[Top][All Lists]
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [AUCTeX] Problem with preview-latex and ghostscript in suse 10
From: |
MrJ Man |
Subject: |
Re: [AUCTeX] Problem with preview-latex and ghostscript in suse 10 |
Date: |
Mon, 9 Oct 2006 11:47:51 -0700 (PDT) |
Running preview-latex on circ.tex is successfull, so I
attach both the .tex and the custom .sty source files
(they are in iso995-7 encoding, i.e. greek). In a
quick check I made, all latex files work flawlessly,
while Omega files throw the error, even though dvips
supports Omega and ignores Omega specials (I may need
to remind you that I can produce the .png files
manually, though without the background colour). The
error changes place occasionally; most frequently it
errs on the first align block.
Thanks again for the quick response.
Regards
__________________________________________________
Do You Yahoo!?
Tired of spam? Yahoo! Mail has the best spam protection around
http://mail.yahoo.com


\documentclass[a4paper,11pt]{article}
\usepackage{omega}
\usepackage{amsmath}
\usepackage{SIunits}
\usepackage{graphicx}
\usepackage{physics}
%Lambda loops infinitely without this! Even with it:(
\hbadness 10000
\numberwithin{equation}{section}
\author{Á.Ì.:200100164}
\title{Ìç ãñáììéêÞ äõíáìéêÞ\\ ¶ åñãáóßá}
\frenchspacing
\begin{document}
\maketitle
\section{ÈÝìá Á}
Èåùñïýìå ôï (weakly) ìç ãñáììéêü ôáëáíôùôÞ:
\begin{equation}
\label{eq:1}
\DD x + \epsilon \D x^3+x=0\quad \quad x(0)=1,\quad \D x(0)=0,\quad
\epsilon\ll 1.
\end{equation}
Ãéá ôçí åíÝñãåéÜ ôïõ Ý÷ïõìå:
\begin{gather*}
(\DD x+x)\D x=-\epsilon \D x^4\Rightarrow \ddt{}\left(\frac{\D
x^2}{2}+\frac{x^2}{2}\right)=\ddt{E}=-\epsilon \D x^4.
\end{gather*}
Áöïý $\epsilon >0$ ç åíÝñãåéá öèßíåé êáé åðåéäÞ åßíáé óõíå÷Þò
óõíÜñôçóç êáé $E\geq 0$, éó÷ýåé $\lim_{t\to\infty} E=0$. ÅðåéäÞ $E=\frac{\D
x^2}{2}+\frac{x^2}{2}$, ôï $\lim_{t\to\infty} E(t)=0$ óõíåðÜãåôáé
$\lim_{t\to\infty} x(t)=0$.
Åöáñìüæïõìå ôç ìÝèïäï ôùí äýï ÷ñüíùí êáé Ý÷ïõìå ôá åîÞò
($\partial_\tau=\frac{\partial}{\partial \tau}$):
\begin{gather*}
T=\epsilon t,\quad t=\tau,\quad \ddt{} =\partial_\tau
+\epsilon\partial_T.
