
groff The GNU implementation of troff
Edition 1.23.0
Autumn 2020

by Trent A. Fisher

and Werner Lemberg

This manual documents GNU troff version 1.23.0.

Copyright © 1994–2021 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documentation Li-
cense, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, with the Front-
Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the
section entitled “GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to
copy and modify this GNU manual. Buying copies from the FSF
supports it in developing GNU and promoting software freedom.”

6 March 2021



Table of Contents                                          -i-                                                                      

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. What Is groff? . . . . . . . . . . . . . . . . . . . . . 1
1.2. History . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3. groff Capabilities . . . . . . . . . . . . . . . . . . . . 3
1.4. Macro Packages . . . . . . . . . . . . . . . . . . . . . 3
1.5. Preprocessors . . . . . . . . . . . . . . . . . . . . . . 4
1.6. Output Devices . . . . . . . . . . . . . . . . . . . . . 4
1.7. Credits . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Invoking groff . . . . . . . . . . . . . . . . . . . . . . . 5
2.1. Options . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Environment . . . . . . . . . . . . . . . . . . . . . . 9
2.3. Macro Directories . . . . . . . . . . . . . . . . . . . . . 10
2.4. Font Directories . . . . . . . . . . . . . . . . . . . . . 11
2.5. Paper Size . . . . . . . . . . . . . . . . . . . . . . . 11
2.6. Invocation Examples . . . . . . . . . . . . . . . . . . . . 12

2.6.1. grog . . . . . . . . . . . . . . . . . . . . . . . . 12
3. Tutorial for Macro Users . . . . . . . . . . . . . . . . . . . . 14

3.1. Basics . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2. Common Features . . . . . . . . . . . . . . . . . . . . 15

3.2.1. Paragraphs . . . . . . . . . . . . . . . . . . . . . 16
3.2.2. Sections and Chapters . . . . . . . . . . . . . . . . . 16
3.2.3. Headers and Footers . . . . . . . . . . . . . . . . . . 16
3.2.4. Page Layout . . . . . . . . . . . . . . . . . . . . . 17
3.2.5. Displays . . . . . . . . . . . . . . . . . . . . . . 17
3.2.6. Footnotes and Annotations . . . . . . . . . . . . . . . . 17
3.2.7. Table of Contents . . . . . . . . . . . . . . . . . . . 17
3.2.8. Indices . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.9. Paper Formats . . . . . . . . . . . . . . . . . . . . 18
3.2.10. Multiple Columns . . . . . . . . . . . . . . . . . . . 18
3.2.11. Font and Size Changes . . . . . . . . . . . . . . . . . 18
3.2.12. Predefined Strings . . . . . . . . . . . . . . . . . . 18
3.2.13. Preprocessor Support . . . . . . . . . . . . . . . . . 18
3.2.14. Configuration and Customization . . . . . . . . . . . . . 18

4. Macro Packages . . . . . . . . . . . . . . . . . . . . . . . 19
4.1. man . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1. Optional man extensions . . . . . . . . . . . . . . . . . 19
4.1.1. Custom headers and footers . . . . . . . . . . . . . . . 19
4.1.1. Ultrix-specific man macros . . . . . . . . . . . . . . . 19
4.1.1. Simple example . . . . . . . . . . . . . . . . . . . 21

4.2. mdoc . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3. me . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4. mm . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5. mom . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6. ms . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.1. Introduction to ms . . . . . . . . . . . . . . . . . . . 70



Table of Contents                                          -ii-                                                                      

4.6.2. General structure of an ms document . . . . . . . . . . . . . 70
4.6.3. Document control settings . . . . . . . . . . . . . . . . 71

4.6.3. Margin Settings . . . . . . . . . . . . . . . . . . . 71
4.6.3. Text Settings . . . . . . . . . . . . . . . . . . . . 72
4.6.3. Paragraph Settings . . . . . . . . . . . . . . . . . . 73
4.6.3. Section Heading Settings . . . . . . . . . . . . . . . . 73
4.6.3. Footnote Settings . . . . . . . . . . . . . . . . . . 74
4.6.3. Other Settings . . . . . . . . . . . . . . . . . . . 75

4.6.4. Cover page macros . . . . . . . . . . . . . . . . . . 75
4.6.5. Body text . . . . . . . . . . . . . . . . . . . . . . 77

4.6.5.1. Paragraphs . . . . . . . . . . . . . . . . . . . . 77
4.6.5.2. Headings . . . . . . . . . . . . . . . . . . . . 78
4.6.5.3. Highlighting . . . . . . . . . . . . . . . . . . . . 81
4.6.5.4. Lists . . . . . . . . . . . . . . . . . . . . . . 82
4.6.5.5. Indented regions . . . . . . . . . . . . . . . . . . 84
4.6.5.6. Tab stops . . . . . . . . . . . . . . . . . . . . 85
4.6.5.7. Displays and keeps . . . . . . . . . . . . . . . . . 85
4.6.5.8. Tables, figures, equations, and references . . . . . . . . . 87
4.6.5.9. An example multi-page table . . . . . . . . . . . . . . 87
4.6.5.10. Footnotes . . . . . . . . . . . . . . . . . . . . 88

4.6.6. Page layout . . . . . . . . . . . . . . . . . . . . . 88
4.6.6.1. Headers and footers . . . . . . . . . . . . . . . . . 88
4.6.6.2. Margins . . . . . . . . . . . . . . . . . . . . . 89
4.6.6.3. Multiple columns . . . . . . . . . . . . . . . . . . 89
4.6.6.4. Creating a table of contents . . . . . . . . . . . . . . 89
4.6.6.5. Strings and Special Characters . . . . . . . . . . . . . 91

4.6.7. Differences from AT&T ms . . . . . . . . . . . . . . . . 93
4.6.7.1. troff macros not appearing in groff . . . . . . . . . . . 94
4.6.7.2. groff macros not appearing in AT&T troff . . . . . . . . . 94

4.6.8. ms Naming Conventions . . . . . . . . . . . . . . . . . 95
5. gtroff Reference . . . . . . . . . . . . . . . . . . . . . . 96

5.1. Text . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.1.1. Filling . . . . . . . . . . . . . . . . . . . . . . . 96
5.1.2. Sentences . . . . . . . . . . . . . . . . . . . . . . 96
5.1.3. Hyphenation . . . . . . . . . . . . . . . . . . . . . 98
5.1.4. Breaking . . . . . . . . . . . . . . . . . . . . . . 98
5.1.5. Adjustment . . . . . . . . . . . . . . . . . . . . . 99
5.1.6. Tab Stops . . . . . . . . . . . . . . . . . . . . . . 99
5.1.7. Requests and Macros . . . . . . . . . . . . . . . . . . 100
5.1.8. Macro Packages . . . . . . . . . . . . . . . . . . . 102
5.1.9. Input Encodings . . . . . . . . . . . . . . . . . . . . 102
5.1.10. Input Conventions . . . . . . . . . . . . . . . . . . . 103

5.2. Measurements . . . . . . . . . . . . . . . . . . . . . . 106
5.2.1. Default Units . . . . . . . . . . . . . . . . . . . . . 106

5.3. Expressions . . . . . . . . . . . . . . . . . . . . . . . 107
5.4. Identifiers . . . . . . . . . . . . . . . . . . . . . . . 108
5.5. Embedded Commands . . . . . . . . . . . . . . . . . . . 110

5.5.1. Requests . . . . . . . . . . . . . . . . . . . . . . 110
5.5.1.1. Request and Macro Arguments . . . . . . . . . . . . . 111



Table of Contents                                         -iii-                                                                     

5.5.2. Escapes . . . . . . . . . . . . . . . . . . . . . . 112
5.5.2.1. Comments . . . . . . . . . . . . . . . . . . . . 114

5.6. Registers . . . . . . . . . . . . . . . . . . . . . . . 115
5.6.1. Setting Registers . . . . . . . . . . . . . . . . . . . 115
5.6.2. Interpolating Registers . . . . . . . . . . . . . . . . . 117
5.6.3. Auto-increment . . . . . . . . . . . . . . . . . . . . 118
5.6.4. Assigning Formats . . . . . . . . . . . . . . . . . . . 118
5.6.5. Built-in Registers . . . . . . . . . . . . . . . . . . . 119

5.7. Manipulating Filling and Adjustment . . . . . . . . . . . . . . 121
5.8. Manipulating Hyphenation . . . . . . . . . . . . . . . . . . 125
5.9. Manipulating Spacing . . . . . . . . . . . . . . . . . . . 132
5.10. Tabs and Fields . . . . . . . . . . . . . . . . . . . . . 134

5.10.1. Leaders . . . . . . . . . . . . . . . . . . . . . . 136
5.10.2. Fields . . . . . . . . . . . . . . . . . . . . . . . 137

5.11. Character Translations . . . . . . . . . . . . . . . . . . . 138
5.12. troff and nroff Modes . . . . . . . . . . . . . . . . . . 141
5.13. Line Layout . . . . . . . . . . . . . . . . . . . . . . 142
5.14. Line Control . . . . . . . . . . . . . . . . . . . . . . 145
5.15. Page Layout . . . . . . . . . . . . . . . . . . . . . . 146
5.16. Page Control . . . . . . . . . . . . . . . . . . . . . . 147
5.17. Fonts and Symbols . . . . . . . . . . . . . . . . . . . . 149

5.17.1. Changing Fonts . . . . . . . . . . . . . . . . . . . 149
5.17.2. Font Families . . . . . . . . . . . . . . . . . . . . 150
5.17.3. Font Positions . . . . . . . . . . . . . . . . . . . . 152
5.17.4. Using Symbols . . . . . . . . . . . . . . . . . . . . 153
5.17.5. Character Classes . . . . . . . . . . . . . . . . . . 159
5.17.6. Special Fonts . . . . . . . . . . . . . . . . . . . . 160
5.17.7. Artificial Fonts . . . . . . . . . . . . . . . . . . . . 161
5.17.8. Ligatures and Kerning . . . . . . . . . . . . . . . . . 163

5.18. Sizes . . . . . . . . . . . . . . . . . . . . . . . . 165
5.18.1. Changing Type Sizes . . . . . . . . . . . . . . . . . . 166
5.18.2. Fractional Type Sizes . . . . . . . . . . . . . . . . . 168

5.19. Strings . . . . . . . . . . . . . . . . . . . . . . . . 169
5.20. Conditionals and Loops . . . . . . . . . . . . . . . . . . 174

5.20.1. Operators in Conditionals . . . . . . . . . . . . . . . . 174
5.20.2. if-then . . . . . . . . . . . . . . . . . . . . . . . 176
5.20.3. if-else . . . . . . . . . . . . . . . . . . . . . . . 177
5.20.4. Conditional Blocks . . . . . . . . . . . . . . . . . . 177
5.20.5. while . . . . . . . . . . . . . . . . . . . . . . . 178

5.21. Writing Macros . . . . . . . . . . . . . . . . . . . . . 179
5.21.1. Copy Mode . . . . . . . . . . . . . . . . . . . . . 182
5.21.2. Parameters . . . . . . . . . . . . . . . . . . . . . 182

5.22. Page Motions . . . . . . . . . . . . . . . . . . . . . . 184
5.23. Drawing Requests . . . . . . . . . . . . . . . . . . . . 188
5.24. Traps . . . . . . . . . . . . . . . . . . . . . . . . 192

5.24.1. Vertical Position Traps . . . . . . . . . . . . . . . . . 192
5.24.1.1. Page Location Traps . . . . . . . . . . . . . . . . 192
5.24.1.2. Diversion Traps . . . . . . . . . . . . . . . . . . 196

5.24.2. Input Line Traps . . . . . . . . . . . . . . . . . . . 196



Table of Contents                                         -iv-                                                                     

5.24.3. Blank Line Traps . . . . . . . . . . . . . . . . . . . 197
5.24.4. Leading Space Traps . . . . . . . . . . . . . . . . . 197
5.24.5. End-of-input Traps . . . . . . . . . . . . . . . . . . 197

5.25. Diversions . . . . . . . . . . . . . . . . . . . . . . . 199
5.26. Environments . . . . . . . . . . . . . . . . . . . . . . 203
5.27. Suppressing output . . . . . . . . . . . . . . . . . . . . 205
5.28. Colors . . . . . . . . . . . . . . . . . . . . . . . . 206
5.29. I/O . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.30. Postprocessor Access . . . . . . . . . . . . . . . . . . . 211
5.31. Miscellaneous . . . . . . . . . . . . . . . . . . . . . 212
5.32. gtroff Internals . . . . . . . . . . . . . . . . . . . . . 214
5.33. Debugging . . . . . . . . . . . . . . . . . . . . . . . 216

5.33.1. Warnings . . . . . . . . . . . . . . . . . . . . . . 218
5.34. Implementation Differences . . . . . . . . . . . . . . . . . 220

6. Preprocessors . . . . . . . . . . . . . . . . . . . . . . . 224
6.1. geqn . . . . . . . . . . . . . . . . . . . . . . . . . 224

6.1.1. Invoking geqn . . . . . . . . . . . . . . . . . . . . . 224
6.2. gtbl . . . . . . . . . . . . . . . . . . . . . . . . . 234

6.2.1. Invoking gtbl . . . . . . . . . . . . . . . . . . . . . 234
6.3. gpic . . . . . . . . . . . . . . . . . . . . . . . . . 244

6.3.1. Invoking gpic . . . . . . . . . . . . . . . . . . . . . 244
6.3.2. Using gpic . . . . . . . . . . . . . . . . . . . . . 252
6.3.3. Introduction to PIC . . . . . . . . . . . . . . . . . . . 252

6.3.3.1. Why PIC? . . . . . . . . . . . . . . . . . . . . 252
6.3.3.2. PIC Versions . . . . . . . . . . . . . . . . . . . 252

6.3.4. Invoking PIC . . . . . . . . . . . . . . . . . . . . . 252
6.3.4.1. PIC Error Messages . . . . . . . . . . . . . . . . . 252

6.3.5. Basic PIC Concepts . . . . . . . . . . . . . . . . . . 253
6.3.6. Sizes and Spacing . . . . . . . . . . . . . . . . . . . 255

6.3.6.1. Default Sizes of Objects . . . . . . . . . . . . . . . 255
6.3.6.2. Objects Do Not Stretch! . . . . . . . . . . . . . . . . 255
6.3.6.3. Resizing Boxes . . . . . . . . . . . . . . . . . . 256
6.3.6.4. Resizing Other Object Types . . . . . . . . . . . . . . 256
6.3.6.5. The ‘same’ Keyword . . . . . . . . . . . . . . . . . 256

6.3.7. Generalized Lines and Splines . . . . . . . . . . . . . . . 257
6.3.7.1. Diagonal Lines . . . . . . . . . . . . . . . . . . . 257
6.3.7.2. Multi-Segment Line Objects . . . . . . . . . . . . . . 257
6.3.7.3. Spline Objects . . . . . . . . . . . . . . . . . . . 257

6.3.8. Decorating Objects . . . . . . . . . . . . . . . . . . . 258
6.3.8.1. Text Special Effects . . . . . . . . . . . . . . . . . 258
6.3.8.2. Dashed Objects . . . . . . . . . . . . . . . . . . 258
6.3.8.3. Dotted Objects . . . . . . . . . . . . . . . . . . . 258
6.3.8.4. Rounding Box Corners . . . . . . . . . . . . . . . . 259
6.3.8.5. Slanted Boxes . . . . . . . . . . . . . . . . . . . 259
6.3.8.6. Arrowheads . . . . . . . . . . . . . . . . . . . . 259
6.3.8.7. Line Thickness . . . . . . . . . . . . . . . . . . . 259
6.3.8.8. Invisible Objects . . . . . . . . . . . . . . . . . . 260
6.3.8.9. Filled Objects . . . . . . . . . . . . . . . . . . . 260
6.3.8.10. Colored Objects . . . . . . . . . . . . . . . . . . 260



Table of Contents                                          -v-                                                                      

6.3.9. More About Text Placement . . . . . . . . . . . . . . . . 260
6.3.10. More About Direction Changes . . . . . . . . . . . . . . 261
6.3.11. Naming Objects . . . . . . . . . . . . . . . . . . . 262

6.3.11.1. Naming Objects By Order Of Drawing . . . . . . . . . . 262
6.3.11.2. Naming Objects With Labels . . . . . . . . . . . . . 263

6.3.12. Describing locations . . . . . . . . . . . . . . . . . . 263
6.3.12.1. Absolute Coordinates . . . . . . . . . . . . . . . . 263
6.3.12.2. Locations Relative to Objects . . . . . . . . . . . . . 263

6.3.12.2.1. Locations Relative to Closed Objects . . . . . . . . . 264
6.3.12.2.2. Locations Relative to Open Objects . . . . . . . . . . 264

6.3.12.3. Ways of Composing Positions . . . . . . . . . . . . . 264
6.3.12.3.1. Vector Sums and Displacements . . . . . . . . . . . 265
6.3.12.3.2. Interpolation Between Positions . . . . . . . . . . . 265
6.3.12.3.3. Projections of Points . . . . . . . . . . . . . . . 265

6.3.12.4. Using Locations . . . . . . . . . . . . . . . . . . 265
6.3.12.5. The ‘chop’ Modifier . . . . . . . . . . . . . . . . . 266

6.3.13. Object Groups . . . . . . . . . . . . . . . . . . . . 267
6.3.13.1. Brace Grouping . . . . . . . . . . . . . . . . . . 267
6.3.13.2. Block Composites . . . . . . . . . . . . . . . . . 267

6.3.14. Style Variables . . . . . . . . . . . . . . . . . . . . 269
6.3.15. Expressions, Variables, and Assignment . . . . . . . . . . . 270
6.3.16. Macros . . . . . . . . . . . . . . . . . . . . . . 271
6.3.17. Import/Export Commands . . . . . . . . . . . . . . . . 272

6.3.17.1. File and Table Insertion . . . . . . . . . . . . . . . 272
6.3.17.2. Debug Messages . . . . . . . . . . . . . . . . . 273
6.3.17.3. Escape to Post-Processor . . . . . . . . . . . . . . 273
6.3.17.4. Executing Shell Commands . . . . . . . . . . . . . . 273

6.3.18. Control-flow constructs . . . . . . . . . . . . . . . . . 273
6.3.19. Interface To [gt]roff . . . . . . . . . . . . . . . . . . 274

6.3.19.1. Scaling Arguments . . . . . . . . . . . . . . . . . 274
6.3.19.2. How Scaling is Handled . . . . . . . . . . . . . . . 274
6.3.19.3. PIC and [gt]roff commands . . . . . . . . . . . . . . 275
6.3.19.4. PIC and EQN . . . . . . . . . . . . . . . . . . . 275
6.3.19.5. Absolute Positioning of Pictures . . . . . . . . . . . . 275

6.3.20. Interface to TeX . . . . . . . . . . . . . . . . . . . 275
6.3.21. Obsolete Commands . . . . . . . . . . . . . . . . . 276
6.3.22. Some Larger Examples . . . . . . . . . . . . . . . . . 276
6.3.23. PIC Reference . . . . . . . . . . . . . . . . . . . . 280

6.3.23.1. Lexical Items . . . . . . . . . . . . . . . . . . . 280
6.3.23.2. Semi-Formal Grammar . . . . . . . . . . . . . . . 281

6.3.24. History and Acknowledgements . . . . . . . . . . . . . . 286
6.3.25. Bibliography . . . . . . . . . . . . . . . . . . . . . 287

6.4. ggrn . . . . . . . . . . . . . . . . . . . . . . . . . 288
6.4.1. Invoking ggrn . . . . . . . . . . . . . . . . . . . . . 288

6.5. grap . . . . . . . . . . . . . . . . . . . . . . . . . 294
6.6. gchem . . . . . . . . . . . . . . . . . . . . . . . . . 294

