
[Guix] Clojars importer for Guix

Leandro Doctors
<ldoctors@gmail.com>

March 31, 2020

1 Summary

1.1 Objective
Add an importer for Clojars, the de facto repository for Clojure packages.

1.2 Benefits
• In the short term, the Clojars importer will add to Guix a potential universe of at least 500K new potential

users.

This is because Clojure (a modern LISP dialect) is the third most popular language of the JVM platform,
which is used by millions of people around the world.

• In the long term, supporting Clojure would have the additional benefit of bringing potential Guix contributors.

This is because Guix is also written in a LISP dialect (Scheme), lowering the skill barrier for making the
transition from one language to the other.

1.3 Deliverables
• An interface/wrapper for a Clojure API for transitive dependency graph expansion (most likely,
clojure.tools.deps.alpha; alternatives being boot and leiningen).

• A full, testable Clojars importer, integrated with GitHub for source retrieval (and, if time permits, with other
forges).

2 Motivation
Guix supports importing packages from multiple, diverse sources. They range from metadata from the GNU System,
repositories such as the Python Package Index and the Comprehensive R Archive Network, down to plain JSON
metadata files. Supporting a broad offering of package sources does not only provide Guix with a broad catalog
of packages, it also enriches it with a plethora of languages to choose from. All this offering of software platforms
enables Guix as a competitive option to a wide variety of users.

Whereas the array of supported Guix sources is indeed vast and diverse, there is a major source yet to be
supported: JVM packages1. The Java Virtual Machine is one of the most popular platforms for software develop-
ment: as of 2013, Java alone (by far, the most popular language of this platform) comprises a reported 9 million
of developers worldwide2. Whereas initially intended for a single language (Java), the JVM has been used as a
platform to develop new languages. The only requirement that any language hosted on the JVM platform has to
comply with is to generating bytecode artifacts compliant with the JVM specifications. In this way, as of March
2020, Wikipedia reports more than 60 languages that run on the JVM3.

All JVM packages are distributed via .jar files -compressed files containing bytecode files. Across packages,
there is dependency graph. Whereas some niches and / or languages use their own package repository, the main de
facto repository for JVM packages is “The Central Repository” (formerly known as “Maven Central”)4. All these
repositories host thousands of JVM packages. They also maintain the dependency graph that relates them. As
with any client-server architecture, any tool that wants to fetch packages from any JVM package repository has to
take care of implementing their own traversal heuristics.

Whereas supporting most JVM languages at this point may be contrary to Guix values (TCR does not support
either license compliance analysis and repository linking metadata), nothing prevents supporting any other JVM
package repository that supports both those features. Fortunately, Clojars5, the de facto repository for Clojure
packages, supports the features Guix requires. Also, as Clojure (a libre, modern LISP dialect) is among the most
popular JVM languages, Clojars would be a very valuable addition to the list of Guix importers. Finally, as Guix is
also written in a LISP dialect (Scheme), bringing together these two kindred functional programming communities
would have the additional benefit of bringing new potential contributors to Guix.

1Guix does include many Java packages, but none of them support their dependencies
2https://web.archive.org/web/20181202112953/https://www.oracle.com/technetwork/articles/java/afterglow2013-2030343.html
3https://en.wikipedia.org/wiki/List_of_JVM_languages
4The Central Repository Search Engine: https://search.maven.org/
5Clojars: https://clojars.org

1

Stage Deliverable Phase
-1 Minor patch sent for review. Review
0 Patch reviewed/reworked Bonding
1 Wrapper/Interface for clojure.tools.deps Partial Evaluation #1
2 Basic Clojars importer integrated with GitHub Partial Evaluation #2
3 Advanced Clojars importer integrated with GitHub Final Evaluation
(4) Possible extensions, time permitting: other forges. (Extra)

Table 1: Stages and Deliverables

3 Solution Overview
There are many tools used to access JVM package repositories and solve the dependency graph traversal problem.
Depending on the programming language used, the most popular tools include Ant, Maven, Gradle, Ivy... In the
specific case of Clojure, the main tools used are: clojure.tools.deps6, boot7, and leiningen8. Whereas they all
support Clojars as their main package source, each one has their own strategy for satisfying dependencies: while
clojure.tools.deps implements its own heuristics, the other two heavily depend on Maven’s.

