
Universal File Format and Supporting
Infrastructure

Marshall, Josh
joshua.r.marshall.1991@gmail.com

March 31, 2020

Abstract

Similar to how the most complete meaning of a ’function’ is deceptively
complex, so too is the handling of computer files. This fundamental pro-
cess of serializing and deserializing between active memory, and a format
suitable for non-volatile storage and transmission has incurred massive
costs over time. Many programs have developed custom serializers and
deserializers. This has resulted in disunity of file formats which has in turn
led to encoding inefficiencies, lost backwards and forwards compatibility,
portability failures, and redundant work. Performing this work for each
program is expensive. This paper proposes and formalizes a new model to
file handling to ease developer burden, increase space efficiency, improve
system integration, allow for much greater compatibility, robust security,
transparent sharding across disparate systems, and future extensibility
while lowering overall developer burden.

1 Introduction
This paper is written in LATEX, compiled to a pdf, and will likely be read

online in HTML, Markdown, or ReStructured Text. They will all encode the
same fundamental information in mutually incompatible ways. Yet, a system
accessing these formats will still display them similarly. In system memory,
their decoded state can be made, in theory, identical. This is not to say that
any of these formats should replace all of the others, but it does exemplify the
complexity and divergence in performing a similar simple task in computing.

Imagine the workflow for writing this document – a program runs where
a user enters some data into memory through a text editor, that memory is
transformed by some serialization function into an on-disk format which is given
to the host system to store through some system provided file writing function,
stored by the host system, and can then be read through some system provided
function, then deserialized and interpreted by some deserialization function.
This series of actions describe the fundamental actions taken on file:

1

1. interface to modify content in working memory

2. transform from working memory to non-volatile memory or to stream

3. transfer to non-volatile state or by stream

4. transform from non-volatile state or from stream

5. process for use

It is in these steps that developer burden can be lessened. Lessening the dif-
ference between working memory and non-volatile memory in order to reduce
the burden of processing input. Another is by lessening the difference of trans-
ferring to non-volatile forms and making data accessible over a network. These
differences arise in part from encoding efficiency, endianness, and runtime data
not relevant towards the model stored in saved files.

All in memory data structures can be practically represented by records
(non-ordinal, possibly key-value), lists(ordinal), real numbers, integer numbers,
booleans, null, and character strings. This has been noticed and designed around
in SGML, JSON, TOML, YAML, and EDN. These formats are reliably inter-
convertible except for SGML because SGML allows representing identical infor-
mation in semantically different ways.

Another more powerful design is available in the programming language Lisp,
in particular the Scheme dialect. Given appropriate serializers and deserializers,
this type of interface can provide a common approach for handling file data
programmatically. By extending the concept of data serializers and deserializers
to Lisp, a system for handling files which use a programmatic interface which
can be directly supported by the OS. With more direct OS-like support, the
host can act more intelligently on the data on behalf of a programmer to allow
greater deduplication, transparent distribution, and greater integration with the
host system.

2 Terms and Definitions
JSON: A standard way to serialize and represent structured data.

File Sharding: When a file has different parts on different computers, usually
because the file is too large to fit on and single computer.

SGML: A overarching standard encompassing HTML, XML, and many other
markup languages. It offers a very comprehensive and complete way of serial-
izing and representing data. It is often seen as cumbersome, inefficient, and
impractical.

EDN: A data serialization scheme created for use with the Clojure program-
ming language.

2

YAML: An extentension and superset of JSON intended to improve human
readability.

Scheme: A group of programming languages which are major branch of the
Common LISP dialets. It usually refers to a set of child languages for impleem-
ntations rather than alanguage itself.

OS: A computer operating system. The software and programming which
makes a computer useful.

Host: Usually referring to a contextually local OS and accompanying ser-
vices.

Working Memory: Sections of computer memory which are volatile and fast
enough to be practical for computing with.

Serialization: A way to translate select data in working memory to a com-
puter file, on a host’s disk, or over a network. Adequite serialization is perfectly
reversable by the corrosponging general deserialization.

Deserialization: The opposite of serialization.

TOML: Tom’s Obvious Minimal Language, another standard of representing
serialized data as a file or over a network.

Non-volatile Memory: Memory which endures after power has been removed.

LATEX: A language for marking up and writing documents.

Library: A set of specially compiled computer programs which can use the
direct hardware and OS to provide functionality to other programs.