6.6.1. Invoking gchem . . . . . . . . . . . . . . . . . . . . 294
6.7. grefer . . . . . . . . . . . . . . . . . . . . . . . . 300

6.7.1. Invoking grefer . . . . . . . . . . . . . . . . . . . . 300



Table of Contents                                         -vi-                                                                     

6.8. gsoelim . . . . . . . . . . . . . . . . . . . . . . . . 311
6.8.1. Invoking gsoelim . . . . . . . . . . . . . . . . . . . 311

6.9. preconv . . . . . . . . . . . . . . . . . . . . . . . . 313
6.9.1. Invoking preconv . . . . . . . . . . . . . . . . . . . 313

7. Output Devices . . . . . . . . . . . . . . . . . . . . . . . 316
7.1. Special Characters . . . . . . . . . . . . . . . . . . . . 316
7.2. grotty . . . . . . . . . . . . . . . . . . . . . . . . 316

7.2.1. Invoking grotty . . . . . . . . . . . . . . . . . . . . 316
7.3. grops . . . . . . . . . . . . . . . . . . . . . . . . . 317

7.3.1. Invoking grops . . . . . . . . . . . . . . . . . . . . 317
7.3.2. Embedding PostScript . . . . . . . . . . . . . . . . . . 317

7.4. gropdf . . . . . . . . . . . . . . . . . . . . . . . . 318
7.4.1. Invoking gropdf . . . . . . . . . . . . . . . . . . . . 318
7.4.2. Embedding PDF . . . . . . . . . . . . . . . . . . . . 318

7.5. grodvi . . . . . . . . . . . . . . . . . . . . . . . . 319
7.5.1. Invoking grodvi . . . . . . . . . . . . . . . . . . . . 319

7.6. grolj4 . . . . . . . . . . . . . . . . . . . . . . . . 319
7.6.1. Invoking grolj4 . . . . . . . . . . . . . . . . . . . . 319

7.7. grolbp . . . . . . . . . . . . . . . . . . . . . . . . 320
7.7.1. Invoking grolbp . . . . . . . . . . . . . . . . . . . . 320

7.8. grohtml . . . . . . . . . . . . . . . . . . . . . . . . 320
7.8.1. Invoking grohtml . . . . . . . . . . . . . . . . . . . 320
7.8.2. grohtml specific registers and strings . . . . . . . . . . . . 321

7.9. gxditview . . . . . . . . . . . . . . . . . . . . . . . 322
7.9.1. Invoking gxditview . . . . . . . . . . . . . . . . . . 322

8. File formats . . . . . . . . . . . . . . . . . . . . . . . . 323
8.1. gtroff Output . . . . . . . . . . . . . . . . . . . . . . 323

8.1.1. Language Concepts . . . . . . . . . . . . . . . . . . 323
8.1.1.1. Separation . . . . . . . . . . . . . . . . . . . . 323
8.1.1.2. Argument Units . . . . . . . . . . . . . . . . . . 324
8.1.1.3. Document Parts . . . . . . . . . . . . . . . . . . 324

8.1.2. Command Reference . . . . . . . . . . . . . . . . . . 325
8.1.2.1. Comment Command . . . . . . . . . . . . . . . . . 325
8.1.2.2. Simple Commands . . . . . . . . . . . . . . . . . 325
8.1.2.3. Graphics Commands . . . . . . . . . . . . . . . . 327
8.1.2.4. Device Control Commands . . . . . . . . . . . . . . 330
8.1.2.5. Obsolete Command . . . . . . . . . . . . . . . . . 332

8.1.3. Intermediate Output Examples . . . . . . . . . . . . . . . 332
8.1.4. Output Language Compatibility . . . . . . . . . . . . . . . 334

8.2. Device and Font Files . . . . . . . . . . . . . . . . . . . 334
8.2.1. DESC File Format . . . . . . . . . . . . . . . . . . . 335
8.2.2. Font File Format . . . . . . . . . . . . . . . . . . . . 337

9. Installation . . . . . . . . . . . . . . . . . . . . . . . . . 340
10. Copying This Manual . . . . . . . . . . . . . . . . . . . . . 341





1. Introduction

GNU troff (or groff) is a system for typesetting documents. troff is very flexible and
has been used extensively for some thirty years. It is well entrenched in the Unix commu-
nity.

1.1. What Is groff?

groff belongs to an older generation of document preparation systems, which operate
more like compilers than the more recent interactive WYSIWYG1 systems. groff and its
contemporary counterpart, TEX, both work using a batch paradigm: The input (or source)
files are normal text files with embedded formatting commands. These files can then be
processed by groff to produce a typeset document on a variety of devices.

groff should not be confused with a word processor , an integrated system of editor and
text formatter. Also, many word processors follow the WYSIWYG paradigm discussed ear-
lier.

Although WYSIWYG systems may be easier to use, they have a number of disadvantages
compared to troff:

• They must be used on a graphics display to work on a document.

• Most of the WYSIWYG systems are either non-free or are not very portable.

• troff is firmly entrenched in all Unix systems.

• It is difficult to have a wide range of capabilities within the confines of a GUI/win-
dow system.

• It is more difficult to make global changes to a document.

“GUIs normally make it simple to accomplish simple actions and impossible to
accomplish complex actions.” –Doug Gwyn (22/Jun/91 in comp.unix.wizards)

1.2. History

troff can trace its origins back to a formatting program called RUNOFF, written by Jerry
Saltzer, which ran on the CTSS (Compatible Time Sharing System, a project of MIT, the
Massachusetts Institute of Technology) in the mid-sixties.2 The name came from the use
of the phrase “run off a document”, meaning to print it out. Bob Morris ported it to the 635
architecture and called the program roff (an abbreviation of runoff). It was rewritten as
rf for the PDP-7 (before having Unix), and at the same time (1969), Doug McIlroy rewrote
an extended and simplified version of roff in the BCPL programming language.

In 1971, the Unix developers wanted to get a PDP-11, and to justify the cost, proposed the
development of a document formatting system for the AT&T patents division. This first for-
matting program was a reimplementation of McIlroy’s roff, written by J. F. Ossanna.

When they needed a more flexible language, a new version of roff called nroff (after
“new roff”, pronounced “en-roff”) was written. It had a much more complicated syntax,
but provided the basis for all future versions. When they got a Graphic Systems CAT

1 What You See Is What You Get
2 Jerome H. Saltzer, a grad student then, later a Professor of Electrical Engineering, now retired. Saltzer’s

PhD thesis was the first application for RUNOFF and is available from the MIT Libraries.



Introduction -2-

Phototypesetter, Ossanna wrote a version of nroff that would drive it. It was dubbed
troff, for “typesetter roff”, although many people have speculated that it actually means
“Times roff” because of the use of the Times font family in troff by default. As such, the
name troff is pronounced “tee-roff” rather than “trough”.

With troff came nroff (by 1974, they were actually the same program except for some
‘#ifdef’s), which was for producing output for line printers and character terminals. It un-
derstood everything troff did, and ignored the commands that were not applicable (e.g.,
font changes).

Since there are several things that cannot be done easily in troff, work on several pre-
processors began. These programs would transform certain parts of a document into
troff, which made a very natural use of pipes in Unix.

The eqn preprocessor allowed mathematical formulae to be specified in a much simpler
and more intuitive manner. tbl is a preprocessor for formatting tables. The refer pre-
processor (and the similar program, bib) processes citations in a document according to a
bibliographic database.

Unfortunately, Ossanna’s troff was written in PDP-11 assembly language and produced
output specifically for the CAT phototypesetter. He rewrote it in C, although it was now
7000 lines of uncommented code and still dependent on the CAT. As the CAT became
less common, and was no longer supported by the manufacturer, the need to make it sup-
port other devices became a priority. However, before this could be done, Ossanna died
from a severe heart attack in a hospital while recovering from a previous one.

Brian Kernighan took on the task of rewriting troff. The result produced device-indepen-
dent code that was easy for postprocessors to read and translate to appropriate printer
commands. This new “device-independent troff”, called ditroff by some, had several
extensions, including drawing commands for lines, circles, ellipses, arcs, and B-splines.3

Due to the additional abilities of the new version of troff, several new preprocessors ap-
peared. The pic preprocessor provides a wide range of drawing functions. Likewise the
ideal preprocessor did the same, although via a much different paradigm. The grap pre-
processor took specifications for graphs, but, unlike other preprocessors, produced pic
code.

James Clark began work on a GNU implementation of device-independent troff in
early 1989. The first version, groff 0.3.1, was released June 1990. groff included:

• A replacement for AT&T device-independent troff with many extensions.

• The soelim, pic, tbl, and eqn preprocessors.

• Postprocessors for character devices, POSTSCRIPT, TEX’s device-independent format
(DVI), and the X Window System (X11). GNU troff also eliminated the need for
a separate nroff program with a postprocessor to produce output for ASCII ter-
minals.

• A version of the me macros and an implementation of the man macros.

Also, a front end was included that could construct the—sometimes painfully long—pipe-
lines required for all the pre- and postprocessors.

3 Short for “basis splines”; ask your local numerical analyst. The rest of us can just think of them as
“curves”.



Introduction -3-

Development of GNU troff progressed rapidly, and saw the additions of a replacement for
refer, an implementation of the ms and mm macros, and a program to deduce how to for-
mat a document (grog).

It was declared a stable (i.e. non-beta) package with the release of version 1.04 around
November 1991.

Beginning in 1999, groff has new maintainers (the package was an orphan for a few
years). As a result, new features and programs like grn, a preprocessor for gremlin im-
ages, and an output device to produce HTML and XHTML have been added.

1.3. groff Capabilities

So what exactly is groff capable of doing? groff provides a wide range of low-level text
formatting operations. Using these, it is possible to perform a wide range of formatting
tasks, such as footnotes, table of contents, multiple columns, etc. Here’s a list of the most
important operations supported by groff:

• text filling, adjustment, and centering

• hyphenation

• page control

• font and glyph size control

• vertical spacing (e.g. double-spacing)

• line length and indenting

• macros, strings, diversions, and traps

• registers

• tabs, leaders, and fields

• input and output conventions and character translation

• overstrike, bracket, line drawing, and zero-width functions

• local horizontal and vertical motions and the width function

• three-part titles

• output line numbering

• conditional acceptance of input

• environment switching

• insertions from the standard input

• input/output file switching

• output and error messages

1.4. Macro Packages

Since groff provides such low-level facilities, it can be quite difficult to use by itself. How-
ever, groff provides a macro facility to specify how certain routine operations (e.g. starting
paragraphs, printing headers and footers, etc.) should be done. These macros can be col-
lected together into a macro package. There are a number of macro packages available;
the most common (and the ones described in this manual) are man, mdoc, me, ms, and mm.



Introduction -4-

1.5. Preprocessors

Although groff provides most functions needed to format a document, some operations
would be unwieldy (e.g. to draw pictures). Therefore, programs called preprocessors were
written that understand their own language and produce the necessary groff operations.
These preprocessors are able to differentiate their own input from the rest of the document
via markers.

To use a preprocessor, Unix pipes are used to feed the output from the preprocessor into
groff. Any number of preprocessors may be used on a given document; in this case, the
preprocessors are linked together into one pipeline. However, with groff, the user does
not need to construct the pipe, but only tell groff what preprocessors to use.

groff currently has preprocessors for producing tables (tbl), typesetting equations (eqn),
drawing pictures (pic and grn), processing bibliographies (refer), and drawing chemical
structures (chem). An associated program that is useful when dealing with preprocessors
is soelim.

A free implementation of grap, a preprocessor for drawing graphs, can be obtained as an
extra package; groff can use grap also.

Unique to groff is the preconv preprocessor that enables groff to handle documents in
various input encodings.

Other preprocessors exist, but, unfortunately, no free implementations are available.
Among them is a preprocessor for drawing mathematical pictures (ideal).

1.6. Output Devices

groff produces device-independent code that may be fed into a postprocessor to produce
output for a particular device. Currently, groff has postprocessors for POSTSCRIPT devices,
character terminals, X11 (for previewing), DVI, HP LaserJet 4 and Canon LBP printers
(which use CAPSL), HTML, XHTML, and PDF.

1.7. Credits

Large portions of this manual were taken from existing documents, most notably, the man-
ual pages for the groff package by James Clark, and Eric Allman’s papers on the me
macro package.

Larry Kollar contributed the section on the ms macro package.



Invoking groff -5-

2. Invoking groff

This section focuses on how to invoke the groff front end. This front end takes care of the
details of constructing the pipeline among the preprocessors, gtroff and the postproces-
sor.

It has become a tradition that GNU programs get the prefix ‘g’ to distinguish them from
their original counterparts provided by the host (see Environment). Thus, for example,
geqn is GNU eqn. On operating systems like GNU/Linux or the Hurd, which don’t contain
proprietary versions of troff, and on MS-DOS/MS-Windows, where troff and associated
programs are not available at all, this prefix is omitted since GNU troff is the only incar-
nation of troff used. Exception: ‘groff’ is never replaced by ‘roff’.

In this document, we consequently say ‘gtroff’ when talking about the GNU troff pro-
gram. All other implementations of troff are called AT&T troff, which is the common
origin of almost all troff implementations4 (with more or less compatible changes). Simi-
larly, we say ‘gpic’, ‘geqn’, and so on.

2.1. Options

groff normally runs the gtroff program and a postprocessor appropriate for the selected
device. The default device is ‘ps’ (but it can be changed when groff is configured and
built). It can optionally preprocess with any of gpic, geqn, gtbl, ggrn, grap, gchem, gre-
fer, gsoelim, or preconv.

This section only documents options to the groff front end. Many of the arguments to
groff are passed on to gtroff, therefore those are also included. Arguments to pre- or
postprocessors can be found in Invoking gpic, Invoking geqn, Invoking gtbl, Invoking
ggrn, Invoking grefer, Invoking gchem, Invoking gsoelim, Invoking preconv, Invoking
grotty, Invoking grops, Invoking gropdf, Invoking grohtml, Invoking grodvi, Invoking
grolj4, Invoking grolbp, and Invoking gxditview.

The command-line format for groff is:

groff [ -abceghijklpstvzCEGNRSUVXZ ] [ -dcs ] [ -Darg ]

[ -ffam ] [ -Fdir ] [ -Idir ] [ -Karg ]

[ -Larg ] [ -mname ] [ -Mdir ] [ -nnum ]

[ -olist ] [ -Parg ] [ -rcn ] [ -Tdev ]

[ -wname ] [ -Wname ] [ files... ]

The command-line format for gtroff is as follows.

gtroff [ -abcivzCERU ] [ -dcs ] [ -ffam ] [ -Fdir ]

[ -mname ] [ -Mdir ] [ -nnum ] [ -olist ]

[ -rcn ] [ -Tname ] [ -wname ] [ -Wname ]

[ files... ]

Obviously, many of the options to groff are actually passed on to gtroff.

Options without an argument can be grouped behind a single -. A filename of - denotes
the standard input.  Whitespace is permitted between an option and its argument.

4 Besides groff, neatroff is an exception.



Invoking groff -6-

The grog command can be used to guess the correct groff command to format a file.

Here’s the description of the command-line options:

‘-a’ Generate a plain text approximation of the typeset output. The read-only regis-
ter .A is set to 1. See Built-in Registers. This option produces a sort of abstract
preview of the formatted output.

• Page breaks are marked by a phrase in angle brackets; for example, ‘<be-
ginning of page>’.

• Lines are broken where they would be in the formatted output.

• A horizontal motion of any size is represented as one space. Adjacent hori-
zontal motions are not combined. Inter-sentence space nodes (those arising
from the second argument to the ss request) are not represented.

• Vertical motions are not represented.

• Special characters are rendered in angle brackets; for example, the default
soft hyphen character appears as ‘<hy>’.

The above description should not be considered a specification; the details of -a
output are subject to change.

‘-b’ Print a backtrace with each warning or error message. This backtrace should
help track down the cause of the error. The line numbers given in the backtrace
may not always be correct: gtroff can get confused by as or am requests while
counting line numbers.

‘-c’ Suppress color output.

‘-C’ Enable compatibility mode. See Implementation Differences, for the list of in-
compatibilities between groff and AT&T troff.

‘-dcs’
‘-dname=s’

Define c or name to be a string s. c must be a one-letter name; name can be of
arbitrary length. All string assignments happen before loading any macro file
(including the start-up file).

‘-Darg’ Set default input encoding used by preconv to arg . Implies -k.

‘-e’ Preprocess with geqn.

‘-E’ Inhibit all error messages.

‘-ffam’ Use fam as the default font family. See Font Families.

‘-Fdir’ Search dir for subdirectories devname (name is the name of the device), for the
DESC file, and for font files before looking in the standard directories (see Font
Directories). This option is passed to all pre- and postprocessors using the
GROFF_FONT_PATH environment variable.

‘-g’ Preprocess with ggrn.



Invoking groff -7-

‘-G’ Preprocess with grap. Implies -p.

‘-h’ Print a help message.

‘-i’ Read the standard input after all the named input files have been processed.

‘-Idir’ This option may be used to specify a directory to search for files. It is passed to
the following programs:

• gsoelim (see gsoelim for more details); it also implies groff’s -s option.

• gtroff; it is used to search files named in the psbb and so requests.

• grops; it is used to search files named in the ‘\X’ps: import’ and ‘\X’ps:
file’ escapes.

The current directory is always searched first. This option may be specified
more than once; the directories are searched in the order specified. No direc-
tory search is performed for files specified using an absolute path.

‘-j’ Preprocess with gchem. Implies -p.

‘-k’ Preprocess with preconv. This is run before any other preprocessor. Please
refer to preconv’s man page for its behaviour if no -K (or -D) option is specified.

‘-Karg’ Set input encoding used by preconv to arg . Implies -k.

‘-l’ Send the output to a spooler for printing. The command used for this is speci-
fied by the print command in the device description file (see Device and Font
Files). If not present, -l is ignored.

‘-Larg’ Pass arg to the spooler. Each argument should be passed with a separate -L

option. groff does not prepend a ‘-’ to arg before passing it to the postproces-
sor. If the print keyword in the device description file is missing, -L is ignored.

‘-mname’ Read in the file name.tmac. Normally groff searches for this in its macro direc-
tories. If it isn’t found, it tries tmac.name (searching in the same directories).

‘-Mdir’ Search directory dir for macro files before the standard directories (see Macro
Directories).

‘-nnum’ Number the first page num.

‘-N’ Don’t allow newlines with eqn delimiters. This is the same as the -N option in
geqn.

‘-olist’ Output only pages in list , which is a comma-separated list of page ranges; ‘n’
means print page n, ‘m-n’ means print every page between m and n, ‘-n’ means
print every page up to n, ‘n-’ means print every page beginning with n. gtroff

exits after printing the last page in the list. All the ranges are inclusive on both
ends.

Within gtroff, this information can be extracted with the ‘.P’ register. See Built-
in Registers.

If your document restarts page numbering at the beginning of each chapter,
then gtroff prints the specified page range for each chapter.



Invoking groff -8-

‘-p’ Preprocess with gpic.

‘-Parg’ Pass arg to the postprocessor. Each argument should be passed with a sepa-
rate -P option. Note that groff does not prepend ‘-’ to arg before passing it to
the postprocessor.

‘-rcn’
‘-rname=n’

Set register c or name to the value n. c must be a one-letter name; name can
be of arbitrary length. n can be any gtroff numeric expression. All register as-
signments happen before loading any macro file (including the start-up file).

‘-R’ Preprocess with grefer. No mechanism is provided for passing arguments to
grefer because most grefer options have equivalent commands that can be
included in the file. See grefer, for more details.

gtroff also accepts a -R option, which is not accessible via groff. This option
prevents the loading of the troffrc and troffrc-end files.

‘-s’ Preprocess with gsoelim.

‘-S’ Safer mode. Pass the -S option to gpic and disable the open, opena, pso, sy,
and pi requests. For security reasons, this is enabled by default.

