is valid. But it is
>>>>>> computationally more efficient if Axiom and Lean use a cryptographic
>>>>>> hash, such as SHA1. That way the proof doesn't need to be
>>>>>> 'reproven', only a hash computation over the proof text needs to
>>>>>> be performed. Hashes are blazingly fast. This allows proofs to be
>>>>>> exchanged without re-running the proof mechanism. Since a large
>>>>>> computation request from Lean might involve many algorithms
>>>>>> there would be considerable overhead to recompute each proof.
>>>>>> A hash simplifies the issue yet provides proof integrity.
>>>>>>
>>>>>> Tim
>>>>>>
>>>>>>
>>>>>> On 1/9/20, Tim Daly wrote:
>>>>>>> Provisos.... that is, 'formula SUCH pre/post-conditions'
>>>>>>>
>>>>>>> A computer algebra system ought to know and ought to provide
>>>>>>> information about the domain and range of a resulting formula.
>>>>>>> I've been pushing this effort since the 1980s (hence the
>>>>>>> SuchThat domain).
>>>>>>>
>>>>>>> It turns out that computing with, carrying, and combining this
>>>>>>> information is difficult if not impossible in the current system.
>>>>>>> The information isn't available and isn't computed. In that sense,
>>>>>>> the original Axiom system is 'showing its age'.
>>>>>>>
>>>>>>> In the Sane implementation the information is available. It is
>>>>>>> part of the specification and part of the proof steps. With a
>>>>>>> careful design it will be possible to provide provisos for each
>>>>>>> given result that are carried with the result for use in further
>>>>>>> computation.
>>>>>>>
>>>>>>> This raises interesting questions to be explored. For example,
>>>>>>> if the formula is defined over an interval, how is the interval
>>>>>>> arithmetic handled?
>>>>>>>
>>>>>>> Exciting research ahead!
>>>>>>>
>>>>>>> Tim
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>> On 1/3/20, Tim Daly wrote:
>>>>>>>> Trusted Kernel... all the way to the metal.
>>>>>>>>
>>>>>>>> While building a trusted computer algebra system, the
>>>>>>>> SANE version of Axiom, I've been looking at questions of
>>>>>>>> trust at all levels.
>>>>>>>>
>>>>>>>> One of the key tenets (the de Bruijn principle) calls for a
>>>>>>>> trusted kernel through which all other computations must
>>>>>>>> pass. Coq, Lean, and other systems do this. They base
>>>>>>>> their kernel on logic like the Calculus of Construction or
>>>>>>>> something similar.
>>>>>>>>
>>>>>>>> Andrej Bauer has been working on a smaller kernel (a
>>>>>>>> nucleus) that separates the trust from the logic. The rules
>>>>>>>> for the logic can be specified as needed but checked by
>>>>>>>> the nucleus code.
>>>>>>>>
>>>>>>>> I've been studying Field Programmable Gate Arrays (FPGA)
>>>>>>>> that allow you to create your own hardware in a C-like
>>>>>>>> language (Verilog). It allows you to check the chip you build
>>>>>>>> all the way down to the transistor states. You can create
>>>>>>>> things as complex as a whole CPU or as simple as a trusted
>>>>>>>> nucleus. (youtube: Building a CPU on an FPGA). ACL2 has a
>>>>>>>> history of verifying hardware logic.
>>>>>>>>
>>>>>>>> It appears that, assuming I can understand Bauers
>>>>>>>> Andromeda system, it would be possible and not that hard
>>>>>>>> to implement a trusted kernel on an FPGA the size and
>>>>>>>> form factor of a USB stick.
>>>>>>>>
>>>>>>>> Trust "down to the metal".
>>>>>>>>
>>>>>>>> Tim
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>> On 12/15/19, Tim Daly wrote:
>>>>>>>>> Progress in happening on the new Sane Axiom compiler.
>>>>>>>>>
>>>>>>>>> Recently I've been musing about methods to insert axioms
>>>>>>>>> into categories so they could be inherited like signatures.
>>>>>>>>> At the moment I've been thinking about adding axioms in
>>>>>>>>> the same way that signatures are written, adding them to
>>>>>>>>> the appropriate categories.
>>>>>>>>>
>>>>>>>>> But this is an interesting design question.
>>>>>>>>>
>>>>>>>>> Axiom already has a mechanism for inheriting signatures
>>>>>>>>> from categories. That is, we can bet a plus signature from,
>>>>>>>>> say, the Integer category.
>>>>>>>>>
>>>>>>>>> Suppose we follow the same pattern. Currently Axiom
>>>>>>>>> inherits certain so-called "attributes", such as
>>>>>>>>> ApproximateAttribute,
>>>>>>>>> which implies that the results are only approximate.
>>>>>>>>>
>>>>>>>>> We could adapt the same mechnaism to inherit the Transitive
>>>>>>>>> property by defining it in its own category. In fact, if we
>>>>>>>>> follow Carette and Farmer's "tiny theories" architecture,
>>>>>>>>> where each property has its own inheritable category,
>>>>>>>>> we can "mix and match" the axioms at will.
>>>>>>>>>
>>>>>>>>> An "axiom" category would also export a function. This function
>>>>>>>>> would essentially be a "tactic" used in a proof. It would modify
>>>>>>>>> the proof step by applying the function to the step.
>>>>>>>>>
>>>>>>>>> Theorems would have the same structure.
>>>>>>>>>
>>>>>>>>> This allows theorems to be constructed at run time (since
>>>>>>>>> Axiom supports "First Class Dynamic Types".
>>>>>>>>>
>>>>>>>>> In addition, this design can be "pushed down" into the Spad
>>>>>>>>> language so that Spad statements (e.g. assignment) had
>>>>>>>>> proof-related properties. A range such as [1..10] would
>>>>>>>>> provide explicit bounds in a proof "by language definition".
>>>>>>>>> Defining the logical properties of language statements in
>>>>>>>>> this way would make it easier to construct proofs since the
>>>>>>>>> invariants would be partially constructed already.
>>>>>>>>>
>>>>>>>>> This design merges the computer algebra inheritance
>>>>>>>>> structure with the proof of algorithms structure, all under
>>>>>>>>> the same mechanism.
>>>>>>>>>
>>>>>>>>> Tim
>>>>>>>>>
>>>>>>>>> On 12/11/19, Tim Daly wrote:
>>>>>>>>>> I've been reading Stephen Kell's (Univ of Kent
>>>>>>>>>> https://www.cs.kent.ac.uk/people/staff/srk21/) on
>>>>>>>>>> Seven deadly sins of talking about =E2=80=9Ctypes=E2=80=9D
>>>>>>>>>> https://www.cs.kent.ac.uk/people/staff/srk21//blog/2014/10/07/
>>>>>>>>>>
>>>>>>>>>> He raised an interesting idea toward the end of the essay
>>>>>>>>>> that type-checking could be done outside the compiler.
>>>>>>>>>>
>>>>>>>>>> I can see a way to do this in Axiom's Sane compiler.
>>>>>>>>>> It would be possible to run a program over the source code
>>>>>>>>>> to collect the information and write a stand-alone type
>>>>>>>>>> checker. This "unbundles" type checking and compiling.
>>>>>>>>>>
>>>>>>>>>> Taken further I can think of several other kinds of checkers
>>>>>>>>>> (aka 'linters') that could be unbundled.
>>>>>>>>>>
>>>>>>>>>> It is certainly something to explore.
>>>>>>>>>>
>>>>>>>>>> Tim
>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>> On 12/8/19, Tim Daly wrote:
>>>>>>>>>>> The Axiom Sane compiler is being "shaped by the hammer
>>>>>>>>>>> blows of reality", to coin a phrase.
>>>>>>>>>>>
>>>>>>>>>>> There are many goals. One of the primary goals is creating a
>>>>>>>>>>> compiler that can be understood, maintained, and modified.
>>>>>>>>>>>
>>>>>>>>>>> So the latest changes involved adding multiple index files.
>>>>>>>>>>> These are documentation (links to where terms are mentioned
>>>>>>>>>>> in the text), code (links to the implementation of things),
>>>>>>>>>>> error (links to where errors are defined), signatures (links to
>>>>>>>>>>> the signatures of lisp functions), figures (links to figures),
>>>>>>>>>>> and separate category, domain, and package indexes.
>>>>>>>>>>>
>>>>>>>>>>> The tikz package is now used to create "railroad diagrams"
>>>>>>>>>>> of syntax (ala, the PASCAL report). The implementation of
>>>>>>>>>>> those diagrams follows immediately. Collectively these will
>>>>>>>>>>> eventually define at least the syntax of the language. In the
>>>>>>>>>>> ideal, changing the diagram would change the code but I'm
>>>>>>>>>>> not that clever.
>>>>>>>>>>>
>>>>>>>>>>> Reality shows up with the curent constraint that the
>>>>>>>>>>> compiler should accept the current Spad language as
>>>>>>>>>>> closely as possible. Of course, plans are to include new
>>>>>>>>>>> constructs (e.g. hypothesis, axiom, specification, etc)
>>>>>>>>>>> but these are being postponed until "syntax complete".
>>>>>>>>>>>
>>>>>>>>>>> All parse information is stored in a parse object, which
>>>>>>>>>>> is a CLOS object (and therefore a Common Lisp type)
>>>>>>>>>>> Fields within the parse object, e.g. variables are also
>>>>>>>>>>> CLOS objects (and therefore a Common Lisp type).
>>>>>>>>>>> It's types all the way down.
>>>>>>>>>>>
>>>>>>>>>>> These types are being used as 'signatures' for the
>>>>>>>>>>> lisp functions. The goal is to be able to type-check the
>>>>>>>>>>> compiler implementation as well as the Sane language.
>>>>>>>>>>>
>>>>>>>>>>> The parser is designed to "wrap around" so that the
>>>>>>>>>>> user-level output of a parse should be the user-level
>>>>>>>>>>> input (albeit in a 'canonical" form). This "mirror effect"
>>>>>>>>>>> should make it easy to see that the parser properly
>>>>>>>>>>> parsed the user input.
>>>>>>>>>>>
>>>>>>>>>>> The parser is "first class" so it will be available at
>>>>>>>>>>> runtime as a domain allowing Spad code to construct
>>>>>>>>>>> Spad code.
>>>>>>>>>>>
>>>>>>>>>>> One plan, not near implementation, is to "unify" some
>>>>>>>>>>> CLOS types with the Axiom types (e.g. String). How
>>>>>>>>>>> this will happen is still in the land of design. This would
>>>>>>>>>>> "ground" Spad in lisp, making them co-equal.
>>>>>>>>>>>
>>>>>>>>>>> Making lisp "co-equal" is a feature, especially as Spad is
>>>>>>>>>>> really just a domain-specific language in lisp. Lisp
>>>>>>>>>>> functions (with CLOS types as signatures) would be
>>>>>>>>>>> avaiable for implementing Spad functions. This not
>>>>>>>>>>> only improves the efficiency, it would make the
>>>>>>>>>>> BLAS/LAPACK (see volume 10.5) code "native" to Axiom.
>>>>>>>>>>> .
>>>>>>>>>>> On the theory front I plan to attend the Formal Methods
>>>>>>>>>>> in Mathematics / Lean Together conference, mostly to
>>>>>>>>>>> know how little I know, especially that I need to know.
>>>>>>>>>>> http://www.andrew.cmu.edu/user/avigad/meetings/fomm2020/
>>>>>>>>>>>
>>>>>>>>>>> Tim
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>> On 11/28/19, Jacques Carette wrote:
>>>>>>>>>>>> The underlying technology to use for building such an algebra
>>>>>>>>>>>> library
>>>>>>>>>>>> is
>>>>>>>>>>>> documented in the paper " Building on the Diamonds between
>>>>>>>>>>>> Theories:
>>>>>>>>>>>> Theory Presentation Combinators"
>>>>>>>>>>>> http://www.cas.mcmaster.ca/~carette/publications/tpcj.pdf
>>>>>>>>>>>> [which
>>>>>>>>>>>> will
>>>>>>>>>>>> also be on the arxiv by Monday, and has been submitted to a
>>>>>>>>>>>> journal].
>>>>>>>>>>>>
>>>>>>>>>>>> There is a rather full-fledged prototype, very well documented
>>>>>>>>>>>> at
>>>>>>>>>>>> https://alhassy.github.io/next-700-module-systems/prototype/pa=
ckage-former.html
>>>>>>>>>>>>
>>>>>>>>>>>> (source at https://github.com/alhassy/next-700-module-systems)=
.
>>>>>>>>>>>> It
>>>>>>>>>>>> is
>>>>>>>>>>>> literate source.
>>>>>>>>>>>>
>>>>>>>>>>>> The old prototype was hard to find - it is now at
>>>>>>>>>>>> https://github.com/JacquesCarette/MathScheme.
>>>>>>>>>>>>
>>>>>>>>>>>> There is also a third prototype in the MMT system, but it does
>>>>>>>>>>>> not
>>>>>>>>>>>> quite
>>>>>>>>>>>> function properly today, it is under repair.
>>>>>>>>>>>>
>>>>>>>>>>>> The paper "A Language Feature to Unbundle Data at Will"
>>>>>>>>>>>> (https://alhassy.github.io/next-700-module-systems/papers/gpce=
19_a_language_feature_to_unbundle_data_at_will.pdf)
>>>>>>>>>>>>
>>>>>>>>>>>> is also relevant, as it solves a problem with parametrized
>>>>>>>>>>>> theories
>>>>>>>>>>>> (parametrized Categories in Axiom terminology) that all curren=
t
>>>>>>>>>>>> systems
>>>>>>>>>>>> suffer from.
>>>>>>>>>>>>
>>>>>>>>>>>> Jacques
>>>>>>>>>>>>
>>>>>>>>>>>> On 2019-11-27 11:47 p.m., Tim Daly wrote:
>>>>>>>>>>>>> The new Sane compiler is also being tested with the Fricas
>>>>>>>>>>>>> algebra code. The compiler knows about the language but
>>>>>>>>>>>>> does not depend on the algebra library (so far). It should be
>>>>>>>>>>>>> possible, by design, to load different algebra towers.
>>>>>>>>>>>>>
>>>>>>>>>>>>> In particular, one idea is to support the "tiny theories"
>>>>>>>>>>>>> algebra from Carette and Farmer. This would allow much
>>>>>>>>>>>>> finer grain separation of algebra and axioms.
>>>>>>>>>>>>>
>>>>>>>>>>>>> This "flexible algebra" design would allow things like the
>>>>>>>>>>>>> Lean theorem prover effort in a more natural style.
>>>>>>>>>>>>>
>>>>>>>>>>>>> Tim
>>>>>>>>>>>>>
>>>>>>>>>>>>>
>>>>>>>>>>>>> On 11/26/19, Tim Daly wrote:
>>>>>>>>>>>>>> The current design and code base (in bookvol15) supports
>>>>>>>>>>>>>> multiple back ends. One will clearly be a common lisp.
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> Another possible design choice is to target the GNU
>>>>>>>>>>>>>> GCC intermediate representation, making Axiom "just
>>>>>>>>>>>>>> another front-end language" supported by GCC.
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> The current intermediate representation does not (yet)
>>>>>>>>>>>>>> make any decision about the runtime implementation.
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> Tim
>>>>>>>>>>>>>>
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> On 11/26/19, Tim Daly wrote:
>>>>>>>>>>>>>>> Jason Gross and Adam Chlipala ("Parsing Parses") developed
>>>>>>>>>>>>>>> a dependently typed general parser for context free grammar
>>>>>>>>>>>>>>> in Coq.
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> They used the parser to prove its own completeness.
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> Unfortunately Spad is not a context-free grammar.
>>>>>>>>>>>>>>> But it is an intersting thought exercise to consider
>>>>>>>>>>>>>>> an "Axiom on Coq" implementation.
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> Tim
>>>>>>>>>>>>>>>
>>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>
>>>>>>>>
>>>>>>>
>>>>>>
>>>>>
>>>>
>>>
>>
>
From MAILER-DAEMON Sun Jul 19 12:21:46 2020
Received: from list by lists.gnu.org with archive (Exim 4.90_1)
id 1jxC4P-00071D-TF
for mharc-axiom-developer@gnu.org; Sun, 19 Jul 2020 12:21:45 -0400
Received: from eggs.gnu.org ([2001:470:142:3::10]:58058)
by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256)
(Exim 4.90_1) (envelope-from )
id 1jxC4K-0006z9-4A
for axiom-developer@nongnu.org; Sun, 19 Jul 2020 12:21:41 -0400
Received: from ppsf02.ccny.cuny.edu ([134.74.98.56]:39116)
by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256)
(Exim 4.90_1) (envelope-from )
id 1jxC4B-0002js-Il
for axiom-developer@nongnu.org; Sun, 19 Jul 2020 12:21:38 -0400
Received: from pps.filterd (ppsf02.ccny.cuny.edu [127.0.0.1])
by ppsf02.ccny.cuny.edu (8.16.0.42/8.16.0.42) with SMTP id 06JGLQlH012779;
Sun, 19 Jul 2020 09:21:26 -0700
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=ccny.cuny.edu;
h=from : to :
subject : date : message-id : references : in-reply-to : content-type :
content-transfer-encoding : mime-version; s=Key1;
bh=6RZQt4nXDJBJ0N22HwlTWNtdA+WqkyN5/VbquG3RNYQ=;
b=hqsGfIDEwoOpllARJ4PDKCtWZDkR5pRK8Va8w7LeVOJPQRFZWeh+OPVbWthtVPKZOju6
/sRflSBQu65jNksKsO2FajnBt/jJlnDM15SwO6X3naNRiyNo4YPoETaxOIJ4J88Uz7Yi
BHE3WD8HplK0V+XbTHN20HyGtA3zDix3V2ZfR8UsjesEslkk9UPtOhZXL48QpIp2YX02
2rnHq1M00CEY7wYYJPET44vLTGZDU9mcWYM/wqeb49TcHrnWhpBNkdQeqUSiM0QPVQjq
LPz35vYwMKty1UByTY9Wl4QaRA3yeG6ixchDOPor4rvh1IHHHM6O4Dp1w+QBPVCTR/rO gA==
Received: from ccny-mbx1.itcs.ccny.lan (ccny-mbx1.itcs.ccny.lan
[134.74.98.110]) by ppsf02.ccny.cuny.edu with ESMTP id 32bxms1gn6-1
(version=TLSv1.2 cipher=ECDHE-RSA-AES256-SHA384 bits=256 verify=NOT);
Sun, 19 Jul 2020 09:21:26 -0700
Received: from CCNY-MBX4.itcs.ccny.lan (134.74.99.111) by
CCNY-MBX1.itcs.ccny.lan (134.74.98.110) with Microsoft SMTP Server (TLS) id
15.0.1473.3; Sun, 19 Jul 2020 12:21:25 -0400
Received: from CCNY-MBX4.itcs.ccny.lan ([fe80::4d12:46ce:c4d7:fd81]) by
CCNY-MBX4.itcs.ccny.lan ([fe80::4d12:46ce:c4d7:fd81%15]) with mapi id
15.00.1473.005; Sun, 19 Jul 2020 12:21:24 -0400
From: William Sit
To: Tim Daly , axiom-dev
Subject: Re: [EXTERNAL] Re: Axiom musings...
Thread-Topic: [EXTERNAL] Re: Axiom musings...
