openInvent Rationalization of pi

Pi has been thought of as being an irrational number; yet it is defined oxymoronicly as a ratio of circumference divided by diameter.

Hi Im Ember from openInvent(r).club

I noticed on google calculator 1/2485 *pi is NOT EQUAL TO pi/ 2485 WTF

So I took it upon myself to make this verbose document!

I rationalized pi in a set of circumferences divided by diameter I use prior calculations of pi to come up with what I call an inverse tetration of pi or
$\left(2^{\wedge} \mathrm{pi}\right)^{\wedge}(-1)$ which i use as a divisor

I have a set of "master circumference" which a multiple of 10^{\wedge} x * 1/pi
Divided by a set of "master diameter" which comes from the same multiple of 10^{\wedge} x * (1/ pi/pi) the inverse tetration mentioned above Note: its not that confusing $10^{\wedge} \times$ merely refers to the digits of precision desired

So it follows a number like: 1/pi is approximately:
. 318309886183790671537767 450287240689192975980077 47999079
and 1/pi/pi as divisor begins with:
. 1013211836423377714438794 632097276389043587746722 465884560903189....

Lets get rid of the decimal points and a few digits for the set of rationalizations of pi

By set you take a number of digits divided by a number below thus from fraction below you can get a set of 20 fractions each a rational pi explained below:

3183098861837
 9067153
 10132118362337
 7714438

3/1=3 first babylonian computation of pi, 31/10=3.1 318/101 unique property of

base+1division see 318 subtract 1 \& find "symmetrically opposed" pattern which adds to base-1 here its nines sum ex 317683/999999 or 9|6 "9 more six"
3183/1013 some are inaccurate approximately pi 31830/10132 318309/101321

318309886/101321183

3183098861837

9067153

10132118362337
7714438
X digits of $1 / \mathrm{pi}$
X digits of $1 / \mathrm{pi} / \mathrm{pi}$
So what is the error in these approximations:
Consider,
(1/pi)/(1/pi/pi)-pi=0 is that
equivalent to pi^2/pi-pi in
theory its zero but on precision calculators https://
keisan.casio.com/calculator it is not zero -this fact probably due to computing in base 10 or roots of numbers which produce irrational numbers as we call them.
Theoretically any multiplication of 1 or pi/pi should create similar ratios which are approximately pi or perhaps pi^-1/pi^-1 which yields as set of pi/1 derived from pi^0

So what other forms of numbers can be useful. I propose pi as a multiple of $1 / 7$ because of the unique rotation of repeating patterns in the set: [1/7, 2/7, 3/7, 4/7, 5/7, 6/7]
The pattern is 142857285714 428571571428571428857142 are of which are numerands to the divisor 9|6 or 999999

Thus I come up with other formulas which are of use:

Using circumference formula $\mathrm{C}=$ pid or 2pi ri came up with an approximate tangent constant I call T
In a tangent I expect Radius to equal circumference so there is a constant T that is approximately 1.11625 in $\mathrm{C}(\mathrm{r})=2$ piTr/7 solve for t if $\mathrm{C}=\mathrm{r}$ circumference is radius 7C/2piC reduces to 7/2pi or approx 1.114084601643267 This constant is $1 / 2$ pi when pi equals 1 consider the ratio pi/pi when circumference equals radius which makes little sense in reality

Thus to solve for tangent aka derivative of a circle function $x^{\wedge} 2+y^{\wedge} 2=r^{\wedge} 2$
$y=\operatorname{sqrt}\left(r^{\wedge} 2-x^{\wedge} 2\right)$ I got the
derivative
$d x / d y=1 / 2(2 r-2 x)^{\wedge}(-1 / 2) ?$

Did some graphing on desmos:

Confused myself:
Because I found integer
Circumference and integer diameter calculations.

Circle Calculator

Please provide any value below to calculate the remaining values of a circle.

Result

Given circumference $(C)=\underline{31830988618379}$
Radius $=\frac{C}{2 \pi}=\underline{\mathbf{5 0 6 6 0 5 9 1 8 2 1 1 6 . 9}}$
Diameter $=\frac{C}{\pi}=\underline{10132118364234}$
Area $=\frac{C^{2}}{4 \pi}=8.0628836082998 \mathrm{E}+25$

Radius (R)	\square
Diameter (D)	\square
Circumference (C)	31830988618379 Area (A) Calculate

Choose a Calculation
Find A, C and d Given r
Circle Image
radius $\mathrm{r}=$ 10132118364234

Let pi $\pi=$

```
                            3.1415926535898
```


Significant Figures | | |
| :--- | :--- |

Clear

Answer:

radius	$r=10132118364234$ in
diameter	$d=20264236700000$ in
circumference	$\mathrm{C}=63661977200000$ in
area	$\mathrm{A}=3.22515344 \mathrm{E}+26 \mathrm{in}^{2}$

In Terms of $\mathrm{Pi} \pi$

circumference	$C=20264236700000 \pi$ in
area	$A=1.02659823 E+26 \pi \mathrm{in}^{2}$

Solutions
diameter $d=2 r$
$d=2 \times 10132118364234$

So I came to the conclusion that to say that the ratio know as pi is

irrational is

 oxymoronic because it is defined as a ratio of circumference divided by diameter logically there must be no integer circumference to integer diameter. Would mean that is the only way rationalize pi is in terms of sqrt? I think not there are many sets of rational pi.The computing problems occur with the calculations of pi using arctangent tables.

I came to the conclusion the ALU in computers needs to be upgraded with addition tables subtraction tables and other non elements

Hex division is needed consider uninitialized data in comparison to 0xDEADBEEF/0xFFFFFFFF OR IF FEEDBEAD/100000001 is FEEDBEAC01124153/F|16 or FFFFFFFF FFFFFFFF

In 2007, I suggested a new computing method from which the name derived itself into Bitsfit.com company Bitsfit Entertainment registered as a trademark like openInvent(r)

This computing method takes into account a blank input, time
in clock cycles, and created a new data type called a morsel named after morse code creator and to go along with existing data types bit nibble byte The new computer needs two clock crystals for a primary and secondary clock and needs a "blink registry cache" in theory a hex nibble can be represented in 4hz or four clock cycles 1111 this data is "blinked" for secondary meaning. If this sounds complex consider a computer mouse you have three or 5 buttons for gaming but there are "gesture-like" motions and double clicking vs single clicking. Computers are capable of this kind of foundational computing.

I need to recreate an ALU | would like to rationalize frequencies into gear systems or concentric programmable
gears using mechanisms rather than utilizing electricity.

CONSIDER 1 and 0 imagine 1001 compared to 1__1
Recently I discovered a parity check watching a movie called timeloop data is aligned by x, y location a set of vertically juxtaposed 1 and 0 digits either 1 over 0 or 0 over 1 if one bit is missing it is easy to tell because there is an opposite bit juxtaposed vertically example made this document on friends iphone btw:

Fig. "So you can tell there is a missing zero above 1 and a missing 1 under zero to the

I think there is a large bug with XOR definition mainly in consideration or lack of consideration for big endian litte endian or "outerindian" parsing of data this parse 80 or X with data from out to in middle endian may be an alternate name for it in unix computing.

"Appendicitis"

Truncated

 numerand: 7767450287240 6891929759800 7747999079

Please print publish distribute as desired desseminate excerpt extract condense as desired under Freedom of Information Act FOIA copyright 2021 openlnvent(r) Bitsfit Entertainment emberleona2021@gmail.com

