The correspondence of some orthogonal series coefficient arrays. R. Rogers -Oct 212014

The result is $* 1$ below.

$$
\begin{aligned}
& \text { The result 1s }\left[\begin{array}{ccccc}
\text { *1 below. } & 0 & 0 & 0 & 0 \\
1 & 0 & 0 \\
a_{10} & 1 & 0 & 0 & 0 \\
a_{20} & a_{21} & 1 & 0 & 0 \\
a_{30} & a_{31} & a_{32} & 1 & 0 \\
a_{40} & a_{41} & a_{42} & a_{43} & 1
\end{array}\right] \\
& {[B]=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
b_{10} & 1 & 0 & 0 & 0 \\
b_{20} & b_{21} & 1 & 0 & 0 \\
b_{30} & b_{31} & b_{32} & 1 & 0 \\
b_{40} & b_{41} & b_{42} & b_{43} & 1
\end{array}\right]}
\end{aligned}
$$

Temporarily tossing the main diagonal.

$$
\begin{aligned}
{\left[A^{\prime}\right] } & =\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
a_{10} & 0 & 0 & 0 & 0 \\
a_{20} & a_{21} & 0 & 0 & 0 \\
a_{30} & a_{31} & a_{32} & 0 & 0 \\
a_{40} & a_{41} & a_{42} & a_{43} & 0
\end{array}\right] \\
{\left[B^{\prime}\right] } & =\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
b_{10} & 0 & 0 & 0 & 0 \\
b_{20} & b_{21} & 0 & 0 & 0 \\
b_{30} & b_{31} & b_{32} & 0 & 0 \\
b_{40} & b_{41} & b_{42} & b_{43} & 0
\end{array}\right]
\end{aligned}
$$

If A^{\prime}, B^{\prime} are maximal rank nilpotent then they are equivalent (in the matrix sense) to the Jordan form like so:

$$
\begin{aligned}
& {\left[U_{a}\right]\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
a_{10} & 0 & 0 & 0 & 0 \\
a_{20} & a_{21} & 0 & 0 & 0 \\
a_{30} & a_{31} & a_{32} & 0 & 0 \\
a_{40} & a_{41} & a_{42} & a_{43} & 0
\end{array}\right]\left[U_{a}\right]^{-1}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]=[J]} \\
& {\left[U_{b}\right]\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
b_{10} & 0 & 0 & 0 & 0 \\
b_{20} & b_{21} & 0 & 0 & 0 \\
b_{30} & b_{31} & b_{32} & 0 & 0 \\
b_{40} & b_{41} & b_{42} & b_{43} & 0
\end{array}\right]\left[U_{b}\right]^{-1}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]=[J]}
\end{aligned}
$$

In addition we see that
$\left[U_{a}\right]\left[A^{\prime}+I\right]\left[U_{a}\right]^{-1}=\left[U_{a}\right][A]\left[U_{a}\right]^{-1}=[J+I]$
$\left[U_{b}\right]\left[B^{\prime}+I\right]\left[U_{b}\right]^{-1}=\left[U_{b}\right][B]\left[U_{b}\right]^{-1}=[J+I]$
Thus

$$
\text { *1 } \overline{[B]}=\left[\overline{U_{b}} \overline{-}^{-1} \overline{-1}\left[\bar{U}_{a}\right][A]\left[\bar{U}_{a}\right]^{-1}\left[\bar{U}_{b}\right]\right.
$$

Now it might seem that "maximal rank nilpotent" is a very special case; but in fact, although I haven't proved it as a theorem, from a couple of lines of reasoning it will always be true for the coefficient arrays of Orthogonal Polynomial sequences. In addition finding $\left[U_{a}\right],\left[U_{b}\right]$ is really quite elementary.

If anybody likes I am sure I can demonstrate the carry through of the above to prove:
$e^{x t} e^{y t}=e^{(x+y) t} \Longrightarrow B_{n}^{(a+b)}=\sum_{k=0}^{n}\binom{n}{k} B_{k}^{(a)}(x) B_{n-k}^{(b)}(y)$
Where t is "creation"/derivative matrix $\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0\end{array}\right]$ and the $e^{x t}$ terms are the coefficient arrays for Binomial polynomials.

Generically for Appell sequences.
This is from "Umbral Calculus" Roman page 94; Generating Function and Sheffer Identity for Bernoulli Polynomials: of order $a+b, a, b$.