Thread-Index: AQHVpDkUBTyXH3ckeUCKI5+JEg2RvKegWTwAgAEU6oCAEDcdAIAECgmAgAayXICAHMBfgIAKZtmAgAAM3ACALGyDgIAuhXEAgBpM0gCAhMyjAIAYHauAgBnhOACAAOOw5w==
Date: Sun, 19 Jul 2020 16:21:23 +0000
Message-ID: <1595175684369.31200@ccny.cuny.edu>
References:
,
In-Reply-To:
Accept-Language: en-US
Content-Language: en-US
X-MS-Has-Attach:
X-MS-TNEF-Correlator:
x-ms-exchange-messagesentrepresentingtype: 1
x-ms-exchange-transport-fromentityheader: Hosted
x-originating-ip: [134.74.99.235]
Content-Type: text/plain; charset="Windows-1252"
Content-Transfer-Encoding: quoted-printable
MIME-Version: 1.0
X-Proofpoint-Virus-Version: vendor=fsecure engine=2.50.10434:6.0.235, 18.0.687
definitions=2020-07-19_03:2020-07-17,
2020-07-19 signatures=0
X-Proofpoint-Spam-Details: rule=notspam policy=default score=0 phishscore=0
bulkscore=0 spamscore=0
mlxscore=0 suspectscore=0 priorityscore=1501 adultscore=0
lowpriorityscore=0 clxscore=1011 mlxlogscore=999 malwarescore=0
impostorscore=0 classifier=spam adjust=0 reason=mlx scancount=1
engine=8.12.0-2006250000 definitions=main-2007190125
Received-SPF: pass client-ip=134.74.98.56; envelope-from=wsit@ccny.cuny.edu;
helo=ppsf02.ccny.cuny.edu
X-detected-operating-system: by eggs.gnu.org: First seen = 2020/07/19 12:21:28
X-ACL-Warn: Detected OS = Linux 3.x [generic] [fuzzy]
X-Spam_score_int: -42
X-Spam_score: -4.3
X-Spam_bar: ----
X-Spam_report: (-4.3 / 5.0 requ) BAYES_00=-1.9, DKIM_SIGNED=0.1,
DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, RCVD_IN_DNSWL_MED=-2.3,
SPF_HELO_NONE=0.001, SPF_PASS=-0.001,
URIBL_BLOCKED=0.001 autolearn=ham autolearn_force=no
X-Spam_action: no action
X-BeenThere: axiom-developer@nongnu.org
X-Mailman-Version: 2.1.23
Precedence: list
List-Id: Axiom Developers
List-Unsubscribe: ,
List-Archive:
List-Post:
List-Help:
List-Subscribe: ,
X-List-Received-Date: Sun, 19 Jul 2020 16:21:43 -0000
Hi Tim:=0A=
=0A=
Glad to hear from you now and then, promoting and working towards your idea=
s and ideals.=0A=
=0A=
>>We need proven algorithms.=0A=
=0A=
Just one short comment: it is often possible to prove algorithms (that is, =
providing the theoretical foundation for the algorithm), but it is much har=
der to prove that an implementation of the algorithm is correct. As you wel=
l know, the distinction lies in that implementation involves data represent=
ations whereas proofs of algorithms normally ignore them. Introducing (fini=
te) data representations means introducing boundary situations that a progr=
ammer implementing an algorithm must deal with. So perhaps what we need to =
prove should include the correctness of implementations (to the bare metal,=
as you often say) and we should have a different set of analytic tools tha=
t can deal with the correctness (or completeness) of data representations. =
Of course, these tools must also be proven with the same rigor since behind=
every program is an algorithm.=0A=
=0A=
William=0A=
=0A=
William Sit=0A=
Professor Emeritus=0A=
Department of Mathematics=0A=
The City College of The City University of New York=0A=
New York, NY 10031=0A=
homepage: wsit.ccny.cuny.edu=0A=
=0A=
________________________________________=0A=
From: Axiom-developer on behalf of Tim Daly =0A=
Sent: Saturday, July 18, 2020 6:28 PM=0A=
To: axiom-dev; Tim Daly=0A=
Subject: [EXTERNAL] Re: Axiom musings...=0A=
=0A=
Richard Hamming gave a great talk. "You and Your Research"=0A=
https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.youtube.com_watc=
h-3Fv-3Da1zDuOPkMSw&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIM=
Gmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0k=
mp-2428hMSBYbz5fq8bDzgkQ&s=3DkSXlFiPNCbYVZvoZ62OUVd_40kcVviTxSKF3vNNtm0U&e=
=3D=0A=
=0A=
His big question is:=0A=
=0A=
"What is the most important problem in your field=0A=
and why aren't you working on it?"=0A=
=0A=
To my mind, the most important problem in the field of=0A=
computational mathematics is grounding computer=0A=
algebra in proofs.=0A=
=0A=
Computer mathematical algorithms that "maybe,=0A=
possibly, give correct answers sometimes" is a problem.=0A=
Indeed, for computer algebra, it is the most important=0A=
problem. We need proven algorithms.=0A=
=0A=
New algorithms, better graphics, better documentation,=0A=
are all "nice to have" but, as Hamming would say,=0A=
they are not "the most important problem".=0A=
=0A=
Tim=0A=
=0A=
=0A=
=0A=
On 7/2/20, Tim Daly wrote:=0A=
> Time for another update.=0A=
>=0A=
> The latest Intel processors, available only to data centers=0A=
> so far, have a built-in FPGA. This allows you to design=0A=
> your own circuits and have them loaded "on the fly",=0A=
> running in parallel with the CPU.=0A=
>=0A=
> I bought a Lattice ICEstick FPGA development board. For=0A=
> the first time there are open source tools that support it so=0A=
> it is a great test bench for ideas and development. It is a=0A=
> USB drive so it can be easily ported to any PC.=0A=
> (https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.latticesemi.c=
om_products_developmentboardsandkits_icestick&d=3DDwIFaQ&c=3D4NmamNZG3KTnUC=
oC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bk=
xc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DQxcJcE1BdIMqDbutQz2H=
FhAAAymG-QswIjRao_YTwz4&e=3D )=0A=
>=0A=
> I also bought a large Intel Cyclone FPGA development board.=0A=
> (https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__www.terasic.com.tw=
_cgi-2Dbin_page_archive.pl-3FLanguage-3DEnglish-26No-3D836&d=3DDwIFaQ&c=3D4=
NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdS=
WMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3D3wW6Bue=
AeyVTQi0xGqoeE7xIA5EREDmvQR4fPw5zAXo&e=3D )=0A=
> which has 2 embedded ARM processors. Unfortunately=0A=
> the tools (which are freely available) are not open source.=0A=
> It has sufficient size and power to do anything.=0A=
>=0A=
>=0A=
> I've got 2 threads of work in progress, both of which=0A=
> involve FPGAs (Field Programmable Gate Arrays).=0A=
>=0A=
> Thread 1=0A=
>=0A=
> The first thread involves proving programs correct. Once=0A=
> a proof has been made it is rather easier to check the proof.=0A=
> If code is shipped with a proof, the proof can be loaded into=0A=
> an FPGA running a proof-checker which verifies the program=0A=
> in parallel with running the code on the CPU.=0A=
>=0A=
> I am researching the question of writing a proof checker that=0A=
> runs on an FPGA, thus verifying the code "down to the metal".=0A=
> The Lean proof checker is the current target.=0A=
>=0A=
> The idea is to make "Oracle" algorithms that, because they=0A=
> are proven correct and verified at runtime, can be trusted=0A=
> by other mathematical software (e.g. Lean, Coq, Agda)=0A=
> when used in proofs.=0A=
>=0A=
> Thread 2=0A=
>=0A=
>=0A=
> The second thread involves arithmetic. Axiom currently ships=0A=
> with numeric routines (BLAS and LAPACK, see bookvol10.5).=0A=
> These routines have a known set of numeric failures such as=0A=
> cancellation, underflow, and scaling.=0A=
>=0A=
> John Gustafson has designed a 'unum' numeric format that can=0A=
> eliminate many of these errors. (See=0A=
> Gustafson, John "The End of Error" CRC Press 2015=0A=
> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.amazon.com_End=
-2DError-2DComputing-2DChapman-2DComputational_dp_1482239868_ref-3Dsr-5F1-5=
F1-3Fdchild-3D1-26keywords-3Dgustafson-2Bthe-2Bend-2Bof-2Berror-26qid-3D159=
3685423-26sr-3D8-2D1&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtI=
MGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0=
kmp-2428hMSBYbz5fq8bDzgkQ&s=3DcxcqXTqQQjOFj6wRWKcaCMutCt0BYJ0WwJnlo0hYa0A&e=
=3D )=0A=
>=0A=
> The research goal is to implement Axiom's floating-point=0A=
> arithmetic that can be offloaded onto an FPGA implementing=0A=
> the unum format. Such a system would radically simplify=0A=
> the implementation of BLAS and LAPACK as most of the=0A=
> errors can't occur. The impact would be similar to using=0A=
> multi-precision integer arithmetic, only now its floating-point.=0A=
>=0A=
> SANE, the greater goal.=0A=
>=0A=
> The Axiom SANE compiler / interpreter can use both of=0A=
> these tools to implement trusted mathematical software.=0A=
> It's a long, ambitious research effort but even if only pieces=0A=
> of it succeed, it changes computational mathematics.=0A=
>=0A=
> Tim=0A=
>=0A=
> "A person's reach should exceed their grasp,=0A=
> or what's a computer for?" (misquoting Robert Browning)=0A=
>=0A=
> (https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.quotetab.com_=
quote_by-2Drobert-2Dbrowning_ah-2Dbut-2Da-2Dmans-2Dreach-2Dshould-2Dexceed-=
2Dhis-2Dgrasp-2Dor-2Dwhats-2Da-2Dheaven-2Dfor&d=3DDwIFaQ&c=3D4NmamNZG3KTnUC=
oC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bk=
xc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DayZkzXC9ekESctdx_Oqs=
fcYl4z14qlYS02TBNmnaHUY&e=3D )=0A=
>=0A=
>=0A=
>=0A=
>=0A=
> On 6/16/20, Tim Daly wrote:=0A=
>> WHY PROVE AXIOM CORRECT (SANE)?=0A=
>>=0A=
>> Historically, Axiom credits CLU, the Cluster language by=0A=
>> Barbara Liskov, with the essential ideas behind the Spad=0A=
>> language. Barbara gave a talk (a partial transcript below)=0A=
>> that gives the rational behind the ``where clause'' used by=0A=
>> Spad.=0A=
>>=0A=
>> She talks about the limits of the compile time capablity.=0A=
>> In particular, she says:=0A=
>>=0A=
>> To go further, where we would say that T,=0A=
>> in addition, has to be an equality relation, that requires=0A=
>> much more sophisticated techniques that, even today, are=0A=
>> beyond the capabilities of the compiler.=0A=
>>=0A=
>> Showing that the ``equal'' function satisfies the equality=0A=
>> relation is no longer ``beyond the capabilities of the compiler''.=0A=
>> We have the required formalisms and mechanisms to=0A=
>> prove properties at compile time.=0A=
>>=0A=
>> The SANE effort is essentially trying to push compile=0A=
>> time checking into proving that, for categories that use=0A=
>> ``equal'', we prove that the equal function implements=0A=
>> equality.=0A=
>>=0A=
>> I strongly encourage you to watch her video.=0A=
>>=0A=
>> Tim=0A=
>>=0A=
>> =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=0A=
>> Barbara Liskov=0A=
>> May 2012=0A=
>> MIT CSAIL=0A=
>> Programming the Turing Machine=0A=
>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.youtube.com_w=
atch-3Fv-3DibRar7sWulM&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRw=
tIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZeP=
X0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DmKaSE2deFF_wqq9yriqo-s51oF6c3-ksS2_IZhS1eGY=
&e=3D=0A=
>>=0A=
>> POLYMORPHISM=0A=
>>=0A=
>> We don't just want a set, we want polymorphism or=0A=
>> generics, as they are called today. We wanted to=0A=
>> have a generic set which was paramaterized by type=0A=
>> so you could instantiate it as:=0A=
>>=0A=
>> Set =3D [T:type] create, insert,...=0A=
>> % representation for Set object=0A=
>> % implementation of Set operations=0A=
>> Set=0A=
>>=0A=
>> Set[int] s :=3D Set[int]$create()=0A=
>> Set[int]$insert(s,3)=0A=
>>=0A=
>> We wanted a static solution to this problem. The=0A=
>> problem is, not every type makes sense as a parameter=0A=
>> to Set of T. For sets, per se, you need an equality=0A=
>> relation. If it has been a sorted set we would have=0A=
>> some ordering relation. And a type that didn't have=0A=
>> one of those things would not have been a legitimate=0A=
>> parameter. We needed a way of expressing that in a=0A=
>> compile-time, checkable manner. Otherwise we would=0A=
>> have had to resort to runtime checking.=0A=
>>=0A=
>> Our solution was=0A=
>>=0A=
>> Set =3D [T: ] create, insert,...=0A=
>> T equal: (T,T) (bool)=0A=
>>=0A=
>>=0A=
>> Our solution, what we call the ``where clause''. So we=0A=
>> added this to the header. The ``where clause'' tells you=0A=
>> what operations the parameter type has to have.=0A=
>>=0A=
>> If you have the ``where'' clause you can do the static=0A=
>> checking because when you instantiate, when you provide=0A=
>> an actual type, the compiler can check that the type has=0A=
>> the operations that are required. And then, when you write=0A=
>> the implementation of Set the compiler knows it's ok to=0A=
>> call those operations because you can guarantee they are=0A=
>> actually there when you get around to running.=0A=
>>=0A=
>> Of course, you notice that there's just syntax here; there's=0A=
>> no semantics.=0A=
>>=0A=
>> As I'm sure you all know, compile-time type checking is=0A=
>> basically a proof technique of a very limited sort and=0A=
>> this was about as far as we can push what you could get out of the=0A=
>> static analysis. To go further, where we would say that T,=0A=
>> in addition, has to be an equality relation, that requires=0A=
>> much more sophisticated techniques that, even today, are=0A=
>> beyond the capabilities of the compiler.=0A=
>>=0A=
>>=0A=
>>=0A=
>>=0A=
>> On 3/24/20, Tim Daly wrote:=0A=
>>> I've spent entirely too much time studing the legal issues=0A=
>>> of free and open source software. There are copyright,=0A=
>>> trademark, and intellectual property laws. I have read=0A=
>>> several books, listened to lectures, and read papers on=0A=
>>> the subject. I've spoken to lawyers about it. I've even=0A=
>>> been required, by law, to coerce people I respect.=0A=
>>> You would think it was all perfectly clear. It isn't.=0A=
>>>=0A=
>>> The most entertaining and enlightening lectures were=0A=
>>> by Robert Lefkowitz at OSCON 2004. His talk is=0A=
>>> "The Semasiology of Open Source", which sounds=0A=
>>> horrible but I assure you, this is a real treat.=0A=
>>>=0A=
>>> THE THESIS=0A=
>>>=0A=
>>> Semasiology, n. The science of meanings or=0A=
>>> sense development (of words); the explanation=0A=
>>> of the development and changes of the meanings=0A=
>>> of words. Source: Webster's Revised Unabridged=0A=
>>> Dictionary, =EF=BF=BD 1996, 1998 MICRA, Inc.=0A=
>>>=0A=
>>> "Open source doesn't just mean access to the=0A=
>>> source code." So begins the Open Source Definition.=0A=
>>> What then, does access to the source code mean?=0A=
>>> Seen through the lens of an Enterprise user, what=0A=
>>> does open source mean? When is (or isn't) it=0A=
>>> significant? And a catalogue of open source=0A=
>>> related arbitrage opportunities.=0A=
>>>=0A=
>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__origin.conversati=
onsnetwork.org_Robert-2520Lefkowitz-2520-2D-2520The-2520Semasiology-2520of-=
2520Open-2520Source.mp3&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHR=
wtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZe=
PX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DIpKqNvLCWxaxdmI9ATBmNX0r3h_3giwDJVTFcnEbus=
M&e=3D=0A=
>>>=0A=
>>> Computer source code has words and sentence=0A=
>>> structure like actual prose or even poetry. Writing=0A=
>>> code for the computer is like writing an essay. It=0A=
>>> should be written for other people to read,=0A=
>>> understand and modify. These are some of the=0A=
>>> thoughts behind literate programming proposed=0A=
>>> by Donald Knuth. This is also one of the ideas=0A=
>>> behind Open Source.=0A=
>>>=0A=
>>> THE ANTITHESIS=0A=
>>>=0A=
>>> "Open Source" is a phrase like "Object Oriented"=0A=
>>> - weird at first, but when it became popular, the=0A=
>>> meaning began to depend on the context of the=0A=
>>> speaker or listener. "Object Oriented" meant that=0A=
>>> PERL, C++, Java, Smalltalk, Basic and the newest=0A=
>>> version of Cobol are all "Object Oriented" - for some=0A=
>>> specific definition of "Object Oriented". Similar is=0A=
>>> the case of the phrase "Open Source".=0A=
>>>=0A=
>>> In Part I, Lefkowitz talked about the shift of the=0A=
>>> meaning of "Open Source" away from any reference=0A=
>>> to the actual "source code," and more towards other=0A=
>>> phases of the software development life cycle. In=0A=
>>> Part II, he returns to the consideration of the=0A=
>>> relationship between "open source" and the actual=0A=
>>> "source code," and reflects upon both the way=0A=
>>> forward and the road behind, drawing inspiration=0A=
>>> from Charlemagne, King Louis XIV, Donald Knuth,=0A=
>>> and others.=0A=
>>>=0A=
>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__origin.conversati=
onsnetwork.org_ITC.OSCON05-2DRobertLefkowitz-2D2005.08.03.mp3&d=3DDwIFaQ&c=
=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ7=
9PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DLTg=
LxuL_diAdUFVj96fbcZJ08IEv_MGf28Vlk0InNQI&e=3D=0A=
>>>=0A=
>>> THE SYNTHESIS=0A=
>>>=0A=
>>> In a fascinating synthesis, Robert =93r0ml=94 Lefkowitz=0A=
>>> polishes up his exposition on the evolving meaning=0A=
>>> of the term =91open source=92. This intellectual joy-ride=0A=
>>> draws on some of the key ideas in artificial intelligence=0A=
>>> to probe the role of language, meaning and context=0A=
>>> in computing and the software development process.=0A=
>>> Like Wittgenstein=92s famous thought experiment, the=0A=
>>> open source =91beetle in a box=92 can represent different=0A=
>>> things to different people, bearing interesting fruit for=0A=
>>> philosophers and software creators alike.=0A=
>>>=0A=
>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__itc.conversations=
network.org_audio_download_itconversations-2D1502.mp3&d=3DDwIFaQ&c=3D4NmamN=
ZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxN=
ZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DJls8thoIwON-=
5Jr2Rn1_MXWtrohVFn1Ik4c7l2MFsnk&e=3D=0A=
>>>=0A=
>>>=0A=
>>> On 3/7/20, Tim Daly wrote:=0A=
>>>> I've pushed the lastest version of Axiom. The plan, followed=0A=
>>>> so far, is to push once a month on the 7th.=0A=
>>>>=0A=
>>>> After some chat room interactions it was brought home=0A=
>>>> again that the proof world really does not seem to like the=0A=
>>>> idea of proving programs correct. And, given that it was is=0A=
>>>> of the main Axiom goals and a point of friction during the fork,=0A=
>>>> the computer algebra world does not like the idea of proving=0A=
>>>> programs correct either.=0A=
>>>>=0A=
>>>> So the idea of "computational mathematics", which includes=0A=
>>>> both disciplines (as well as type theory) seems still a long=0A=
>>>> way off.=0A=
>>>>=0A=
>>>> Nevertheless, the primary change in these past and future=0A=
>>>> updates is focused on merging proof and computer algebra.=0A=
>>>>=0A=
>>>> Proof systems are able to split the problem of creating a=0A=
>>>> proof and the problem of verifying a proof, which is much=0A=
>>>> cheaper. Ideally the proof checker would run on verified=0A=
>>>> hardware so the proof is checked "down to the metal".=0A=
>>>>=0A=
>>>> I have a background in Field Programmable Gate Arrays=0A=
>>>> (FPGAs) as I tried to do a startup using them. So now I'm=0A=
>>>> looking at creating a hardware proof checker using a=0A=
>>>> dedicated instruction set, one designed to be verifed.=0A=
>>>> New CPUs used in data centers (not yet available to us=0A=
>>>> mortals) have built-in FPGAs so it would be possible to=0A=
>>>> "side-load" a proof of a program to be checked while the=0A=
>>>> program is run. I have the FPGA and am doing a gate-level=0A=
>>>> special instruction design for such a proof checker.=0A=
>>>>=0A=
>>>>=0A=
>>>> On 2/7/20, Tim Daly wrote:=0A=
>>>>> As a mathematician, it is difficult to use a system like Axiom,=0A=
>>>>> mostly because it keeps muttering about Types. If you're not=0A=
>>>>> familiar with type theory (most mathematicians aren't) then it=0A=
>>>>> seems pointless and painful.=0A=
>>>>>=0A=
>>>>> So Axiom has a steep learning curve.=0A=
>>>>>=0A=
>>>>> As a mathematician with an algorithmic approach, it is difficult=0A=
>>>>> to use a system like Axiom, mostly because you have to find=0A=
>>>>> or create "domains" or "packages", understand categories=0A=
>>>>> with their inheritance model, and learn a new language with=0A=
>>>>> a painful compiler always complaining about types.=0A=
>>>>>=0A=
>>>>> So Axiom has a steep learning curve.=0A=
>>>>>=0A=
>>>>> The Sane version of Axiom requires knowing the mathematics.=0A=
>>>>> It also assumes a background in type theory, inductive logic,=0A=
>>>>> homotopy type theory, ML (meta-language, not machine=0A=
>>>>> learning (yet)), interactive theorem proving, kernels, tactics,=0A=
>>>>> and tacticals. Also assumed is knowledge of specification languages,=
=0A=
>>>>> Hoare triples, proof techniques, soundness, and completeness.=0A=
>>>>> Oh, and there is a whole new syntax and semantics added to=0A=
>>>>> specify definitions, axioms, and theorems, not to mention whole=0A=
>>>>> libraries of the same.=0A=
>>>>>=0A=
>>>>> So Axiom Sane has a steep learning curve.=0A=
>>>>>=0A=
>>>>> I've taken 10 courses at CMU and spent the last 4-5 years=0A=
>>>>> learning to read the leading edge literature (also known=0A=
>>>>> as "greek studies", since every paper has pages of greek).=0A=
>>>>>=0A=
>>>>> I'm trying to unify computer algebra and proof theory into a=0A=
>>>>> "computational mathematics" framework. I suspect that the only=0A=
>>>>> way this system will ever be useful is after Universities have a=0A=
>>>>> "Computational Mathematics" major course of study and degree.=0A=
>>>>>=0A=
>>>>> Creating a new department is harder than creating Axiom Sane=0A=
>>>>> because, you know, ... people.=0A=
>>>>>=0A=
>>>>> I think such a department is inevitable given the deep and wide=0A=