Considering that the dependency resolution is a problem so complex to become a potential threat for the success
of this project9, my strategy in this regard is to leverage on the existing tools that already solve the problem. In
this regard, clojure.tools.deps seems the best candidate for this. Whatever the tool that ends up being used,
charting the problem domain via visualization is a complementary tactic to be considered for this. Clearly, this is
one of the first problems to solve. In the unlikely case that none of the existing tools can successfully solve the
dependency problem within Guix, potentially limited or simplified heuristics would have to be developed; support
would then be restricted to smaller and/or acyclic dependency graphs.

A very important Guix guiding principle is reproducibility. Of course, this requires the ability to rebuild the
package from source. For any given Clojure package, aside from obtaining its full dependency graph, reproducibility
would require two features already part of Guix: compiling the package itself and and obtaining the corresponding
source code for all its Clojure dependencies. With respecto to the first item, Clojure itself is already packaged into
Guix. With respect to the last item, the new Clojars importer will make use (and extend, if needed) the GitHub
Guix updater. This is because GitHub has become the de facto go-to place when it comes to looking for a free
software project. Once the importer works, other forges could be added as sources, such as GitLab and BitBucket.

Considering that in may cases Clojure packages are replicated across Clojars and TCR, the importer could work
in the following way10: when requesting a package, first, it would try importing it from Clojars. If this fails, it would
import the package from TCR, without source nor licensing information. In short, to try multiple repositories, from
the most desirable to the least desirable. In all cases, it would use the existing dependency information.

4 Implementation Plan

4.1 Stages & Deliverables
I plan to divide the project into three main stages, to be validated on each evaluation. If time permits, there may
be extensions. See 1.

4.2 Timeline & Milestones
Notes:

• I have considered 5-days weeks for all periods, so there can be slack time if needed.

• There are also three planned slack week, to be able to catch up with delayed work if needed.

• The number of activities / deliverables grows in each phase: over time, I expect to become more productive.

In 2 is the timeline for the expected Activities and Deliverables, on a weekly basis. In 3 you will find the specific
dates for each work week.

5 Communication
My timezone: UTC -3 (minus three).

I plan to communicate with my mentor(s) in the following ways:

• Mainly:

– A weekly one-on-one videocall for PMC (planning, management, and control).

– Via email, both through the Guix-devel mailing list and privately. In both cases, I estimate a maximum
reply delay of 24 working hrs.

• Exceptionally:
6clojure.tools.deps: https://github.com/clojure/tools.deps.alpha.git
7boot: https://github.com/boot-clj/boot.git
8leiningen: https://github.com/technomancy/leiningen
9Re: [GSoC 2020] Clojure importer for Guix? (Pjotr Prins) https://lists.gnu.org/archive/html/guix-devel/2020-03/msg00294.html

10Thanks to Julien Lepiller for the first draft of this mechanism.
11The first Review week is actually half a week.
12Coding #1 includes Partial Evaluation #1.
13Coding #2 includes Partial Evaluation #2.
14Coding #3 includes Partial Evaluation #3.

2

https://github.com/clojure/tools.deps.alpha.git
https://github.com/boot-clj/boot.git
https://github.com/technomancy/leiningen

A
ct
iv
it
ie
s

D
el
iv
er
ab

le
s

St
ag
e

A
pp

lic
.