Grammar: A way of matching an input sequence of data to conform to a
particular structure. It uses extended Backus-Naur Form notation.

Recognizer: A complex system to determine if a given input is either valid
or invalid. Can be created to have inputs which would never terminate.

S-expression: An in-line means of adding LISP like code into another com-
puter programming language.

Greenspun’s Tenth Rule: ”Any sufficiently complicated C or Fortran pro-
gram contains an ad hoc, informally-specified, bug-ridden, slow implementation
of half of Common Lisp.”

3

MongoDB: A NoSQL way of storing a number of pieces of data which can
be represented as JSON.

Content Addressable Storage: A category of storage systems whereby the
location of a computer file is determined by the content of that file. As a corro-
lary, if a file is at a particular locations it must have the corrosponding content,
offering a means of not storing redundant files and and offering file integrity.

HPC: Highly Parallel Computing or High Performance Computing, usually
in research computing clusters.

Bit Torrent: A web adjacent protocol used for peer to peer file transfers. It
makes multiple computers share the load of sharing large files.

Object Storage: A method of storing files without paths e.g. ”C:\\Users\Ad-
min\Desktop\word-doc.rtf”.

Public Key: An asymmetric way of transforming data, only reversible by
the corrosponding Private Key.

Private Key: An asymmetric way of transforming data, only reversible by
the corrosponding Public Key.

3 Current File Problems and Solutions
The classical tradeoff when creating files is weighing space efficiency, en-

coding complexity, and understandability. Historically, the more ground up
approach has led to a nightmare of backwards and forwards compatibility such
as Microsoft’s .doc format, and legacy .rom files which can just lose all meaning
outside of their original systems. File type development and management is al-
ready a well known nightmare from several perspectives. Examples of managing
this increased burden are: Apple’s UTI, MIME, container formats, registering
file extensions with a system, custom file identification programs like file or
the United Kingdom’s National Archive’s Digital Preservation’s droid, or other
more esoteric and inconsistently applied identification schemes. This is to say
little of the problem of determining what programs can even interact with a file.
Adding structure with a programmatic interface, abstracting out serializers and
deserializers, and adding a format recognition grammar should be easier.

4 Offering a Stronger Framework for Files
A more integrated, and more complete framework ostensibly involves more

work, but, given the difficulty of working with current formats, should incur
no extra burden. Hints at a simpler use case come from web development.
Web development has moved towards JSON like serialization. Over custom

4

approaches, using JSON simplifies interoperability, allows change over time,
and lowerers developer effort.

In order to support general format recognition each program must implement
a discrete input recognizer. Each recognizer should be registered with the host
so that it can be applied to stored data and recognize a mapping of files to
supported programs to be generated.

Recognizers have two steps levels. First, a grammar definition which can be
used by a host system to preingest the file contents without executing the pro-
gram’s code. It does this by having the grammar registered or programmatically
available and then compiles or interprets the grammar. This allows guaranteed
finite decidability for the grammar to remove any candidate programs and avoid
all false negatives for determining what is compatible. Next, the full program
can be invoked to recognize the file and terminate with a notice of recognition,
unrecognition, or in the case of some other event non-recognition.

To support this kind of functionality in programs suggests a new executable
format be used to contain these kinds of changes consistently. Currently, library
support and some explicit action by programmers will be required. A later
paper should be able to incorporate recognizer support more transparently, as
well as addressing other shortcommings which has caused a large amount of
infrastructure to be made to cope.

4.1 How to Represent Data
Beyond these mechanics, there are some important practices which should

be observed in order to tightly represent and map observations to data. Often
there is a raw number, state, or information observed and measured. A full con-
text of the event must accompany each measure such that each measurement is
meaningful and complete on its own. Optimizations should not be taken, but
delegated to the serializer. Not only this, but files need to be complete, inde-
pendant, and meaningful. A camera image, for example, then should record its
specifications, ID, environmental conditions like temperature, self health tests,
raw voltages from the sensor, and transformation algorithm and parameters.
File may also contain a cache of the processed and transformed data as a con-
venience or as a way to reduce burden on downstream programs which may not
support the code for the transformation.