>>>>> impact of computers, just not in my lifetime. That's ok. When I=0A=
>>>>> started programming there was no computer science degree.=0A=
>>>>>=0A=
>>>>> Somebody has to be the first lemming over the cliff.=0A=
>>>>>=0A=
>>>>> Tim=0A=
>>>>>=0A=
>>>>> On 1/9/20, Tim Daly wrote:=0A=
>>>>>> When Axiom Sane is paired with a proof checker (e.g. with Lean)=0A=
>>>>>> there is a certain amount of verification that is involved.=0A=
>>>>>>=0A=
>>>>>> Axiom will provide proofs (presumably validated by Lean) for its=0A=
>>>>>> algorithms. Ideally, when a computation is requested from Lean=0A=
>>>>>> for a GCD, the result as well as a proof of the GCD algorithm is=0A=
>>>>>> returned. Lean can the verify that the proof is valid. But it is=0A=
>>>>>> computationally more efficient if Axiom and Lean use a cryptographic=
=0A=
>>>>>> hash, such as SHA1. That way the proof doesn't need to be=0A=
>>>>>> 'reproven', only a hash computation over the proof text needs to=0A=
>>>>>> be performed. Hashes are blazingly fast. This allows proofs to be=0A=
>>>>>> exchanged without re-running the proof mechanism. Since a large=0A=
>>>>>> computation request from Lean might involve many algorithms=0A=
>>>>>> there would be considerable overhead to recompute each proof.=0A=
>>>>>> A hash simplifies the issue yet provides proof integrity.=0A=
>>>>>>=0A=
>>>>>> Tim=0A=
>>>>>>=0A=
>>>>>>=0A=
>>>>>> On 1/9/20, Tim Daly wrote:=0A=
>>>>>>> Provisos.... that is, 'formula SUCH pre/post-conditions'=0A=
>>>>>>>=0A=
>>>>>>> A computer algebra system ought to know and ought to provide=0A=
>>>>>>> information about the domain and range of a resulting formula.=0A=
>>>>>>> I've been pushing this effort since the 1980s (hence the=0A=
>>>>>>> SuchThat domain).=0A=
>>>>>>>=0A=
>>>>>>> It turns out that computing with, carrying, and combining this=0A=
>>>>>>> information is difficult if not impossible in the current system.=
=0A=
>>>>>>> The information isn't available and isn't computed. In that sense,=
=0A=
>>>>>>> the original Axiom system is 'showing its age'.=0A=
>>>>>>>=0A=
>>>>>>> In the Sane implementation the information is available. It is=0A=
>>>>>>> part of the specification and part of the proof steps. With a=0A=
>>>>>>> careful design it will be possible to provide provisos for each=0A=
>>>>>>> given result that are carried with the result for use in further=0A=
>>>>>>> computation.=0A=
>>>>>>>=0A=
>>>>>>> This raises interesting questions to be explored. For example,=0A=
>>>>>>> if the formula is defined over an interval, how is the interval=0A=
>>>>>>> arithmetic handled?=0A=
>>>>>>>=0A=
>>>>>>> Exciting research ahead!=0A=
>>>>>>>=0A=
>>>>>>> Tim=0A=
>>>>>>>=0A=
>>>>>>>=0A=
>>>>>>>=0A=
>>>>>>> On 1/3/20, Tim Daly wrote:=0A=
>>>>>>>> Trusted Kernel... all the way to the metal.=0A=
>>>>>>>>=0A=
>>>>>>>> While building a trusted computer algebra system, the=0A=
>>>>>>>> SANE version of Axiom, I've been looking at questions of=0A=
>>>>>>>> trust at all levels.=0A=
>>>>>>>>=0A=
>>>>>>>> One of the key tenets (the de Bruijn principle) calls for a=0A=
>>>>>>>> trusted kernel through which all other computations must=0A=
>>>>>>>> pass. Coq, Lean, and other systems do this. They base=0A=
>>>>>>>> their kernel on logic like the Calculus of Construction or=0A=
>>>>>>>> something similar.=0A=
>>>>>>>>=0A=
>>>>>>>> Andrej Bauer has been working on a smaller kernel (a=0A=
>>>>>>>> nucleus) that separates the trust from the logic. The rules=0A=
>>>>>>>> for the logic can be specified as needed but checked by=0A=
>>>>>>>> the nucleus code.=0A=
>>>>>>>>=0A=
>>>>>>>> I've been studying Field Programmable Gate Arrays (FPGA)=0A=
>>>>>>>> that allow you to create your own hardware in a C-like=0A=
>>>>>>>> language (Verilog). It allows you to check the chip you build=0A=
>>>>>>>> all the way down to the transistor states. You can create=0A=
>>>>>>>> things as complex as a whole CPU or as simple as a trusted=0A=
>>>>>>>> nucleus. (youtube: Building a CPU on an FPGA). ACL2 has a=0A=
>>>>>>>> history of verifying hardware logic.=0A=
>>>>>>>>=0A=
>>>>>>>> It appears that, assuming I can understand Bauers=0A=
>>>>>>>> Andromeda system, it would be possible and not that hard=0A=
>>>>>>>> to implement a trusted kernel on an FPGA the size and=0A=
>>>>>>>> form factor of a USB stick.=0A=
>>>>>>>>=0A=
>>>>>>>> Trust "down to the metal".=0A=
>>>>>>>>=0A=
>>>>>>>> Tim=0A=
>>>>>>>>=0A=
>>>>>>>>=0A=
>>>>>>>>=0A=
>>>>>>>> On 12/15/19, Tim Daly wrote:=0A=
>>>>>>>>> Progress in happening on the new Sane Axiom compiler.=0A=
>>>>>>>>>=0A=
>>>>>>>>> Recently I've been musing about methods to insert axioms=0A=
>>>>>>>>> into categories so they could be inherited like signatures.=0A=
>>>>>>>>> At the moment I've been thinking about adding axioms in=0A=
>>>>>>>>> the same way that signatures are written, adding them to=0A=
>>>>>>>>> the appropriate categories.=0A=
>>>>>>>>>=0A=
>>>>>>>>> But this is an interesting design question.=0A=
>>>>>>>>>=0A=
>>>>>>>>> Axiom already has a mechanism for inheriting signatures=0A=
>>>>>>>>> from categories. That is, we can bet a plus signature from,=0A=
>>>>>>>>> say, the Integer category.=0A=
>>>>>>>>>=0A=
>>>>>>>>> Suppose we follow the same pattern. Currently Axiom=0A=
>>>>>>>>> inherits certain so-called "attributes", such as=0A=
>>>>>>>>> ApproximateAttribute,=0A=
>>>>>>>>> which implies that the results are only approximate.=0A=
>>>>>>>>>=0A=
>>>>>>>>> We could adapt the same mechnaism to inherit the Transitive=0A=
>>>>>>>>> property by defining it in its own category. In fact, if we=0A=
>>>>>>>>> follow Carette and Farmer's "tiny theories" architecture,=0A=
>>>>>>>>> where each property has its own inheritable category,=0A=
>>>>>>>>> we can "mix and match" the axioms at will.=0A=
>>>>>>>>>=0A=
>>>>>>>>> An "axiom" category would also export a function. This function=
=0A=
>>>>>>>>> would essentially be a "tactic" used in a proof. It would modify=
=0A=
>>>>>>>>> the proof step by applying the function to the step.=0A=
>>>>>>>>>=0A=
>>>>>>>>> Theorems would have the same structure.=0A=
>>>>>>>>>=0A=
>>>>>>>>> This allows theorems to be constructed at run time (since=0A=
>>>>>>>>> Axiom supports "First Class Dynamic Types".=0A=
>>>>>>>>>=0A=
>>>>>>>>> In addition, this design can be "pushed down" into the Spad=0A=
>>>>>>>>> language so that Spad statements (e.g. assignment) had=0A=
>>>>>>>>> proof-related properties. A range such as [1..10] would=0A=
>>>>>>>>> provide explicit bounds in a proof "by language definition".=0A=
>>>>>>>>> Defining the logical properties of language statements in=0A=
>>>>>>>>> this way would make it easier to construct proofs since the=0A=
>>>>>>>>> invariants would be partially constructed already.=0A=
>>>>>>>>>=0A=
>>>>>>>>> This design merges the computer algebra inheritance=0A=
>>>>>>>>> structure with the proof of algorithms structure, all under=0A=
>>>>>>>>> the same mechanism.=0A=
>>>>>>>>>=0A=
>>>>>>>>> Tim=0A=
>>>>>>>>>=0A=
>>>>>>>>> On 12/11/19, Tim Daly wrote:=0A=
>>>>>>>>>> I've been reading Stephen Kell's (Univ of Kent=0A=
>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.cs.ke=
nt.ac.uk_people_staff_srk21_&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKr=
kZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOID=
fXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3D0SL3F3KHh9R1lV_IrJ0LmINrn_DSMjMq5xsNk=
1_eii0&e=3D ) on=0A=
>>>>>>>>>> Seven deadly sins of talking about =93types=94=0A=
>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.cs.ke=
nt.ac.uk_people_staff_srk21__blog_2014_10_07_&d=3DDwIFaQ&c=3D4NmamNZG3KTnUC=
oC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bk=
xc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DGOMXhymTlK2T6dt62fTb=
qv-K98dBQv0oMmB82kE8mXo&e=3D=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> He raised an interesting idea toward the end of the essay=0A=
>>>>>>>>>> that type-checking could be done outside the compiler.=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> I can see a way to do this in Axiom's Sane compiler.=0A=
>>>>>>>>>> It would be possible to run a program over the source code=0A=
>>>>>>>>>> to collect the information and write a stand-alone type=0A=
>>>>>>>>>> checker. This "unbundles" type checking and compiling.=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> Taken further I can think of several other kinds of checkers=0A=
>>>>>>>>>> (aka 'linters') that could be unbundled.=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> It is certainly something to explore.=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> Tim=0A=
>>>>>>>>>>=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> On 12/8/19, Tim Daly wrote:=0A=
>>>>>>>>>>> The Axiom Sane compiler is being "shaped by the hammer=0A=
>>>>>>>>>>> blows of reality", to coin a phrase.=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> There are many goals. One of the primary goals is creating a=0A=
>>>>>>>>>>> compiler that can be understood, maintained, and modified.=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> So the latest changes involved adding multiple index files.=0A=
>>>>>>>>>>> These are documentation (links to where terms are mentioned=0A=
>>>>>>>>>>> in the text), code (links to the implementation of things),=0A=
>>>>>>>>>>> error (links to where errors are defined), signatures (links to=
=0A=
>>>>>>>>>>> the signatures of lisp functions), figures (links to figures),=
=0A=
>>>>>>>>>>> and separate category, domain, and package indexes.=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> The tikz package is now used to create "railroad diagrams"=0A=
>>>>>>>>>>> of syntax (ala, the PASCAL report). The implementation of=0A=
>>>>>>>>>>> those diagrams follows immediately. Collectively these will=0A=
>>>>>>>>>>> eventually define at least the syntax of the language. In the=
=0A=
>>>>>>>>>>> ideal, changing the diagram would change the code but I'm=0A=
>>>>>>>>>>> not that clever.=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> Reality shows up with the curent constraint that the=0A=
>>>>>>>>>>> compiler should accept the current Spad language as=0A=
>>>>>>>>>>> closely as possible. Of course, plans are to include new=0A=
>>>>>>>>>>> constructs (e.g. hypothesis, axiom, specification, etc)=0A=
>>>>>>>>>>> but these are being postponed until "syntax complete".=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> All parse information is stored in a parse object, which=0A=
>>>>>>>>>>> is a CLOS object (and therefore a Common Lisp type)=0A=
>>>>>>>>>>> Fields within the parse object, e.g. variables are also=0A=
>>>>>>>>>>> CLOS objects (and therefore a Common Lisp type).=0A=
>>>>>>>>>>> It's types all the way down.=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> These types are being used as 'signatures' for the=0A=
>>>>>>>>>>> lisp functions. The goal is to be able to type-check the=0A=
>>>>>>>>>>> compiler implementation as well as the Sane language.=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> The parser is designed to "wrap around" so that the=0A=
>>>>>>>>>>> user-level output of a parse should be the user-level=0A=
>>>>>>>>>>> input (albeit in a 'canonical" form). This "mirror effect"=0A=
>>>>>>>>>>> should make it easy to see that the parser properly=0A=
>>>>>>>>>>> parsed the user input.=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> The parser is "first class" so it will be available at=0A=
>>>>>>>>>>> runtime as a domain allowing Spad code to construct=0A=
>>>>>>>>>>> Spad code.=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> One plan, not near implementation, is to "unify" some=0A=
>>>>>>>>>>> CLOS types with the Axiom types (e.g. String). How=0A=
>>>>>>>>>>> this will happen is still in the land of design. This would=0A=
>>>>>>>>>>> "ground" Spad in lisp, making them co-equal.=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> Making lisp "co-equal" is a feature, especially as Spad is=0A=
>>>>>>>>>>> really just a domain-specific language in lisp. Lisp=0A=
>>>>>>>>>>> functions (with CLOS types as signatures) would be=0A=
>>>>>>>>>>> avaiable for implementing Spad functions. This not=0A=
>>>>>>>>>>> only improves the efficiency, it would make the=0A=
>>>>>>>>>>> BLAS/LAPACK (see volume 10.5) code "native" to Axiom.=0A=
>>>>>>>>>>> .=0A=
>>>>>>>>>>> On the theory front I plan to attend the Formal Methods=0A=
>>>>>>>>>>> in Mathematics / Lean Together conference, mostly to=0A=
>>>>>>>>>>> know how little I know, especially that I need to know.=0A=
>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__www.andre=
w.cmu.edu_user_avigad_meetings_fomm2020_&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6In=
oLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=
=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DgiWJNgv9oeh8Aj_giZkHCx-3=
GFVk62hxr53YKr4naRk&e=3D=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> Tim=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> On 11/28/19, Jacques Carette wrote:=0A=
>>>>>>>>>>>> The underlying technology to use for building such an algebra=
=0A=
>>>>>>>>>>>> library=0A=
>>>>>>>>>>>> is=0A=
>>>>>>>>>>>> documented in the paper " Building on the Diamonds between=0A=
>>>>>>>>>>>> Theories:=0A=
>>>>>>>>>>>> Theory Presentation Combinators"=0A=
>>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__www.cas.=
mcmaster.ca_-7Ecarette_publications_tpcj.pdf&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCo=
C6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkx=
c&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3D5QO0O72zl3hFmW3ryVeFo=
Bjl0AZs2cuQZhKuIxk8NUw&e=3D=0A=
>>>>>>>>>>>> [which=0A=
>>>>>>>>>>>> will=0A=
>>>>>>>>>>>> also be on the arxiv by Monday, and has been submitted to a=0A=
>>>>>>>>>>>> journal].=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> There is a rather full-fledged prototype, very well documented=
=0A=
>>>>>>>>>>>> at=0A=
>>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__alhassy=
.github.io_next-2D700-2Dmodule-2Dsystems_prototype_package-2Dformer.html&d=
=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWE=
VPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDz=
gkQ&s=3D9fnfoSWyT66oQoIb4gKAYpCE7JjANqxHquwJdRdo2Uk&e=3D=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> (source at https://urldefense.proofpoint.com/v2/url?u=3Dhttps-=
3A__github.com_alhassy_next-2D700-2Dmodule-2Dsystems&d=3DDwIFaQ&c=3D4NmamNZ=
G3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZ=
vTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DZ-d1Pn1slXyiP=
2l23mZBB5fBQOj0-Q48CUKRS1VNLao&e=3D ).=0A=
>>>>>>>>>>>> It=0A=
>>>>>>>>>>>> is=0A=
>>>>>>>>>>>> literate source.=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> The old prototype was hard to find - it is now at=0A=
>>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__github.=
com_JacquesCarette_MathScheme&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVK=
rkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOI=
DfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DpkDi0LOAAPefRjcwvjwNNI3BVzNgJDITFQRp=
kFBgg8c&e=3D .=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> There is also a third prototype in the MMT system, but it does=
=0A=
>>>>>>>>>>>> not=0A=
>>>>>>>>>>>> quite=0A=
>>>>>>>>>>>> function properly today, it is under repair.=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> The paper "A Language Feature to Unbundle Data at Will"=0A=
>>>>>>>>>>>> (https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__alhass=
y.github.io_next-2D700-2Dmodule-2Dsystems_papers_gpce19-5Fa-5Flanguage-5Ffe=
ature-5Fto-5Funbundle-5Fdata-5Fat-5Fwill.pdf&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCo=
C6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkx=
c&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DRui27trbws4VTZL5B0zit=
s8pEczWsib7Q7_mxyRIxhk&e=3D )=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> is also relevant, as it solves a problem with parametrized=0A=
>>>>>>>>>>>> theories=0A=
>>>>>>>>>>>> (parametrized Categories in Axiom terminology) that all curren=
t=0A=
>>>>>>>>>>>> systems=0A=
>>>>>>>>>>>> suffer from.=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> Jacques=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> On 2019-11-27 11:47 p.m., Tim Daly wrote:=0A=
>>>>>>>>>>>>> The new Sane compiler is also being tested with the Fricas=0A=
>>>>>>>>>>>>> algebra code. The compiler knows about the language but=0A=
>>>>>>>>>>>>> does not depend on the algebra library (so far). It should be=
=0A=
>>>>>>>>>>>>> possible, by design, to load different algebra towers.=0A=
>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>> In particular, one idea is to support the "tiny theories"=0A=
>>>>>>>>>>>>> algebra from Carette and Farmer. This would allow much=0A=
>>>>>>>>>>>>> finer grain separation of algebra and axioms.=0A=
>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>> This "flexible algebra" design would allow things like the=0A=
>>>>>>>>>>>>> Lean theorem prover effort in a more natural style.=0A=
>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>> Tim=0A=
>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>> On 11/26/19, Tim Daly wrote:=0A=
>>>>>>>>>>>>>> The current design and code base (in bookvol15) supports=0A=
>>>>>>>>>>>>>> multiple back ends. One will clearly be a common lisp.=0A=
>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>> Another possible design choice is to target the GNU=0A=
>>>>>>>>>>>>>> GCC intermediate representation, making Axiom "just=0A=
>>>>>>>>>>>>>> another front-end language" supported by GCC.=0A=
>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>> The current intermediate representation does not (yet)=0A=
>>>>>>>>>>>>>> make any decision about the runtime implementation.=0A=
>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>> Tim=0A=
>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>> On 11/26/19, Tim Daly wrote:=0A=
>>>>>>>>>>>>>>> Jason Gross and Adam Chlipala ("Parsing Parses") developed=
=0A=
>>>>>>>>>>>>>>> a dependently typed general parser for context free grammar=
=0A=
>>>>>>>>>>>>>>> in Coq.=0A=
>>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>>> They used the parser to prove its own completeness.=0A=
>>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>>> Unfortunately Spad is not a context-free grammar.=0A=
>>>>>>>>>>>>>>> But it is an intersting thought exercise to consider=0A=
>>>>>>>>>>>>>>> an "Axiom on Coq" implementation.=0A=
>>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>>> Tim=0A=
>>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>=0A=
>>>>>>>>>=0A=
>>>>>>>>=0A=
>>>>>>>=0A=
>>>>>>=0A=
>>>>>=0A=
>>>>=0A=
>>>=0A=
>>=0A=
>=0A=
=0A=
From MAILER-DAEMON Sun Jul 19 17:33:55 2020
Received: from list by lists.gnu.org with archive (Exim 4.90_1)
id 1jxGwV-0005eE-7k
for mharc-axiom-developer@gnu.org; Sun, 19 Jul 2020 17:33:55 -0400
Received: from eggs.gnu.org ([2001:470:142:3::10]:56990)
by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256)
(Exim 4.90_1) (envelope-from )
id 1jxGwT-0005e2-MM
for axiom-developer@nongnu.org; Sun, 19 Jul 2020 17:33:53 -0400
Received: from mail-qt1-x834.google.com ([2607:f8b0:4864:20::834]:33253)
by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_128_GCM_SHA256:128)
(Exim 4.90_1) (envelope-from )
id 1jxGwP-0004Xy-Nv
for axiom-developer@nongnu.org; Sun, 19 Jul 2020 17:33:53 -0400
Received: by mail-qt1-x834.google.com with SMTP id 6so11646368qtt.0
for ; Sun, 19 Jul 2020 14:33:49 -0700 (PDT)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20161025;
h=mime-version:in-reply-to:references:from:date:message-id:subject:to
:cc:content-transfer-encoding;
bh=KbJJhLwjDNtuzbKwTLGhmRvbHTJ7ahrutGa/dp8Y57c=;
b=pXzLM0We/5tZO5x0NpXYtzsWIkrNPiSvG7c5S0YeoJHGSgxU7CrOIjDmeeSqD6Y8a9
gLD0eDtNL0YQQO909ujIGkFjhGJf0NjGyRmYXKi8AMuOOv4a7NxsmoFd6DQN6e08XQl/
zQovAifYWR8QYNmhvb6WEwTv9flqLQDliBVWaEQgg2w4lWnEFSxapH+c7DhHW2HZIB8W
B68YGTu2eOwCkJSHcow80tFvTBT7Li1PBMjvePWWG7vxcdszNYMXJKDVpnsyjhxJFtDy
eOk8xA0HaO3NAH+9II1vT9wHtXY2b+LBtKuvTW1IRHu6di3VXIx1AdM1x6+s9LuoTzGz
s/XA==
X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
d=1e100.net; s=20161025;
h=x-gm-message-state:mime-version:in-reply-to:references:from:date
:message-id:subject:to:cc:content-transfer-encoding;
bh=KbJJhLwjDNtuzbKwTLGhmRvbHTJ7ahrutGa/dp8Y57c=;
b=eq/0pTYBXCOVWF8ZzMpCAn2uQAFLU+yq9GANlj038nylqwpcjiKOFSEy93YAmTil5U
bM5//Hhr2sF0FtYhzE0GIrq5C1JORXH3T8YChMznWb+43fSXSndlR4WKlRGwl4MhSyxS
ZJrIV/D21tBpHk4HLqhhHVzoY6iypXLUJLiBXcnuUb5NU1Yu/F0HgqFKrlIvSt8kyjfp
kKDIdymbyn1oNW2xEI42vdTQWQZ8df6D1k1xDlIzot86lolvNNftLdFtkIlQc5r9cOzE
yMus4BuL9SaagOEhv3wbspLr4W00q2eMjPZx0Z/CM5wXAN9nI+IwswX5l5cPamP4gugd
VWHQ==
X-Gm-Message-State: AOAM533M71PrzluecnUmyu/3eQwIXM+1N0XDOh6YbZ1ihaVDMlOHO1Ps
kPBqDiMsLxHkTt+YAwdj22Qq+MRtFDeWEuezcZk=
X-Google-Smtp-Source: ABdhPJwcIKrLIKNovSEFNR+S0cbC+WvmK8FadZyWeATgp9TciyV0S6TY44q1YM8wBr9uOaXtXeWh6D7pj3K05cViAx4=
X-Received: by 2002:ac8:6f7a:: with SMTP id u26mr21303541qtv.33.1595194428043;
Sun, 19 Jul 2020 14:33:48 -0700 (PDT)
MIME-Version: 1.0
Received: by 2002:ad4:4ea4:0:0:0:0:0 with HTTP; Sun, 19 Jul 2020 14:33:47
-0700 (PDT)
In-Reply-To: <1595175684369.31200@ccny.cuny.edu>
References:
<1595175684369.31200@ccny.cuny.edu>
From: Tim Daly
Date: Sun, 19 Jul 2020 17:33:47 -0400
Message-ID:
Subject: Re: [EXTERNAL] Re: Axiom musings...