‘-t’ Preprocess with gtbl.

‘-Tdev’ Prepare output for device dev . The default device is ‘ps’, unless changed when
groff was configured and built. The following are the output devices currently
available:

ps For POSTSCRIPT printers and previewers.

pdf For PDF viewers or printers.

dvi For TEX DVI format.

X75 For a 75 dpi X11 previewer.

X75-12 For a 75 dpi X11 previewer with a 12 pt base font in the document.

X100 For a 100 dpi X11 previewer.

X100-12 For a 100 dpi X11 previewer with a 12 pt base font in the document.

ascii For typewriter-like devices using the (7-bit) ASCII (ISO 646) character
set.

latin1 For typewriter-like devices that support the Latin-1 (ISO 8859-1)
character set.

utf8 For typewriter-like devices that use the Unicode (ISO 10646) charac-
ter set with UTF-8 encoding.

cp1047 For typewriter-like devices that use the EBCDIC encoding IBM code
page 1047.



Invoking groff -9-

lj4 For HP LaserJet4-compatible (or other PCL5-compatible) printers.

lbp For Canon CAPSL printers (LBP-4 and LBP-8 series laser printers).

html

xhtml To produce HTML and XHTML output, respectively. This driver con-
sists of two parts, a preprocessor (pre-grohtml) and a postproces-
sor (post-grohtml).

The predefined gtroff string .T contains the current output device; the read-
only register .T is set to 1 if this option is used (which is always true if groff is
used to call gtroff). See Built-in Registers.

The postprocessor to be used for a device is specified by the postpro com-
mand in the device description file. (See Device and Font Files.) This can be
overridden with the -X option.

‘-U’ Unsafe mode. This enables the open, opena, pso, sy, and pi requests.

‘-wname’ Enable warning name. Available warnings are described in Debugging. Multi-
ple -w options are allowed.

‘-Wname’ Inhibit warning name. Multiple -W options are allowed.

‘-v’ Make programs run by groff print out their version number.

‘-V’ Print the pipeline on stdout instead of executing it. If specified more than once,
print the pipeline on stderr and execute it.

‘-X’ Preview with gxditview instead of using the usual postprocessor. This is un-
likely to produce good results except with -Tps.

This is not the same as using -TX75 or -TX100 to view a document with
gxditview: the former uses the metrics of the specified device, whereas the lat-
ter uses X-specific fonts and metrics.

‘-z’ Suppress output from gtroff. Only error messages are printed.

‘-Z’ Do not postprocess the output of gtroff. Normally groff automatically runs
the appropriate postprocessor.

2.2. Environment

There are also several environment variables (of the operating system, not within gtroff)
that can modify the behavior of groff.

GROFF_BIN_PATH

This search path, followed by PATH, is used for commands executed by groff.

GROFF_COMMAND_PREFIX

If this is set to X , then groff runs Xtroff instead of gtroff. This also applies
to tbl, pic, eqn, grn, chem, refer, and soelim. It does not apply to grops,
grodvi, grotty, pre-grohtml, post-grohtml, preconv, grolj4, gropdf, and
gxditview.

The default command prefix is determined during the installation process. If a



Invoking groff -10-

non-GNU troff system is found, prefix ‘g’ is used, none otherwise.

GROFF_ENCODING

The value of this environment value is passed to the preconv preprocessor to
select the encoding of input files. Setting this option implies groff’s command-
line option -k (that is, groff always calls preconv). If set without a value, groff
calls preconv without arguments. An explicit -K command-line option overrides
the value of GROFF_ENCODING. See the preconv(7) man page; type ‘man pre-
conv’ at the command line to view it.

GROFF_FONT_PATH

A colon-separated list of directories in which to search for the devname direc-
tory (before the default directories are tried).  See Font Directories.

GROFF_TMAC_PATH

A colon-separated list of directories in which to search for macro files (before
the default directories are tried).  See Macro Directories.

GROFF_TMPDIR

The directory in which groff creates temporary files. If this is not set and TM-

PDIR is set, temporary files are created in that directory. Otherwise temporary
files are created in a system-dependent default directory (on Unix and
GNU/Linux systems, this is usually /tmp). grops, grefer, pre-grohtml, and
post-grohtml can create temporary files in this directory.

GROFF_TYPESETTER

The default output device.

SOURCE_DATE_EPOCH

A timestamp (expressed as seconds since the Unix epoch) to use as the cre-
ation timestamp in place of the current time. The time is converted to human-
readable form using ctime(3) when the formatter starts up and stored in regis-
ters usable by documents and macro packages (see Built-in Registers).

TZ The time zone to use when converting the current time (or value of
SOURCE_DATE_EPOCH) to human-readable form; see tzset(3).

MS-DOS and MS-Windows ports of groff use semicolons, rather than colons, to separate
the directories in the lists described above.

2.3. Macro Directories

All macro file names must be named name.tmac or tmac.name to make the -mname com-
mand-line option work. The mso request doesn’t have this restriction; any file name can be
used, and gtroff won’t try to append or prepend the ‘tmac’ string.

Macro files are kept in the tmac directories, all of which constitute the tmac path. The ele-
ments of the search path for macro files are (in that order):

• The directories specified with gtroff’s or groff’s -M command-line option.

• The directories given in the GROFF_TMAC_PATH environment variable.



Invoking groff -11-

• The current directory (only if in unsafe mode using the -U command-line switch).

• The home directory.

• A platform-dependent directory, a site-specific (platform-independent) directory,
and the main tmac directory; the default locations are

/usr/local/lib/groff/site-tmac

/usr/local/share/groff/site-tmac

/usr/local/share/groff/1.23.0/tmac

assuming that the version of groff is 1.23.0, and the installation prefix was
/usr/local. It is possible to fine-tune those directories during the installation
process.

2.4. Font Directories

Basically, there is no restriction how font files for groff are named and how long font
names are; however, to make the font family mechanism work (see Font Families), fonts
within a family should start with the family name, followed by the shape. For example, the
Times family uses ‘T’ for the family name and ‘R’, ‘B’, ‘I’, and ‘BI’ to indicate the shapes ‘ro-
man’, ‘bold’, ‘italic’, and ‘bold italic’, respectively. Thus the final font names are ‘TR’, ‘TB’,
‘TI’, and ‘TBI’.

All font files are kept in the font directories, which constitute the font path. The file search
functions always append the directory devname, where name is the name of the output
device. Assuming, say, DVI output, and /foo/bar as a font directory, the font files for
grodvi must be in /foo/bar/devdvi.

The elements of the search path for font files are (in that order):

• The directories specified with gtroff’s or groff’s -F command-line option. All
device drivers and some preprocessors also have this option.

• The directories given in the GROFF_FONT_PATH environment variable.

• A site-specific directory and the main font directory; the default locations are

/usr/local/share/groff/site-font

/usr/local/share/groff/1.23.0/font

assuming that the version of groff is 1.23.0, and the installation prefix was
/usr/local. It is possible to fine-tune those directories during the installation
process.

2.5. Paper Size

In groff, the page size for gtroff and for output devices are handled separately. See Page
Layout, for vertical manipulation of the page size. See Line Layout, for horizontal changes.

A default paper size can be set in the device’s DESC file. Most output devices also have a
command-line option -p to override the default paper size and option -l to use landscape
orientation. See DESC File Format, for a description of the papersize keyword, which takes
the same argument as -p.



Invoking groff -12-

A convenient shorthand to set a particular paper size for gtroff is command-line option
-dpaper=size. This defines string paper, which is processed in file papersize.tmac
(loaded in the start-up file troffrc by default). Possible values for size are the same as
the predefined values for the papersize keyword (but only in lowercase) except a7–d7. An
appended ‘l’ (ell) character denotes landscape orientation.

For example, use the following for PS output on A4 paper in landscape orientation:

groff -Tps -dpaper=a4l -P-pa4 -P-l -ms foo.ms > foo.ps

It is up to the particular macro package to respect default page dimensions set in this way
(most do).

2.6. Invocation Examples

This section lists several common uses of groff and the corresponding command lines.

groff file

This command processes file without a macro package or a preprocessor. The output
device is the default, ‘ps’, and the output is sent to stdout.

groff -t -mandoc -Tascii file | less

This is basically what a call to the man program does. GNU troff processes the man
page file with the mandoc macro file (which in turn loads either the man or the mdoc macro
package), using the tbl preprocessor and the ascii output device. Finally, the less pager
displays the result.

groff -X -m me file

Preview file with gxditview, using the me macro package. Since no -T option is speci-
fied, use the default device (‘ps’). You can say either ‘-m me’ or ‘-me’; the latter is an
anachronism from the early days of Unix.5

groff -man -rD1 -z file

Check file with the man macro package, forcing double-sided printing—don’t produce any
output.

2.6.1. grog

grog reads files, guesses which of the groff preprocessors and/or macro packages are
required for formatting them, and prints the groff command including those options on the
standard output. It generates one or more of the options -e, -man, -me, -mm, -mom, -ms,
-mdoc, -mdoc-old, -p, -R, -g, -G, -s, and -t.

A special file name - refers to the standard input. Specifying no files also means to read
the standard input. Any specified options are included in the printed command. No space
is allowed between options and their arguments. The only options recognized are -C
(which is also passed on) to enable compatibility mode, and -v to print the version number
and exit.

5 The same is true for the other major macro packages that come with groff: man, mdoc, ms, mm, and man-
doc. This won’t work in general; for example, to load trace.tmac, either ‘-mtrace’ or ‘-m trace’ must be
used.



Invoking groff -13-

For example,

grog -Tdvi paper.ms

guesses the appropriate command to print paper.ms and then prints it to the command
line after adding the -Tdvi option. For direct execution, enclose the call to grog in back-
quotes at the Unix shell prompt:

‘grog -Tdvi paper.ms‘ > paper.dvi

As this example shows, it is still necessary to redirect the output to something meaningful
(i.e. either a file or a pager program like less).



Tutorial for Macro Users                              -14-                                                                     

3. Tutorial for Macro Users

Most users tend to use a macro package to format their papers. This means that the
whole breadth of groff is not necessary for most people. This chapter covers the material
needed to efficiently use a macro package.

3.1. Basics

This section covers some of the basic concepts necessary to understand how to use a
macro package.6 References are made throughout to more detailed information, if desired.

gtroff reads an input file prepared by the user and outputs a formatted document suitable
for publication or framing. The input consists of text, or words to be printed, and embed-
ded commands (requests and escapes), which tell gtroff how to format the output. For
more detail on this, see Embedded Commands.

The word argument is used in this chapter to mean a word or number that appears on the
same line as a request, and which modifies the meaning of that request. For example, the
request

.sp

spaces one line, but

.sp 4

spaces four lines. The number 4 is an argument to the sp request, which says to space
four lines instead of one. Arguments are separated from the request and from each other
by spaces (no tabs). More details on this can be found in Request and Macro Arguments.

The primary function of gtroff is to collect words from input lines, fill output lines with
those words, justify the right-hand margin by inserting extra spaces in the line, and output
the result.  For example, the input:

Now is the time

for all good men

to come to the aid

of their party.

Four score and seven

years ago, etc.

is read, packed onto output lines, and justified to produce:

Now is the time for all good men to come to the aid of their party. Four score
and seven years ago, etc.

Sometimes a new output line should be started even though the current line is not yet full;
for example, at the end of a paragraph. To do this it is possible to cause a break , which
starts a new output line. Some requests cause a break automatically, as normally do blank
input lines and input lines beginning with a space.

Not all input lines are text to be formatted. Some input lines are requests that describe
how to format the text. Requests always have a period (‘.’) or an apostrophe (‘’’) as the
first character of the input line.

6 This section is derived from Writing Papers with nroff using -me by Eric P. Allman.



Tutorial for Macro Users                              -15-                                                                     

The text formatter also does more complex things, such as automatically numbering
pages, skipping over page boundaries, putting footnotes in the correct place, and so forth.

Here are a few hints for preparing text for input to gtroff.

• First, keep the input lines short. Short input lines are easier to edit, and gtroff
packs words onto longer lines anyhow.

• In keeping with this, it is helpful to begin a new line after every comma or phrase,
since common corrections are to add or delete sentences or phrases.

• End each sentence with two spaces—or better, start each sentence on a new
line. gtroff recognizes characters that usually end a sentence, and inserts inter-
sentence space accordingly.

• Do not hyphenate words at the end of lines—gtroff is smart enough to hyphen-
ate words as needed, but is not smart enough to take hyphens out and join a
word back together. Also, words such as “mother-in-law” should not be broken
over a line, since then a space can occur where not wanted, such as “mother- in-
law”.

gtroff double-spaces output text automatically if you use the request ‘.ls 2’. Reactivate
single-spaced mode by typing ‘.ls 1’.7

A number of requests allow you to change the way the output is arranged on the page,
sometimes called the layout of the output page.

The bp request starts a new page, causing a line break.

The request ‘.sp N’ leaves N lines of blank space. N can be omitted (meaning skip a sin-
gle line) or can be of the form N i (for N inches) or Nc (for N centimeters). For example,
the input:

.sp 1.5i

My thoughts on the subject

.sp

leaves one and a half inches of space, followed by the line “My thoughts on the subject”,
followed by a single blank line (more measurement units are available, see
Measurements).

Text lines can be centered by using the ce request. The line after ce is centered (horizon-
tally) on the page. To center more than one line, use ‘.ce N’ (where N is the number of
lines to center), followed by the N lines. To center many lines without counting them, type:

.ce 1000

lines to center

.ce 0

The ‘.ce 0’ request tells groff to center zero more lines, in other words, stop centering.

All of these requests cause a break; that is, they always start a new line. To start a new
line without performing any other action, use br.

3.2. Common Features

7 If you need finer granularity of the vertical space, use the pvs request (see Changing Type Sizes).



Tutorial for Macro Users                              -16-                                                                     

gtroff provides very low-level operations for formatting a document. There are many
common routine operations that are done in all documents. These common operations are
written into macros and collected into a macro package.

All macro packages provide certain common capabilities that fall into the following cate-
gories.

3.2.1. Paragraphs

One of the most common and most used capability is starting a paragraph. There are a
number of different types of paragraphs, any of which can be initiated with macros supplied
by the macro package. Normally, paragraphs start with a blank line and the first line in-
dented, like the text in this manual. There are also block style paragraphs, which omit the
indentation:

Some men look at constitutions with sanctimonious

reverence, and deem them like the ark of the covenant, too

sacred to be touched.

And there are also indented paragraphs, which begin with a tag or label at the margin and
the remaining text indented.

one This is the first paragraph. Notice how the first

line of  the resulting  paragraph lines up  with the

other lines in the paragraph.

longlabel

This paragraph had a long label. The first

character of text on the first line does not line up

with the text on second and subsequent lines,

although they line up with each other.

A variation of this is a bulleted list.

. Bulleted lists start with a bullet. It is possible

to use other glyphs instead of the bullet.  In nroff

mode using the ASCII character set for output, a dot

is used instead of a real bullet.

3.2.2. Sections and Chapters

Most macro packages supply some form of section headers. The simplest kind is simply
the heading on a line by itself in bold type. Others supply automatically numbered section
heading or different heading styles at different levels. Some, more sophisticated, macro
packages supply macros for starting chapters and appendices.

3.2.3. Headers and Footers

Every macro package gives some way to manipulate the headers and footers (also called
titles) on each page. This is text put at the top and bottom of each page, respectively,
which contain data like the current page number, the current chapter title, and so on. Its
appearance is not affected by the running text. Some packages allow for different ones on
the even and odd pages (for material printed in a book form).



Tutorial for Macro Users                              -17-                                                                     

The titles are called three-part titles, that is, there is a left-justified part, a centered part,
and a right-justified part. An automatically generated page number may be put in any of
these fields with the ‘%’ character (see Page Layout).

3.2.4. Page Layout

Most macro packages let the user specify top and bottom margins and other details about
the appearance of the printed pages.

3.2.5. Displays

Displays are sections of text to be set off from the body of the paper. Major quotes, tables,
and figures are types of displays, as are all the examples used in this document.

Major quotes are quotes that are several lines long, and hence are set in from the rest of
the text without quote marks around them.

A list is an indented, single-spaced, unfilled display. Lists should be used when the mate-
rial to be printed should not be filled and justified like normal text, such as columns of fig-
ures or the examples used in this paper.

A keep is a display of lines that are kept on a single page if possible. An example for a
keep might be a diagram. Keeps differ from lists in that lists may be broken over a page
boundary whereas keeps are not.

Floating keeps move relative to the text. Hence, they are good for things that are referred
to by name, such as “See figure 3”. A floating keep appears at the bottom of the current
page if it fits; otherwise, it appears at the top of the next page. Meanwhile, the surrounding
text ‘flows’ around the keep, thus leaving no blank areas.

3.2.6. Footnotes and Annotations

There are a number of requests to save text for later printing.

Footnotes are printed at the bottom of the current page.

Delayed text is very similar to a footnote except that it is printed when called for explicitly.
This allows a list of references to appear (for example) at the end of each chapter, as is the
convention in some disciplines.

Most macro packages that supply this functionality also supply a means of automatically
numbering either type of annotation.

3.2.7. Table of Contents

Tables of contents are a type of delayed text having a tag (usually the page number) at-
tached to each entry after a row of dots. The table accumulates throughout the paper until
printed, usually after the paper has ended. Many macro packages provide the ability to
have several tables of contents (e.g. a standard table of contents, a list of tables, etc).

3.2.8. Indices



Tutorial for Macro Users                              -18-                                                                     

While some macro packages use the term index , none actually provide that functionality.
The facilities they call indices are actually more appropriate for tables of contents.

To produce a real index in a document, external tools like the makeindex program are nec-
essary.

3.2.9. Paper Formats

Some macro packages provide stock formats for various kinds of documents. Many of
them provide a common format for the title and opening pages of a technical paper. The
mm macros in particular provide formats for letters and memoranda.

3.2.10. Multiple Columns

Some macro packages (but not man) provide the ability to have two or more columns on a
page.

3.2.11. Font and Size Changes

The built-in font and size functions are not always intuitive, so all macro packages provide
macros to make these operations simpler.

3.2.12. Predefined Strings

Most macro packages provide various predefined strings for a variety of uses; examples
are sub- and superscripts, printable dates, quotes and various special characters.

3.2.13. Preprocessor Support

All macro packages provide support for various preprocessors and may extend their func-
tionality.

For example, all macro packages mark tables (which are processed with gtbl) by placing
them between TS and TE macros. The ms macro package has an option, ‘.TS H’, that prints
a caption at the top of a new page (when the table is too long to fit on a single page).

3.2.14. Configuration and Customization

Some macro packages provide means of customizing many of the details of how the pack-
age behaves. This ranges from setting the default type size to changing the appearance of
section headers.



Major Macro Packages -19-

4. Macro Packages

This chapter documents the major macro packages that come with groff. Such packages
are also sometimes described as full-service due to the breadth of features they provide
and because more than one cannot be used by the same document; for example

groff -m man foo.man -m ms bar.doc

doesn’t work. Option arguments are processed before non-option arguments; the above
(failing) sample is thus reordered to

groff -m man -m ms foo.man bar.doc

4.1. man

The man macro package is the most widely-used and probably the most important ever de-
veloped for troff. It is easy to use, and a vast majority of manual pages (“man pages”)
are written in it.

groff’s implementation is documented in the groff_man(7) man page. Type ‘man
groff_man’ at the command line to view it.

4.1.1. Optional man extensions

Use the file man.local for local extensions to the man macros or for style changes.

Custom headers and footers

In groff versions 1.18.2 and later, you can specify custom headers and footers by redefin-
ing the following macros in man.local.

.PT

Control the content of the headers. Normally, the header prints the command name
and section number on either side, and the optional fifth argument to TH in the center.

.BT

Control the content of the footers. Normally, the footer prints the page number and
the third and fourth arguments to TH.