R
ev
ie
w

B
on

di
ng

C
od

in
g
#
1

C
od

in
g
#
2

C
od

in
g
#
3

E
xt
ra

W
ee
k

A
0

A
1

R
0

R
1

R
2

R
3

R
4

B
0

B
1

B
2

B
3

C
0

C
1

C
2

C
3

(S
0)

C
4

C
5

C
6

(S
1)

C
7

C
8

C
9

(S
2)

(S
3)

(S
4)

St
ar
t
fli
ck
in
g
th
ro
ug

h
G
ui
x’
s
co
de
.
[d
on

e]
X

X
Se
t
up

a
de
ve
lo
pm

en
t
en
vi
ro
nm

en
t.

[d
on

e]
X

X
Le

ar
n
ab

ou
t
G
ui
x’
s
in
te
rn
al

pr
oc
es
se
s
an

d
cu
lt
ur
e.

X
X

St
ar
t
re
ad

in
g
G
ui
x
do

cu
m
en
ta
ti
on

.
[in

pr
og
re
ss
].

X
X

St
ar
t
ex
pl
or
in
g
po

ss
ib
le

ap
pr
oa
ch
es

to
im

pl
em

en
t
pr
op

os
ed

fe
at
ur
es

[in
pr
og
re
ss
].

X
X

X
X

X
X

X
M
in
or

pa
tc
h
se
nt

fo
r
re
vi
ew

.
X

F
in
is
h
re
ad

in
g
in
tr
od

uc
to
ry

m
at
er
ia
l.

X
X

X
X

X
E
xp

er
im

en
t
w
it
h
po

ss
ib
le

ap
pr
oa
ch
es

to
im

pl
em

en
t
pr
op

os
ed

fe
at
ur
es
.

X
X

X
X

X
X

X
X

E
ng

ag
e
w
it
h
th
e
C
om

m
un

it
y
an

d
de
ve
lo
p
po

ss
ib
le

fe
at
ur
es

no
t
in
it
ia
lly

co
ns
id
er
ed
.

X
X

X
X

X
C
on

ti
nu

e
ha

ck
in
g
in
to

G
ui
x’
s
co
de
ba

se
to

ge
t
to

kn
ow

it
be

tt
er
.

X
X

X
X

X
X

X
X

X
E
xp

lo
re

op
ti
on

s
to

im
pl
em

en
t
pr
op

os
ed

fe
at
ur
es
.

X
X

X
X

R
e-
as
se
ss
m
en
t
of

im
pl
em

en
ta
ti
on

di
ffi
cu
lt
y
of

pr
op

os
ed

fe
at
ur
es
.

X
X

X
X

P
at
ch

re
vi
ew

ed
/r
ew

or
ke
d

(X
)

X
R
es
ea
rc
h
po

ss
ib
le

so
lu
ti
on

s
to

de
pe

nd
en
cy

so
lv
in
g.

X
X

X
X

X
T
es
t
W
ra
pp

er
/I
nt
er
fa
ce

in
a
su
bs
et

of
“s
im

pl
e”

pa
ck
ag
es
.

X
X

X
X

W
ra
pp

er
/I
nt
er
fa
ce

fo
r
cl

oj
ur

e.
to

ol
s.

de
ps

X
In
te
gr
at
e
G
it
H
ub

im
po

rt
er
.

T
es
t
C
lo
ja
rs

im
po

rt
er

in
a
su
bs
et

of
“s
im

pl
e”

pa
ck
ag
es
.

X
X

X
B
as
ic

C
lo
ja
rs

im
po

rt
er

in
te
gr
at
ed

w
it
h
G
it
H
ub

X
T
es
t
C
lo
ja
rs

im
po

rt
er

in
a
su
bs
et

of
“c
om

pl
ex
”
pa

ck
ag
es
.

X
X

X
A
dv

an
ce
d
C
lo
ja
rs

im
po

rt
er

in
te
gr
at
ed

w
it
h
G
it
H
ub

X
T
es
t
C
lo
ja
rs

im
po

rt
er

in
a
su
bs
et

of
no

n-
G
it
H
ub

pa
ck
ag
es
.

(X
)

(X
)

P
os
si
bl
e
ex
te
ns
io
ns
,t
im

e
pe

rm
it
ti
ng

:
ot
he
r
fo
rg
es
.