To: William Sit
Cc: axiom-dev
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Received-SPF: pass client-ip=2607:f8b0:4864:20::834;
envelope-from=axiomcas@gmail.com; helo=mail-qt1-x834.google.com
X-detected-operating-system: by eggs.gnu.org: No matching host in p0f cache.
That's all we know.
X-Spam_score_int: -20
X-Spam_score: -2.1
X-Spam_bar: --
X-Spam_report: (-2.1 / 5.0 requ) BAYES_00=-1.9, DKIM_SIGNED=0.1,
DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1, FREEMAIL_FROM=0.001,
RCVD_IN_DNSWL_NONE=-0.0001, SPF_HELO_NONE=0.001, SPF_PASS=-0.001,
URIBL_BLOCKED=0.001 autolearn=ham autolearn_force=no
X-Spam_action: no action
X-BeenThere: axiom-developer@nongnu.org
X-Mailman-Version: 2.1.23
Precedence: list
List-Id: Axiom Developers
List-Unsubscribe: ,
List-Archive:
List-Post:
List-Help:
List-Subscribe: ,
X-List-Received-Date: Sun, 19 Jul 2020 21:33:53 -0000
There are several "problems" with proving programs correct that
I don't quite know how to solve, or even approach. But that's the
fun of "research", right?
For the data representation question I've been looking at types.
I took 10 courses at CMU. I am eyebrow deep in type theory.
I'm looking at category theory and homotopy type theory. So
far I haven't seen anyone looking at the data problem. Most of
the focus is on strict code typing.
There is an old MIT course by Abelson and Sussman "Structure
and Interpretation of Computer Programs" (SICP). They rewrite
data as programs which, in Lisp, is trivial to do, Dan Friedman
seems to have some interesting ideas too.
All of Axiom's SANE types are now CLOS objects which gives
two benefits. First, they can be inherited. But second, they
are basically Lisp data structures with associated code.
I'm thinking of associating "data axioms" with the representation
(REP) object of a domain as well as with the functions.
For example, DenavitHartenbergMatrix encodes 4x4 matrices
used in graphics and robotics. They are 4x4 matrices where
the upper left 3x3 encodes rotations, the right column encodes
translations, and the lower row includes scaling, skewing, etc.
(As an aside, DHMATRIX matrices have an associated
Jacobian which encodes the dynamics in things like robots.
Since I'm also programming a robot I'm tempted to work on
extending the domain with related functions... but, as
Hamming said, new algebra code isn't "the most important
problem in computational mathematics").
Axioms associated with the REP can assume that they are
4x4, that they can be inverted, that they have a "space" of
rotations, etc. The axioms provide "facts" known to be true
about the REP. (I also need to think about a "specification"
for the REP but I'm not there yet).
Since every category and domain is a CLOS data structure
the DHMATRIX data structure inherits REP axioms from its
inheritance graph (e.g. SQMATRIX axioms). But DHMATRIX
adds domain-specific REP axioms (as well as domain-specific
function axioms). Thus a DHMATRIX rotate function can
base its proof on the fact that it only affects the upper 3x3
and lives in a space of rotations, all of which can be assumed
by the proof.
If I use the SICP "trick" of representing data as code I can
"expand" the data as part of the program proof.
It is all Omphaloskepsis (navel gazing) at this point though.
I'm still writing the new SANE compiler (which is wildly
different from the compiler course I taught).
I did give a talk at Notre Dame but I haven't attempted to
publish. All of my work shows up in literate programming
Axiom books on github.
(https://github.com/daly/PDFS)
It is all pretty pointless since nobody cares about computer
algebra, proving math programs correct, or Axiom itself.
Wolfram is taking up all the oxygen in the discussions.
But I have to say, this research is great fun. It reminds me
of the Scratchpad days, although I miss the give-and-take
of the group. It is hard to recreate my role as the dumbest
guy in the room when I'm stuck here by myself :-)
Hope you and your family are safe and healthy.
Tim
PS. I think we should redefine the "Hamming Distance" as
the distance between an idea and its implementation.
On 7/19/20, William Sit wrote:
> Hi Tim:
>
> Glad to hear from you now and then, promoting and working towards your id=
eas
> and ideals.
>
> >>We need proven algorithms.
>
> Just one short comment: it is often possible to prove algorithms (that is=
,
> providing the theoretical foundation for the algorithm), but it is much
> harder to prove that an implementation of the algorithm is correct. As yo=
u
> well know, the distinction lies in that implementation involves data
> representations whereas proofs of algorithms normally ignore them.
> Introducing (finite) data representations means introducing boundary
> situations that a programmer implementing an algorithm must deal with. So
> perhaps what we need to prove should include the correctness of
> implementations (to the bare metal, as you often say) and we should have =
a
> different set of analytic tools that can deal with the correctness (or
> completeness) of data representations. Of course, these tools must also b=
e
> proven with the same rigor since behind every program is an algorithm.
>
> William
>
> William Sit
> Professor Emeritus
> Department of Mathematics
> The City College of The City University of New York
> New York, NY 10031
> homepage: wsit.ccny.cuny.edu
>
> ________________________________________
> From: Axiom-developer
> on behalf =
of
> Tim Daly
> Sent: Saturday, July 18, 2020 6:28 PM
> To: axiom-dev; Tim Daly
> Subject: [EXTERNAL] Re: Axiom musings...
>
> Richard Hamming gave a great talk. "You and Your Research"
> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.youtube.com_wa=
tch-3Fv-3Da1zDuOPkMSw&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwt=
IMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX=
0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DkSXlFiPNCbYVZvoZ62OUVd_40kcVviTxSKF3vNNtm0U&=
e=3D
>
> His big question is:
>
> "What is the most important problem in your field
> and why aren't you working on it?"
>
> To my mind, the most important problem in the field of
> computational mathematics is grounding computer
> algebra in proofs.
>
> Computer mathematical algorithms that "maybe,
> possibly, give correct answers sometimes" is a problem.
> Indeed, for computer algebra, it is the most important
> problem. We need proven algorithms.
>
> New algorithms, better graphics, better documentation,
> are all "nice to have" but, as Hamming would say,
> they are not "the most important problem".
>
> Tim
>
>
>
> On 7/2/20, Tim Daly wrote:
>> Time for another update.
>>
>> The latest Intel processors, available only to data centers
>> so far, have a built-in FPGA. This allows you to design
>> your own circuits and have them loaded "on the fly",
>> running in parallel with the CPU.
>>
>> I bought a Lattice ICEstick FPGA development board. For
>> the first time there are open source tools that support it so
>> it is a great test bench for ideas and development. It is a
>> USB drive so it can be easily ported to any PC.
>> (https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.latticesemi.=
com_products_developmentboardsandkits_icestick&d=3DDwIFaQ&c=3D4NmamNZG3KTnU=
CoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0B=
kxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DQxcJcE1BdIMqDbutQz2=
HFhAAAymG-QswIjRao_YTwz4&e=3D
>> )
>>
>> I also bought a large Intel Cyclone FPGA development board.
>> (https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__www.terasic.com.t=
w_cgi-2Dbin_page_archive.pl-3FLanguage-3DEnglish-26No-3D836&d=3DDwIFaQ&c=3D=
4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79Pd=
SWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3D3wW6Bu=
eAeyVTQi0xGqoeE7xIA5EREDmvQR4fPw5zAXo&e=3D
>> )
>> which has 2 embedded ARM processors. Unfortunately
>> the tools (which are freely available) are not open source.
>> It has sufficient size and power to do anything.
>>
>>
>> I've got 2 threads of work in progress, both of which
>> involve FPGAs (Field Programmable Gate Arrays).
>>
>> Thread 1
>>
>> The first thread involves proving programs correct. Once
>> a proof has been made it is rather easier to check the proof.
>> If code is shipped with a proof, the proof can be loaded into
>> an FPGA running a proof-checker which verifies the program
>> in parallel with running the code on the CPU.
>>
>> I am researching the question of writing a proof checker that
>> runs on an FPGA, thus verifying the code "down to the metal".
>> The Lean proof checker is the current target.
>>
>> The idea is to make "Oracle" algorithms that, because they
>> are proven correct and verified at runtime, can be trusted
>> by other mathematical software (e.g. Lean, Coq, Agda)
>> when used in proofs.
>>
>> Thread 2
>>
>>
>> The second thread involves arithmetic. Axiom currently ships
>> with numeric routines (BLAS and LAPACK, see bookvol10.5).
>> These routines have a known set of numeric failures such as
>> cancellation, underflow, and scaling.
>>
>> John Gustafson has designed a 'unum' numeric format that can
>> eliminate many of these errors. (See
>> Gustafson, John "The End of Error" CRC Press 2015
>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.amazon.com_En=
d-2DError-2DComputing-2DChapman-2DComputational_dp_1482239868_ref-3Dsr-5F1-=
5F1-3Fdchild-3D1-26keywords-3Dgustafson-2Bthe-2Bend-2Bof-2Berror-26qid-3D15=
93685423-26sr-3D8-2D1&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwt=
IMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX=
0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DcxcqXTqQQjOFj6wRWKcaCMutCt0BYJ0WwJnlo0hYa0A&=
e=3D
>> )
>>
>> The research goal is to implement Axiom's floating-point
>> arithmetic that can be offloaded onto an FPGA implementing
>> the unum format. Such a system would radically simplify
>> the implementation of BLAS and LAPACK as most of the
>> errors can't occur. The impact would be similar to using
>> multi-precision integer arithmetic, only now its floating-point.
>>
>> SANE, the greater goal.
>>
>> The Axiom SANE compiler / interpreter can use both of
>> these tools to implement trusted mathematical software.
>> It's a long, ambitious research effort but even if only pieces
>> of it succeed, it changes computational mathematics.
>>
>> Tim
>>
>> "A person's reach should exceed their grasp,
>> or what's a computer for?" (misquoting Robert Browning)
>>
>> (https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.quotetab.com=
_quote_by-2Drobert-2Dbrowning_ah-2Dbut-2Da-2Dmans-2Dreach-2Dshould-2Dexceed=
-2Dhis-2Dgrasp-2Dor-2Dwhats-2Da-2Dheaven-2Dfor&d=3DDwIFaQ&c=3D4NmamNZG3KTnU=
CoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0B=
kxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DayZkzXC9ekESctdx_Oq=
sfcYl4z14qlYS02TBNmnaHUY&e=3D
>> )
>>
>>
>>
>>
>> On 6/16/20, Tim Daly wrote:
>>> WHY PROVE AXIOM CORRECT (SANE)?
>>>
>>> Historically, Axiom credits CLU, the Cluster language by
>>> Barbara Liskov, with the essential ideas behind the Spad
>>> language. Barbara gave a talk (a partial transcript below)
>>> that gives the rational behind the ``where clause'' used by
>>> Spad.
>>>
>>> She talks about the limits of the compile time capablity.
>>> In particular, she says:
>>>
>>> To go further, where we would say that T,
>>> in addition, has to be an equality relation, that requires
>>> much more sophisticated techniques that, even today, are
>>> beyond the capabilities of the compiler.
>>>
>>> Showing that the ``equal'' function satisfies the equality
>>> relation is no longer ``beyond the capabilities of the compiler''.
>>> We have the required formalisms and mechanisms to
>>> prove properties at compile time.
>>>
>>> The SANE effort is essentially trying to push compile
>>> time checking into proving that, for categories that use
>>> ``equal'', we prove that the equal function implements
>>> equality.
>>>
>>> I strongly encourage you to watch her video.
>>>
>>> Tim
>>>
>>> =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D
>>> Barbara Liskov
>>> May 2012
>>> MIT CSAIL
>>> Programming the Turing Machine
>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.youtube.com_=
watch-3Fv-3DibRar7sWulM&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHR=
wtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZe=
PX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DmKaSE2deFF_wqq9yriqo-s51oF6c3-ksS2_IZhS1eG=
Y&e=3D
>>>
>>> POLYMORPHISM
>>>
>>> We don't just want a set, we want polymorphism or
>>> generics, as they are called today. We wanted to
>>> have a generic set which was paramaterized by type
>>> so you could instantiate it as:
>>>
>>> Set =3D [T:type] create, insert,...
>>> % representation for Set object
>>> % implementation of Set operations
>>> Set
>>>
>>> Set[int] s :=3D Set[int]$create()
>>> Set[int]$insert(s,3)
>>>
>>> We wanted a static solution to this problem. The
>>> problem is, not every type makes sense as a parameter
>>> to Set of T. For sets, per se, you need an equality
>>> relation. If it has been a sorted set we would have
>>> some ordering relation. And a type that didn't have
>>> one of those things would not have been a legitimate
>>> parameter. We needed a way of expressing that in a
>>> compile-time, checkable manner. Otherwise we would
>>> have had to resort to runtime checking.
>>>
>>> Our solution was
>>>
>>> Set =3D [T: ] create, insert,...
>>> T equal: (T,T) (bool)
>>>
>>>
>>> Our solution, what we call the ``where clause''. So we
>>> added this to the header. The ``where clause'' tells you
>>> what operations the parameter type has to have.
>>>
>>> If you have the ``where'' clause you can do the static
>>> checking because when you instantiate, when you provide
>>> an actual type, the compiler can check that the type has
>>> the operations that are required. And then, when you write
>>> the implementation of Set the compiler knows it's ok to
>>> call those operations because you can guarantee they are
>>> actually there when you get around to running.
>>>
>>> Of course, you notice that there's just syntax here; there's
>>> no semantics.
>>>
>>> As I'm sure you all know, compile-time type checking is
>>> basically a proof technique of a very limited sort and
>>> this was about as far as we can push what you could get out of the
>>> static analysis. To go further, where we would say that T,
>>> in addition, has to be an equality relation, that requires
>>> much more sophisticated techniques that, even today, are
>>> beyond the capabilities of the compiler.
>>>
>>>
>>>
>>>
>>> On 3/24/20, Tim Daly wrote:
>>>> I've spent entirely too much time studing the legal issues
>>>> of free and open source software. There are copyright,
>>>> trademark, and intellectual property laws. I have read
>>>> several books, listened to lectures, and read papers on
>>>> the subject. I've spoken to lawyers about it. I've even
>>>> been required, by law, to coerce people I respect.
>>>> You would think it was all perfectly clear. It isn't.
>>>>
>>>> The most entertaining and enlightening lectures were
>>>> by Robert Lefkowitz at OSCON 2004. His talk is
>>>> "The Semasiology of Open Source", which sounds
>>>> horrible but I assure you, this is a real treat.