Use the FT register to specify the footer position.  The default is −0.5 i.

Ultrix-specific man macros

The groff source distribution includes a file named man.ultrix, containing macros com-
patible with the Ultrix variant of man. Copy this file into man.local (or use the mso request
to load it) to enable the following macros.

.CT key

Print ‘<CTRL/key>’.

.CW

Print subsequent text using a “constant-width” (monospaced) typeface (Courier ro-
man).



Major Macro Packages -20-

.Ds

Begin a non-filled display.

.De

End a non-filled display started with Ds.

.EX [indent]

Begin a non-filled display using a monospaced typeface (Courier roman). Use the
optional indent argument to indent the display.

.EE

End a non-filled display started with EX.

.G [text]

Set text in Helvetica. If no text is present on the line where the macro is called, then
the text of the next line appears in Helvetica.

.GL [text]

Set text in Helvetica oblique. If no text is present on the line where the macro is
called, then the text of the next line appears in Helvetica Oblique.

.HB [text]

Set text in Helvetica bold. If no text is present on the line where the macro is called,
then all text up to the next HB appears in Helvetica bold.

.TB [text]

Identical to HB.

.MS title sect [punct]

Set a man page reference in Ultrix format. The title is in Courier instead of italic.
Optional punctuation follows the section number without an intervening space.

.NT [C] [title]
Begin a note. Print the optional title, or the word “Note”, centered on the page. Text
following the macro makes up the body of the note, and is indented on both sides. If
the first argument is C, the body of the note is printed centered (the second argument
replaces the word “Note” if specified).

.NE

End a note begun with NT.

.PN path [punct]

Set the path name in a monospaced typeface (Courier roman), followed by optional
punctuation.

.Pn [punct] path [punct]

If called with two arguments, identical to PN. If called with three arguments, set the
second argument in a monospaced typeface (Courier roman), bracketed by the first
and third arguments in the current font.

.R

Switch to roman font and turn off any underlining in effect.

.RN

Print the string ‘<RETURN>’.

.VS [4]
Start printing a change bar in the margin if the number 4 is specified. Otherwise, this
macro does nothing.



Major Macro Packages -21-

.VE

End printing the change bar begun by VS.

Simple example

The following example man.local file alters the SH macro to add some extra vertical space
before printing the heading.  Headings are printed in Helvetica bold.

.\" Make the heading fonts Helvetica

.ds HF HB

.

.\" Put more space in front of headings.

.rn SH SH-orig

.de SH

. if t .sp (u;\\n[PD]*2)

. SH-orig \\$*

..

4.2. mdoc

groff’s implementation of the BSD doc package for man pages is documented in the
groff_mdoc(7) man page. Type ‘man groff_mdoc’ at the command line to view it.

4.3. me

groff’s implementation of the BSD me macro package is documented using itself. A tuto-
rial, meintro.me, and reference, meref.me, are available in groff’s documentation direc-
tory. A groff_me(7) man page is also available and identifies the installation path for these
documents. Type ‘man groff_me’ at the command line to view it.

A French translation of the tutorial is available as meintro_fr.me and installed parallel to
the English version.

4.4. mm

NAME

groff_mm - memorandum macros for GNU roff

SYNOPSIS

groff -mm [ options. . . ] [ files. . . ]

DESCRIPTION

The groff mm macros are intended to be compatible with the DWB mm macros with
the following limitations:

• No Bell Labs localisms are implemented.

• The macros OK and PM are not implemented.

• groff mm does not support cut marks. mm is intended to support easy local-
ization. Use mmse as an example how to adapt the output format to a na-
tional standard. Localized strings are collected in the file



Major Macro Packages -22-

‘/usr/share/groff/1.22.3.rc1.24-ea225/tmac/xx .tmac’, where xx denotes the
two-letter code for the language, as defined in the ISO 639 standard. For
Swedish, this is ‘sv.tmac’ – not ‘se’, which is the ISO 3166 two-letter code for
the country (as used for the output format localization).

A file called locale or country _locale is read after the initialization of the global vari-
ables. It is therefore possible to localize the macros with a different company name
and so on.  In this manual, square brackets are used to show optional arguments.

Number registers and strings

Many macros can be controlled by number registers and strings. A number register
is assigned with the nr command:

.nr XXX [±]n [i]\/
XXX is the name of the register, n is the value to be assigned, and i is the increment
value for auto-increment. n can have a plus or minus sign as a prefix if an increment
or decrement of the current value is wanted. (Auto-increment or auto-decrement oc-
curs if the number register is used with a plus or minus sign, \nXXX ] or \n-[XXX ].)

Strings are defined with ds.
.ds YYY string

The string is assigned everything to the end of the line, even blanks. Initial blanks in
string should be prefixed with a double-quote. (Strings are used in the text as
\*[YYY ].)

Special formatting of number registers

A number register is printed with normal digits if no format has been given. Set the
format with af:

.af R c

R is the name of the register, c is the format.

Form Sequence
1            0, 1, 2, 3, . . .
001        000, 001, 002, 003, . . .
i             0, i, ii, iii, iv, . . .
I             0, I, II, III, IV, . . .
a            0, a, b, c, . . ., z, aa, ab, . . .
A           0, A, B, C, . . ., Z, AA, AB, . . .

Fonts

In mm, the fonts (or rather, font styles) R (normal), I (italic), and B (bold) are hard-
wired to font positions 1, 2, and 3, respectively. Internally, font positions are used for
backwards compatibility. From a practical point of view it doesn’t make a big differ-
ence – a different font family can still be selected with a call to the .fam request or
using groff’s -f command-line option. On the other hand, if you want to replace just,
say, font B, you have to replace the font at position 2 (with a call to ‘.fp 2 . . .’).

Macros

)E level text
Add heading text text to the table of contents with level , which is either 0 or in
the range 1 to 7. See also .H. This macro is used for customized tables of



Major Macro Packages -23-

contents.

1C [1]
Begin one-column processing. A 1 as an argument disables the page break.
Use wide footnotes, small footnotes may be overprinted.

2C Begin two-column processing. Splits the page in two columns. It is a special
case of MC. See also 1C.

AE Abstract end, see AS.

AF [name-of-firm]
Author’s firm, should be called before AU, see also COVER.

AL [type [text-indent [1]]]
Start auto-increment list. Items are numbered beginning with one. The type
argument controls the format of numbers.

Arg Description
1 Arabic (the default)
A         Upper-case letters (A–Z)
a Lower-case letters (a–z)
I          Upper-case roman
i Lower-case roman

text-indent sets the indentation and overrides Li. A third argument prohibits
printing of a blank line before each item.

APP name text
Begin an appendix with name name. Automatic naming occurs if name is "".
The appendices start with A if automatic naming is used. A new page is
ejected, and a header is also produced if the number variable Aph is non-zero.
This is the default. The appendix always appears in the ‘List of contents’ with
correct page numbers. The name ‘APPENDIX’ can be changed by setting the
string App to the desired text. The string Apptxt contains the current appendix
text.

APPSK name pages text
Same as .APP, but the page number is incremented with pages. This is used
when diagrams or other non-formatted documents are included as appendices.

AS [arg [indent]]
Abstract start. Indentation is specified in ‘ens’, but scaling is allowed. Argu-
ment arg controls where the abstract is printed.

Arg Placement
0 Abstract is printed on page 1 and on the cover sheet if used in the

released-paper style (MT 4), otherwise it is printed on page 1 with-
out a cover sheet.

1 Abstract is only printed on the cover sheet (MT 4 only).
2 Abstract is printed only on the cover sheet (other than MT 4 only).

The cover sheet is printed without a need for CS.



Major Macro Packages -24-

An abstract is not printed at all in external letters (MT 5). The indent parameter
controls the indentation of both margins, otherwise normal text indentation is
used.

AST [title]
Abstract title. Default is ‘ABSTRACT’. Sets the text above the abstract text.

AT title1 [title2 [. . .]]
Author’s title. AT must appear just after each AU. The title shows up after the
name in the signature block.

AU [name [initials [loc [dept [ext [room [arg [arg [arg]]]]]]]]]
Author information. Specifies the author of the memo or paper, and is printed
on the cover sheet and on other similar places. AU must not appear before TL.
The author information can contain initials, location, department, telephone ex-
tension, room number or name and up to three extra arguments.

AV [name [1]]
Approval signature. Generates an approval line with place for signature and
date. The string ‘APPROVED:’ can be changed with variable Letapp; it is re-
placed with an empty lin if there is a second argument. The string ‘Date’ can
be changed with variable Letdate.

AVL [name]
Letter signature. Generates a line with place for signature.

B [bold-text [prev-font-text [bold [. . .]]]]
Begin boldface. No limit on the number of arguments. All arguments are con-
catenated to one word; the first, third and so on is printed in boldface.

B1 Begin box (as the ms macro). Draws a box around the text. The text is in-
dented one character, and the right margin is one character shorter.

B2 End box. Finishes the box started with B1.

BE End bottom block, see BS.

BI [bold-text [italic-text [bold-text [. . .]]]]
Bold-italic. No limit on the number of arguments, see B.

BL [text-indent [1]]
Start bullet list. Initializes a list with a bullet and a space in the beginning of
each list item (see LI). text-indent overrides the default indentation of the list
items set by number register Pi. A third argument prohibits printing of a blank
line before each item.

BR [bold-text [roman-text [bold-text [. . .]]]]
Bold-roman. No limit on the number of arguments.

BS Bottom block start. Begins the definition of a text block which is printed at the
bottom of each page. The block ends with BE.

BVL text-indent [mark-indent [1]]
Start of broken variable-item list. Broken variable-item list has no fixed mark, it
assumes that every LI has a mark instead. The text always begins at the next
line after the mark. text-indent sets the indentation to the text, and mark-in-
dent the distance from the current indentation to the mark. A third argument
prohibits printing of a blank line before each item.



Major Macro Packages -25-

COVER [arg]
Begin a coversheet definition. It is important that .COVER appears before any
normal text. This macro uses arg to build the filename
‘/usr/share/groff/1.22.3.rc1.24-ea225/tmac/mm/arg.cov’. Therefore it is possi-
ble to create unlimited types of cover sheets. ‘ms.cov’ is supposed to look like
the ms cover sheet. .COVER requires a .COVEND at the end of the cover defi-
nition. Always use this order of the cover macros:

.COVER

.TL

.AF

.AU

.AT

.AS

.AE

.COVEND

However, only .TL and .AU are required.

COVEND
Finish the cover description and print the cover page. It is defined in the cover
file.

DE Display end.  Ends a block of text or display that begins with DS or DF.

DF [format [fill [rindent]]]
Begin floating display (no nesting allowed). A floating display is saved in a
queue and is printed in the order entered. Format , fill , and rindent are the
same as in DS. Floating displays are controlled by the two number registers
De and Df.

De register

0 Nothing special, this is the default.
1 A page eject occurs after each printed display, giving only one dis-

play per page and no text following it.

Df register

0 Displays are printed at the end of each section (when section-page
numbering is active) or at the end of the document.

1 A new display is printed on the current page if there is enough space,
otherwise it is printed at the end of the document.

2 One display is printed at the top of each page or column (in multi-col-
umn mode).

3 Print one display if there is enough space for it, otherwise it is printed
at the top of the next page or column.

4 Print as many displays as possible in a new page or column. A page
break occurs between each display if De is not zero.

5 Fill the current page with displays and the rest beginning at a new
page or column. (This is the default.) A page break occurs between
each display if De is not zero.



Major Macro Packages -26-

DL [text-indent [1 [1]]]
Dash list start. Begins a list where each item is printed after a dash. text-in-
dent changes the default indentation of the list items set by number register Pi.
A second argument prevents an empty line between each list item. See LI. A
third argument prohibits printing of a blank line before each item.

DS [format [fill [rindent]]]
Static display start. Begins collection of text until DE. The text is printed to-
gether on the same page, unless it is longer than the height of the page. DS
can be nested arbitrarily.

format

""          No indentation.
none     No indentation.
L           No indentation.
I Indent text with the value of number register Si.
C          Center each line.
CB        Center the whole display as a block.
R          Right-adjust the lines.
RB        Right-adjust the whole display as a block.

The values ‘L’, ‘I’, ‘C’, and ‘CB’ can also be specified as ‘0’, ‘1’, ‘2’, and ‘3’, re-
spectively, for compatibility reasons.

fill

""          Line-filling turned off.
none     Line-filling turned off.
N          Line-filling turned off.
F           Line-filling turned on.

‘N’ and ‘F’ can also be specified as ‘0’ and ‘1’, respectively.

By default, an empty line is printed before and after the display. Setting number
register Ds to 0 prevents this. rindent shortens the line length by that amount.

EC [title [override [flag [refname]]]]
Equation title. Sets a title for an equation. The override argument changes the
numbering.

flag

none override is a prefix to the number.
0 override is a prefix to the number.
1 override is a suffix to the number.
2 override replaces the number.

EC uses the number register Ec as a counter. It is possible to use .af to
change the format of the number. If number register Of is 1, the format of title
uses a dash instead of a dot after the number.

The string Le controls the title of the List of Equations; default is ‘LIST OF
EQUATIONS’. The List of Equations is only printed if number register Le is 1.
The default is 0. The string Liec contains the word ‘Equation’, which is printed



Major Macro Packages -27-

before the number. If refname is used, then the equation number is saved with
.SETR, and can be retrieved with ‘.GETST refname’.

Special handling of the title occurs if EC is used inside DS/DE; it is not affected
by the format of DS.

EF [arg]
Even-page footer, printed just above the normal page footer on even pages.
See PF.

This macro defines string EOPef.

EH [arg]
Even-page header, printed just below the normal page header on even pages.
See PH.

This macro defines string TPeh.

EN Equation end, see EQ.

EOP
End-of-page user-defined macro. This macro is called instead of the normal
printing of the footer. The macro is executed in a separate environment, with-
out any trap active. See TP.

Strings available to EOP

EOPf       argument of PF
EOPef     argument of EF
EOPof     argument of OF

EPIC [-L] width height [name]
Draw a box with the given width and height . It also prints the text name or a
default string if name is not specified. This is used to include external pictures;
just give the size of the picture. -L left-adjusts the picture; the default is to cen-
ter. See PIC.

EQ [label]
Equation start. EQ/EN are the delimiters for equations written for eqn(1).
EQ/EN must be inside of a DS/DE pair, except if EQ is used to set options for
eqn only. The label argument appears at the right margin of the equation, cen-
tered vertically within the DS/DE block, unless number register Eq is 1. Then
the label appears at the left margin.

If there are multiple EQ/EN blocks within a single DS/DE pair, only the last
equation label (if any) is printed.

EX [title [override [flag [refname]]]]
Exhibit title. The arguments are the same as for EC. EX uses the number reg-
ister Ex as a counter. The string Lx controls the title of the List of Exhibits; de-
fault is ‘LIST OF EXHIBITS’.  The List of Exhibits is only printed if number regis-
ter Lx is 1, which is the default. The string Liex contains the word ‘Exhibit’,
which is printed before the number. If refname is used, the exhibit number is
saved with .SETR, and can be retrieved with ‘.GETST refname’.

Special handling of the title occurs if EX is used inside DS/DE; it is not affected
by the format of DS.



Major Macro Packages -28-

FC [closing]
Print ‘Yours very truly,’ as a formal closing of a letter or memorandum. The ar-
gument replaces the default string. The default is stored in string variable
Letfc.

FD [arg [1]]
Footnote default format. Controls the hyphenation (hyphen), right margin justifi-
cation (adjust), and indentation of footnote text (indent). It can also change the
label justification (ljust).

arg hyphen adjust indent ljust
0 no yes yes left
1 yes yes yes left
2 no no yes left
3 yes no yes left
4 no yes no left
5 yes yes no left
6 no no no left
7 yes no no left
8 no yes yes right
9 yes yes yes right
10 no no yes right
11 yes no yes right

An argument greater than or equal to 11 is considered as value 0. Default for
mm is 10.

FE Footnote end.

FG [title [override [flag [refname]]]]
Figure title. The arguments are the same as for EC. FG uses the number reg-
ister Fg as a counter. The string Lf controls the title of the List of Figures; de-
fault is ‘LIST OF FIGURES’. The List of Figures is only printed if number regis-
ter Lf is 1, which is the default. The string Lifg contains the word ‘Figure’,
which is printed before the number. If refname is used, then the figure number
is saved with .SETR, and can be retrieved with ‘.GETST refname’.

Special handling of the title occurs if FG is used inside DS/DE, it is not affected
by the format of DS.

FS [label]
Footnote start. The footnote is ended by FE. By default, footnotes are auto-
matically numbered; the number is available in string F. Just add \*F in the text.
By adding label , it is possible to have other number or names on the footnotes.
Footnotes in displays are now possible. An empty line separates footnotes; the
height of the line is controlled by number register Fs, default value is 1.

GETHN refname [varname]
Include the header number where the corresponding ‘SETR refname’ was
placed. This is displayed as ‘X.X.X.’ in pass 1. See INITR. If varname is used,
GETHN sets the string variable varname to the header number.



Major Macro Packages -29-

GETPN refname [varname]
Include the page number where the corresponding ‘SETR refname’ was
placed. This is displayed as ‘9999’ in pass 1. See INITR. If varname is used,
GETPN sets the stringvariable varname to the page number.

GETR refname
Combine GETHN and GETPN with the text ‘chapter’ and ‘, page’. The string
Qrf contains the text for the cross reference:

.ds Qrf See chapter \\*[Qrfh], page \\*[Qrfp].

Qrf may be changed to support other languages. Strings Qrfh and Qrfp are
set by GETR and contain the page and header number, respectively.

GETST refname [varname]
Include the string saved with the second argument to .SETR. This is a dummy
string in pass 1. If varname is used, GETST sets it to the saved string. See
INITR.

H level [heading-text [heading-suffix]]
Numbered section heading. Section headers can have a level between 1 and
14; level 1 is the top level. The text is given in heading-text , and must be sur-
rounded by double quotes if it contains spaces. heading-suffix is added to the
header in the text but not in the table of contents. This is normally used for
footnote marks and similar things. Don’t use \*F in heading-suffix , it doesn’t
work. A manual label must be used, see FS. A call to the paragraph macro P
directly after H is ignored. H takes care of spacing and indentation.

Page ejection before heading

Number register Ej controls page ejection before the heading. By default,
a level-one heading gets two blank lines before it; higher levels only get
one. A new page is ejected before each first-level heading if number reg-
ister Ej is 1. All levels below or equal the value of Ej get a new page. De-
fault value for Ej is 0.

Heading break level

A line break occurs after the heading if the heading level is less or equal
to number register Hb. Default value is 2.

Heading space level

A blank line is inserted after the heading if the heading level is less or
equal to number register Hs. Default value is 2.

Text follows the heading on the same line if the level is greater than both
Hb and Hs.

Post-heading indent

Indentation of the text after the heading is controlled by number register
Hi. Default value is 0.

Hi

0     The text is left-justified.
1 Indentation of the text follows the value of number register Pt, see P.
2 The text is lined up with the first word of the heading.



Major Macro Packages -30-

Centered section headings

All headings whose level is equal or below number register Hc and also
less than or equal to Hb or Hs are centered.

Font control of the heading

The font of each heading level is controlled by string HF. It contains a
font number or font name for each level. Default value is

2 2 2 2 2 2 2 2 2 2 2 2 2 2

(all headings in italic).  This could also be written as

I I I I I I I I I I I I I I

Note that some other implementations use 3 3 2 2 2 2 2 as the default
value. All omitted values are presumed to have value 1.

Point size control

String HP controls the point size of each heading, in the same way as HF
controls the font. A value of 0 selects the default point size. Default value
is

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Beware that only the point size changes, not the vertical size. The latter
can be controlled by the user-specified macros HX and/or HZ.