(X
)

T
ab

le
2:

T
im

el
in
e
fo
r
A
ct
iv
it
ie
s
an

d
D
el
iv
er
ab

le
s
(w

ee
kl
y)
.

3

Stage Week Start End

Application A0 March 16th March 31stA1

Review

R011 April 1st April 3rd
R1 April 6th April 10th
R2 April 13th April 17th
R3 April 20th April 24th
R4 April 27th May 1st

Bonding

B0 May 4th May 8th
B1 May 11th May 15th
B2 May 18th May 22th
B3 May 25th May 29th

Coding #112

C0 June 1st June 5th
C1 June 8th June 12th
C2 June 15th June 19th
C3 June 22th June 26th
(S0) June 29th July 3rd

Coding #213

C4 July 6th July 10th
C5 July 13th July 17th
C6 July 20th July 24th
(S1) July 27th July 31th

Coding #314

C7 August 3rd August 7th
C8 August 10th August 14th
C9 August 17th August 21th
(S2) August 24th August 28th

Extra Time (for emergencies/ extra work) (S3) August 31st September 4th
(S4) September September 8th

Table 3: Dates per week

– In case of urgency, I may use Matrix or a similar messaging app - TBD with my mentor(s).

– In case of emergency, I may use phone/Internet calls - TBD with my mentor(s).

A About the Applicant

A.1 Qualification and Background
A.1.1 Free Software Involvement

I am a GNU/Linux user since 1999, and I was very involved into Free Software advocacy in my hometown until
2006. During those years, I co-founded and chaired the local Free Software Users Group, and spearheaded the
inclusion of Free Software as a subject of discussion into the local University. Specially worth mentioning is the
organization of the first editions of the FLISoL (Latin American Free Software Install Fest) between 2004 and 2006.

I have contributed documentation and code to at least fifteen different Free Software projects. Last year, I was
accepted as a core member of perun, a static web generator written in Clojure.

A.1.2 Work & Education

I have a Masters in Information Systems. I worked as a developer for a short time, but realized I am quite fond
of Academia. I worked as a Researcher, working mainly on Evolution and Quality of Free Software Projects, and
got two short, peer-reviewed papers published. Currently, I am a Lecturer at UNTREF (Caseros, Buenos Aires,
Argentina). I strive to broaden my knowledge beyond IT: I am currently pursuing a B.A. in Tango Dance at the
National University of Arts.

A.1.3 Functional Programming and Me

My current language of preference is Clojure, after I completely rejected OO’s limitations. I started with Functional
Programming five years ago, after having to deal with OO’s limitations for simply too long. Whereas I am mainly
focused on Clojure, I’m interested in LISPs in general -this being the main reason I applied to Guix to work with
Scheme.

A.2 Online Profiles
• GitHub: allentiak

• LinkedIn: LeandroDoctors

• Google Scholar: Leandro Doctors

A.3 Availability
I am aware that GSoC requires an availability of around 30 hours per week. As with any other project, there will
be weeks that may require slightly more, and weeks that may require slightly less.

I will be able to allocate the required time for GSoC-related activities. I am able to keep up with more than one
project at the same time. Specially in this case, as it will involve two very complementary projects: my part-time

4

https://github.com/hashobject/perun
https://github.com/allentiak
https://linkedin.com/in/LeandroDoctors
https://scholar.google.com.ar/scholar?q=%E2%80%9Dleandro+doctors%E2%80%9D

Algorithms teaching job (from which I will have a break in July and August), and coding for GSoC. There is a
chance that I may have to travel for around a week; If this happens, I will discuss this in advance with my mentor(s),
so we can plan ahead to minimize any possible interference.

5

	Summary
	Objective
	Benefits
	Deliverables

	Motivation
	Solution Overview
	Implementation Plan
	Stages & Deliverables
	Timeline & Milestones

	Communication
	About the Applicant
	Qualification and Background
	Free Software Involvement
	Work & Education
	Functional Programming and Me

	Online Profiles
	Availability