>>>>
>>>> THE THESIS
>>>>
>>>> Semasiology, n. The science of meanings or
>>>> sense development (of words); the explanation
>>>> of the development and changes of the meanings
>>>> of words. Source: Webster's Revised Unabridged
>>>> Dictionary, =C3=AF=C2=BF=C2=BD 1996, 1998 MICRA, Inc.
>>>>
>>>> "Open source doesn't just mean access to the
>>>> source code." So begins the Open Source Definition.
>>>> What then, does access to the source code mean?
>>>> Seen through the lens of an Enterprise user, what
>>>> does open source mean? When is (or isn't) it
>>>> significant? And a catalogue of open source
>>>> related arbitrage opportunities.
>>>>
>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__origin.conversat=
ionsnetwork.org_Robert-2520Lefkowitz-2520-2D-2520The-2520Semasiology-2520of=
-2520Open-2520Source.mp3&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXH=
RwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZ=
ePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DIpKqNvLCWxaxdmI9ATBmNX0r3h_3giwDJVTFcnEbu=
sM&e=3D
>>>>
>>>> Computer source code has words and sentence
>>>> structure like actual prose or even poetry. Writing
>>>> code for the computer is like writing an essay. It
>>>> should be written for other people to read,
>>>> understand and modify. These are some of the
>>>> thoughts behind literate programming proposed
>>>> by Donald Knuth. This is also one of the ideas
>>>> behind Open Source.
>>>>
>>>> THE ANTITHESIS
>>>>
>>>> "Open Source" is a phrase like "Object Oriented"
>>>> - weird at first, but when it became popular, the
>>>> meaning began to depend on the context of the
>>>> speaker or listener. "Object Oriented" meant that
>>>> PERL, C++, Java, Smalltalk, Basic and the newest
>>>> version of Cobol are all "Object Oriented" - for some
>>>> specific definition of "Object Oriented". Similar is
>>>> the case of the phrase "Open Source".
>>>>
>>>> In Part I, Lefkowitz talked about the shift of the
>>>> meaning of "Open Source" away from any reference
>>>> to the actual "source code," and more towards other
>>>> phases of the software development life cycle. In
>>>> Part II, he returns to the consideration of the
>>>> relationship between "open source" and the actual
>>>> "source code," and reflects upon both the way
>>>> forward and the road behind, drawing inspiration
>>>> from Charlemagne, King Louis XIV, Donald Knuth,
>>>> and others.
>>>>
>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__origin.conversat=
ionsnetwork.org_ITC.OSCON05-2DRobertLefkowitz-2D2005.08.03.mp3&d=3DDwIFaQ&c=
=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ7=
9PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DLTg=
LxuL_diAdUFVj96fbcZJ08IEv_MGf28Vlk0InNQI&e=3D
>>>>
>>>> THE SYNTHESIS
>>>>
>>>> In a fascinating synthesis, Robert =E2=80=9Cr0ml=E2=80=9D Lefkowitz
>>>> polishes up his exposition on the evolving meaning
>>>> of the term =E2=80=98open source=E2=80=99. This intellectual joy-ride
>>>> draws on some of the key ideas in artificial intelligence
>>>> to probe the role of language, meaning and context
>>>> in computing and the software development process.
>>>> Like Wittgenstein=E2=80=99s famous thought experiment, the
>>>> open source =E2=80=98beetle in a box=E2=80=99 can represent different
>>>> things to different people, bearing interesting fruit for
>>>> philosophers and software creators alike.
>>>>
>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__itc.conversation=
snetwork.org_audio_download_itconversations-2D1502.mp3&d=3DDwIFaQ&c=3D4Nmam=
NZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRx=
NZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DJls8thoIwON=
-5Jr2Rn1_MXWtrohVFn1Ik4c7l2MFsnk&e=3D
>>>>
>>>>
>>>> On 3/7/20, Tim Daly wrote:
>>>>> I've pushed the lastest version of Axiom. The plan, followed
>>>>> so far, is to push once a month on the 7th.
>>>>>
>>>>> After some chat room interactions it was brought home
>>>>> again that the proof world really does not seem to like the
>>>>> idea of proving programs correct. And, given that it was is
>>>>> of the main Axiom goals and a point of friction during the fork,
>>>>> the computer algebra world does not like the idea of proving
>>>>> programs correct either.
>>>>>
>>>>> So the idea of "computational mathematics", which includes
>>>>> both disciplines (as well as type theory) seems still a long
>>>>> way off.
>>>>>
>>>>> Nevertheless, the primary change in these past and future
>>>>> updates is focused on merging proof and computer algebra.
>>>>>
>>>>> Proof systems are able to split the problem of creating a
>>>>> proof and the problem of verifying a proof, which is much
>>>>> cheaper. Ideally the proof checker would run on verified
>>>>> hardware so the proof is checked "down to the metal".
>>>>>
>>>>> I have a background in Field Programmable Gate Arrays
>>>>> (FPGAs) as I tried to do a startup using them. So now I'm
>>>>> looking at creating a hardware proof checker using a
>>>>> dedicated instruction set, one designed to be verifed.
>>>>> New CPUs used in data centers (not yet available to us
>>>>> mortals) have built-in FPGAs so it would be possible to
>>>>> "side-load" a proof of a program to be checked while the
>>>>> program is run. I have the FPGA and am doing a gate-level
>>>>> special instruction design for such a proof checker.
>>>>>
>>>>>
>>>>> On 2/7/20, Tim Daly wrote:
>>>>>> As a mathematician, it is difficult to use a system like Axiom,
>>>>>> mostly because it keeps muttering about Types. If you're not
>>>>>> familiar with type theory (most mathematicians aren't) then it
>>>>>> seems pointless and painful.
>>>>>>
>>>>>> So Axiom has a steep learning curve.
>>>>>>
>>>>>> As a mathematician with an algorithmic approach, it is difficult
>>>>>> to use a system like Axiom, mostly because you have to find
>>>>>> or create "domains" or "packages", understand categories
>>>>>> with their inheritance model, and learn a new language with
>>>>>> a painful compiler always complaining about types.
>>>>>>
>>>>>> So Axiom has a steep learning curve.
>>>>>>
>>>>>> The Sane version of Axiom requires knowing the mathematics.
>>>>>> It also assumes a background in type theory, inductive logic,
>>>>>> homotopy type theory, ML (meta-language, not machine
>>>>>> learning (yet)), interactive theorem proving, kernels, tactics,
>>>>>> and tacticals. Also assumed is knowledge of specification languages,
>>>>>> Hoare triples, proof techniques, soundness, and completeness.
>>>>>> Oh, and there is a whole new syntax and semantics added to
>>>>>> specify definitions, axioms, and theorems, not to mention whole
>>>>>> libraries of the same.
>>>>>>
>>>>>> So Axiom Sane has a steep learning curve.
>>>>>>
>>>>>> I've taken 10 courses at CMU and spent the last 4-5 years
>>>>>> learning to read the leading edge literature (also known
>>>>>> as "greek studies", since every paper has pages of greek).
>>>>>>
>>>>>> I'm trying to unify computer algebra and proof theory into a
>>>>>> "computational mathematics" framework. I suspect that the only
>>>>>> way this system will ever be useful is after Universities have a
>>>>>> "Computational Mathematics" major course of study and degree.
>>>>>>
>>>>>> Creating a new department is harder than creating Axiom Sane
>>>>>> because, you know, ... people.
>>>>>>
>>>>>> I think such a department is inevitable given the deep and wide
>>>>>> impact of computers, just not in my lifetime. That's ok. When I
>>>>>> started programming there was no computer science degree.
>>>>>>
>>>>>> Somebody has to be the first lemming over the cliff.
>>>>>>
>>>>>> Tim
>>>>>>
>>>>>> On 1/9/20, Tim Daly wrote:
>>>>>>> When Axiom Sane is paired with a proof checker (e.g. with Lean)
>>>>>>> there is a certain amount of verification that is involved.
>>>>>>>
>>>>>>> Axiom will provide proofs (presumably validated by Lean) for its
>>>>>>> algorithms. Ideally, when a computation is requested from Lean
>>>>>>> for a GCD, the result as well as a proof of the GCD algorithm is
>>>>>>> returned. Lean can the verify that the proof is valid. But it is
>>>>>>> computationally more efficient if Axiom and Lean use a cryptographi=
c
>>>>>>> hash, such as SHA1. That way the proof doesn't need to be
>>>>>>> 'reproven', only a hash computation over the proof text needs to
>>>>>>> be performed. Hashes are blazingly fast. This allows proofs to be
>>>>>>> exchanged without re-running the proof mechanism. Since a large
>>>>>>> computation request from Lean might involve many algorithms
>>>>>>> there would be considerable overhead to recompute each proof.
>>>>>>> A hash simplifies the issue yet provides proof integrity.
>>>>>>>
>>>>>>> Tim
>>>>>>>
>>>>>>>
>>>>>>> On 1/9/20, Tim Daly wrote:
>>>>>>>> Provisos.... that is, 'formula SUCH pre/post-conditions'
>>>>>>>>
>>>>>>>> A computer algebra system ought to know and ought to provide
>>>>>>>> information about the domain and range of a resulting formula.
>>>>>>>> I've been pushing this effort since the 1980s (hence the
>>>>>>>> SuchThat domain).
>>>>>>>>
>>>>>>>> It turns out that computing with, carrying, and combining this
>>>>>>>> information is difficult if not impossible in the current system.
>>>>>>>> The information isn't available and isn't computed. In that sense,
>>>>>>>> the original Axiom system is 'showing its age'.
>>>>>>>>
>>>>>>>> In the Sane implementation the information is available. It is
>>>>>>>> part of the specification and part of the proof steps. With a
>>>>>>>> careful design it will be possible to provide provisos for each
>>>>>>>> given result that are carried with the result for use in further
>>>>>>>> computation.
>>>>>>>>
>>>>>>>> This raises interesting questions to be explored. For example,
>>>>>>>> if the formula is defined over an interval, how is the interval
>>>>>>>> arithmetic handled?
>>>>>>>>
>>>>>>>> Exciting research ahead!
>>>>>>>>
>>>>>>>> Tim
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>> On 1/3/20, Tim Daly wrote:
>>>>>>>>> Trusted Kernel... all the way to the metal.
>>>>>>>>>
>>>>>>>>> While building a trusted computer algebra system, the
>>>>>>>>> SANE version of Axiom, I've been looking at questions of
>>>>>>>>> trust at all levels.
>>>>>>>>>
>>>>>>>>> One of the key tenets (the de Bruijn principle) calls for a
>>>>>>>>> trusted kernel through which all other computations must
>>>>>>>>> pass. Coq, Lean, and other systems do this. They base
>>>>>>>>> their kernel on logic like the Calculus of Construction or
>>>>>>>>> something similar.
>>>>>>>>>
>>>>>>>>> Andrej Bauer has been working on a smaller kernel (a
>>>>>>>>> nucleus) that separates the trust from the logic. The rules
>>>>>>>>> for the logic can be specified as needed but checked by
>>>>>>>>> the nucleus code.
>>>>>>>>>
>>>>>>>>> I've been studying Field Programmable Gate Arrays (FPGA)
>>>>>>>>> that allow you to create your own hardware in a C-like
>>>>>>>>> language (Verilog). It allows you to check the chip you build
>>>>>>>>> all the way down to the transistor states. You can create
>>>>>>>>> things as complex as a whole CPU or as simple as a trusted
>>>>>>>>> nucleus. (youtube: Building a CPU on an FPGA). ACL2 has a
>>>>>>>>> history of verifying hardware logic.
>>>>>>>>>
>>>>>>>>> It appears that, assuming I can understand Bauers
>>>>>>>>> Andromeda system, it would be possible and not that hard
>>>>>>>>> to implement a trusted kernel on an FPGA the size and
>>>>>>>>> form factor of a USB stick.
>>>>>>>>>
>>>>>>>>> Trust "down to the metal".
>>>>>>>>>
>>>>>>>>> Tim
>>>>>>>>>
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> On 12/15/19, Tim Daly wrote:
>>>>>>>>>> Progress in happening on the new Sane Axiom compiler.
>>>>>>>>>>
>>>>>>>>>> Recently I've been musing about methods to insert axioms
>>>>>>>>>> into categories so they could be inherited like signatures.
>>>>>>>>>> At the moment I've been thinking about adding axioms in
>>>>>>>>>> the same way that signatures are written, adding them to
>>>>>>>>>> the appropriate categories.
>>>>>>>>>>
>>>>>>>>>> But this is an interesting design question.
>>>>>>>>>>
>>>>>>>>>> Axiom already has a mechanism for inheriting signatures
>>>>>>>>>> from categories. That is, we can bet a plus signature from,
>>>>>>>>>> say, the Integer category.
>>>>>>>>>>
>>>>>>>>>> Suppose we follow the same pattern. Currently Axiom
>>>>>>>>>> inherits certain so-called "attributes", such as
>>>>>>>>>> ApproximateAttribute,
>>>>>>>>>> which implies that the results are only approximate.
>>>>>>>>>>
>>>>>>>>>> We could adapt the same mechnaism to inherit the Transitive
>>>>>>>>>> property by defining it in its own category. In fact, if we
>>>>>>>>>> follow Carette and Farmer's "tiny theories" architecture,
>>>>>>>>>> where each property has its own inheritable category,
>>>>>>>>>> we can "mix and match" the axioms at will.
>>>>>>>>>>
>>>>>>>>>> An "axiom" category would also export a function. This function
>>>>>>>>>> would essentially be a "tactic" used in a proof. It would modify
>>>>>>>>>> the proof step by applying the function to the step.
>>>>>>>>>>
>>>>>>>>>> Theorems would have the same structure.
>>>>>>>>>>
>>>>>>>>>> This allows theorems to be constructed at run time (since
>>>>>>>>>> Axiom supports "First Class Dynamic Types".
>>>>>>>>>>
>>>>>>>>>> In addition, this design can be "pushed down" into the Spad
>>>>>>>>>> language so that Spad statements (e.g. assignment) had
>>>>>>>>>> proof-related properties. A range such as [1..10] would
>>>>>>>>>> provide explicit bounds in a proof "by language definition".
>>>>>>>>>> Defining the logical properties of language statements in
>>>>>>>>>> this way would make it easier to construct proofs since the
>>>>>>>>>> invariants would be partially constructed already.
>>>>>>>>>>
>>>>>>>>>> This design merges the computer algebra inheritance
>>>>>>>>>> structure with the proof of algorithms structure, all under
>>>>>>>>>> the same mechanism.
>>>>>>>>>>
>>>>>>>>>> Tim
>>>>>>>>>>
>>>>>>>>>> On 12/11/19, Tim Daly wrote:
>>>>>>>>>>> I've been reading Stephen Kell's (Univ of Kent
>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.cs.k=
ent.ac.uk_people_staff_srk21_&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVK=
rkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOI=
DfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3D0SL3F3KHh9R1lV_IrJ0LmINrn_DSMjMq5xsN=
k1_eii0&e=3D
>>>>>>>>>>> ) on
>>>>>>>>>>> Seven deadly sins of talking about =E2=80=9Ctypes=E2=80=9D
>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.cs.k=
ent.ac.uk_people_staff_srk21__blog_2014_10_07_&d=3DDwIFaQ&c=3D4NmamNZG3KTnU=
CoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0B=
kxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DGOMXhymTlK2T6dt62fT=
bqv-K98dBQv0oMmB82kE8mXo&e=3D
>>>>>>>>>>>
>>>>>>>>>>> He raised an interesting idea toward the end of the essay
>>>>>>>>>>> that type-checking could be done outside the compiler.
>>>>>>>>>>>
>>>>>>>>>>> I can see a way to do this in Axiom's Sane compiler.
>>>>>>>>>>> It would be possible to run a program over the source code
>>>>>>>>>>> to collect the information and write a stand-alone type
>>>>>>>>>>> checker. This "unbundles" type checking and compiling.
>>>>>>>>>>>
>>>>>>>>>>> Taken further I can think of several other kinds of checkers
>>>>>>>>>>> (aka 'linters') that could be unbundled.
>>>>>>>>>>>
>>>>>>>>>>> It is certainly something to explore.
>>>>>>>>>>>
>>>>>>>>>>> Tim
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>> On 12/8/19, Tim Daly wrote:
>>>>>>>>>>>> The Axiom Sane compiler is being "shaped by the hammer
>>>>>>>>>>>> blows of reality", to coin a phrase.
>>>>>>>>>>>>
>>>>>>>>>>>> There are many goals. One of the primary goals is creating a
>>>>>>>>>>>> compiler that can be understood, maintained, and modified.
>>>>>>>>>>>>
>>>>>>>>>>>> So the latest changes involved adding multiple index files.
>>>>>>>>>>>> These are documentation (links to where terms are mentioned
>>>>>>>>>>>> in the text), code (links to the implementation of things),
>>>>>>>>>>>> error (links to where errors are defined), signatures (links t=
o
>>>>>>>>>>>> the signatures of lisp functions), figures (links to figures),
>>>>>>>>>>>> and separate category, domain, and package indexes.
>>>>>>>>>>>>
>>>>>>>>>>>> The tikz package is now used to create "railroad diagrams"
>>>>>>>>>>>> of syntax (ala, the PASCAL report). The implementation of
>>>>>>>>>>>> those diagrams follows immediately. Collectively these will
>>>>>>>>>>>> eventually define at least the syntax of the language. In the
>>>>>>>>>>>> ideal, changing the diagram would change the code but I'm
>>>>>>>>>>>> not that clever.
>>>>>>>>>>>>
>>>>>>>>>>>> Reality shows up with the curent constraint that the
>>>>>>>>>>>> compiler should accept the current Spad language as
>>>>>>>>>>>> closely as possible. Of course, plans are to include new
>>>>>>>>>>>> constructs (e.g. hypothesis, axiom, specification, etc)
>>>>>>>>>>>> but these are being postponed until "syntax complete".
>>>>>>>>>>>>
>>>>>>>>>>>> All parse information is stored in a parse object, which
>>>>>>>>>>>> is a CLOS object (and therefore a Common Lisp type)
>>>>>>>>>>>> Fields within the parse object, e.g. variables are also
>>>>>>>>>>>> CLOS objects (and therefore a Common Lisp type).
>>>>>>>>>>>> It's types all the way down.
>>>>>>>>>>>>
>>>>>>>>>>>> These types are being used as 'signatures' for the
>>>>>>>>>>>> lisp functions. The goal is to be able to type-check the
>>>>>>>>>>>> compiler implementation as well as the Sane language.
>>>>>>>>>>>>
>>>>>>>>>>>> The parser is designed to "wrap around" so that the
>>>>>>>>>>>> user-level output of a parse should be the user-level
>>>>>>>>>>>> input (albeit in a 'canonical" form). This "mirror effect"
>>>>>>>>>>>> should make it easy to see that the parser properly
>>>>>>>>>>>> parsed the user input.
>>>>>>>>>>>>
>>>>>>>>>>>> The parser is "first class" so it will be available at
>>>>>>>>>>>> runtime as a domain allowing Spad code to construct
>>>>>>>>>>>> Spad code.
>>>>>>>>>>>>
>>>>>>>>>>>> One plan, not near implementation, is to "unify" some
>>>>>>>>>>>> CLOS types with the Axiom types (e.g. String). How
>>>>>>>>>>>> this will happen is still in the land of design. This would
>>>>>>>>>>>> "ground" Spad in lisp, making them co-equal.
>>>>>>>>>>>>
>>>>>>>>>>>> Making lisp "co-equal" is a feature, especially as Spad is
>>>>>>>>>>>> really just a domain-specific language in lisp. Lisp
>>>>>>>>>>>> functions (with CLOS types as signatures) would be
>>>>>>>>>>>> avaiable for implementing Spad functions. This not
>>>>>>>>>>>> only improves the efficiency, it would make the
>>>>>>>>>>>> BLAS/LAPACK (see volume 10.5) code "native" to Axiom.
>>>>>>>>>>>> .
>>>>>>>>>>>> On the theory front I plan to attend the Formal Methods
>>>>>>>>>>>> in Mathematics / Lean Together conference, mostly to
>>>>>>>>>>>> know how little I know, especially that I need to know.