Heading counters

Fourteen number registers named H1 up to H14 contain the counter for
each heading level. The values are printed using Arabic numerals; this
can be changed with the macro HM (see below). All marks are concate-
nated before printing. To avoid this, set number register Ht to 1. This
only prints the current heading counter at each heading.

Automatic table of contents

All headings whose level is equal or below number register Cl are saved
to be printed in the table of contents. Default value is 2.

Special control of the heading, user-defined macros

The following macros can be defined by the user to get a finer control of
vertical spacing, fonts, or other features. Argument level is the level-argu-
ment to H, but 0 for unnumbered headings (see HU). Argument rlevel is
the real level; it is set to number register Hu for unnumbered headings.
Argument heading-text is the text argument to H and HU.

HX level rlevel heading-text
This macro is called just before the printing of the heading. The fol-
lowing registers are available for HX. Note that HX may alter }0, }2,
and ;3.

}0 (string)
Contains the heading mark plus two spaces if rlevel is non-
zero, otherwise empty.

;0 (register)
Contains the position of the text after the heading. 0 means
that the text should follow the heading on the same line,



Major Macro Packages -31-

1 means that a line break should occur before the text, and
2 means that a blank line should separate the heading and the
text.

}2 (string)
Contains two spaces if register ;0 is 0. It is used to separate
the heading from the text. The string is empty if ;0 is non-
zero.

;3 (register)
Contains the needed space in units after the heading. Default
is 2v. Can be used to change things like numbering (}0), verti-
cal spacing (}2), and the needed space after the heading.

HY dlevel rlevel heading-text
This macro is called after size and font calculations and might be
used to change indentation.

HZ dlevel rlevel heading-text
This macro is called after the printing of the heading, just before H
or HU exits. Can be used to change the page header according to
the section heading.

HC [hyphenation-character]
Set hyphenation character. Default value is ‘\%’. Resets to the default if called
without argument. Hyphenation can be turned off by setting number register
Hy to 0 at the beginning of the file.

HM [arg1 [arg2 [. . . [arg14]]]]
Heading mark style. Controls the type of marking for printing of the heading
counters. Default is 1 for all levels.

Argument

1 Arabic numerals.
0001 Arabic numerals with leading zeroes, one or more.
A          upper-case alphabetic
a lower-case alphabetic
I            upper-case roman numerals
i lower-case roman numerals
"" Arabic numerals.

HU heading-text
Unnumbered section header. HU behaves like H at the level in number register
Hu. See H.

HX dlevel rlevel heading-text
User-defined heading exit. Called just before printing the header. See H.

HY dlevel rlevel heading-text
User-defined heading exit. Called just before printing the header. See H.

HZ dlevel rlevel heading-text
User-defined heading exit. Called just after printing the header. See H.



Major Macro Packages -32-

I [italic-text [prev-font-text [italic-text [. . .]]]]
Italic. Changes the font to italic if called without arguments. With one argu-
ment it sets the word in italic. With two arguments it concatenates them and
sets the first word in italic and the second in the previous font. There is no limit
on the number of argument; all are concatenated.

IA [addressee-name [title]]
Begin specification of the addressee and addressee’s address in letter style.
Several names can be specified with empty IA/IE-pairs, but only one address.
See LT.

IB [italic-text [bold-text [italic-text [. . .]]]]
Italic-bold. Even arguments are printed in italic, odd in boldface. See I.

IE End the address specification after IA.

INITI type filename [macro]
Initialize the new index system and set the filename to collect index lines in with
IND. Argument type selects the type of index: page number, header marks or
both. The default is page numbers.

It is also possible to create a macro that is responsible for formatting each row;
just add the name of the macro as a third argument. The macro is then called
with the index as argument(s).

type

N Page numbers
H     Header marks
B Both page numbers and header marks, separated with a tab character.

INITR filename
Initialize the cross reference macros. Cross references are written to stderr
and are supposed to be redirected into file ‘filename.qrf’. Requires two passes
with groff; this is handled by a separate program called mmroff(1). This pro-
gram exists because groff(1) by default deactivates the unsafe operations that
are required by INITR. The first pass looks for cross references, and the sec-
ond one includes them. INITR can be used several times, but it is only the first
occurrence of INITR that is active.

See also SETR, GETPN, and GETHN.

IND arg1 [arg2 [. . .]]
Write a line in the index file selected by INITI with all arguments and the page
number or header mark separated by tabs.

Examples

arg1\tpage number
arg1\targ2\tpage number
arg1\theader mark
arg1\tpage number\theader mark

INDP
Print the index by running the command specified by string variable Indcmd,
which has ‘sort -t\t’ as the default value. INDP reads the output from the com-
mand to form the index, by default in two columns (this can be changed by



Major Macro Packages -33-

defining TYIND). The index is printed with string variable Index as header, de-
fault is ‘INDEX’. One-column processing is reactivated after the list. INDP calls
the user-defined macros TXIND, TYIND, and TZIND if defined. TXIND is called
before printing the string ‘INDEX’, TYIND is called instead of printing ‘INDEX’,
and TZIND is called after the printing and should take care of restoring to nor-
mal operation again.

ISODATE [0]
Change the predefined date string in DT to ISO-format, this is, ‘YYYY-MM-DD’.
This can also be done by adding -rIso=1 on the command line. Reverts to old
date format if argument is 0.

IR [italic-text [roman-text [italic-text [. . .]]]]
Italic-roman. Even arguments are printed in italic, odd in roman.  See I.

LB text-indent mark-indent pad type [mark [LI-space [LB-space]]]
List-begin macro. This is the common macro used for all lists. text-indent is
the number of spaces to indent the text from the current indentation.

pad and mark-indent control where to put the mark. The mark is placed within
the mark area, and mark-indent sets the number of spaces before this area.
By default it is 0. The mark area ends where the text begins. The start of the
text is still controlled by text-indent .

The mark is left-justified within the mark area if pad is 0. If pad is greater
than 0, mark-indent is ignored, and the mark is placed pad spaces before the
text. This right-justifies the mark.

If type is 0 the list either has a hanging indentation or, if argument mark is
given, the string mark as a mark.

If type is greater than 0 automatic numbering occurs, using arabic numbers if
mark is empty. mark can then be any of ‘1’, ‘A’, ‘a’, ‘I’, or ‘i’.

type selects one of six possible ways to display the mark.

type

1 x.
2 x)
3 (x)
4 [x]
5 <x>
6 {x}

Every item in the list gets LI-space number of blank lines before them. Default
is 1.

LB itself prints LB-space blank lines. Default is 0.

LC [list-level]
List-status clear. Terminates all current active lists down to list-level , or 0 if no
argument is given. This is used by H to clear any active list.

LE [1]
List end. Terminates the current list. LE outputs a blank line if an argument is
given.



Major Macro Packages -34-

LI [mark [1|2]]
List item preceding every item in a list. Without argument, LI prints the mark
determined by the current list type. By giving LI one argument, it uses that as
the mark instead. Two arguments to LI makes mark a prefix to the current
mark. There is no separating space between the prefix and the mark if the sec-
ond argument is ‘2’ instead of ‘1’. This behaviour can also be achieved by set-
ting number register Limsp to zero. A zero length mark makes a hanging in-
dentation instead.

A blank line is printed before the list item by default. This behaviour can be
controlled by number register Ls. Pre-spacing occurs for each list level less
than or equal to Ls. Default value is 99.  There is no nesting limit.

The indentation can be changed through number register Li. Default is 6.

All lists begin with a list initialization macro, LB. There are, however, seven
predefined list types to make lists easier to use. They all call LB with different
default values.

AL Automatically Incremented List
ML Marked List
VL Variable-Item List
BL Bullet List
DL Dash List
RL Reference List
BVL Broken Variable List.

These lists are described at other places in this manual. See also LB.

LT [arg ]
Format a letter in one of four different styles depending on the argument. See
also section INTERNALS.

Arg Style
BL Blocked. Date line, return address, writer’s address and closing

begins at the center of the line. All other lines begin at the left
margin.

SB Semi-blocked. Same as blocked, except that the first line in every
paragraph is indented five spaces.

FB Full-blocked. All lines begin at the left margin.
SP Simplified. Almost the same as the full-blocked style. Subject and

the writer’s identification are printed in all-capital.

LO type [arg]
Specify options in letter (see .LT). This is a list of the standard options:

CN Confidential notation. Prints ‘CONFIDENTIAL’ on the second line
below the date line. Any argument replaces ‘CONFIDENTIAL’.
See also string variable LetCN.

RN Reference notation. Prints ‘In reference to:’ and the argument two
lines below the date line. See also string variable LetRN.



Major Macro Packages -35-

AT Attention. Prints ‘ATTENTION:’ and the argument below the inside
address. See also string variable LetAT.

SA Salutation. Prints ’To Whom It May Concern:’ or the argument if it
was present. The salutation is printed two lines below the inside
address. See also string variable LetSA.

SJ Subject line. Prints the argument as subject prefixed with ‘SUB-
JECT:’ two lines below the inside address, except in letter type
‘SP’, where the subject is printed in all-capital without any prefix.
See also string variable LetSJ.

MC column-size [column-separation]
Begin multiple columns. Return to normal with 1C. MC creates as many col-
umns as the current line length permits. column-size is the width of each col-
umn, and column-separation is the space between two columns. Default sepa-
ration is column-size/15. See also 1C.

ML mark [text-indent [1]]
Marked list start. The mark argument is printed before each list item. text-in-
dent sets the indent and overrides Li. A third argument prohibits printing of a
blank line before each item.

MT [arg [addressee]]
Memorandum type. The argument arg is part of a filename in
‘/usr/share/groff/1.22.3.rc1.24-ea225/tmac/mm/*.MT’. Memorandum types 0
to 5 are supported, including type ‘string’ (which gets internally mapped to
type 6). addressee just sets a variable, used in the AT&T macros.

arg

0     Normal memorandum, no type printed.
1 Memorandum with ‘MEMORANDUM FOR FILE’ printed.
2 Memorandum with ‘PROGRAMMER’S NOTES’ printed.
3 Memorandum with ‘ENGINEER’S NOTES’ printed.
4     Released paper style.
5     External letter style.

See also COVER/COVEND, a more flexible type of front page.

MOVE y-pos [x-pos [line-length]]
Move to a position, setting page offset to x-pos. If line-length is not given, the
difference between current and new page offset is used. Use PGFORM with-
out arguments to return to normal.

MULB cw1 space1 [cw2 space2 [cw3 . . .]]
Begin a special multi-column mode. All columns widths must be specified. The
space between the columns must be specified also. The last column does not
need any space definition. MULB starts a diversion, and MULE ends the diver-
sion and prints the columns. The unit for the width and space arguments is ‘n’,
but MULB accepts all normal unit specifications like ‘c’ and ‘i’. MULB operates
in a separate environment.



Major Macro Packages -36-

MULN
Begin the next column.  This is the only way to switch the column.

MULE
End the multi-column mode and print the columns.

nP [type]
Print numbered paragraph with header level two. See .P.

NCOL
Force printing to the next column. Don’t use this together with the MUL*
macros, see 2C.

NS [arg [1]]
Print different types of notations. The argument selects between the prede-
fined type of notations. If the second argument is available, then the argument
becomes the entire notation. If the argument doesn’t select a predefined type,
it is printed as ‘Copy (arg ) to’. It is possible to add more standard notations,
see the string variables Letns and Letnsdef.

Arg Notation
none Copy To
"" Copy To
1 Copy To (with att.) to
2 Copy To (without att.) to
3 Att.
4 Atts.
5 Enc.
6 Encs.
7           Under separate cover
8           Letter to
9 Memorandum to
10 Copy (with atts.) to
11 Copy (without atts.) to
12 Abstract Only to
13         Complete Memorandum to
14 CC

ND new-date
New date. Overrides the current date. Date is not printed if new-date is an
empty string.

OF [arg]
Odd-page footer, a line printed just above the normal footer. See EF and PF.

This macro defines string EOPof.

OH [arg]
Odd-page header, a line printed just below the normal header. See EH and
PH.

This macro defines string TPoh.



Major Macro Packages -37-

OP Make sure that the following text is printed at the top of an odd-numbered page.
Does not output an empty page if currently at the top of an odd page.

P [type]
Begin new paragraph. P without argument produces left-justified text, even the
first line of the paragraph. This is the same as setting type to 0. If the argu-
ment is 1, the first line of text following P is indented by the number of spaces in
number register Pi, by default 5.

Instead of giving an argument to P it is possible to set the paragraph type in
number register Pt. Using 0 and 1 is the same as adding that value to P. A
value of 2 indents all paragraphs, except after headings, lists, and displays (this
value can’t be used as an argument to P itself).

The space between two paragraphs is controlled by number register Ps, and
is 1 by default (one blank line).

PGFORM [linelength [pagelength [pageoffset [1]]]]
Set line length, page length, and/or page offset. This macro can be used for
special formatting, like letter heads and other. It is normally the first command
in a file, though it is not necessary. PGFORM can be used without arguments
to reset everything after a MOVE call. A line break is done unless the fourth ar-
gument is given. This can be used to avoid the page number on the first page
while setting new width and length. (It seems as if this macro sometimes
doesn’t work too well. Use the command-line arguments to change line length,
page length, and page offset instead.)

PGNH
No header is printed on the next page. Used to get rid of the header in letters
or other special texts. This macro must be used before any text to inhibit the
page header on the first page.

PIC [-B] [-L] [-C] [-R] [-I n] filename [width [height]]
Include a PostScript file in the document. The macro depends on mmroff(1)
and INITR. The arguments -L, -C, -R, and -I n adjust the picture or indent it.
With no flag the picture is adjusted to the left. Adding -B draws a box around
the picture. The optional width and height can also be given to resize the pic-
ture.

PE Picture end.  Ends a picture for pic(1).

PF [arg]
Page footer. PF sets the line to be printed at the bottom of each page. Empty
by default. See PH for the argument specification.

This macro defines string EOPf.

PH [arg]
Page header, a line printed at the top of each page. The argument should be
specified as

"’left-part ’center-part ’right-part ’"

where left-part , center-part , and right-part are printed left-justified, centered,
and right justified, respectively. Within the argument to PH, the character ‘%’ is
changed to the current page number. The default argument is



Major Macro Packages -38-

"’’- % -’’"

which gives the page number between two dashes.

This macro defines string TPh.

PS Picture start (from pic).  Begins a picture for pic(1).

PX Page header user-defined exit. This macro is called just after the printing of the
page header in no-space mode.

R Roman. Return to roman font, see also I.

RB [roman-text [bold-text [roman-text [. . .]]]]
Roman-bold. Even arguments are printed in roman, odd in boldface. See I.

RD [prompt [diversion [string]]]
Read from standard input to diversion and/or string. The text is saved in a di-
version named diversion. Recall the text by writing the name of the diversion
after a dot on an empty line. A string is also defined if string is given. Diver-
sion and/or prompt can be empty ("").

RF Reference end. Ends a reference definition and returns to normal processing.
See RS.

RI [roman-text [italic-text [roman-text [. . .]]]]
Print even arguments in roman, odd in italic.  See I.

RL [text-indent [1]]
Reference list start. Begins a list where each item is preceded with an auto-
matically incremented number between square brackets. text-indent changes
the default indentation.

RP [arg1 [arg2]]
Produce reference page. This macro can be used if a reference page is
wanted somewhere in the document. It is not needed if TC is used to produce
a table of contents. The reference page is then printed automatically.

The reference counter is not reset if arg1 is 1.

arg2 tells RP whether to eject a page or not.

arg2

0     The reference page is printed on a separate page.
1     Do not eject page after the list.
2     Do not eject page before the list.
3     Do not eject page before and after the list.

The reference items are separated by a blank line. Setting number register Ls
to 0 suppresses the line.

The string Rp contains the reference page title and is set to ‘REFERENCES’ by
default. The number register Rpe holds the default value for the second argu-
ment of RP; it is initially set to 0.

RS [string-name]
Begin an automatically numbered reference definition. Put the string \*(Rf
where the reference mark should be and write the reference between RS/RF at
next new line after the reference mark. The reference number is stored in



Major Macro Packages -39-

number register :R. If string-name is given, a string with that name is defined
and contains the current reference mark. The string can be referenced as
\*[string-name] later in the text.

S [size [spacing]]
Set point size and vertical spacing. If any argument is equal to ‘P’, the previous
value is used. A ‘C’ means current value, and ‘D’ the default value. If ‘+’ or ‘-’
is used before the value, the current value is incremented or decremented, re-
spectively.

SA [arg]
Set right-margin justification. Justification is turned on by default. No argument
or value ‘0’ turns off justification, and ‘1’ turns on justification.

SETR refname [string]
Remember the current header and page number as refname. Saves string if
string is defined. string is retrieved with .GETST. See INITR.

SG [arg [1]]
Signature line. Prints the authors name(s) after the formal closing. The argu-
ment is appended to the reference data, printed at either the first or last author.
The reference data is the location, department, and initials specified with .AU.
It is printed at the first author if the second argument is given, otherwise at the
last. No reference data is printed if the author(s) is specified through .WA/.WE.
See section INTERNALS.

SK [pages]
Skip pages. If pages is 0 or omitted, a skip to the next page occurs unless it is
already at the top of a page. Otherwise it skips pages pages.

SM string1 [string2 [string3]]
Make a string smaller. If string2 is given, string1 is made smaller and string2
stays at normal size, concatenated with string1. With three arguments, every-
thing is concatenated, but only string2 is made smaller.

SP [lines]
Space vertically. lines can have any scaling factor, like ‘3i’ or ‘8v’. Several SP
calls in a line only produces the maximum number of lines, not the sum. SP is
ignored also until the first text line in a page. Add \& before a call to SP to
avoid this.

TAB Reset tabs to every 5n. Normally used to reset any previous tab positions.

TB [title [override [flag [refname]]]]
Table title. The arguments are the same as for EC. TB uses the number regis-
ter Tb as a counter. The string Lt controls the title of the List of Tables; default
value is ‘LIST OF TABLES’. The List of Tables is only printed if number register
Lt is 1, which is the default. The string Litb contains the word ‘TABLE’, which
is printed before the number.

Special handling of the title occurs if TB is used inside DS/DE, it is not affected
by the format of DS.

TC [slevel [spacing [tlevel [tab [h1 [h2 [h3 [h4 [h5]]]]]]]]]
Table of contents. This macro is normally used as the last line of the docu-
ment. It generates a table of contents with headings up to the level controlled



Major Macro Packages -40-

by number register Cl. Note that Cl controls the saving of headings, it has
nothing to do with TC. Headings with a level less than or equal to slevel get
spacing number of lines before them. Headings with a level less than or equal
to tlevel have their page numbers right-justified with dots or spaces separating
the text and the page number. Spaces are used if tab is greater than zero, dots
otherwise. Other headings have the page number directly at the end of the
heading text (ragged-right ).

The rest of the arguments is printed, centered, before the table of contents.

The user-defined macros TX and TY are used if TC is called with at most four
arguments. TX is called before the printing of the string ‘CONTENTS’, and TY
is called instead of printing ‘CONTENTS’.

Equivalent macros can be defined for list of figures, tables, equations and ex-
hibits by defining TXxx or TYxx, where xx is ‘Fg’, ‘TB’, ‘EC’, or ‘EX’, respec-
tively.

String Ci can be set to control the indentations for each heading-level. It must
be scaled, like

.ds Ci .25i .5i .75i 1i 1i

By default, the indentation is controlled by the maximum length of headings in
each level.

The string variables Lifg, Litb, Liex, Liec, and Licon contain ‘Figure’, ‘TABLE’,
‘Exhibit’, ‘Equation’, and ‘CONTENTS’, respectively. These can be redefined to
other languages.

TE Table end.  See TS.

TH [N]
Table header. See TS. TH ends the header of the table. This header is
printed again if a page break occurs. Argument ‘N’ isn’t implemented yet.