5 Serialized Syntax
The serialized syntax is a meaningful description in order to convey the

standard at a high level. Lisp was chosen as a syntax for this standard as it
provides a format which is easy to formalize and is an efficient and readable
form. LISP was also chosen in hopes of leapfrogging Greenspun’s Tenth Rule
of programming. JSON s-expressions are a manifest example of Greenspun’s
Tenth Rule. The following explain the grammar in Appendix A.

5

5.1 Core Representation
The core reserved top level key is data. This value is not intended to be

accessed directly, but through a supported programming interface. This is be-
cause the actual form of the value associated with the data key can be in many
different forms. Programs should only be concerned with the manifest content
and not the literal form. A program will be given an abstract interface to access,
possibly distributed data. Decrypting data is delegated tothe host by default.
This separation forms the entire crux of enabling greater security, extensibility,
and compatibility. The value can be some serialized form of binary, a LISP
data structure, partitioned into discrete chucks, refer to a number of other files
for their data, encrypted, or something else entirely different. It is the respon-
sibility of the host system, service, API, or library to resolve these and give a
consistent view of the data.

Legacy formats may be included without more advanced features like auto-
matic program compatibility recognition. Legacy descriptors are added in order
to include information which could be inferred by using the format prescribed in
this document. While full support cannot be given, support for more expansive
descriptive keys, transparent distributed and sharded support, and enhanced
security for distributing files can be given.

5.2 Transparent Distributed and Sharded Storage
To start, Bit Torrent, Object Storage, Content Addressable Storage, and

Distributed Files systems have shown that there is an obvious need for dis-
tributed file storage and file replication. HPC environments need distributed
data for work parallelization.

5.3 Support and use of Content Addressable Storage
In addition to data and security sections, support for Content Addressable

Storage (CAS) is easily obtained by including a hash specification. Hashes of
the content can be added after the fact or included at file creation. This is done
by giving a list of fully qualified fields, what hash parameters were used, and
the hashed value. These hashinging parameters and hash values can be used
to match a file or search for a file for use in a CAS system in a way similar to
MongoDB. Hashing must be done on the unencrypted values. Searching for a
hash corresponding list of keys is an effective way to have robust and flexible
searching for a CAS. The host can match against local files and transparently ask
other hosts. For small files, preimage attacks should be taken into consideration.

5.4 Securing data
There is a need to have a general, extensible, and robust means of secur-

ing data in files. Keeping secure and private data in a public space is also
important for future computing needs. One current use cases are to replicate

6

local files on other systems safely for backup or archival purposes. Another is
to distribute access controlled files on external networks in a fully distributed,
sharded, global way while also keeping data access limited according to insti-
tutional standards. In order to accomplish this degree of secrecy, classical PKI
is insufficient to match the flexibility needed. In order to do so the following is
needed: A randomly generated key with 256 bits of entropy or greater which is
used to encrypt all data with a symmetric cipher like AES-256. The key is then
encrypted through a set of entities’ private keys, remote services which take
user credentials, and if desired for a set of specific recipients, that recipient’s
public key. This can be performed a number of times with the key for each
intended recipient. Such signing can be nested and applied selectively to fully
qualified keys so that a limited set of encrypting entities are known at first to
ensure greater privacy. Each one of these must contain sufficient information
to identify the needed keys and approving entities to obtain the next level of
signees until the key is obtained and data can be decrypted.

In some situations, as with the sharded file, the security scheme can be
inferred. In this case, the top level key ‘IS’ is specified to denote ”inherit
Security” in order to make the data overhead acceptable.

Support for using external servers to contact to decrypt a key has been
lightly added and considered. While a simple incomplete case has been added
to the grammar, this functionality is largely left to implementers. The rules to
recursively define security have been added to give a fully flexible way to define
arbitrary security structures of needed approvals or accessible keys to use the
data. These also include a cannonical way to indicate which fields have their
values encrypted and by what means or pathways they are encrypted so that
mixed security can be implemented and enabled.

5.5 Data Integrity
Beyond usual security needs is the need for very long term reliable security.

This can be accomplished by chaining trusted signatures which sign the data
and the datetime the signature is being applied. Upon each transfer of the data,
a new signature of existing signatures and datetime must be applied in order to
maintain chain of custody. In the event a key is compromised or expires, so long
as there is a chain of custody where each signature is signed before the time of
of compromise or expiry the data is able to be verified and trusted to the same
degree as the weakest signature in the strongest valid subset of signatures which
are sufficient to establish a chain of custody. This chain grows linearly with the
number of transfers, and reducing this is an open problem.