\end{gather*}
Áíáðôýóóïõìå ôç ëýóç ùò åîÞò:
\begin{equation}
\label{eq:2}
x(t,\epsilon)=x_0(\tau,T)+\epsilon x_1(\tau,T)+\mathcal{O}(\epsilon^2),
\end{equation}
õðïëïãßæïõìå ôéò ðáñáãþãïõò ôïõ $x$:
\begin{equation}\label{eq:lin}
\D x=\partial_\tau x_0+\epsilon(\partial_\tau x_1+\partial_T
x_0)+\mathcal{O}(\epsilon^2), \quad \DD x=\partial_{\tau\tau}
x_0+\epsilon(\partial_{\tau\tau} x_1+2\partial_{T\tau}
x_0)+\mathcal{O}(\epsilon^2),
\end{equation}
êáé áíôéêáèéóôþíôáò óôçí~\eqref{eq:2}, Ý÷ïõìå:
\begin{equation*}
\partial_{\tau\tau} x_0+\epsilon(\partial_{\tau\tau}
x_1+2\partial_{T\tau} x_0) + \mathcal{O}(\epsilon^2)=0,
\end{equation*}
Þ
\begin{align}
\mathcal{O}(1):\quad &\partial_{\tau\tau} x_0+x_0=0 \label{eq:3}\\
\mathcal{O}(\epsilon): \quad &\partial_{\tau\tau} x_1+2\partial_{T\tau}
x_0+(\partial_\tau x_0)^3+x_1=0.\label{eq:4}
\end{align}
ÎåêéíÜìå áðü ôç~\eqref{eq:3}, ç ïðïßá Ý÷åé ëýóç:
\begin{equation}\label{eq:5}
x_0(\tau,T)=A(T)e^{\Ci\tau}+B(T)e^{-\Ci\tau},
\end{equation}
êáèþò èåùñïýìå üôé ôï ðëÜôïò áëëÜæåé óýìöùíá ìå ôï ÷ñüíï ðïõ
ìåôáâÜëëåôáé áñãÜ. Áíôéêáèéóôþíôáò áõôÞ ôç ëýóç óôç~\eqref{eq:4}
Ý÷ïõìå ($A'=\frac{\ud A}{\ud T}$):
\begin{gather*}
\partial_{\tau\tau} x_1+2\Ci(A'e^{\Ci\tau}-B'e^{-\Ci\tau}) -
\Ci(Ae^{\Ci\tau}-Be^{-\Ci\tau})^3+x_1=0\Rightarrow\\
\partial
x_1+x_1=-2\Ci(A'e^{\Ci\tau}-B'e^{-\Ci\tau})+\Ci(Ae^{\Ci\tau}-Be^{-\Ci\tau})^3.
\end{gather*}
ÄåäïìÝíïõ üôé:
\begin{gather*}
\left.\begin{aligned} L[\phi_1]=f(x)\\
L[\phi_2]=g(x)\end{aligned}\right\}\Rightarrow L[\phi_1]+L[\phi_2]=
L[\phi_1+\phi_2]=f(x)+g(x),
\end{gather*}
êáèþò ï ôåëåóôÞò $L$ åßíáé ãñáììéêüò, ìðïñïýìå íá ëýóïõìå ôçí
ðñïçãïýìåíç åîßóùóç ÷ùñßæïíôÜò ôç óå äýï äéáöïñéêÝò ùò åîÞò:
\begin{gather*}
\partial_{\tau\tau} \phi_1
+\phi_1=\Ci[(-2A'-3A^2B)e^{\Ci\tau}+(2B'+3AB^2)e^{-\Ci\tau}]\\
\partial_{\tau\tau} \phi_2=\Ci(A^3e^{3\Ci\tau}-B^3e^{-3\Ci\tau}).
\end{gather*}
Ðáñáôçñïýìå üôé ç $\phi_1$ ðåñéëáìâÜíåé üñïõò óõíôïíéóìïý (secular),
ïé ïðïßïé ôåßíïõí óôï Üðåéñï, åðïìÝíùò ìçäåíßæïõìå ôïõò óõíôåëåóôÝò ôïõò:
\begin{gather}
\left.\begin{aligned} -2A'-3A^2B\equiv 0\\ 2B'+3AB^2\equiv 0
\end{aligned}\right\}\Rightarrow \frac{A}{B}=\frac{A'}{B'}
\Rightarrow \ln A=\ln (c_1B) \Rightarrow A=c_1B,\label{eq:6}
\end{gather}
ïðüôå áíôéêáèéóôþíôáò óôç äéáöïñéêÞ ðïõ ðåñéëáìâÜíåé ôï $A'$ Ý÷ïõìå:
\begin{gather}
3\frac{A^3}{c_1}=-2A' \Rightarrow\int \frac{\ud
A}{A^3}=-\frac{3}{2c_1}\int\ud T\Rightarrow
-\frac{A^{-4}}{4}=-\frac{3}{2c_1}T+c_2 \Rightarrow\\
A(T)=\left(\frac{6T}{c_1}-4c_2\right)^{-1/4}.\label{eq:7}
\end{gather}
ÎåêéíÜìå ôþñá áðü ôéò áñ÷éêÝò ôéìÝò êáé Ý÷ïõìå, áíôéêáèéóôþíôáò óôá
$x$, $\D x$ ðïõ áíáðôýîáìå ðáñáðÜíù:
\begin{gather}
x(0,\epsilon)=1, \quad \forall \epsilon\Rightarrow x_0(0,0)=1,\quad
x_1(0,0)=0\label{eq:8}\\
\D x(0,\epsilon)=0,\quad \forall \epsilon\Rightarrow \partial_\tau
x_1(0,0)+\partial_T x_0(0,0)=0.\label{eq:9}
\end{gather}
Áðü ôéò~\eqref{eq:8},\eqref{eq:5},\eqref{eq:6}:
$x_0(0,0)=A(0)(1+c_1)=1\Rightarrow A(0)=1/2$, áðü ôï ïðïßï ìå
áíôéêáôÜóôáóç óôçí~\eqref{eq:7} $c_2=-4$.