>>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__www.andr=
ew.cmu.edu_user_avigad_meetings_fomm2020_&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6I=
noLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=
=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DgiWJNgv9oeh8Aj_giZkHCx-3=
GFVk62hxr53YKr4naRk&e=3D
>>>>>>>>>>>>
>>>>>>>>>>>> Tim
>>>>>>>>>>>>
>>>>>>>>>>>>
>>>>>>>>>>>>
>>>>>>>>>>>> On 11/28/19, Jacques Carette wrote:
>>>>>>>>>>>>> The underlying technology to use for building such an algebra
>>>>>>>>>>>>> library
>>>>>>>>>>>>> is
>>>>>>>>>>>>> documented in the paper " Building on the Diamonds between
>>>>>>>>>>>>> Theories:
>>>>>>>>>>>>> Theory Presentation Combinators"
>>>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__www.cas=
.mcmaster.ca_-7Ecarette_publications_tpcj.pdf&d=3DDwIFaQ&c=3D4NmamNZG3KTnUC=
oC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bk=
xc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3D5QO0O72zl3hFmW3ryVeF=
oBjl0AZs2cuQZhKuIxk8NUw&e=3D
>>>>>>>>>>>>> [which
>>>>>>>>>>>>> will
>>>>>>>>>>>>> also be on the arxiv by Monday, and has been submitted to a
>>>>>>>>>>>>> journal].
>>>>>>>>>>>>>
>>>>>>>>>>>>> There is a rather full-fledged prototype, very well documente=
d
>>>>>>>>>>>>> at
>>>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__alhass=
y.github.io_next-2D700-2Dmodule-2Dsystems_prototype_package-2Dformer.html&d=
=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWE=
VPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDz=
gkQ&s=3D9fnfoSWyT66oQoIb4gKAYpCE7JjANqxHquwJdRdo2Uk&e=3D
>>>>>>>>>>>>>
>>>>>>>>>>>>> (source at
>>>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__github=
.com_alhassy_next-2D700-2Dmodule-2Dsystems&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6=
InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&=
m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DZ-d1Pn1slXyiP2l23mZBB5f=
BQOj0-Q48CUKRS1VNLao&e=3D
>>>>>>>>>>>>> ).
>>>>>>>>>>>>> It
>>>>>>>>>>>>> is
>>>>>>>>>>>>> literate source.
>>>>>>>>>>>>>
>>>>>>>>>>>>> The old prototype was hard to find - it is now at
>>>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__github=
.com_JacquesCarette_MathScheme&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbV=
KrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqO=
IDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DpkDi0LOAAPefRjcwvjwNNI3BVzNgJDITFQR=
pkFBgg8c&e=3D
>>>>>>>>>>>>> .
>>>>>>>>>>>>>
>>>>>>>>>>>>> There is also a third prototype in the MMT system, but it doe=
s
>>>>>>>>>>>>> not
>>>>>>>>>>>>> quite
>>>>>>>>>>>>> function properly today, it is under repair.
>>>>>>>>>>>>>
>>>>>>>>>>>>> The paper "A Language Feature to Unbundle Data at Will"
>>>>>>>>>>>>> (https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__alhas=
sy.github.io_next-2D700-2Dmodule-2Dsystems_papers_gpce19-5Fa-5Flanguage-5Ff=
eature-5Fto-5Funbundle-5Fdata-5Fat-5Fwill.pdf&d=3DDwIFaQ&c=3D4NmamNZG3KTnUC=
oC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bk=
xc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DRui27trbws4VTZL5B0zi=
ts8pEczWsib7Q7_mxyRIxhk&e=3D
>>>>>>>>>>>>> )
>>>>>>>>>>>>>
>>>>>>>>>>>>> is also relevant, as it solves a problem with parametrized
>>>>>>>>>>>>> theories
>>>>>>>>>>>>> (parametrized Categories in Axiom terminology) that all curre=
nt
>>>>>>>>>>>>> systems
>>>>>>>>>>>>> suffer from.
>>>>>>>>>>>>>
>>>>>>>>>>>>> Jacques
>>>>>>>>>>>>>
>>>>>>>>>>>>> On 2019-11-27 11:47 p.m., Tim Daly wrote:
>>>>>>>>>>>>>> The new Sane compiler is also being tested with the Fricas
>>>>>>>>>>>>>> algebra code. The compiler knows about the language but
>>>>>>>>>>>>>> does not depend on the algebra library (so far). It should b=
e
>>>>>>>>>>>>>> possible, by design, to load different algebra towers.
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> In particular, one idea is to support the "tiny theories"
>>>>>>>>>>>>>> algebra from Carette and Farmer. This would allow much
>>>>>>>>>>>>>> finer grain separation of algebra and axioms.
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> This "flexible algebra" design would allow things like the
>>>>>>>>>>>>>> Lean theorem prover effort in a more natural style.
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> Tim
>>>>>>>>>>>>>>
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> On 11/26/19, Tim Daly wrote:
>>>>>>>>>>>>>>> The current design and code base (in bookvol15) supports
>>>>>>>>>>>>>>> multiple back ends. One will clearly be a common lisp.
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> Another possible design choice is to target the GNU
>>>>>>>>>>>>>>> GCC intermediate representation, making Axiom "just
>>>>>>>>>>>>>>> another front-end language" supported by GCC.
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> The current intermediate representation does not (yet)
>>>>>>>>>>>>>>> make any decision about the runtime implementation.
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> Tim
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> On 11/26/19, Tim Daly wrote:
>>>>>>>>>>>>>>>> Jason Gross and Adam Chlipala ("Parsing Parses") developed
>>>>>>>>>>>>>>>> a dependently typed general parser for context free gramma=
r
>>>>>>>>>>>>>>>> in Coq.
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> They used the parser to prove its own completeness.
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> Unfortunately Spad is not a context-free grammar.
>>>>>>>>>>>>>>>> But it is an intersting thought exercise to consider
>>>>>>>>>>>>>>>> an "Axiom on Coq" implementation.
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> Tim
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>
>>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>
>>>>>>>>
>>>>>>>
>>>>>>
>>>>>
>>>>
>>>
>>
>
>
From MAILER-DAEMON Mon Jul 20 09:30:57 2020
Received: from list by lists.gnu.org with archive (Exim 4.90_1)
id 1jxVsf-000890-0Z
for mharc-axiom-developer@gnu.org; Mon, 20 Jul 2020 09:30:57 -0400
Received: from eggs.gnu.org ([2001:470:142:3::10]:37870)
by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256)
(Exim 4.90_1) (envelope-from )
id 1jxVsd-00088b-0q
for axiom-developer@nongnu.org; Mon, 20 Jul 2020 09:30:55 -0400
Received: from ppsf02.ccny.cuny.edu ([134.74.98.56]:38406)
by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256)
(Exim 4.90_1) (envelope-from )
id 1jxVsY-0003sO-IF
for axiom-developer@nongnu.org; Mon, 20 Jul 2020 09:30:54 -0400
Received: from pps.filterd (ppsf02.ccny.cuny.edu [127.0.0.1])
by ppsf02.ccny.cuny.edu (8.16.0.42/8.16.0.42) with SMTP id 06KDSu0m002777;
Mon, 20 Jul 2020 06:30:48 -0700
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=ccny.cuny.edu;
h=from : to : cc :
subject : date : message-id : references : in-reply-to : content-type :
content-transfer-encoding : mime-version; s=Key1;
bh=KPpzUNQ5Dq+/kKSRoVnYOOyprkiVxYWWGurBbl1VUYI=;
b=HPS+WYtYPKvUAXuBZKMTY344XIvjD7szmRo3MVC6vf9pLSYj8QVKvqDEMOWZq6T6jK0T
nCqZ4UbDB5mk1bKdlPtpbqi/Xyn36Ozy8nG+Ckggm9mca043Q6/70cXKv6Zuc+Tkk4VQ
Md+dvjq8OXtkC0/6oOeEOcucoozhync7/wZS9+0JeUpjIG6nIz2eXEQbGRtIp5Iehg8V
YoXq4iGK56EVjkKIHZP169PUlSYbuuqYc5fQD23ewB6Hj2PBBqlawchk1BPUxAYgz3Py
gZvdfDGK1+de9IP/MHG0G09OnmLlXBxzWh+vJXJcOK56TL01gvx9TRjihX+ziQNl72QJ bQ==
Received: from ccny-mbx4.itcs.ccny.lan (ccny-mbx4.itcs.ccny.lan
[134.74.99.111]) by ppsf02.ccny.cuny.edu with ESMTP id 32bxms2j74-1
(version=TLSv1.2 cipher=ECDHE-RSA-AES256-SHA384 bits=256 verify=NOT);
Mon, 20 Jul 2020 06:30:47 -0700
Received: from CCNY-MBX4.itcs.ccny.lan (134.74.99.111) by
CCNY-MBX4.itcs.ccny.lan (134.74.99.111) with Microsoft SMTP Server (TLS) id
15.0.1473.3; Mon, 20 Jul 2020 09:30:46 -0400
Received: from CCNY-MBX4.itcs.ccny.lan ([fe80::4d12:46ce:c4d7:fd81]) by
CCNY-MBX4.itcs.ccny.lan ([fe80::4d12:46ce:c4d7:fd81%15]) with mapi id
15.00.1473.005; Mon, 20 Jul 2020 09:30:46 -0400
From: William Sit
To: Tim Daly
CC: axiom-dev
Subject: Re: [EXTERNAL] Re: Axiom musings...
Thread-Topic: [EXTERNAL] Re: Axiom musings...
Thread-Index: AQHVpDkUBTyXH3ckeUCKI5+JEg2RvKegWTwAgAEU6oCAEDcdAIAECgmAgAayXICAHMBfgIAKZtmAgAAM3ACALGyDgIAuhXEAgBpM0gCAhMyjAIAYHauAgBnhOACAAOOw54AAn3WAgABhKAU=
Date: Mon, 20 Jul 2020 13:30:45 +0000
Message-ID: <1595251845196.15576@ccny.cuny.edu>
References:
<1595175684369.31200@ccny.cuny.edu>,
In-Reply-To:
Accept-Language: en-US
Content-Language: en-US
X-MS-Has-Attach:
X-MS-TNEF-Correlator:
x-ms-exchange-messagesentrepresentingtype: 1
x-ms-exchange-transport-fromentityheader: Hosted
x-originating-ip: [134.74.99.235]
Content-Type: text/plain; charset="Windows-1252"
Content-Transfer-Encoding: quoted-printable
MIME-Version: 1.0
X-Proofpoint-Virus-Version: vendor=fsecure engine=2.50.10434:6.0.235, 18.0.687
definitions=2020-07-20_09:2020-07-20,
2020-07-20 signatures=0
X-Proofpoint-Spam-Details: rule=notspam policy=default score=0 phishscore=0
bulkscore=0 spamscore=0
mlxscore=0 suspectscore=0 priorityscore=1501 adultscore=0
lowpriorityscore=0 clxscore=1015 mlxlogscore=999 malwarescore=0
impostorscore=0 classifier=spam adjust=0 reason=mlx scancount=1
engine=8.12.0-2006250000 definitions=main-2007200094
Received-SPF: pass client-ip=134.74.98.56; envelope-from=wsit@ccny.cuny.edu;
helo=ppsf02.ccny.cuny.edu
X-detected-operating-system: by eggs.gnu.org: First seen = 2020/07/20 09:30:49
X-ACL-Warn: Detected OS = Linux 3.x [generic] [fuzzy]
X-Spam_score_int: -42
X-Spam_score: -4.3
X-Spam_bar: ----
X-Spam_report: (-4.3 / 5.0 requ) BAYES_00=-1.9, DKIM_SIGNED=0.1,
DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, RCVD_IN_DNSWL_MED=-2.3,
SPF_HELO_NONE=0.001, SPF_PASS=-0.001,
URIBL_BLOCKED=0.001 autolearn=ham autolearn_force=no
X-Spam_action: no action
X-BeenThere: axiom-developer@nongnu.org
X-Mailman-Version: 2.1.23
Precedence: list
List-Id: Axiom Developers
List-Unsubscribe: ,
List-Archive:
List-Post:
List-Help:
List-Subscribe: ,
X-List-Received-Date: Mon, 20 Jul 2020 13:30:55 -0000
Hi Tim:=0A=
=0A=
Perhaps I did not make myself clear in the short comment.=0A=
What I wanted to say is that a data representation is not the same as the a=
bstract mathematical objects because there are finite bounds on the represe=
ntation. Take for example, an algorithm to compute the LCM of two integers.=
The LCM can cause overflow and not be representable. Of course, you can ch=
ange the data representation to have "infinite precision", but that would s=
till be bounded by actual physical memory of the machine. The careful progr=
ammer of the LCM algorithm would add throws and catches to handle the "erro=
r",but the implementation will have to add code that is not considered in t=
he theoretical LCM algorithm (unless the LCM algorithm is meant for bounded=
integers of a fixed data representation and not abstract integers). So the=
re are two kinds of algorithms, one that is purely mathematical and one tha=
t is computational, the latter including a particular (class of) data repre=
sentation(s) (perhaps even the computer language and system of the implemen=
tation). It is proofs for the latter type of algorithms that is lacking. Si=
nce data representations (like REP in Axiom) are built recursively, a compu=
tational algorithm (in the sense above) for Groebner basis may have to be d=
esigned to take care of just a few of the ways integers can be represented.=
Axiom is built with that in mind (that's where type theory comes in), but =
I bet no one SPECIFIES their computational algorithms with the limitations =
of data representation in mind, much less proves the algorithm anew for eac=
h new representation. So if a computation of a Groebner basis halts because=
of an intermediate LCM computation (say of two integer coefficients), shou=
ld we consider the implementation as proven correct? What if the overflow c=
ondition was not detected and the computation continues? Indeed, since ther=
e may be different implementations of the integer domain, we must be sure t=
hat every implementation of the LCM algorithm handles overflows correctly A=
ND specified in the documentation.=0A=
=0A=
I am sure I am just being ignorant to pose these questions, because they mu=
st have been considered and perhaps solved. In that case, please ignore the=
m and just tell me so.=0A=
=0A=
William=0A=
=0A=
William Sit=0A=
Professor Emeritus=0A=
Department of Mathematics=0A=
The City College of The City University of New York=0A=
New York, NY 10031=0A=
homepage: wsit.ccny.cuny.edu=0A=
=0A=
________________________________________=0A=
From: Tim Daly =0A=
Sent: Sunday, July 19, 2020 5:33 PM=0A=
To: William Sit=0A=
Cc: axiom-dev=0A=
Subject: Re: [EXTERNAL] Re: Axiom musings...=0A=
=0A=
There are several "problems" with proving programs correct that=0A=
I don't quite know how to solve, or even approach. But that's the=0A=
fun of "research", right?=0A=
=0A=
For the data representation question I've been looking at types.=0A=
I took 10 courses at CMU. I am eyebrow deep in type theory.=0A=
I'm looking at category theory and homotopy type theory. So=0A=
far I haven't seen anyone looking at the data problem. Most of=0A=
the focus is on strict code typing.=0A=
=0A=
There is an old MIT course by Abelson and Sussman "Structure=0A=
and Interpretation of Computer Programs" (SICP). They rewrite=0A=
data as programs which, in Lisp, is trivial to do, Dan Friedman=0A=
seems to have some interesting ideas too.=0A=
=0A=
All of Axiom's SANE types are now CLOS objects which gives=0A=
two benefits. First, they can be inherited. But second, they=0A=
are basically Lisp data structures with associated code.=0A=
=0A=
I'm thinking of associating "data axioms" with the representation=0A=
(REP) object of a domain as well as with the functions.=0A=
=0A=
For example, DenavitHartenbergMatrix encodes 4x4 matrices=0A=
used in graphics and robotics. They are 4x4 matrices where=0A=
the upper left 3x3 encodes rotations, the right column encodes=0A=
translations, and the lower row includes scaling, skewing, etc.=0A=
=0A=
(As an aside, DHMATRIX matrices have an associated=0A=
Jacobian which encodes the dynamics in things like robots.=0A=
Since I'm also programming a robot I'm tempted to work on=0A=
extending the domain with related functions... but, as=0A=
Hamming said, new algebra code isn't "the most important=0A=
problem in computational mathematics").=0A=
=0A=
Axioms associated with the REP can assume that they are=0A=
4x4, that they can be inverted, that they have a "space" of=0A=
rotations, etc. The axioms provide "facts" known to be true=0A=
about the REP. (I also need to think about a "specification"=0A=
for the REP but I'm not there yet).=0A=
=0A=
Since every category and domain is a CLOS data structure=0A=
the DHMATRIX data structure inherits REP axioms from its=0A=
inheritance graph (e.g. SQMATRIX axioms). But DHMATRIX=0A=
adds domain-specific REP axioms (as well as domain-specific=0A=
function axioms). Thus a DHMATRIX rotate function can=0A=
base its proof on the fact that it only affects the upper 3x3=0A=
and lives in a space of rotations, all of which can be assumed=0A=
by the proof.=0A=
=0A=
If I use the SICP "trick" of representing data as code I can=0A=
"expand" the data as part of the program proof.=0A=
=0A=
It is all Omphaloskepsis (navel gazing) at this point though.=0A=
I'm still writing the new SANE compiler (which is wildly=0A=
different from the compiler course I taught).=0A=
=0A=
I did give a talk at Notre Dame but I haven't attempted to=0A=
publish. All of my work shows up in literate programming=0A=
Axiom books on github.=0A=
(https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__github.com_daly_PDF=
S&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DpGhsxwcTvR=
8Ap4fl9FnvlW2_HcwzcFuj51GHaBlmYIU&m=3DWOYlKYoZNDGIAC2_SbARFwrWepvVu8EQIcLfv=
TFz2x8&s=3DVTyfp86PorJlUsYXQh-5H2rc57ovAik1_HcrqxsygWk&e=3D )=0A=
=0A=
It is all pretty pointless since nobody cares about computer=0A=
algebra, proving math programs correct, or Axiom itself.=0A=
Wolfram is taking up all the oxygen in the discussions.=0A=
=0A=
But I have to say, this research is great fun. It reminds me=0A=
of the Scratchpad days, although I miss the give-and-take=0A=
of the group. It is hard to recreate my role as the dumbest=0A=
guy in the room when I'm stuck here by myself :-)=0A=
=0A=
Hope you and your family are safe and healthy.=0A=
=0A=
Tim=0A=
=0A=
PS. I think we should redefine the "Hamming Distance" as=0A=
the distance between an idea and its implementation.=0A=
=0A=
=0A=
=0A=
On 7/19/20, William Sit wrote:=0A=
> Hi Tim:=0A=
>=0A=
> Glad to hear from you now and then, promoting and working towards your id=
eas=0A=
> and ideals.=0A=
>=0A=
> >>We need proven algorithms.=0A=
>=0A=
> Just one short comment: it is often possible to prove algorithms (that is=
,=0A=
> providing the theoretical foundation for the algorithm), but it is much=
=0A=
> harder to prove that an implementation of the algorithm is correct. As yo=
u=0A=
> well know, the distinction lies in that implementation involves data=0A=
> representations whereas proofs of algorithms normally ignore them.=0A=
> Introducing (finite) data representations means introducing boundary=0A=
> situations that a programmer implementing an algorithm must deal with. So=
=0A=
> perhaps what we need to prove should include the correctness of=0A=
> implementations (to the bare metal, as you often say) and we should have =
a=0A=
> different set of analytic tools that can deal with the correctness (or=0A=
> completeness) of data representations. Of course, these tools must also b=
e=0A=
> proven with the same rigor since behind every program is an algorithm.=0A=
>=0A=
> William=0A=
>=0A=
> William Sit=0A=
> Professor Emeritus=0A=
> Department of Mathematics=0A=
> The City College of The City University of New York=0A=
> New York, NY 10031=0A=
> homepage: wsit.ccny.cuny.edu=0A=
>=0A=
> ________________________________________=0A=
> From: Axiom-developer=0A=
> on behalf =
of=0A=
> Tim Daly =0A=
> Sent: Saturday, July 18, 2020 6:28 PM=0A=
> To: axiom-dev; Tim Daly=0A=
> Subject: [EXTERNAL] Re: Axiom musings...=0A=
>=0A=
> Richard Hamming gave a great talk. "You and Your Research"=0A=
> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.youtube.com_wa=
tch-3Fv-3Da1zDuOPkMSw&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwt=
IMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX=
0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DkSXlFiPNCbYVZvoZ62OUVd_40kcVviTxSKF3vNNtm0U&=
e=3D=0A=
>=0A=
> His big question is:=0A=
>=0A=
> "What is the most important problem in your field=0A=
> and why aren't you working on it?"=0A=
>=0A=
> To my mind, the most important problem in the field of=0A=
> computational mathematics is grounding computer=0A=
> algebra in proofs.=0A=
>=0A=
> Computer mathematical algorithms that "maybe,=0A=