TL [charging-case-number [filing-case-number]]
Begin title of memorandum. All text up to the next AU is included in the title.
charging-case-number and filing-case-number are saved for use in the front
page processing.

TM [num1 [num2 [. . .]]]
Technical memorandum numbers used in .MT. An unlimited number of argu-
ments may be given.

TP Top-of-page user-defined macro. This macro is called instead of the normal
page header. It is possible to get complete control over the header. Note that
the header and the footer are printed in a separate environment. Line length is
preserved, though.  See EOP.

strings available to TP

TPh       argument of PH
TPeh     argument of EH
TPoh     argument of OH



Major Macro Packages -41-

TS [H]
Table start. This is the start of a table specification to tbl(1). TS ends with TE.
Argument ‘H’ tells mm that the table has a header. See TH.

TX User-defined table of contents exit. This macro is called just before TC prints
the word ‘CONTENTS’.  See TC.

TY User-defined table of contents exit. This macro is called instead of printing
‘CONTENTS’. See TC.

VERBON [flag [point-size [font]]]
Begin verbatim output using Courier font. Usually for printing programs. All
characters have equal width. The point size can be changed with the second
argument. By specifying a third argument it is possible to use another font in-
stead of Courier. flag controls several special features. Its value is the sum of
all wanted features.

Arg Description
1 Disable the escape character (\). This is normally turned on dur-

ing verbose output.
2         Add an empty line before the verbose text.
4         Add an empty line after the verbose text.
8 Print the verbose text with numbered lines. This adds four digit-

sized spaces in the beginning of each line. Finer control is avail-
able with the string variable Verbnm. It contains all arguments to
the troff(1) command .nm, normally ‘1’.

16 Indent the verbose text by ‘5n’. This is controlled by the number-
variable Verbin (in units).

VERBOFF
End verbatim output.

VL text-indent [mark-indent [1]]
Variable-item list. It has no fixed mark, it assumes that every LI has a mark in-
stead. text-indent sets the indent to the text, and mark-indent the distance
from the current indentation to the mark. A third argument prohibits printing of
a blank line before each item.

VM [-T] [top [bottom]]
Vertical margin. Increase the top and bottom margin by top and bottom, re-
spectively. If option -T is specified, set those margins to top and bottom. If no
argument is given, reset the margin to zero, or to the default (‘7v 5v’) if -T is
used. It is highly recommended that macros TP and/or EOP are defined if us-
ing -T and setting top and/or bottom margin to less than the default.

WA [writer-name [title]]
Begin specification of the writer and writer’s address. Several names can be
specified with empty WA/WE pairs, but only one address.

WE End the address specification after .WA.

WC [format1] [format2] [. . .] 
Footnote and display width control.



Major Macro Packages -42-

N Set default mode which is equal to using the options -WF, -FF,
-WD, and FB.

WF Wide footnotes, wide also in two-column mode.
-WF     Normal footnote width, follow column mode.
FF All footnotes gets the same width as the first footnote encoun-

tered.
-FF Normal footnotes, width follows WF and -WF.
WD Wide displays, wide also in two-column mode.
-WD Normal display width, follow column mode.
FB Floating displays generates a line break when printed on the cur-

rent page.
-FB Floating displays does not generate line break.

Strings used in mm

App A string containing the word ‘APPENDIX’.

Apptxt
The current appendix text.

EM Em dash string

H1txt
Updated by .H and .HU to the current heading text. Also updated in table of
contents & friends.

HF Font list for headings, ‘2 2 2 2 2 2 2’ by default. Non-numeric font names may
also be used.

HP Point size list for headings. By default, this is ’0 0 0 0 0 0 0’ which is the same
as ‘10 10 10 10 10 10 10’.

Index
Contains the string ‘INDEX’.

Indcmd
Contains the index command.  Default value is ‘sort -t\t’.

Lifg String containing ‘Figure’.

Litb String containing ‘TABLE’.

Liex String containing ‘Exhibit’.

Liec
String containing ‘Equation’.

Licon
String containing ‘CONTENTS’.

Lf Contains the string ‘LIST OF FIGURES’.

Lt Contains the string ‘LIST OF TABLES’.

Lx Contains the string ‘LIST OF EXHIBITS’.

Le Contains the string ‘LIST OF EQUATIONS’.

Letfc
Contains the string ‘Yours very truly,’, used in .FC.



Major Macro Packages -43-

Letapp
Contains the string ‘APPROVED:’, used in .AV.

Letdate
Contains the string ‘Date’, used in .AV.

LetCN
Contains the string ‘CONFIDENTIAL’, used in .LO CN.

LetSA
Contains the string ‘To Whom It May Concern:’, used in .LO SA.

LetAT
Contains the string ‘ATTENTION:’, used in .LO AT.

LetSJ
Contains the string ‘SUBJECT:’, used in .LO SJ.

LetRN
Contains the string ‘In reference to:’, used in .LO RN.

Letns
is an array containing the different strings used in .NS. It is really a number of
string variables prefixed with Letns!. If the argument doesn’t exist, it is in-
cluded between () with Letns!copy as a prefix and Letns!to as a suffix. Ob-
serve the space after ‘Copy’ and before ‘to’.

Name Value
Letns!0 Copy to
Letns!1 Copy (with att.) to
Letns!2 Copy (without att.) to
Letns!3 Att.
Letns!4 Atts.
Letns!5 Enc.
Letns!6 Encs.
Letns!7          Under separate cover
Letns!8          Letter to
Letns!9 Memorandum to
Letns!10 Copy (with atts.) to
Letns!11 Copy (without atts.) to
Letns!12 Abstract Only to
Letns!13        Complete Memorandum to
Letns!14 CC
Letns!copy Copy (with trailing space)
Letns!to to (note leading space)

Letnsdef
Define the standard notation used when no argument is given to .NS. Default
is 0.

"MO1 – MO12" 
Strings containing the month names ‘January’ through ‘December’.



Major Macro Packages -44-

Qrf String containing ‘See chapter \\*[Qrfh], page \\n[Qrfp].’.

Rp Contains the string ‘REFERENCES’.

Tcst
Contains the current status of the table of contents and list of figures, etc.
Empty outside of .TC. Useful in user-defined macros like .TP.

Value Meaning
co Table of contents
fg           List of figures
tb           List of tables
ec          List of equations
ex           List of exhibits
ap Appendix

Tm Contains the string ‘\(tm’, the trade mark symbol.

Verbnm
Argument to .nm in the .VERBON command. Default is 1.

Number variables used in mm

Aph Print an appendix page for every new appendix if this number variable is non-
zero. No output occurs if Aph is zero, but there is always an appendix entry in
the ‘List of contents’.

Cl Contents level (in the range 0 to 14). The contents is saved if a heading level is
lower than or equal to the value of Cl. Default is 2.

Cp Eject page between list of table, list of figure, etc., if the value of Cp is zero.
Default is 0.

D Debug flag. Values greater than zero produce debug information of increasing
verbosity. A value of 1 gives information about the progress of formatting. De-
fault is 0.

De If set to 1, eject after floating display is output.  Default is 0.

Dsp If defined, it controls the space output before and after static displays. Other-
wise the value of Lsp is used.

Df Control floating keep output. This is a number in the range 0 to 5, with a de-
fault value of 5.  See .DF.

Ds If set to 1, use the amount of space stored in register Lsp before and after dis-
play. Default is 1.

Ej If set to 1, eject page before each first-level heading.  Default is 0.

Eq Equation labels are left-adjusted if set to 0 and right-adjusted if set to 1. De-
fault is 0.

Fs Footnote spacing.  Default is 1.

"H1 – H7" 
Heading counters

H1dot
Append a dot after the level-one heading number if value is greater than zero.
Default is 1.



Major Macro Packages -45-

H1h A copy of number register H1, but it is incremented just before the page break.
Useful in user-defined header macros.

Hb Heading break level. A number in the range 0 to 14, with a default value of 2.
See .H.

Hc Heading centering level. A number in the range 0 to 14, with a default value
value of 0.  See .H.

Hi Heading temporary indent. A number in the range 0 to 2, with a default value
of 1.

0     no indentation, left margin
1 indent to the right, similar to ‘.P 1’
2 indent to line up with text part of preceding heading

Hps Heading pre-space level. If the heading level is less than or equal to Hps, two
lines precede the section heading instead of one. Default is first level only. The
real amount of lines is controlled by the variables Hps1 and Hps2.

Hps1
Number of lines preceding .H if the heading level is greater than Hps. Value is
in units, default is 0.5.

Hps2
Number of lines preceding .H if the heading level is less than or equal to Hps.
Value is in units, default is 1.

Hs Heading space level. A number in the range 0 to 14, with a default value of 2.
See .H.

Hss Number of lines following .H if the heading level is less than or equal to Hs.
Value is in units, default is 1.

Ht Heading numbering type.

0 multiple levels (1.1.1, 1.1.2, etc.)
1     single level

Default is 0.

Hu Unnumbered heading level. Default is 2.

Hy Hyphenation status of text body.

0     no hyphenation
1 hyphenation on, set to value 6

Default is 0.

Iso Set this variable to 1 on the command line to get an ISO-formatted date string
(-rIso=1). Useless inside of a document.

L Page length, only for command-line settings.

Letwam
Maximum lines in return-address, used in .WA/.WE. Default is 14.



Major Macro Packages -46-

Lf, Lt, Lx, Le
Enable (1) or disable (0) the printing of List of figures, List of tables, List of ex-
hibits and List of equations, respectively. Default values are Lf=1, Lt=1, Lx=1,
and Le=0.

Li List indentation, used by .AL. Default is 6.

Limsp
A flag controlling the insertion of space between prefix and mark in automatic
lists (.AL).

0     no space
1     emit space

Ls List space threshold. If current list level is greater than Ls no spacing occurs
around lists. Default is 99.

Lsp The vertical space used by an empty line. The default is 0.5v in troff mode and
1v in nroff mode.

N Page numbering style.

0     normal header for all pages.
1 header replaces footer on first page, header is empty.
2     page header is removed on the first page.
3   ‘section-page’ numbering style enabled.
4     page header is removed on the first page.
5 ‘section-page’ and ‘section-figure’ numbering style enabled.

Default is 0.  See also the number registers Sectf and Sectp.

Np A flag to control whether paragraphs are numbered.

0     not numbered
1 numbered in first-level headings.

Default is 0.

O Page offset, only for command-line settings.

Of Format of figure, table, exhibit, and equation titles.

0     ". "
1  " - "

Default is 0.

P Current page-number, normally the same as ‘%’ unless ‘section-page’ number-
ing style is enabled.

Pi Paragraph indentation.  Default is 5.

Pgps
A flag to control whether header and footer point size should follow the current
settings or just change when the header and footer are defined.



Major Macro Packages -47-

0 Point size only changes to the current setting when .PH, .PF, .OH,
.EH, .OF, or .OE is executed.

1 Point size changes after every .S. This is the default.

Ps Paragraph spacing.  Default is 1.

Pt Paragraph type.

0 left-justified
1     indented paragraphs
2 indented paragraphs except after .H, .DE, or .LE.

Default is 0.

Rpe Set default value for second argument of .RP. Default is 0.

Sectf
A flag controlling ‘section-figures’ numbering style. A non-zero value enables
this. See also register N.

Sectp
A flag controlling ’section-page’ numbering style. A non-zero value enables
this. See also register N.

Si Display indentation.  Default is 5.

Verbin
Indentation for .VERBON. Default is 5n.

W Line length, only for command-line settings.

.mgm
Always 1.

INTERNALS

The letter macros are using different submacros depending on the letter type. The
name of the submacro has the letter type as suffix. It is therefore possible to define
other letter types, either in the national macro-file, or as local additions. .LT sets the
number variables Pt and Pi to 0 and 5, respectively. The following strings and
macros must be defined for a new letter type.

let@init_type
This macro is called directly by .LT. It is supposed to initialize variables and
other stuff.

let@head_type
This macro prints the letter head, and is called instead of the normal page
header. It is supposed to remove the alias let@header, otherwise it is called
for all pages.

let@sg_type name title n flag [arg1 [arg2 [. . .]]]
.SG is calling this macro only for letters; memorandums have its own process-
ing. name and title are specified through .WA/.WB. n is the counter, 1-max,
and flag is true for the last name. Any other argument to .SG is appended.

let@fc_type closing 
This macro is called by .FC, and has the formal closing as the argument.



Major Macro Packages -48-

.LO is implemented as a general option-macro. It demands that a string named Let-
type is defined, where type is the letter type. .LO then assigns the argument to the
string variable let*lo-type.

FILES

/usr/share/groff/1.22.3.rc1.24-ea225/tmac/m.tmac

/usr/share/groff/1.22.3.rc1.24-ea225/tmac/mm/*.cov

/usr/share/groff/1.22.3.rc1.24-ea225/tmac/mm/*.MT

/usr/share/groff/1.22.3.rc1.24-ea225/tmac/mm/locale

AUTHORS

The GNU version of the mm macro package was written by Jörgen Hägg of Lund,
Sweden.

SEE ALSO

groff(1), troff(1), tbl(1), pic(1), eqn(1)
groff_mmse(7)

mailto:jh@axis.se


Major Macro Packages -49-

A Swedish localization of mm is also available; see groff_mmse(7).

4.5. mom

The main documentation files for the mom macros are in HTML format. Additional, useful
documentation is in PDF format. See the groff(1) man page, section “Installation Directo-
ries”, for their location.

• toc.html @noindent Entry point to the full mom manual.

• macrolist.html @noindent Hyperlinked index of macros with brief descriptions,
arranged by category.

• mom-pdf.pdf @noindent PDF features and usage.

The mom macros are in active development between groff releases. The most recent ver-
sion, along with up-to-date documentation, is available at http://www.schaffter.ca/mom
/mom-05.html.

The groff_mom(7) man page (type ‘man groff_mom’ at the command line) contains a par-
tial list of available macros, however their usage is best understood by consulting the
HTML documentation.

NAME

groff_mom - groff “mom” macros; “mom” is a “roff” language, part of “groff”

SYNOPSIS

pdfmom [-Tps[pdfroff options]] [groff options] files . . .
groff [-mom] files . . .
groff [-m mom] files . . .

CALLING MOM

mom is a macro set for groff, designed primarily to format documents for PDF and
PostScript output. mom provides two categories of macros: macros for typesetting,
and macros for document processing. The typesetting macros provide access to
groff’s typesetting capabilities in ways that are simpler to master than groff’s primi-
tives. The document processing macros provide highly customizable markup tags
that allow the user to design and output professional-looking documents with a mini-
mum of typesetting intervention.

Files processed with pdfmom(1) with or without the -Tps option, produce PDF doc-
uments. The documents include a PDF outline that appears in the ‘Contents’ panel
of document viewers, and may contain clickable internal and external links. When
-Tps is absent, groff’s native PDF driver, gropdf, is used to generate the output.
When given, the output is still PDF , but processing is passed over to pdfroff, which
uses groff’s PostScript driver, grops. Not all PDF features are available when -Tps
is given; its primary use is to allow processing of files with embedded PostScript im-
ages.

Files processed with groff -mom (or -m mom) produce PostScript output by de-
fault. mom comes with her own very complete documentation in HTML format. A
separate PDF manual , Producing PDFs with groff and mom, covers full mom or
PDF usage.

FILES

http://www.schaffter.ca/mom/mom-05.html
http://www.schaffter.ca/mom/mom-05.html


Major Macro Packages -50-

om.tmac
– the main macro file

mom.tmac
– a wrapper file that calls om.tmac directly.

/usr/share/doc/groff-1.22.3.rc1.24-ea225/html/mom/toc.html
– entry point to the HTML documentation

/usr/share/doc/groff-1.22.3.rc1.24-ea225/pdf/mom-pdf.pdf
– the PDF manual, Producing PDFs with groff and mom

/usr/share/doc/groff-1.22.3.rc1.24-ea225/examples/mom/*.mom
– example files using mom

DOCUMENTATION IN ALPHABETICAL ORDER

This part of the man page contains information just as in groff(7), mom macros and
mom escape sequences in alphabetical order.

The logical order of mom macros and mom escape sequences is very well docu-
mented in

/usr/share/doc/groff-1.22.3.rc1.24-ea225/html/mom/toc.html
– entry point to the HTML documentation That document is quite good for be-
ginners, but other users should be happy to have some documentation in refer-
ence style.

So we restrict this part to the alphabetical order of macros and escape sequences.
But, so far, we took all documentation details from the toc.html file, just in a more
useful alphabetical order. So this part of the man page is nothing new, but only a
logical arrangement.

QUICK REFERENCE

Quick Reference of Inline Escape Sequences in alphabetical Order

\*[<colorname>]
begin using an initialized colour inline

\*[BCK n]
move backwards in a line

\*[BOLDER]
invoke pseudo bold inline (related to macro .SETBOLDER)

\*[BOLDERX]
off pseudo bold inline (related to macro .SETBOLDER)

\*[BU n]
move characters pairs closer together inline (related to macro .KERN)

\*[COND]
invoke pseudo condensing inline (related to macro .CONDENSE)

\*[CONDX]
off pseudo condensing inline (related to macro .CONDENSE)

\*[CONDSUP]. . .\*[CONDSUPX]
pseudo-condensed superscript



Major Macro Packages -51-

\*[DOWN n]
temporarily move downwards in a line

\*[EN-MARK]
mark initial line of a range of line numbers (for use with line numbered end-
notes)

\*[EXT]
invoke pseudo extending inline (related to macro .EXTEND)

\*[EXTX]
off pseudo condensing inline (related to macro .EXTEND)

\*[EXTSUP]. . .\*[EXTSUPX]
pseudo extended superscript

\*[FU n]
move characters pairs further apart inline (related to macro .KERN)

\*[FWD n]
move forward in a line

\*[LEADER]
insert leaders at the end of a line

\*[RULE]
draw a full measure rule

\*[SIZE n]
change the point size inline (related to macro .PT_SIZE)

\*[SLANT]
invoke pseudo italic inline (related to macro .SETSLANT)

\*[SLANTX]
off pseudo italic inline (related to macro .SETSLANT)

\*[ST<n>]. . .\*[ST<n>X]
string tabs (mark tab positions inline)

\*[SUP]. . .\*[SUPX]
superscript

\*[TB+]
inline escape for .TN (Tab Next )

\*[UL]. . .\*[ULX]
invoke underlining inline (fixed width fonts only)

\*[UP n]
temporarily move upwards in a line

Quick Reference of Macros in alphabetical Order

.AUTOLEAD
set the linespacing relative to the point size

.B_MARGIN
set a bottom margin



Major Macro Packages -52-

.BR break a justified line

.CENTER
set line-by-line quad centre

.CONDENSE
set the amount to pseudo condense

.EL break a line without advancing on the page

.EXTEND
set the amount to pseudo extend

.FALLBACK_FONT
establish a fallback font (for missing fonts)

.FAM
alias to .FAMILY

.FAMILY <family>
set the family type

.FT set the font style (roman, italic, etc.)