Áðü ôéò~\eqref{eq:9},\eqref{eq:5},\eqref{eq:6} ðñïêýðôåé
$\partial_\tau x_0(0,0)=\Ci A(0)(1-c_1)=0$ êáé, áöïý $A(0)=1/2\neq 0$,
$c_1=1$. Ç~\eqref{eq:8} ãßíåôáé ôþñá:
\begin{equation*}
A(T)=(6T+16)^{-1/4},
\end{equation*}
ç~\eqref{eq:5}:
\begin{equation*}
x_0(\tau,T)=(6T+16)^{-1/4}(e^{\Ci\tau}+e^{-\Ci\tau}),
\end{equation*}
êáé ç ëýóç ôïõ ðñïâëÞìáôïò åßíáé:
\begin{equation*}
\boxed{x(t)=2\cdot(6\epsilon t+16)^{-1/4}\cos t+\mathcal{O}(\epsilon)}.
\end{equation*}
Ç áñéèìçôéêÞ ïëïêëÞñùóç ìáæß ìå ôçí áóõìðôùôéêÞ ðñïóÝããéóç öáßíïíôáé
óôï ó÷Þìá~\ref{fig:1}, óôï ïðïßï ðáñáôçñïýìå üôé ãéá $t>3$, äçëáäÞ ãéá
$\epsilon t\approx 1$, ç ðñïóÝããéóç áðïêëßíåé ðïëý áðü ôç ëýóç, êÜôé
ðïõ óõìöùíåß ìå ôïõò ðåñéïñéóìïýò ôçò ìåèüäïõ.
\begin{figure}[htb]
\centering
\includegraphics[scale=.8]{nlin1.eps}
\caption{ÃñÜöçìá ôçò áñéèìçôéêÞò ïëïêëÞñùóçò (óõíå÷Þò
ãñáììÞ) êáé ôçò ðñïóÝããéóçò ðñþôçò ôÜîçò ìå ôç ìÝèïäï ôùí äýï
÷ñüíùí (äéáêåêïììÝíç ãñáììÞ) ãéá $\epsilon=0.3$ ìÝ÷ñé $t=200$.}
\label{fig:1}
\end{figure}
\section{ÈÝìá Â}
Èåùñïýìå ôï (weakly) ìç ãñáììéêü ôáëáíôùôÞ:
\begin{equation}
\label{eq:10}
\DD x+x=\epsilon\left(\D x-\frac{1}{3}\D x^3\right)\quad
x(0)=0,\quad \D x(0)=2a,\quad \epsilon\ll 1,
\end{equation}
êáé áíáðôýóóïõìå ôç ëýóç üðùò ðñïçãïõìÝíùò êáé êáôáëÞãïõìå óôéò
åîéóþóåéò~\eqref{eq:lin}. Áíôéêáèéóôïýìå áõôÝò óôç~\eqref{eq:10} êáé
Ý÷ïõìå:
\begin{gather*}
\label{eq:11}
\partial_{\tau\tau} x_0(\tau,T)+\epsilon[2\partial_{T\tau}
x_0(\tau,T)+ \partial_{\tau\tau} x_1(\tau,T)+x_1(\tau,T)] +
x_0(\tau,T)=\notag\\
\epsilon\partial_\tau x_0(\tau,T)-\frac{\epsilon}{3}(\partial_\tau
x_0(\tau,T))^3 + \mathcal{O}(\epsilon^2) \Rightarrow \notag\\
\begin{split}
\partial_{\tau\tau} x_0(\tau,T) + &\epsilon[2\partial_{T\tau}
x_0(\tau,T) + \partial_{\tau\tau} x_1(\tau,T)\\
&+ x_1(\tau,T) - \partial_\tau
x_0(\tau,T) + \frac{(\partial_\tau x_0(\tau,T))^3}{3}]\\
&+ x_0(\tau,T)+\mathcal{O}(\epsilon^2)=0.