> possibly, give correct answers sometimes" is a problem.=0A=
> Indeed, for computer algebra, it is the most important=0A=
> problem. We need proven algorithms.=0A=
>=0A=
> New algorithms, better graphics, better documentation,=0A=
> are all "nice to have" but, as Hamming would say,=0A=
> they are not "the most important problem".=0A=
>=0A=
> Tim=0A=
>=0A=
>=0A=
>=0A=
> On 7/2/20, Tim Daly wrote:=0A=
>> Time for another update.=0A=
>>=0A=
>> The latest Intel processors, available only to data centers=0A=
>> so far, have a built-in FPGA. This allows you to design=0A=
>> your own circuits and have them loaded "on the fly",=0A=
>> running in parallel with the CPU.=0A=
>>=0A=
>> I bought a Lattice ICEstick FPGA development board. For=0A=
>> the first time there are open source tools that support it so=0A=
>> it is a great test bench for ideas and development. It is a=0A=
>> USB drive so it can be easily ported to any PC.=0A=
>> (https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.latticesemi.=
com_products_developmentboardsandkits_icestick&d=3DDwIFaQ&c=3D4NmamNZG3KTnU=
CoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0B=
kxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DQxcJcE1BdIMqDbutQz2=
HFhAAAymG-QswIjRao_YTwz4&e=3D=0A=
>> )=0A=
>>=0A=
>> I also bought a large Intel Cyclone FPGA development board.=0A=
>> (https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__www.terasic.com.t=
w_cgi-2Dbin_page_archive.pl-3FLanguage-3DEnglish-26No-3D836&d=3DDwIFaQ&c=3D=
4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79Pd=
SWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3D3wW6Bu=
eAeyVTQi0xGqoeE7xIA5EREDmvQR4fPw5zAXo&e=3D=0A=
>> )=0A=
>> which has 2 embedded ARM processors. Unfortunately=0A=
>> the tools (which are freely available) are not open source.=0A=
>> It has sufficient size and power to do anything.=0A=
>>=0A=
>>=0A=
>> I've got 2 threads of work in progress, both of which=0A=
>> involve FPGAs (Field Programmable Gate Arrays).=0A=
>>=0A=
>> Thread 1=0A=
>>=0A=
>> The first thread involves proving programs correct. Once=0A=
>> a proof has been made it is rather easier to check the proof.=0A=
>> If code is shipped with a proof, the proof can be loaded into=0A=
>> an FPGA running a proof-checker which verifies the program=0A=
>> in parallel with running the code on the CPU.=0A=
>>=0A=
>> I am researching the question of writing a proof checker that=0A=
>> runs on an FPGA, thus verifying the code "down to the metal".=0A=
>> The Lean proof checker is the current target.=0A=
>>=0A=
>> The idea is to make "Oracle" algorithms that, because they=0A=
>> are proven correct and verified at runtime, can be trusted=0A=
>> by other mathematical software (e.g. Lean, Coq, Agda)=0A=
>> when used in proofs.=0A=
>>=0A=
>> Thread 2=0A=
>>=0A=
>>=0A=
>> The second thread involves arithmetic. Axiom currently ships=0A=
>> with numeric routines (BLAS and LAPACK, see bookvol10.5).=0A=
>> These routines have a known set of numeric failures such as=0A=
>> cancellation, underflow, and scaling.=0A=
>>=0A=
>> John Gustafson has designed a 'unum' numeric format that can=0A=
>> eliminate many of these errors. (See=0A=
>> Gustafson, John "The End of Error" CRC Press 2015=0A=
>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.amazon.com_En=
d-2DError-2DComputing-2DChapman-2DComputational_dp_1482239868_ref-3Dsr-5F1-=
5F1-3Fdchild-3D1-26keywords-3Dgustafson-2Bthe-2Bend-2Bof-2Berror-26qid-3D15=
93685423-26sr-3D8-2D1&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwt=
IMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX=
0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DcxcqXTqQQjOFj6wRWKcaCMutCt0BYJ0WwJnlo0hYa0A&=
e=3D=0A=
>> )=0A=
>>=0A=
>> The research goal is to implement Axiom's floating-point=0A=
>> arithmetic that can be offloaded onto an FPGA implementing=0A=
>> the unum format. Such a system would radically simplify=0A=
>> the implementation of BLAS and LAPACK as most of the=0A=
>> errors can't occur. The impact would be similar to using=0A=
>> multi-precision integer arithmetic, only now its floating-point.=0A=
>>=0A=
>> SANE, the greater goal.=0A=
>>=0A=
>> The Axiom SANE compiler / interpreter can use both of=0A=
>> these tools to implement trusted mathematical software.=0A=
>> It's a long, ambitious research effort but even if only pieces=0A=
>> of it succeed, it changes computational mathematics.=0A=
>>=0A=
>> Tim=0A=
>>=0A=
>> "A person's reach should exceed their grasp,=0A=
>> or what's a computer for?" (misquoting Robert Browning)=0A=
>>=0A=
>> (https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.quotetab.com=
_quote_by-2Drobert-2Dbrowning_ah-2Dbut-2Da-2Dmans-2Dreach-2Dshould-2Dexceed=
-2Dhis-2Dgrasp-2Dor-2Dwhats-2Da-2Dheaven-2Dfor&d=3DDwIFaQ&c=3D4NmamNZG3KTnU=
CoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0B=
kxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DayZkzXC9ekESctdx_Oq=
sfcYl4z14qlYS02TBNmnaHUY&e=3D=0A=
>> )=0A=
>>=0A=
>>=0A=
>>=0A=
>>=0A=
>> On 6/16/20, Tim Daly wrote:=0A=
>>> WHY PROVE AXIOM CORRECT (SANE)?=0A=
>>>=0A=
>>> Historically, Axiom credits CLU, the Cluster language by=0A=
>>> Barbara Liskov, with the essential ideas behind the Spad=0A=
>>> language. Barbara gave a talk (a partial transcript below)=0A=
>>> that gives the rational behind the ``where clause'' used by=0A=
>>> Spad.=0A=
>>>=0A=
>>> She talks about the limits of the compile time capablity.=0A=
>>> In particular, she says:=0A=
>>>=0A=
>>> To go further, where we would say that T,=0A=
>>> in addition, has to be an equality relation, that requires=0A=
>>> much more sophisticated techniques that, even today, are=0A=
>>> beyond the capabilities of the compiler.=0A=
>>>=0A=
>>> Showing that the ``equal'' function satisfies the equality=0A=
>>> relation is no longer ``beyond the capabilities of the compiler''.=0A=
>>> We have the required formalisms and mechanisms to=0A=
>>> prove properties at compile time.=0A=
>>>=0A=
>>> The SANE effort is essentially trying to push compile=0A=
>>> time checking into proving that, for categories that use=0A=
>>> ``equal'', we prove that the equal function implements=0A=
>>> equality.=0A=
>>>=0A=
>>> I strongly encourage you to watch her video.=0A=
>>>=0A=
>>> Tim=0A=
>>>=0A=
>>> =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=0A=
>>> Barbara Liskov=0A=
>>> May 2012=0A=
>>> MIT CSAIL=0A=
>>> Programming the Turing Machine=0A=
>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.youtube.com_=
watch-3Fv-3DibRar7sWulM&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHR=
wtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZe=
PX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DmKaSE2deFF_wqq9yriqo-s51oF6c3-ksS2_IZhS1eG=
Y&e=3D=0A=
>>>=0A=
>>> POLYMORPHISM=0A=
>>>=0A=
>>> We don't just want a set, we want polymorphism or=0A=
>>> generics, as they are called today. We wanted to=0A=
>>> have a generic set which was paramaterized by type=0A=
>>> so you could instantiate it as:=0A=
>>>=0A=
>>> Set =3D [T:type] create, insert,...=0A=
>>> % representation for Set object=0A=
>>> % implementation of Set operations=0A=
>>> Set=0A=
>>>=0A=
>>> Set[int] s :=3D Set[int]$create()=0A=
>>> Set[int]$insert(s,3)=0A=
>>>=0A=
>>> We wanted a static solution to this problem. The=0A=
>>> problem is, not every type makes sense as a parameter=0A=
>>> to Set of T. For sets, per se, you need an equality=0A=
>>> relation. If it has been a sorted set we would have=0A=
>>> some ordering relation. And a type that didn't have=0A=
>>> one of those things would not have been a legitimate=0A=
>>> parameter. We needed a way of expressing that in a=0A=
>>> compile-time, checkable manner. Otherwise we would=0A=
>>> have had to resort to runtime checking.=0A=
>>>=0A=
>>> Our solution was=0A=
>>>=0A=
>>> Set =3D [T: ] create, insert,...=0A=
>>> T equal: (T,T) (bool)=0A=
>>>=0A=
>>>=0A=
>>> Our solution, what we call the ``where clause''. So we=0A=
>>> added this to the header. The ``where clause'' tells you=0A=
>>> what operations the parameter type has to have.=0A=
>>>=0A=
>>> If you have the ``where'' clause you can do the static=0A=
>>> checking because when you instantiate, when you provide=0A=
>>> an actual type, the compiler can check that the type has=0A=
>>> the operations that are required. And then, when you write=0A=
>>> the implementation of Set the compiler knows it's ok to=0A=
>>> call those operations because you can guarantee they are=0A=
>>> actually there when you get around to running.=0A=
>>>=0A=
>>> Of course, you notice that there's just syntax here; there's=0A=
>>> no semantics.=0A=
>>>=0A=
>>> As I'm sure you all know, compile-time type checking is=0A=
>>> basically a proof technique of a very limited sort and=0A=
>>> this was about as far as we can push what you could get out of the=0A=
>>> static analysis. To go further, where we would say that T,=0A=
>>> in addition, has to be an equality relation, that requires=0A=
>>> much more sophisticated techniques that, even today, are=0A=
>>> beyond the capabilities of the compiler.=0A=
>>>=0A=
>>>=0A=
>>>=0A=
>>>=0A=
>>> On 3/24/20, Tim Daly wrote:=0A=
>>>> I've spent entirely too much time studing the legal issues=0A=
>>>> of free and open source software. There are copyright,=0A=
>>>> trademark, and intellectual property laws. I have read=0A=
>>>> several books, listened to lectures, and read papers on=0A=
>>>> the subject. I've spoken to lawyers about it. I've even=0A=
>>>> been required, by law, to coerce people I respect.=0A=
>>>> You would think it was all perfectly clear. It isn't.=0A=
>>>>=0A=
>>>> The most entertaining and enlightening lectures were=0A=
>>>> by Robert Lefkowitz at OSCON 2004. His talk is=0A=
>>>> "The Semasiology of Open Source", which sounds=0A=
>>>> horrible but I assure you, this is a real treat.=0A=
>>>>=0A=
>>>> THE THESIS=0A=
>>>>=0A=
>>>> Semasiology, n. The science of meanings or=0A=
>>>> sense development (of words); the explanation=0A=
>>>> of the development and changes of the meanings=0A=
>>>> of words. Source: Webster's Revised Unabridged=0A=
>>>> Dictionary, =EF=BF=BD 1996, 1998 MICRA, Inc.=0A=
>>>>=0A=
>>>> "Open source doesn't just mean access to the=0A=
>>>> source code." So begins the Open Source Definition.=0A=
>>>> What then, does access to the source code mean?=0A=
>>>> Seen through the lens of an Enterprise user, what=0A=
>>>> does open source mean? When is (or isn't) it=0A=
>>>> significant? And a catalogue of open source=0A=
>>>> related arbitrage opportunities.=0A=
>>>>=0A=
>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__origin.conversat=
ionsnetwork.org_Robert-2520Lefkowitz-2520-2D-2520The-2520Semasiology-2520of=
-2520Open-2520Source.mp3&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXH=
RwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZ=
ePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DIpKqNvLCWxaxdmI9ATBmNX0r3h_3giwDJVTFcnEbu=
sM&e=3D=0A=
>>>>=0A=
>>>> Computer source code has words and sentence=0A=
>>>> structure like actual prose or even poetry. Writing=0A=
>>>> code for the computer is like writing an essay. It=0A=
>>>> should be written for other people to read,=0A=
>>>> understand and modify. These are some of the=0A=
>>>> thoughts behind literate programming proposed=0A=
>>>> by Donald Knuth. This is also one of the ideas=0A=
>>>> behind Open Source.=0A=
>>>>=0A=
>>>> THE ANTITHESIS=0A=
>>>>=0A=
>>>> "Open Source" is a phrase like "Object Oriented"=0A=
>>>> - weird at first, but when it became popular, the=0A=
>>>> meaning began to depend on the context of the=0A=
>>>> speaker or listener. "Object Oriented" meant that=0A=
>>>> PERL, C++, Java, Smalltalk, Basic and the newest=0A=
>>>> version of Cobol are all "Object Oriented" - for some=0A=
>>>> specific definition of "Object Oriented". Similar is=0A=
>>>> the case of the phrase "Open Source".=0A=
>>>>=0A=
>>>> In Part I, Lefkowitz talked about the shift of the=0A=
>>>> meaning of "Open Source" away from any reference=0A=
>>>> to the actual "source code," and more towards other=0A=
>>>> phases of the software development life cycle. In=0A=
>>>> Part II, he returns to the consideration of the=0A=
>>>> relationship between "open source" and the actual=0A=
>>>> "source code," and reflects upon both the way=0A=
>>>> forward and the road behind, drawing inspiration=0A=
>>>> from Charlemagne, King Louis XIV, Donald Knuth,=0A=
>>>> and others.=0A=
>>>>=0A=
>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__origin.conversat=
ionsnetwork.org_ITC.OSCON05-2DRobertLefkowitz-2D2005.08.03.mp3&d=3DDwIFaQ&c=
=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ7=
9PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DLTg=
LxuL_diAdUFVj96fbcZJ08IEv_MGf28Vlk0InNQI&e=3D=0A=
>>>>=0A=
>>>> THE SYNTHESIS=0A=
>>>>=0A=
>>>> In a fascinating synthesis, Robert =93r0ml=94 Lefkowitz=0A=
>>>> polishes up his exposition on the evolving meaning=0A=
>>>> of the term =91open source=92. This intellectual joy-ride=0A=
>>>> draws on some of the key ideas in artificial intelligence=0A=
>>>> to probe the role of language, meaning and context=0A=
>>>> in computing and the software development process.=0A=
>>>> Like Wittgenstein=92s famous thought experiment, the=0A=
>>>> open source =91beetle in a box=92 can represent different=0A=
>>>> things to different people, bearing interesting fruit for=0A=
>>>> philosophers and software creators alike.=0A=
>>>>=0A=
>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__itc.conversation=
snetwork.org_audio_download_itconversations-2D1502.mp3&d=3DDwIFaQ&c=3D4Nmam=
NZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRx=
NZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DJls8thoIwON=
-5Jr2Rn1_MXWtrohVFn1Ik4c7l2MFsnk&e=3D=0A=
>>>>=0A=
>>>>=0A=
>>>> On 3/7/20, Tim Daly wrote:=0A=
>>>>> I've pushed the lastest version of Axiom. The plan, followed=0A=
>>>>> so far, is to push once a month on the 7th.=0A=
>>>>>=0A=
>>>>> After some chat room interactions it was brought home=0A=
>>>>> again that the proof world really does not seem to like the=0A=
>>>>> idea of proving programs correct. And, given that it was is=0A=
>>>>> of the main Axiom goals and a point of friction during the fork,=0A=
>>>>> the computer algebra world does not like the idea of proving=0A=
>>>>> programs correct either.=0A=
>>>>>=0A=
>>>>> So the idea of "computational mathematics", which includes=0A=
>>>>> both disciplines (as well as type theory) seems still a long=0A=
>>>>> way off.=0A=
>>>>>=0A=
>>>>> Nevertheless, the primary change in these past and future=0A=
>>>>> updates is focused on merging proof and computer algebra.=0A=
>>>>>=0A=
>>>>> Proof systems are able to split the problem of creating a=0A=
>>>>> proof and the problem of verifying a proof, which is much=0A=
>>>>> cheaper. Ideally the proof checker would run on verified=0A=
>>>>> hardware so the proof is checked "down to the metal".=0A=
>>>>>=0A=
>>>>> I have a background in Field Programmable Gate Arrays=0A=
>>>>> (FPGAs) as I tried to do a startup using them. So now I'm=0A=
>>>>> looking at creating a hardware proof checker using a=0A=
>>>>> dedicated instruction set, one designed to be verifed.=0A=
>>>>> New CPUs used in data centers (not yet available to us=0A=
>>>>> mortals) have built-in FPGAs so it would be possible to=0A=
>>>>> "side-load" a proof of a program to be checked while the=0A=
>>>>> program is run. I have the FPGA and am doing a gate-level=0A=
>>>>> special instruction design for such a proof checker.=0A=
>>>>>=0A=
>>>>>=0A=
>>>>> On 2/7/20, Tim Daly wrote:=0A=
>>>>>> As a mathematician, it is difficult to use a system like Axiom,=0A=
>>>>>> mostly because it keeps muttering about Types. If you're not=0A=
>>>>>> familiar with type theory (most mathematicians aren't) then it=0A=
>>>>>> seems pointless and painful.=0A=
>>>>>>=0A=
>>>>>> So Axiom has a steep learning curve.=0A=
>>>>>>=0A=
>>>>>> As a mathematician with an algorithmic approach, it is difficult=0A=
>>>>>> to use a system like Axiom, mostly because you have to find=0A=
>>>>>> or create "domains" or "packages", understand categories=0A=
>>>>>> with their inheritance model, and learn a new language with=0A=
>>>>>> a painful compiler always complaining about types.=0A=
>>>>>>=0A=
>>>>>> So Axiom has a steep learning curve.=0A=
>>>>>>=0A=
>>>>>> The Sane version of Axiom requires knowing the mathematics.=0A=
>>>>>> It also assumes a background in type theory, inductive logic,=0A=
>>>>>> homotopy type theory, ML (meta-language, not machine=0A=
>>>>>> learning (yet)), interactive theorem proving, kernels, tactics,=0A=
>>>>>> and tacticals. Also assumed is knowledge of specification languages,=
=0A=
>>>>>> Hoare triples, proof techniques, soundness, and completeness.=0A=
>>>>>> Oh, and there is a whole new syntax and semantics added to=0A=
>>>>>> specify definitions, axioms, and theorems, not to mention whole=0A=
>>>>>> libraries of the same.=0A=
>>>>>>=0A=
>>>>>> So Axiom Sane has a steep learning curve.=0A=
>>>>>>=0A=
>>>>>> I've taken 10 courses at CMU and spent the last 4-5 years=0A=
>>>>>> learning to read the leading edge literature (also known=0A=
>>>>>> as "greek studies", since every paper has pages of greek).=0A=
>>>>>>=0A=
>>>>>> I'm trying to unify computer algebra and proof theory into a=0A=
>>>>>> "computational mathematics" framework. I suspect that the only=0A=
>>>>>> way this system will ever be useful is after Universities have a=0A=
>>>>>> "Computational Mathematics" major course of study and degree.=0A=
>>>>>>=0A=
>>>>>> Creating a new department is harder than creating Axiom Sane=0A=
>>>>>> because, you know, ... people.=0A=
>>>>>>=0A=
>>>>>> I think such a department is inevitable given the deep and wide=0A=
>>>>>> impact of computers, just not in my lifetime. That's ok. When I=0A=
>>>>>> started programming there was no computer science degree.=0A=
>>>>>>=0A=
>>>>>> Somebody has to be the first lemming over the cliff.=0A=
>>>>>>=0A=
>>>>>> Tim=0A=
>>>>>>=0A=
>>>>>> On 1/9/20, Tim Daly wrote:=0A=
>>>>>>> When Axiom Sane is paired with a proof checker (e.g. with Lean)=0A=
>>>>>>> there is a certain amount of verification that is involved.=0A=
>>>>>>>=0A=
>>>>>>> Axiom will provide proofs (presumably validated by Lean) for its=0A=
>>>>>>> algorithms. Ideally, when a computation is requested from Lean=0A=
>>>>>>> for a GCD, the result as well as a proof of the GCD algorithm is=0A=
>>>>>>> returned. Lean can the verify that the proof is valid. But it is=0A=
>>>>>>> computationally more efficient if Axiom and Lean use a cryptographi=
c=0A=
>>>>>>> hash, such as SHA1. That way the proof doesn't need to be=0A=
>>>>>>> 'reproven', only a hash computation over the proof text needs to=0A=