.HI [ <measure> ]
hanging indent

.HY automatic hyphenation on/off

.HY_SET
set automatic hyphenation parameters

.IB [ <left measure> <right measure> ]
indent both

.IBX [ CLEAR ] 
exit indent both

.IL [ <measure> ]
indent left

.ILX [ CLEAR ] 
exit indent left

.IQ [ CLEAR ] 
quit any/all indents

.IR [ <measure> ]
indent right

.IRX [ CLEAR ] 
exit indent right

.JUSTIFY
justify text to both margins

.KERN
automatic character pair kerning on/off

.L_MARGIN
set a left margin (page offset)



Major Macro Packages -53-

.LEFT
set line-by-line quad left

.LL set a line length

.LS set a linespacing (leading)

.PAGE
set explicit page dimensions and margins

.PAGEWIDTH
set a custom page width

.PAGELENGTH
set a custom page length

.PAPER <paper_type>
set common paper sizes (letter, A4, etc)

.PT_SIZE
set the point size

.QUAD
"justify" text left, centre, or right

.R_MARGIN
set a right margin

.RIGHT
set line-by-line quad right

.SETBOLDER
set the amount of emboldening

.SETSLANT
set the degree of slant

.SPREAD
force justify a line

.SS set the sentence space size

.T_MARGIN
set a top margin

.TI [ <measure> ]
temporary left indent

.WS set the minimum word space size

DOCUMENTATION OF DETAILS

Details of Inline Escape Sequences in alphabetical Order

\*[<colorname>]
begin using an initialized colour inline

\*[BCK n]
move wards in a line

\*[BOLDER]



Major Macro Packages -54-

\*[BOLDERX]
Emboldening on/off

\*[BOLDER] begins emboldening type. \*[BOLDERX] turns the feature
off. Both are inline escapes, therefore they should not appear as sepa-
rate lines, but rather be embedded in text lines, like this:

Alternatively, if you wanted the whole line emboldened, you should do
Once \*[BOLDER] is invoked, it remains in effect until turned off. Note: If you’re
using the document processing macros with .PRINTSTYLE TYPEWRITE,
mom ignores \*[BOLDER] requests.

\*[BU n]
move characters pairs closer together inline (related to macro .KERN)

\*[COND]

\*[CONDX]
Pseudo-condensing on/off

\*[COND] begins pseudo-condensing type. \*[CONDX] turns the feature off.
Both are inline escapes, therefore they should not appear as separate lines, but
rather be embedded in text lines, like this:
\*[COND] remains in effect until you turn it off with \*[CONDX]. IMPORTANT:
You must turn \*[COND] off before making any changes to the point size of your
type, either via the .PT_SIZE macro or with the \s inline escape. If you wish the
new point size to be pseudo-condensed, simply reinvoke \*[COND] afterwards.
Equally, \*[COND] must be turned off before changing the condense percent-
age with .CONDENSE.

Note: If you’re using the document processing macros with .PRINTSTYLE
TYPEWRITE, mom ignores \*[COND] requests.

\*[CONDSUP]. . .\*[CONDSUPX]
pseudo-condensed superscript

\*[DOWN n]
temporarily move downwards in a line

\*[EN-MARK]
mark initial line of a range of line numbers (for use with line numbered end-
notes)

\*[EXT]

\*[EXTX]
Pseudo-extending on/off

\*[EXT] begins pseudo-extending type. \*[EXTX] turns the feature off.
Both are inline escapes, therefore they should not appear as separate
lines, but rather be embedded in text lines, like this:
\*[EXT] remains in effect until you turn it off with \*[EXTX].

IMPORTANT: You must turn \*[EXT] off before making any changes to the point
size of your type, either via the .PT_SIZE macro or with the \s inline escape. If
you wish the new point size to be pseudo-extended , simply reinvoke \*[EXT] af-
terwards. Equally, \*[EXT] must be turned off before changing the extend per-
centage with .EXTEND. Note: If you are using the document processing
macros with .PRINTSTYLE TYPEWRITE, mom ignores \*[EXT] requests.



Major Macro Packages -55-

\*[EXTSUP]. . .\*[EXTSUPX]
pseudo extended superscript

\*[FU n]
move characters pairs further apart inline (related to macro .KERN)

\*[FWD n]
move forward in a line

\*[LEADER]
insert leaders at the end of a line

\*[RULE]
draw a full measure rule

\*[SIZE n]
change the point size inline (related to macro .PT_SIZE)

\*[SLANT]

\*[SLANTX]
Pseudo italic on/off

\*[SLANT] begins pseudo-italicizing type. \*[SLANTX] turns the feature off.
Both are inline escapes, therefore they should not appear as separate lines,
but rather be embedded in text lines, like this:
Alternatively, if you wanted the whole line pseudo-italicized , you’d do

Once \*[SLANT] is invoked, it remains in effect until turned off. Note: If you’re
using the document processing macros with .PRINTSTYLE TYPEWRITE,
mom underlines pseudo-italics by default. To change this behaviour, use the
special macro .SLANT_MEANS_SLANT.

\*[ST<number>]. . .\*[ST<number>X]
Mark positions of string tabs

The quad direction must be LEFT or JUSTIFY (see .QUAD and .JUSTIFY) or
the no-fill mode set to LEFT in order for these inlines to function properly.
Please see IMPORTANT , below. String tabs need to be marked off with inline
escapes before being set up with the .ST macro. Any input line may contain
string tab markers. <number>, above, means the numeric identifier of the tab.

The following shows a sample input line with string tab markers.
String tab 1 begins at the start of the line and ends after the word time. String
tab 2 starts at good and ends after men. Inline escapes (e.g. font or point
size changes, or horizontal movements, including padding) are taken into ac-
count when mom determines the position and length of string tabs.

Up to nineteen string tabs may be marked (not necessarily all on the same line,
of course), and they must be numbered between 1 and 19. Once string tabs
have been marked in input lines, they have to be set with .ST, after which they
may be called, by number, with .TAB.

Note: Lines with string tabs marked off in them are normal input lines, i.e. they
get printed, just like any input line. If you want to set up string tabs without the
line printing, use the .SILENT macro. IMPORTANT: Owing to the way groff
processes input lines and turns them into output lines, it is not possible for
mom to guess the correct starting position of string tabs marked off in lines



Major Macro Packages -56-

that are centered or set flush right.

Equally, she cannot guess the starting position if a line is fully justified and bro-
ken with .SPREAD. In other words, in order to use string tabs, LEFT must be
active, or, if .QUAD LEFT or JUSTIFY are active, the line on which the string
tabs are marked must be broken manually with .BR (but not .SPREAD).

To circumvent this behaviour, I recommend using the PAD to set up string tabs
in centered or flush right lines. Say, for example, you want to use a string tab to
underscore the text of a centered line with a rule. Rather than this,

.CENTER

\*[ST1]A line of text\*[ST1X]\c

.EL

.ST 1

.TAB 1

.PT_SIZE 24

.ALD 3p

\*[RULE]

.RLD 3p

.TQ

you should do:
.QUAD CENTER

.PAD "#\*[ST1]A line of text\*[ST1X]#"

.EL

.ST 1

.TAB 1

.PT_SIZE 24

.ALD 3p

\*[RULE] \" Note that you can’t use \*[UP] or \*[DOWN] with \*[RULE]

.RLD 3p

.TQ

\*[SUP]. . .\*[SUPX]
superscript

\*[TB+]
Inline escape for .TN (Tab Next )

\*[UL]. . .\*[ULX]
invoke underlining inline (fixed width fonts only)

\*[UP n]
temporarily move upwards in a line

Details of Macros in alphabetical Order

.AUTOLEAD
set the linespacing relative to the point size

.B_MARGIN <bottom margin>
Bottom Margin

Requires a unit of measure



Major Macro Packages -57-

.B_MARGIN sets a nominal position at the bottom of the page beyond which
you don’t want your type to go. When the bottom margin is reached, mom
starts a new page. .B_MARGIN requires a unit of measure. Decimal frac-
tions are allowed. To set a nominal bottom margin of 3/4 inch, enter

.B_MARGIN .75i

Obviously, if you haven’t spaced the type on your pages so that the last lines
fall perfectly at the bottom margin, the margin will vary from page to page.
Usually, but not always, the last line of type that fits on a page before the bot-
tom margin causes mom to start a new page.

Occasionally, owing to a peculiarity in groff , an extra line will fall below the
nominal bottom margin. If you’re using the document processing macros, this
is unlikely to happen; the document processing macros are very hard-nosed
about aligning bottom margins. Note: The meaning of .B_MARGIN is slightly
different when you’re using the document processing macros.

.FALLBACK_FONT <fallback font> [ ABORT | WARN ] 
Fallback Font

In the event that you pass an invalid argument to .FAMILY (i.e. a non-existent
family ), mom, by default, uses the fallback font , Courier Medium Roman
(CR), in order to continue processing your file. If you’d prefer another fallback
font , pass .FALLBACK_FONT the full family+font name of the font you’d like.
For example, if you’d rather the fallback font were Times Roman Medium Ro-
man,

.FALLBACK_FONT TR

would do the trick.

Mom issues a warning whenever a font style set with .FT does not exist, either
because you haven’t registered the style or because the font style does not ex-
ist in the current family set with .FAMILY. By default, mom then aborts, which
allows you to correct the problem. If you’d prefer that mom not abort on non-
existent fonts, but rather continue processing using a fallback font , you can
pass .FALLBACK_FONT the argument WARN, either by itself, or in conjunc-
tion with your chosen fallback font .

Some examples of invoking .FALLBACK_FONT:

.FALLBACK_FONT WARN
mom will issue a warning whenever you try to access a non-existent font
but will continue processing your file with the default fallback font ,
Courier Medium Roman.

.FALLBACK_FONT TR WARN
mom will issue a warning whenever you try to access a non-existent font
but will continue processing your file with a fallback font of Times Roman
Medium Roman; additionally, TR will be the fallback font whenever you
try to access a family that does not exist.

.FALLBACK_FONT TR ABORT
mom will abort whenever you try to access a non-existent font, and will
use the fallback font TR whenever you try to access a family that does
not exist. If, for some reason, you want to revert to ABORT, just enter
".FALLBACK_FONT ABORT" and mom will once again abort on font



Major Macro Packages -58-

errors.

.FAM <family>
Type Family, alias of .FAMILY

.FAMILY <family>
Type Family, alias .FAM

.FAMILY takes one argument: the name of the family you want. Groff
comes with a small set of basic families, each identified by a 1-, 2- or
3-letter mnemonic.  The standard families are:

A = Avant Garde

BM = Bookman

H = Helvetica

HN = Helvetica Narrow

N = New Century Schoolbook

P = Palatino

T = Times Roman

ZCM = Zapf Chancery

The argument you pass to .FAMILY is the identifier at left, above. For example,
if you want Helvetica, enter

.FAMILY H

Note: The font macro (.FT) lets you specify both the type family and the desired
font with a single macro. While this saves a few keystrokes, I recommend using
.FAMILY for family , and .FT for font , except where doing so is genuinely incon-
venient. ZCM, for example, only exists in one style: Italic (I).

Therefore,
.FT ZCMI

makes more sense than setting the family to ZCM, then setting the font to I .
Additional note: If you are running a version of groff lower than 1.19.2, you must
follow all .FAMILY requests with a .FT request, otherwise mom will set all type
up to the next .FT request in the fallback font.

If you are running a version of groff greater than or equal to 1.19.2, when you
invoke the .FAMILY macro, mom remembers the font style (Roman, Italic, etc)
currently in use (if the font style exists in the new family ) and will continue to
use the same font style in the new family. For example:

.FAMILY BM \Bookmanfamily"

.FT I \MediumItalic"

<some text> \" Bookman Medium Italic

.FAMILY H \Helveticafamily"

<more text> \" Helvetica Medium Italic

However, if the font style does not exist in the new family, mom will set all sub-
sequent type in the fallback font (by default, Courier Medium Roman) until she
encounters a .FT request that’s valid for the family .

For example, assuming you don’t have the font Medium Condensed Roman
(mom extension CD) in the Helvetica family :

.FAMILY UN \Universfamily"

.FT CD \MediumCondensed"

<some text> \" Univers Medium Condensed

.FAMILY H \Helveticafamily"



Major Macro Packages -59-

<more text> \" Courier Medium Roman!

In the above example, you must follow .FAMILY H with a .FT request that’s valid
for Helvetica.

Please see the Appendices, Adding fonts to groff , for information on adding
fonts and families to groff, as well as to see a list of the extensions mom pro-
vides to groff ’s basic R, I, B, BI styles. Suggestion: When adding families to
groff , I recommend following the established standard for the naming families
and fonts. For example, if you add the Garamond family, name the font files

GARAMONDR

GARAMONDI

GARAMONDB

GARAMONDBI

GARAMOND then becomes a valid family name you can pass to .FAMILY.
(You could, of course, shorten GARAMOND to just G, or GD.) R, I, B, and BI
after GARAMOND are the roman, italic , bold and bold-italic fonts respectively.

.FONT R | B | BI | <any other valid font style> 
Alias to .FT

.FT R | B | BI | <any other valid font style> 
Set font

By default, groff permits .FT to take one of four possible arguments specifying
the desired font:

R = (Medium) Roman

I = (Medium) Italic

B = Bold (Roman)

BI = Bold Italic

For example, if your family is Helvetica, entering
.FT B

will give you the Helvetica bold font . If your family were Palatino, you’d get the
Palatino bold font .

Mom considerably extends the range of arguments you can pass to .FT, mak-
ing it more convenient to add and access fonts of differing weights and shapes
within the same family. Have a look here for a list of the weight/style arguments
mom allows. Be aware, though, that you must have the fonts, correctly in-
stalled and named, in order to use the arguments. (See Adding fonts to groff
for instructions and information.) Please also read the ADDITIONAL NOTE
found in the description of the .FAMILY macro.

How mom reacts to an invalid argument to .FT depends on which version of
groff you’re using. If your groff version is greater than or equal to 1.19.2, mom
will issue a warning and, depending on how you’ve set up the fallback font, ei-
ther continue processing using the fallback font, or abort (allowing you to cor-
rect the problem). If your groff version is less than 1.19.2, mom will silently
continue processing, using either the fallback font or the font that was in effect
prior to the invalid .FT call. .FT will also accept, as an argument, a full family
and font name.

For example,
.FT HB

will set subsequent type in Helvetica Bold . However, I strongly recommend



Major Macro Packages -60-

keeping family and font separate except where doing so is genuinely inconve-
nient.

For inline control of fonts, see Inline Escapes, font control.

.HI [ <measure> ]
Hanging indent — the optional argument requires a unit of measure.

A hanging indent looks like this:
The thousand injuries of Fortunato I had borne as best I

could, but when he ventured upon insult, I vowed

revenge. You who so well know the nature of my soul

will not suppose, however, that I gave utterance to a

threat, at length I would be avenged. . .

The first line of text hangs outside the left margin.

In order to use hanging indents, you must first have a left indent active (set
with either .IL or .IB). Mom will not hang text outside the left margin set with
.L_MARGIN or outside the left margin of a tab. The first time you invoke .HI,
you must give it a measure. If you want the first line of a paragraph to hang
by , say, 1 pica, do

.IL 1P

.HI 1P

Subsequent invocations of .HI do not require you to supply a measure; mom
keeps track of the last measure you gave it.

Generally speaking, you should invoke .HI immediately prior to the line you
want hung (i.e. without any intervening control lines). And because hanging in-
dents affect only one line, there’s no need to turn them off. IMPORTANT: Un-
like IL, IR and IB, measures given to .HI are NOT additive. Each time you pass
a measure to .HI , the measure is treated literally. .I Recipe: A numbered list
using hanging indents

Note: mom has macros for setting lists. This recipe exists to demonstrate the
use of hanging indents only.

.PAGE 8.5i 11i 1i 1i 1i 1i

.FAMILY T

.FT R

.PT_SIZE 12

.LS 14

.JUSTIFY

.KERN

.SS 0

.IL \w’\0\0.’

.HI \w’\0\0.’

1.\0The most important point to be considered is whether the

answer to the meaning of Life, the Universe, and Everything

really is 42.  We have no-one’s word on the subject except

Mr. Adams’.

.HI

2.\0If the answer to the meaning of Life, the Universe,
and Everything is indeed 42, what impact does this have on
the politics of representation?  42 is, after all not a



Major Macro Packages -61-

prime number. Are we to infer that prime numbers don’t
deserve equal rights and equal access in the universe?
.HI

3.\0If 42 is deemed non-exclusionary, how do we present it
as the answer and, at the same time, forestall debate on its
exclusionary implications?

First, we invoke a left indent with a measure equal to the width of 2 figures spa-
ces plus a period (using the \w inline escape). At this point, the left indent is
active; text afterwards would normally be indented. However, we invoke a
hanging indent of exactly the same width, which hangs the first line (and first
line only!) to the left of the indent by the same distance (in this case, that
means “out to the left margin”). Because we begin the first line with a number,
a period, and a figure space, the actual text (The most important point. . .) starts
at exactly the same spot as the indented lines that follow.

Notice that subsequent invocations of .HI don’t require a measure to be given.
Paste the example above into a file and preview it with

pdfmom filename.mom | ps2pdf − filename.pdf

to see hanging indents in action.

.IB [ <left measure> <right measure> ]
Indent both — the optional argument requires a unit of measure

.IB allows you to set or invoke a left and a right indent at the same time. At its
first invocation, you must supply a measure for both indents; at subsequent in-
vocations when you wish to supply a measure, both must be given again. As
with .IL and .IR, the measures are added to the values previously passed to the
macro. Hence, if you wish to change just one of the values, you must give an
argument of zero to the other.

A word of advice: If you need to manipulate left and right indents separately,
use a combination of .IL and .IR instead of .IB. You’ll save yourself a lot of
grief. A minus sign may be prepended to the arguments to subtract from their
current values. The \w inline escape may be used to specify text-dependent
measures, in which case no unit of measure is required.  For example,

.IB \w'margarine' \w'jello'

left indents text by the width of the word margarine and right indents by the
width of jello.

Like .IL and .IR, .IB with no argument indents by its last active values. See the
brief explanation of how mom handles indents for more details. Note: Calling a
tab (with .TAB <n>) automatically cancels any active indents.

Additional note: Invoking .IB automatically turns off .IL and .IR.

.IL [ <measure> ]
Indent left — the optional argument requires a unit of measure

.IL indents text from the left margin of the page, or if you’re in a tab, from
the left edge of the tab Once IL is on, the left indent is applied uniformly
to every subsequent line of text, even if you change the line length.

The first time you invoke .IL, you must give it a measure. Subsequent invoca-
tions with a measure add to the previous measure. A minus sign may be
prepended to the argument to subtract from the current measure. The \w inline



Major Macro Packages -62-

escape may be used to specify a text-dependent measure, in which case no
unit of measure is required.  For example,

.IL \w’margarine’

indents text by the width of the word margarine. With no argument, .IL indents
by its last active value. See the brief explanation of how mom handles indents
for more details.

Note: Calling a tab (with .TAB <n>) automatically cancels any active indents.
Additional note: Invoking .IL automatically turns off IB.

.IQ [ <measure> ]
IQ — quit any/all indents

IMPORTANT NOTE: The original macro for quitting all indents was .IX. This
usage has been deprecated in favour of IQ. .IX will continue to behave as be-
fore, but mom will issue a warning to stderr indicating that you should update
your documents. As a consequence of this change, .ILX, .IRX and .IBX may
now also be invoked as .ILQ, .IRQ and .IBQ. Both forms are acceptable.

Without an argument, the macros to quit indents merely restore your original
margins and line length. The measures stored in the indent macros them-
selves are saved so you can call them again without having to supply a mea-
sure. If you pass these macros the optional argument CLEAR, they not only
restore your original left margin and line length, but also clear any values asso-
ciated with a particular indent style. The next time you need an indent of the
same style, you have to supply a measure again.

.IQ CLEAR, as you’d suspect, quits and clears the values for all indent styles at
once.

.IR [ <measure> ]
Indent right — the optional argument requires a unit of measure

.IR indents text from the right margin of the page, or if you’re in a tab,
from the end of the tab.

The first time you invoke .IR, you must give it a measure. Subsequent invoca-
tions with a measure add to the previous indent measure. A minus sign may
be prepended to the argument to subtract from the current indent measure.
The \w inline escape may be used to specify a text-dependent measure, in
which case no unit of measure is required. For example,

.IR \w’jello’

indents text by the width of the word jello. With no argument, .IR indents by its
last active value. See the brief explanation of how mom handles indents for
more details.

Note: Calling a tab (with .TAB <n>) automatically cancels any active indents.
Additional note: Invoking .IR automatically turns off IB.