\end{split}
\end{gather*}
×ùñßæïõìå óå ôÜîåéò ôïõ $\epsilon$:
\begin{align}
\label{eq:12}\mathcal{O}(1): & &\partial_{\tau\tau}
x_0(\tau,T)+ x_0(\tau,T)=0\Rightarrow && \notag\\
&&x_0(\tau,T)=A(T)e^{\Ci\tau}+B(T)e^{-\Ci\tau} && \\
\mathcal{O}(\epsilon): & &2\partial_{T\tau}
x_0(\tau,T)+\partial_{\tau\tau} x_1(\tau,T)+ x_1(\tau,T) && \notag\\
&&-\partial x_0(\tau,T) +\frac{(\partial_\tau
x_0(\tau,T))^3}{3}=0.&& \notag
\end{align}
Áíôéêáèéóôþ ôçí~\eqref{eq:12} óôçí ðñïçãïýìåíç åîßóùóç:
\begin{gather*}
\mathcal{O}(\epsilon): 2\Ci (A'e^{\Ci\tau}-B'e^{-\Ci\tau}) +
\partial_{\tau\tau} x_1(\tau,T) + x_1(\tau,T) - \Ci(Ae^{\Ci\tau}-
Be^{-\Ci\tau})\\ -\Ci\frac{(Ae^{\Ci\tau}-Be^{-\Ci\tau})^3}{3}=0
\Rightarrow \quad \partial_{\tau\tau} x_1(\tau,T) + x_1(\tau,T) =\\
\Ci\left[(-2A'+A-A^2B)e^{\Ci\tau}+ (2B'-B+AB^2)e^{-\Ci\tau} +
\frac{A^3e^{3\Ci\tau}}{3}- \frac{B^3e^{-3\Ci\tau}}{3}\right].
\end{gather*}
×ùñßæïíôáò ôçí åîßóùóç üðùò ðñïçãïõìÝíùò:
\begin{align}
\label{eq:13}
\partial_{\tau\tau}\phi_1+\phi_1&=\Ci[(-2A'+A-A^2B)e^{\Ci\tau}+(2B'-B+AB^2)e^{-\Ci\tau}]\\
\label{eq:14}
\partial_{\tau\tau}\phi_2+\phi_2&=\frac{\Ci}{3}(A^3e^{3\Ci\tau}-B^3e^{-3\Ci\tau}),
\end{align}
üðïõ ç~\eqref{eq:13} Ý÷åé üñïõò óõíôïíéóìïý (secular), ôïõò ïðïßïõò
ìçäåíßæïõìå êáé:
\begin{equation*}
\left.\begin{aligned}
-2A'+A-A^2B&\equiv 0\\
2B'-B+AB^2&\equiv 0
\end{aligned} \right\} \Rightarrow \quad
\frac{A'}{A}=\frac{B'}{B} \Rightarrow \int \frac{\ud
A}{A}=\int\frac{\ud B}{B} \Rightarrow A=c_1B.