>>>>>>> be performed. Hashes are blazingly fast. This allows proofs to be=
=0A=
>>>>>>> exchanged without re-running the proof mechanism. Since a large=0A=
>>>>>>> computation request from Lean might involve many algorithms=0A=
>>>>>>> there would be considerable overhead to recompute each proof.=0A=
>>>>>>> A hash simplifies the issue yet provides proof integrity.=0A=
>>>>>>>=0A=
>>>>>>> Tim=0A=
>>>>>>>=0A=
>>>>>>>=0A=
>>>>>>> On 1/9/20, Tim Daly wrote:=0A=
>>>>>>>> Provisos.... that is, 'formula SUCH pre/post-conditions'=0A=
>>>>>>>>=0A=
>>>>>>>> A computer algebra system ought to know and ought to provide=0A=
>>>>>>>> information about the domain and range of a resulting formula.=0A=
>>>>>>>> I've been pushing this effort since the 1980s (hence the=0A=
>>>>>>>> SuchThat domain).=0A=
>>>>>>>>=0A=
>>>>>>>> It turns out that computing with, carrying, and combining this=0A=
>>>>>>>> information is difficult if not impossible in the current system.=
=0A=
>>>>>>>> The information isn't available and isn't computed. In that sense,=
=0A=
>>>>>>>> the original Axiom system is 'showing its age'.=0A=
>>>>>>>>=0A=
>>>>>>>> In the Sane implementation the information is available. It is=0A=
>>>>>>>> part of the specification and part of the proof steps. With a=0A=
>>>>>>>> careful design it will be possible to provide provisos for each=0A=
>>>>>>>> given result that are carried with the result for use in further=
=0A=
>>>>>>>> computation.=0A=
>>>>>>>>=0A=
>>>>>>>> This raises interesting questions to be explored. For example,=0A=
>>>>>>>> if the formula is defined over an interval, how is the interval=0A=
>>>>>>>> arithmetic handled?=0A=
>>>>>>>>=0A=
>>>>>>>> Exciting research ahead!=0A=
>>>>>>>>=0A=
>>>>>>>> Tim=0A=
>>>>>>>>=0A=
>>>>>>>>=0A=
>>>>>>>>=0A=
>>>>>>>> On 1/3/20, Tim Daly wrote:=0A=
>>>>>>>>> Trusted Kernel... all the way to the metal.=0A=
>>>>>>>>>=0A=
>>>>>>>>> While building a trusted computer algebra system, the=0A=
>>>>>>>>> SANE version of Axiom, I've been looking at questions of=0A=
>>>>>>>>> trust at all levels.=0A=
>>>>>>>>>=0A=
>>>>>>>>> One of the key tenets (the de Bruijn principle) calls for a=0A=
>>>>>>>>> trusted kernel through which all other computations must=0A=
>>>>>>>>> pass. Coq, Lean, and other systems do this. They base=0A=
>>>>>>>>> their kernel on logic like the Calculus of Construction or=0A=
>>>>>>>>> something similar.=0A=
>>>>>>>>>=0A=
>>>>>>>>> Andrej Bauer has been working on a smaller kernel (a=0A=
>>>>>>>>> nucleus) that separates the trust from the logic. The rules=0A=
>>>>>>>>> for the logic can be specified as needed but checked by=0A=
>>>>>>>>> the nucleus code.=0A=
>>>>>>>>>=0A=
>>>>>>>>> I've been studying Field Programmable Gate Arrays (FPGA)=0A=
>>>>>>>>> that allow you to create your own hardware in a C-like=0A=
>>>>>>>>> language (Verilog). It allows you to check the chip you build=0A=
>>>>>>>>> all the way down to the transistor states. You can create=0A=
>>>>>>>>> things as complex as a whole CPU or as simple as a trusted=0A=
>>>>>>>>> nucleus. (youtube: Building a CPU on an FPGA). ACL2 has a=0A=
>>>>>>>>> history of verifying hardware logic.=0A=
>>>>>>>>>=0A=
>>>>>>>>> It appears that, assuming I can understand Bauers=0A=
>>>>>>>>> Andromeda system, it would be possible and not that hard=0A=
>>>>>>>>> to implement a trusted kernel on an FPGA the size and=0A=
>>>>>>>>> form factor of a USB stick.=0A=
>>>>>>>>>=0A=
>>>>>>>>> Trust "down to the metal".=0A=
>>>>>>>>>=0A=
>>>>>>>>> Tim=0A=
>>>>>>>>>=0A=
>>>>>>>>>=0A=
>>>>>>>>>=0A=
>>>>>>>>> On 12/15/19, Tim Daly wrote:=0A=
>>>>>>>>>> Progress in happening on the new Sane Axiom compiler.=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> Recently I've been musing about methods to insert axioms=0A=
>>>>>>>>>> into categories so they could be inherited like signatures.=0A=
>>>>>>>>>> At the moment I've been thinking about adding axioms in=0A=
>>>>>>>>>> the same way that signatures are written, adding them to=0A=
>>>>>>>>>> the appropriate categories.=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> But this is an interesting design question.=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> Axiom already has a mechanism for inheriting signatures=0A=
>>>>>>>>>> from categories. That is, we can bet a plus signature from,=0A=
>>>>>>>>>> say, the Integer category.=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> Suppose we follow the same pattern. Currently Axiom=0A=
>>>>>>>>>> inherits certain so-called "attributes", such as=0A=
>>>>>>>>>> ApproximateAttribute,=0A=
>>>>>>>>>> which implies that the results are only approximate.=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> We could adapt the same mechnaism to inherit the Transitive=0A=
>>>>>>>>>> property by defining it in its own category. In fact, if we=0A=
>>>>>>>>>> follow Carette and Farmer's "tiny theories" architecture,=0A=
>>>>>>>>>> where each property has its own inheritable category,=0A=
>>>>>>>>>> we can "mix and match" the axioms at will.=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> An "axiom" category would also export a function. This function=
=0A=
>>>>>>>>>> would essentially be a "tactic" used in a proof. It would modify=
=0A=
>>>>>>>>>> the proof step by applying the function to the step.=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> Theorems would have the same structure.=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> This allows theorems to be constructed at run time (since=0A=
>>>>>>>>>> Axiom supports "First Class Dynamic Types".=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> In addition, this design can be "pushed down" into the Spad=0A=
>>>>>>>>>> language so that Spad statements (e.g. assignment) had=0A=
>>>>>>>>>> proof-related properties. A range such as [1..10] would=0A=
>>>>>>>>>> provide explicit bounds in a proof "by language definition".=0A=
>>>>>>>>>> Defining the logical properties of language statements in=0A=
>>>>>>>>>> this way would make it easier to construct proofs since the=0A=
>>>>>>>>>> invariants would be partially constructed already.=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> This design merges the computer algebra inheritance=0A=
>>>>>>>>>> structure with the proof of algorithms structure, all under=0A=
>>>>>>>>>> the same mechanism.=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> Tim=0A=
>>>>>>>>>>=0A=
>>>>>>>>>> On 12/11/19, Tim Daly wrote:=0A=
>>>>>>>>>>> I've been reading Stephen Kell's (Univ of Kent=0A=
>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.cs.k=
ent.ac.uk_people_staff_srk21_&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVK=
rkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOI=
DfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3D0SL3F3KHh9R1lV_IrJ0LmINrn_DSMjMq5xsN=
k1_eii0&e=3D=0A=
>>>>>>>>>>> ) on=0A=
>>>>>>>>>>> Seven deadly sins of talking about =93types=94=0A=
>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__www.cs.k=
ent.ac.uk_people_staff_srk21__blog_2014_10_07_&d=3DDwIFaQ&c=3D4NmamNZG3KTnU=
CoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0B=
kxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DGOMXhymTlK2T6dt62fT=
bqv-K98dBQv0oMmB82kE8mXo&e=3D=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> He raised an interesting idea toward the end of the essay=0A=
>>>>>>>>>>> that type-checking could be done outside the compiler.=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> I can see a way to do this in Axiom's Sane compiler.=0A=
>>>>>>>>>>> It would be possible to run a program over the source code=0A=
>>>>>>>>>>> to collect the information and write a stand-alone type=0A=
>>>>>>>>>>> checker. This "unbundles" type checking and compiling.=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> Taken further I can think of several other kinds of checkers=0A=
>>>>>>>>>>> (aka 'linters') that could be unbundled.=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> It is certainly something to explore.=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> Tim=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>> On 12/8/19, Tim Daly wrote:=0A=
>>>>>>>>>>>> The Axiom Sane compiler is being "shaped by the hammer=0A=
>>>>>>>>>>>> blows of reality", to coin a phrase.=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> There are many goals. One of the primary goals is creating a=
=0A=
>>>>>>>>>>>> compiler that can be understood, maintained, and modified.=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> So the latest changes involved adding multiple index files.=0A=
>>>>>>>>>>>> These are documentation (links to where terms are mentioned=0A=
>>>>>>>>>>>> in the text), code (links to the implementation of things),=0A=
>>>>>>>>>>>> error (links to where errors are defined), signatures (links t=
o=0A=
>>>>>>>>>>>> the signatures of lisp functions), figures (links to figures),=
=0A=
>>>>>>>>>>>> and separate category, domain, and package indexes.=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> The tikz package is now used to create "railroad diagrams"=0A=
>>>>>>>>>>>> of syntax (ala, the PASCAL report). The implementation of=0A=
>>>>>>>>>>>> those diagrams follows immediately. Collectively these will=0A=
>>>>>>>>>>>> eventually define at least the syntax of the language. In the=
=0A=
>>>>>>>>>>>> ideal, changing the diagram would change the code but I'm=0A=
>>>>>>>>>>>> not that clever.=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> Reality shows up with the curent constraint that the=0A=
>>>>>>>>>>>> compiler should accept the current Spad language as=0A=
>>>>>>>>>>>> closely as possible. Of course, plans are to include new=0A=
>>>>>>>>>>>> constructs (e.g. hypothesis, axiom, specification, etc)=0A=
>>>>>>>>>>>> but these are being postponed until "syntax complete".=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> All parse information is stored in a parse object, which=0A=
>>>>>>>>>>>> is a CLOS object (and therefore a Common Lisp type)=0A=
>>>>>>>>>>>> Fields within the parse object, e.g. variables are also=0A=
>>>>>>>>>>>> CLOS objects (and therefore a Common Lisp type).=0A=
>>>>>>>>>>>> It's types all the way down.=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> These types are being used as 'signatures' for the=0A=
>>>>>>>>>>>> lisp functions. The goal is to be able to type-check the=0A=
>>>>>>>>>>>> compiler implementation as well as the Sane language.=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> The parser is designed to "wrap around" so that the=0A=
>>>>>>>>>>>> user-level output of a parse should be the user-level=0A=
>>>>>>>>>>>> input (albeit in a 'canonical" form). This "mirror effect"=0A=
>>>>>>>>>>>> should make it easy to see that the parser properly=0A=
>>>>>>>>>>>> parsed the user input.=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> The parser is "first class" so it will be available at=0A=
>>>>>>>>>>>> runtime as a domain allowing Spad code to construct=0A=
>>>>>>>>>>>> Spad code.=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> One plan, not near implementation, is to "unify" some=0A=
>>>>>>>>>>>> CLOS types with the Axiom types (e.g. String). How=0A=
>>>>>>>>>>>> this will happen is still in the land of design. This would=0A=
>>>>>>>>>>>> "ground" Spad in lisp, making them co-equal.=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> Making lisp "co-equal" is a feature, especially as Spad is=0A=
>>>>>>>>>>>> really just a domain-specific language in lisp. Lisp=0A=
>>>>>>>>>>>> functions (with CLOS types as signatures) would be=0A=
>>>>>>>>>>>> avaiable for implementing Spad functions. This not=0A=
>>>>>>>>>>>> only improves the efficiency, it would make the=0A=
>>>>>>>>>>>> BLAS/LAPACK (see volume 10.5) code "native" to Axiom.=0A=
>>>>>>>>>>>> .=0A=
>>>>>>>>>>>> On the theory front I plan to attend the Formal Methods=0A=
>>>>>>>>>>>> in Mathematics / Lean Together conference, mostly to=0A=
>>>>>>>>>>>> know how little I know, especially that I need to know.=0A=
>>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__www.andr=
ew.cmu.edu_user_avigad_meetings_fomm2020_&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6I=
noLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=
=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DgiWJNgv9oeh8Aj_giZkHCx-3=
GFVk62hxr53YKr4naRk&e=3D=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> Tim=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>> On 11/28/19, Jacques Carette wrote:=0A=
>>>>>>>>>>>>> The underlying technology to use for building such an algebra=
=0A=
>>>>>>>>>>>>> library=0A=
>>>>>>>>>>>>> is=0A=
>>>>>>>>>>>>> documented in the paper " Building on the Diamonds between=0A=
>>>>>>>>>>>>> Theories:=0A=
>>>>>>>>>>>>> Theory Presentation Combinators"=0A=
>>>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttp-3A__www.cas=
.mcmaster.ca_-7Ecarette_publications_tpcj.pdf&d=3DDwIFaQ&c=3D4NmamNZG3KTnUC=
oC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bk=
xc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3D5QO0O72zl3hFmW3ryVeF=
oBjl0AZs2cuQZhKuIxk8NUw&e=3D=0A=
>>>>>>>>>>>>> [which=0A=
>>>>>>>>>>>>> will=0A=
>>>>>>>>>>>>> also be on the arxiv by Monday, and has been submitted to a=
=0A=
>>>>>>>>>>>>> journal].=0A=
>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>> There is a rather full-fledged prototype, very well documente=
d=0A=
>>>>>>>>>>>>> at=0A=
>>>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__alhass=
y.github.io_next-2D700-2Dmodule-2Dsystems_prototype_package-2Dformer.html&d=
=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWE=
VPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDz=
gkQ&s=3D9fnfoSWyT66oQoIb4gKAYpCE7JjANqxHquwJdRdo2Uk&e=3D=0A=
>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>> (source at=0A=
>>>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__github=
.com_alhassy_next-2D700-2Dmodule-2Dsystems&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6=
InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&=
m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DZ-d1Pn1slXyiP2l23mZBB5f=
BQOj0-Q48CUKRS1VNLao&e=3D=0A=
>>>>>>>>>>>>> ).=0A=
>>>>>>>>>>>>> It=0A=
>>>>>>>>>>>>> is=0A=
>>>>>>>>>>>>> literate source.=0A=
>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>> The old prototype was hard to find - it is now at=0A=
>>>>>>>>>>>>> https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__github=
.com_JacquesCarette_MathScheme&d=3DDwIFaQ&c=3D4NmamNZG3KTnUCoC6InoLJ6KV1tbV=
KrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bkxc&m=3D_2V6ryqO=
IDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DpkDi0LOAAPefRjcwvjwNNI3BVzNgJDITFQR=
pkFBgg8c&e=3D=0A=
>>>>>>>>>>>>> .=0A=
>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>> There is also a third prototype in the MMT system, but it doe=
s=0A=
>>>>>>>>>>>>> not=0A=
>>>>>>>>>>>>> quite=0A=
>>>>>>>>>>>>> function properly today, it is under repair.=0A=
>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>> The paper "A Language Feature to Unbundle Data at Will"=0A=
>>>>>>>>>>>>> (https://urldefense.proofpoint.com/v2/url?u=3Dhttps-3A__alhas=
sy.github.io_next-2D700-2Dmodule-2Dsystems_papers_gpce19-5Fa-5Flanguage-5Ff=
eature-5Fto-5Funbundle-5Fdata-5Fat-5Fwill.pdf&d=3DDwIFaQ&c=3D4NmamNZG3KTnUC=
oC6InoLJ6KV1tbVKrkZXHRwtIMGmo&r=3DqW9SUYRDo6sWEVPpx7wwWYZ79PdSWMRxNZvTih0Bk=
xc&m=3D_2V6ryqOIDfXNZePX0kmp-2428hMSBYbz5fq8bDzgkQ&s=3DRui27trbws4VTZL5B0zi=
ts8pEczWsib7Q7_mxyRIxhk&e=3D=0A=
>>>>>>>>>>>>> )=0A=
>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>> is also relevant, as it solves a problem with parametrized=0A=
>>>>>>>>>>>>> theories=0A=
>>>>>>>>>>>>> (parametrized Categories in Axiom terminology) that all curre=
nt=0A=
>>>>>>>>>>>>> systems=0A=
>>>>>>>>>>>>> suffer from.=0A=
>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>> Jacques=0A=
>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>> On 2019-11-27 11:47 p.m., Tim Daly wrote:=0A=
>>>>>>>>>>>>>> The new Sane compiler is also being tested with the Fricas=
=0A=
>>>>>>>>>>>>>> algebra code. The compiler knows about the language but=0A=
>>>>>>>>>>>>>> does not depend on the algebra library (so far). It should b=
e=0A=
>>>>>>>>>>>>>> possible, by design, to load different algebra towers.=0A=
>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>> In particular, one idea is to support the "tiny theories"=0A=
>>>>>>>>>>>>>> algebra from Carette and Farmer. This would allow much=0A=
>>>>>>>>>>>>>> finer grain separation of algebra and axioms.=0A=
>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>> This "flexible algebra" design would allow things like the=
=0A=
>>>>>>>>>>>>>> Lean theorem prover effort in a more natural style.=0A=
>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>> Tim=0A=
>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>> On 11/26/19, Tim Daly wrote:=0A=
>>>>>>>>>>>>>>> The current design and code base (in bookvol15) supports=0A=
>>>>>>>>>>>>>>> multiple back ends. One will clearly be a common lisp.=0A=
>>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>>> Another possible design choice is to target the GNU=0A=
>>>>>>>>>>>>>>> GCC intermediate representation, making Axiom "just=0A=
>>>>>>>>>>>>>>> another front-end language" supported by GCC.=0A=
>>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>>> The current intermediate representation does not (yet)=0A=
>>>>>>>>>>>>>>> make any decision about the runtime implementation.=0A=
>>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>>> Tim=0A=
>>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>>> On 11/26/19, Tim Daly wrote:=0A=
>>>>>>>>>>>>>>>> Jason Gross and Adam Chlipala ("Parsing Parses") developed=
=0A=
>>>>>>>>>>>>>>>> a dependently typed general parser for context free gramma=
r=0A=
>>>>>>>>>>>>>>>> in Coq.=0A=
>>>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>>>> They used the parser to prove its own completeness.=0A=
>>>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>>>> Unfortunately Spad is not a context-free grammar.=0A=
>>>>>>>>>>>>>>>> But it is an intersting thought exercise to consider=0A=
>>>>>>>>>>>>>>>> an "Axiom on Coq" implementation.=0A=
>>>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>>>> Tim=0A=
>>>>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>>=0A=
>>>>>>>>>>>>=0A=
>>>>>>>>>>>=0A=
>>>>>>>>>>=0A=
>>>>>>>>>=0A=
>>>>>>>>=0A=
>>>>>>>=0A=
>>>>>>=0A=
>>>>>=0A=
>>>>=0A=
>>>=0A=
>>=0A=
>=0A=
>=0A=
From MAILER-DAEMON Mon Jul 20 16:44:41 2020
Received: from list by lists.gnu.org with archive (Exim 4.90_1)
id 1jxceP-0006Ro-OC
for mharc-axiom-developer@gnu.org; Mon, 20 Jul 2020 16:44:41 -0400
Received: from eggs.gnu.org ([2001:470:142:3::10]:36322)
by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256)
(Exim 4.90_1) (envelope-from