6 Application Programming Interface
Use and integration of the file features listed above must be automatic with

no programmer overhead to allow the adoption of this new file standard. Listed
file features should also be able to be controlled in a more fine grained mannar,

7

but such usage should never be the default. Only the logical interfaces are spec-
ified. There is not a cannonical implementation when writing this document.
There may never be a cannonical implementation, only a standard with other
implementations.

6.1 Universal format components
in memory representation/API structure additional aspects incorporating

outside grammars and vocabulary abstract file structure deserialization from
any given format deserialization from the universal format serialization to any
given format serialization»s« to the universal format

A Grammar
〈S〉 ::= $unordered$ (〈DATA〉, 〈SECURITY_SPECIFICATION 〉, 〈PATH 〉

)

〈DATA〉 ::= ‘(’ ‘data’ ‘(’ ‘legacy’ 〈BASE64_ENCODED_BINARY 〉 ‘)’ ‘)’
| ‘(’ ‘data’ ‘(’ ‘simple’ 〈LISP_STRUCTURED_DATA〉 ‘)’ ‘)’
| ‘(’ ‘data’ ‘(’ ‘distributed’ 〈DATA_BLOCKS〉 ‘)’ ‘)’

〈DATA_BLOCKS〉 ::= 〈HASH_RECORD〉 〈DATA_BLOCKS〉
| 〈HASH_RECORD〉

〈HASH_RECORD〉 ::= ‘(’ ‘hash record’ ‘(’ 〈KEY_FEILDS〉 ‘)’ ‘(’
〈HASH_DETAILS〉 ‘)’ 〈BENCODE_BINARY 〉 ‘)’

〈SECURITY_SPECIFICATION 〉 :: 〈SECURITY_FEILDS〉
| ‘(’ ‘IS’ ‘)’
| null

〈SECURITY_FEILDS〉 ::= 〈SECURITY_FEILD〉 〈SECURITY_FEILDS〉
| 〈SECURITY_FEILD〉

〈SECURITY_FEILD〉 ::= 〈APPLY_PUBLIC_KEY_PAIR〉
| 〈APPLY_PRIVATE_KEY_PAIR〉
| 〈APPLY_SERVER_KEY 〉
| 〈NEXT_DEPTH_SECURITY 〉
| 〈LIST_ENCRYPTED_FEILDS〉

〈APPLY_PUBLIC_KEY_PAIR〉 ::= ‘(’ ‘apply_public_key’ 〈PKI_ID〉 ‘)’
〈PKI_ID〉 ::= 〈EMAIL_ADDRESS〉

〈APPLY_PRIVATE_KEY_PAIR〉 ::= ‘(’ apply_private_key 〈PKI_ID〉 ‘)’

8

〈APPLY_SERVER_KEY 〉 ::= ‘(’ apply_server_key 〈SERVER_SCHEME〉
〈URL〉 ‘)’

〈NEXT_DEPTH_SECURITY 〉 ::= ‘(’ next_depth_security
〈BASE64_ENCODED_BINARY 〉 ‘)’

〈LIST_ENCRYPTED_FEILDS〉 ::= ‘(’ ‘encrypted_feilds’ ‘(’
〈KEY_FEILDS〉 ‘)’ ‘)’

〈KEY_FEILDS〉 ::= 〈UTF8_STRING〉 〈KEY_FEILDS〉
| 〈UTF8_STRING〉

〈LEGACY_SPECIFIER〉 ::= ‘(’ ‘Legacy’ BOOLEAN_STRING ‘)’

〈BOOLEAN_STRING〉 ::= ‘true’
| ‘false’

〈LEGACY_APPLICATIONS〉 ::= ‘(’ ‘legacy compatible applications’
〈URL_LIST〉 ‘)’

〈URL_LIST〉 ::= ‘(’ 〈URLS〉 ‘)’

〈URLS〉 ::= 〈URL〉 〈URLS〉
| 〈URL〉

〈PATH 〉 ::= ‘(’ ‘standard’ 〈UNIX_FILE_PATH 〉 ‘)’
| ‘(’ ‘Windows’ 〈WINDOWS_FILE_PATH 〉 ‘)’

A Trivial Example
(data (simple (1))),
(path (standard /home/user/file.txt))

9