\end{equation*}
Áíôéêáèéóôïýìå áõôü óôç äéáöïñéêÞ ìå ôï $A'$ êáé Ý÷ïõìå:
\begin{gather}
2A'-A+\frac{A^3}{c_1}=0\Rightarrow \int \ud T= 2\int \frac{\ud
A}{A(1-\frac{A^2}{c_1})} \Rightarrow \notag\\
T=2\int \frac{1}{A}+\frac{A/c_1}{1-A^2/c_1}\ud A = 2 \ln A-\ln
c_2\left(1-\frac{A^2}{c_1}\right) =
\ln\frac{A^2}{c_2(1-\frac{A^2}{c_1})} \Rightarrow\notag\\
e^T=\frac{A^2}{c_2(1-\frac{A^2}{c_1})}\Rightarrow
A=\sqrt{\frac{c_2e^T}{1+\frac{c_2}{c_1}e^T}} . \label{eq:15}
\end{gather}
Áðü ôéò áñ÷éêÝò óõíèÞêåò~\eqref{eq:10} êáé ôï áíÜðôõãìá ôçò
$x(t,\epsilon)$:
\begin{gather}
x(0,\epsilon)=0\Rightarrow x_1(0,0)=0 \text{ êáé }
x_0(0,0)=0\Rightarrow \notag\\ A(0)\left(1+\frac{1}{c_1}\right)=0 \Rightarrow
\begin{cases} A(0)=0, \text{áðïññßðôåôáé áðü ôç~\eqref{eq:15}},\\
c_1=-1.\end{cases}\label{eq:17}
\end{gather}
Áðü ôéò áñ÷éêÝò óõíèÞêåò êáé ôï áíÜðôõãìá ôçò $\D x(t,\epsilon)$:
\begin{gather}
\label{eq:18}
\D x(0,\epsilon)=2a\Rightarrow \partial_\tau
x_0(0,0)+\epsilon(\partial_T x_0(0,0)+\partial_\tau x_1(0,0))=2a,
\forall \epsilon\\ \text { Üñá } \begin{cases}
\partial_\tau x_0(0,0)=A(0)\Ci=a\Rightarrow A(0)=-a\Ci \text {
áðü~\eqref{eq:15},\eqref{eq:17} } c_2=-\frac{a^2}{1-a^2}\\
\partial_T x_0(0,0)+\partial_\tau x_1(0,0)=0\Rightarrow
\partial_\tau x_1(0,0)=0 \end{cases}
\end{gather}
Ôï ôåëéêü áðïôÝëåóìá åßíáé:
\begin{gather*}
x(t,\epsilon)=x_0(t,\epsilon)+\mathcal{O}(\epsilon)\Rightarrow\\
\boxed{x(t,\epsilon)=2\sqrt{\frac{\frac{a^2}{1-a^2}e^{\epsilon
t}}{1+ \frac{a^2}{1-a^2}e^{\epsilon t}}}\sin t + \mathcal{O}(\epsilon)}.
\end{gather*}
Áðü ôçí áñéèìçôéêÞ ïëïêëÞñùóç óôï ãñÜöçìá~\ref{fig:2}, öáßíåôáé üôé
áõôÞ ôç öïñÜ ç ìÝèïäïò åß÷å áðüëõôç åðéôõ÷ßá êáé ç ðñïóÝããéóç óõìöùíåß
ìå ôç ëýóç ôïõ ôáëáíôùôÞ ìå ìåãÜëç áêñßâåéá ãéá $t\to\infty$, åíþ ãéá
$t\to 0$ ïõóéáóôéêÜ ôáõôßæåôáé ç ðñïóÝããéóç ìå ôç ëýóç.
\begin{figure}[htbp]
\centering
\includegraphics[scale=.6]{nlin2.eps}
\caption{ÃñÜöçìá ôçò áñéèìçôéêÞò ïëïêëÞñùóçò (óõíå÷Þò ãñáììÞ) êáé
ôçò ðñïóÝããéóçò ðñþôçò ôÜîçò ìå ôç ìÝèïäï ôùí äýï ÷ñüíùí
(äéáêåêïììÝíç ãñáììÞ) ãéá $\epsilon=0.2$, $a=0.05$ êáé ìÝ÷ñé $t=20\pi$.}
\label{fig:2}
\end{figure}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
%Add common physics notation to text and math mode
%Remember to set second and higher level bullets in itemize environment
\ProvidesPackage{physics}
\usepackage{amsmath}
%\NeedsTeXFormat{LaTeX2e}[1995/12/01]
\newcommand{\const}
{\ensuremath{\text{ const }}}
\newcommand{\ud}
{\,\mathrm{d}}
\newcommand{\mean}[1]
{\left\langle #1\right\rangle}
\newcommand{\calorie}
{\ensuremath{\mathrm{cal}}}
\newcommand{\Ci}
{\ensuremath{\mathrm{i}\;}}
\newcommand{\C}[1]
{\ensuremath{\bar{#1}}}
\newcommand{\abs}[1]
{\ensuremath{\lvert #1 \rvert}}
\newcommand{\mmax}
{\ensuremath{\mathrm{max}}}
\newcommand{\tl}[1]
{\textlatin{#1}}
\renewcommand{\angstrom}{\ensuremath{\mathrm{\overset{\circ}{A}}}}
\newcommand{\D}[1]
{\ensuremath{\dot{#1}}}
\newcommand{\DD}[1]
{\ensuremath{\ddot{#1}}}
\newcommand{\ddt}[1]
{\ensuremath{\frac{\ud #1}{\mathrm{dt}}}}
\DeclareMathOperator{\arcsinh}{arcsinh}
\DeclareMathOperator{\arccosh}{arccosh}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\erg}{erg}
\DeclareMathOperator{\mcal}{cal}
\DeclareMathOperator{\yr}{yr}
%If omega is loaded then define an input stream as 8859-7
address@hidden
\ocp\GrtoUni=in88597
\ocp\LattoUni=lat2uni
\ocplist\myGreekOCP=
\addbeforeocplist 1 \LattoUni
\addbeforeocplist 2 \GrtoUni
\nullocplist
\pushocplist\myGreekOCP
\language=1% was 3, now 1, later ?!? \lefthyphenmin=2\righthyphenmin=2%
Hyphenation settings
\def\textlatin{\relax}% LaTeX with Babel compatible
\def\guillemotleft{^^ab}% Some nice guillemots
\def\guillemotright{^^bb }%
\def\%{^^^^0085}%
% \def\textperiodcentered{^^^^00b7}%
\mathchardef\cdot="2201 % Fix some weird bug (SIunits redefines cdot
% to \textperiodcentered which is
% probably misdefined for some very weird
reason
\def\prefacename{Ðñüëïãïò}%
\def\refname{ÁíáöïñÝò}%
\def\abstractname{Ðåñßëçøç}%
\def\bibname{Âéâëéïãñáößá}%
\def\chaptername{ÊåöÜëáéï}%
\def\appendixname{ÐáñÜñôçìá}%
\def\contentsname{Ðåñéå÷üìåíá}%
\def\listfigurename{ÊáôÜëïãïò Ó÷çìÜôùí}%
\def\listtablename{ÊáôÜëïãïò ÐéíÜêùí}%
\def\indexname{ÅõñåôÞñéï}%
\def\figurename{Ó÷Þìá}%
\def\tablename{Ðßíáêáò}%
\def\partname{ÌÝñïò}%
\def\enclname{ÓõíçììÝíá}%
\def\ccname{Êïéíïðïßçóç}%
\def\headtoname{Ðñïò}%
\def\pagename{Óåëßäá}%
\def\seename{âëÝðå}%
\def\alsoname{âëÝðå åðßóçò}%
\def\proofname{Áðüäåéîç}%
\def\glossaryname{ÃëùóóÜñéï}%
\def\Grmonth{%
\ifcase\month\or
Éáíïõáñßïõ\or Öåâñïõáñßïõ\or Ìáñôßïõ\or Áðñéëßïõ\or
ÌáÀïõ\or Éïõíßïõ\or Éïõëßïõ\or Áõãïýóôïõ\or
Óåðôåìâñßïõ\or Ïêôùâñßïõ\or Íïåìâñßïõ\or Äåêåìâñßïõ\fi}%
\def\today{\number\day \space \Grmonth\space \number\year}
}{}