.L_MARGIN <left margin>
Left Margin

L_MARGIN establishes the distance from the left edge of the printer sheet at
which you want your type to start. It may be used any time, and remains in ef-
fect until you enter a new value. Left indents and tabs are calculated from the
value you pass to .L_MARGIN, hence it’s always a good idea to invoke it before
starting any serious typesetting. A unit of measure is required. Decimal



Major Macro Packages -63-

fractions are allowed. Therefore, to set the left margin at 3 picas (1/2 inch),
you’d enter either

.L_MARGIN 3P

or
.L_MARGIN .5i

If you use the macros .PAGE, .PAGEWIDTH or .PAPER without invoking
.L_MARGIN (either before or afterwards), mom automatically sets .L_MARGIN
to 1 inch. Note: .L_MARGIN behaves in a special way when you’re using the
document processing macros.

.MCO
Begin multi-column setting.

.MCO (Multi-Column On) is the macro you use to begin multi-column setting .
It marks the current baseline as the top of your columns, for use later with
.MCR. See the introduction to columns for an explanation of multi-columns and
some sample input. Note: Do not confuse .MCO with the .COLUMNS macro in
the document processing macros.

.MCR
Once you’ve turned multi-columns on (with .MCO), .MCR, at any time, returns
you to the top of your columns

.MCX [ <distance to advance below longest column> ]
Optional argument requires a unit of measure.

.MCX takes you out of any tab you were in (by silently invoking .TQ) and ad-
vances to the bottom of the longest column. Without an argument, .MCX ad-
vances 1 linespace below the longest column.

Linespace, in this instance, is the leading in effect at the moment .MCX is in-
voked. If you pass the <distance> argument to .MCX, it advances 1 linespace
below the longest column (see above) PLUS the distance specified by the ar-
gument. The argument requires a unit of measure; therefore, to advance an
extra 6 points below where .MCX would normally place you, you’d enter

.MCX 6p

Note: If you wish to advance a precise distance below the baseline of the long-
est column, use .MCX with an argument of (zero; no unit of measure required)
in conjunction with the .ALD macro, like this:

.MCX 0

.ALD 24p

The above advances to precisely 24 points below the baseline of the longest
column.

.NEWPAGE
Whenever you want to start a new page, use .NEWPAGE, by itself with no
argument. Mom will finish up processing the current page and move you
to the top of a new one (subject to the top margin set with .T_MARGIN).

.PAGE <width> [ <length> [ <lm> [ <rm> [ <tm> [ <bm> ] ] ] ] ]

All arguments require a unit of measure IMPORTANT: If you’re using the docu-
ment processing macros, .PAGE must come after .START. Otherwise, it
should go at the top of a document, prior to any text. And remember, when



Major Macro Packages -64-

you’re using the document processing macros, top margin and bottom margin
mean something slightly different than when you’re using just the typesetting
macros (see Top and bottom margins in document processing).

.PAGE lets you establish paper dimensions and page margins with a single
macro. The only required argument is page width. The rest are optional, but
they must appear in order and you can’t skip over any. <lm>, <rm>, <tm> and
<bm> refer to the left, right, top and bottom margins respectively. Assuming
your page dimensions are 11 inches by 17 inches, and that’s all you want to
set, enter

.PAGE 11i 17i

If you want to set the left margin as well, say, at 1 inch, PAGE would look like
this:

.PAGE 11i 17i 1i

Now suppose you also want to set the top margin, say, at 1–1/2 inches. <tm>
comes after <rm> in the optional arguments, but you can’t skip over any argu-
ments, therefore to set the top margin, you must also give a right margin. The
.PAGE macro would look like this:

.PAGE 11i 17i 1i 1i 1.5i
| |

required right---+   +---top margin
margin

Clearly, .PAGE is best used when you want a convenient way to tell mom just
the dimensions of your printer sheet (width and length), or when you want to tell
her everything about the page (dimensions and all the margins), for example

.PAGE 8.5i 11i 45p 45p 45p 45p

This sets up an 8½ by 11 inch page with margins of 45 points (5/8-inch) all
around.

Additionally, if you invoke .PAGE with a top margin argument, any macros you
invoke after .PAGE will almost certainly move the baseline of the first line of text
down by one linespace. To compensate, do

.RLD 1v

immediately before entering any text, or, if it’s feasible, make .PAGE the last
macro you invoke prior to entering text. Please read the Important note on
page dimensions and papersize for information on ensuring groff respects your
.PAGE dimensions and margins.

.PAGELENGTH <length of printer sheet>
tells mom how long your printer sheet is. It works just like .PAGEWIDTH.

Therefore, to tell mom your printer sheet is 11 inches long, you enter
.PAGELENGTH 11i

Please read the important note on page dimensions and papersize for informa-
tion on ensuring groff respects your PAGELENGTH .

.PAGEWIDTH <width of printer sheet>
The argument to .PAGEWIDTH is the width of your printer sheet.

.PAGEWIDTH requires a unit of measure. Decimal fractions are allowed.
Hence, to tell mom that the width of your printer sheet is 8½ inches, you enter

.PAGEWIDTH 8.5i

Please read the Important note on page dimensions and papersize for



Major Macro Packages -65-

information on ensuring groff respects your PAGEWIDTH .

.PAPER <paper type>
provides a convenient way to set the page dimensions for some common
printer sheet sizes. The argument <paper type> can be one of: LETTER, LE-
GAL, STATEMENT, TABLOID, LEDGER, FOLIO, QUARTO, EXECUTIVE,
10x14, A3, A4, A5, B4, B5.

.PRINTSTYLE

.PT_SIZE <size of type in points> 
Point size of type, does not require a unit of measure.

.PT_SIZE (Point Size) takes one argument: the size of type in points. Unlike
most other macros that establish the size or measure of something, .PT_SIZE
does not require that you supply a unit of measure since it’s a near universal
convention that type size is measured in points. Therefore, to change the type
size to, say, 11 points, enter

.PT_SIZE 11

Point sizes may be fractional (e.g. 10.25 or 12.5 ). You can prepend a plus or
a minus sign to the argument to .PT_SIZE, in which case the point size will be
changed by + or - the original value. For example, if the point size is 12 , and
you want 14 , you can do

.PT_SIZE +2

then later reset it to 12 with
.PT_SIZE −2

The size of type can also be changed inline.

Note: It is unfortunate that the pic preprocessor has already taken the name,
PS, and thus mom ’s macro for setting point sizes can’t use it. However, if you
aren’t using pic, you might want to alias .PT_SIZE as .PS, since there’d be no
conflict. For example

.ALIAS PS PT_SIZE

would allow you to set point sizes with .PS.

.R_MARGIN <right margin>
Right Margin

Requires a unit of measure.

IMPORTANT: .R_MARGIN, if used, must come after .PAPER, .PAGEWIDTH,
.L_MARGIN, and/or .PAGE (if a right margin isn’t given to PAGE). The reason
is that .R_MARGIN calculates line length from the overall page dimensions and
the left margin. Obviously, it can’t make the calculation if it doesn’t know the
page width and the left margin.

.R_MARGIN establishes the amount of space you want between the end of
typeset lines and the right hand edge of the printer sheet. In other words, it
sets the line length. .R_MARGIN requires a unit of measure. Decimal fractions
are allowed. The line length macro (LL) can be used in place of .R_MARGIN.
In either case, the last one invoked sets the line length. The choice of which to
use is up to you. In some instances, you may find it easier to think of a section
of type as having a right margin. In others, giving a line length may make more
sense.



Major Macro Packages -66-

For example, if you’re setting a page of type you know should have 6-pica mar-
gins left and right, it makes sense to enter a left and right margin, like this:

.L_MARGIN 6P

.R_MARGIN 6P

That way, you don’t have to worry about calculating the line length. On the
other hand, if you know the line length for a patch of type should be 17 picas
and 3 points, entering the line length with LL is much easier than calculating
the right margin, e.g.

.LL 17P+3p

If you use the macros .PAGE, .PAGEWIDTH or PAPER without invoking
.R_MARGIN afterwards, mom automatically sets .R_MARGIN to 1 inch. If you
set a line length after these macros (with .LL), the line length calculated by
.R_MARGIN is, of course, overridden. Note: .R_MARGIN behaves in a special
way when you’re using the document processing macros.

.ST <tab number> L | R | C | J [ QUAD ] 

After string tabs have been marked off on an input line (see \*[ST]. . .\*[STX]),
you need to set them by giving them a direction and, optionally, the QUAD ar-
gument. In this respect, .ST is like .TAB_SET except that you don’t have to
give .ST an indent or a line length (that’s already taken care of, inline, by
\*[ST]. . .\*[STX]).

If you want string tab 1 to be left, enter
.ST 1 L

If you want it to be left and filled , enter
.ST 1 L QUAD

If you want it to be justified, enter
.ST 1 J

.TAB <tab number>
After tabs have been defined (either with .TAB_SET or .ST), .TAB moves to
whatever tab number you pass it as an argument.

For example,
.TAB 3

moves you to tab 3 .

Note: .TAB breaks the line preceding it and advances 1 linespace. Hence,
.TAB 1

A line of text in tab 1.

.TAB 2

A line of text in tab 2.

produces, on output
A line of text in tab 1.

A line of text in tab 2.

If you want the tabs to line up, use .TN (Tab Next ) or, more conveniently, the in-
line escape \*[TB+]:

.TAB 1

A line of text in tab 1.\*[TB+]

A line of text in tab 2.

which produces
A line of text in tab 1.   A line of text in tab 2.



Major Macro Packages -67-

If the text in your tabs runs to several lines, and you want the first lines of each
tab to align, you must use the multi-column macros. Additional note: Any in-
dents in effect prior to calling a tab are automatically turned off by TAB. If you
were happily zipping down the page with a left indent of 2 picas turned on, and
you call a tab whose indent from the left margin is 6 picas, your new distance
from the left margin will be 6 picas, not I 6 picas plus the 2 pica indent.

Tabs are not by nature columnar, which is to say that if the text inside a tab
runs to several lines, calling another tab does not automatically move to the
baseline of the first line in the previous tab. To demonstrate:

TAB 1

Carrots

Potatoes

Broccoli

.TAB 2

$1.99/5 lbs

$0.25/lb

$0.99/bunch

produces, on output
Carrots

Potatoes

Broccoli

$1.99/5 lbs

$0.25/lb

$0.99/bunch

.TB <tab number>
Alias to .TAB

.TI [ <measure> ]
Temporary left indent — the optional argument requires a unit of measure

A temporary indent is one that applies only to the first line of text that
comes after it. Its chief use is indenting the first line of paragraphs.
(Mom’s .PP macro, for example, uses a temporary indent .)

The first time you invoke .TI, you must give it a measure. If you want to indent
the first line of a paragraph by, say, 2 ems, do

.TI 2m

Subsequent invocations of .TI do not require you to supply a measure; mom
keeps track of the last measure you gave it.

Because temporary indents are temporary, there’s no need to turn them off.
IMPORTANT: Unlike .IL, .IR and IB, measures given to .TI are NOT additive.
In the following example, the second ".TI 2P" is exactly 2 picas.

.TI 1P

The beginning of a paragraph. . .

.TI 2P

The beginning of another paragraph. . .

.TN Tab Next

Inline escape \*[TB+] TN moves over to the next tab in numeric sequence (tab
n+1) without advancing on the page. See the NOTE in the description of the
.TAB macro for an example of how TN works.



Major Macro Packages -68-

In tabs that aren’t given the QUAD argument when they’re set up with
.TAB_SET or ST, you must terminate the line preceding .TN with the \c inline
escape. Conversely, if you did give a QUAD argument to .TAB_SET or ST, the
\c must not be used. If you find remembering whether to put in the \c bother-
some, you may prefer to use the inline escape alternative to .TN, \*[TB, which
works consistently regardless of the fill mode.

Note: You must put text in the input line immediately after .TN. Stacking of
.TN’s is not allowed. In other words, you cannot do

.TAB 1

Some text\c

.TN

Some more text\c

.TN

.TN

Yet more text

The above example, assuming tabs numbered from 1 to 4, should be entered
.TAB 1

Some text\c

.TN

Some more text\c

.TN

\&\c

.TN

Yet more text

\& is a zero-width, non-printing character that groff recognizes as valid input,
hence meets the requirement for input text following .TN.

.TQ TQ takes you out of whatever tab you were in, advances 1 linespace, and re-
stores the left margin, line length, quad direction and fill mode that were in ef-
fect prior to invoking any tabs.

.T_MARGIN <top margin>
Top margin

Requires a unit of measure

.T_MARGIN establishes the distance from the top of the printer sheet at which
you want your type to start. It requires a unit of measure, and decimal fractions
are allowed. To set a top margin of 2½ centimetres, you’d enter

.T_MARGIN 2.5c

.T_MARGIN calculates the vertical position of the first line of type on a page by
treating the top edge of the printer sheet as a baseline. Therefore,

.T_MARGIN 1.5i

puts the baseline of the first line of type 1½ inches beneath the top of the page.
Note: .T_MARGIN means something slightly different when you’re using the
document processing macros. See Top and bottom margins in document pro-
cessing for an explanation.

IMPORTANT: .T_MARGIN does two things: it establishes the top margin for
pages that come after it and it moves to that position on the current page.
Therefore, .T_MARGIN should only be used at the top of a file (prior to entering
text) or after NEWPAGE, like this:



Major Macro Packages -69-

.NEWPAGE

.T_MARGIN 6P

<text>

AUTHORS

mom was written by Peter Schaffter and revised by Werner Lemberg PDF support
was provided by Deri James The alphabetical documentation of macros and escape
seqauences in this man page were written by the mom team.

SEE ALSO

groff(1), groff_mom(7),

/usr/share/doc/groff-1.22.3.rc1.24-ea225/html/mom/toc.html
– entry point to the HTML documentation

http://www.schaffter.ca/mom/momdoc/toc.html – HTML documentation online

http://www.schaffter.ca/mom/ – the mom macros homepage

BUGS

Please send bug reports to the groff-bug mailing list or directly to the authors.

mailto:peter@schaffter.ca
mailto:wl@gnu.org
mailto:deri@chuzzlewit.demon.co.uk
http://www.schaffter.ca/mom/momdoc/toc.html
http://www.schaffter.ca/mom/
mailto:bug-groff@gnu.org


Major Macro Packages -70-

4.6. ms

The ms (“manuscript”) macros are suitable for reports, letters, memoranda, books, user
manuals, and so forth. The package provides macros for cover page and table of contents
generation, section headings, multiple paragraph styles, text styling (including font
changes), lists, footnotes, pagination, and indexing.

ms supports the tbl, eqn, pic, and refer preprocessors for inclusion of tables, mathemati-
cal equations, diagrams, and standardized bibliographic citations.

4.6.1. Introduction to ms

The ms macros are the oldest surviving macro package for roff systems.8 While the man

package was intended for brief documents to be perused at a terminal, the ms macros are
suitable for longer documents intended for printing and possible publication.

The ms macro package included with groff is a complete re-implementation. Some
macros specific to AT&T or Berkeley are not included, while several new commands been
introduced. See Differences from AT&T ms.

If you’re in a hurry to get started, you need only know that ms needs one of its macros
called at the beginning of a document so that it can initialize. A paragraph macro like PP (if
you want your paragraph to have a first-line indent) or LP (if you don’t) suffices.

After that, start typing normally. You can separate paragraphs with further paragraph
macros, or with blank lines, and you can indent with tabs. When you need one of the fea-
tures mentioned earlier (see ms), return to this manual.

.LP

Radical novelties are so disturbing that they tend to be

suppressed or ignored, to the extent that even the

possibility of their existence in general is more often

denied than admitted.

→That's what Dijkstra said, anyway.

We have used an arrow→ in the above to indicate a tab character.

4.6.2. General structure of an ms document

The ms macro package expects a certain amount of structure, but not as much as pack-
ages such as man or mdoc. The simplest documents can begin with a paragraph macro
(such as LP or PP), and consist of text separated by paragraph macros or even blank lines.
Longer documents have a structure as follows.

Document type 
If you invoke the RP (report) macro on the first line of the document, ms prints the
cover page information on its own page; otherwise it prints the information (if
any) on the first page with your document text immediately following. Some

8 Although man pages are even older, the man macro language dates back only to Seventh Edition Unix
(1979). ms was documented by Mike Lesk in an article for the Communications of the ACM in 1974.



Major Macro Packages -71-

document types found in AT&T troff are specific to AT&T or Berkeley, and are
not supported in groff.

Format and layout
By setting registers (and one string), you can change your document’s type (font
and point size), margins, spacing, headers and footers, and footnotes. See
Document control settings.

Cover page
A cover page consists of a title, the author’s name and institution, an abstract,
and the date.9 See Cover page macros.

Body Following the cover page is your document. ms supports highly structured docu-
ments consisting of paragraphs interspersed with multi-level headings (chap-
ters, sections, subsections, and so forth) and augmented by lists, footnotes, ta-
bles, diagrams, and similar. See Body text.

Table of contents 
Longer documents usually include a table of contents, which you can produce
by placing the TC macro at the end of your document. Printing the table of con-
tents at the end is necessary since GNU troff, like its AT&T ancestor, is a sin-
gle-pass text formatter; it thus cannot determine the page number of each sec-
tion until that section has been set and output. Since ms output is designed for
hard copy, you can manually relocate the pages containing the table of contents
between the cover page and the body text after printing.10

4.6.3. Document control settings

ms exposes many aspects of document layout to user control via groff requests. To use
them, you must understand how to define registers and strings.

.nr reg value
Set register reg to value. If reg doesn’t exist, GNU troff creates it.

.ds name contents
Set string name to contents. If name exists, it is removed first.

For consistency, set registers related to margins at the beginning of your document, or just
after the RP macro. You can set other registers later in your document, but you should
keep them together at the beginning to make them easy to find and edit as necessary.

A list of document control registers and strings follows. They are presented in the syntax
used to interpolate them.

Margin Settings

\n[PO]

Defines the page offset (i.e., the left margin). There is no explicit right margin setting;
the combination of the PO and LL registers implicitly define the right margin width.

9 Actually, only the title is required.
10 This limitation could also be overcome by using PostScript or PDF file manipulation utilities to rese-

quence pages in the document, facilitated by specially-formatted comments (“device tags”) placed in the out-
put by by ms.



Major Macro Packages -72-

Effective: next page.

Default value: 1 i.

\n[LL]

Defines the line length (i.e., the width of the body text).

Effective: next paragraph.

Default: 6 i.

\n[LT]

Defines the title length (i.e., the header and footer width). This is usually the same
as LL, but not necessarily.

Effective: next paragraph.

Default: 6 i.

\n[HM]

Defines the header margin height at the top of the page.

Effective: next page.

Default: 1 i.

\n[FM]

Defines the footer margin height at the bottom of the page.

Effective: next page.

Default: 1 i.

Text Settings

\n[PS]

Defines the point size of the body text. If the value is larger than or equal to 1000, di-
vide it by 1000 to get a fractional point size. For example, ‘.nr PS 10250’ sets the
document’s point size to 10.25 p.

Effective: next paragraph.

Default: 10 p.

\n[VS]

Defines the space between lines (line height plus leading). If the value is larger than
or equal to 1000, divide it by 1000 to get a fractional point size.

Effective: next paragraph.

Default: 12 p.

\n[HY]

Defines the hyphenation mode. HY safely sets the value of the low-level hy register.
Setting HY to 0 is equivalent to using the nh request.

Effective: next paragraph.

Default: 6.

\*[FAM]

Defines the font family used to typeset the document.

Effective: next paragraph.

Default: as defined in the output device.



Major Macro Packages -73-

Paragraph Settings

\n[PI]

Defines the initial indentation of a (PP macro) paragraph.

Effective: next paragraph.

Default: 5 n.

\n[PD]

Defines the space between paragraphs.

Effective: next paragraph.

Default: 0.3 v.

\n[QI]

Defines the indentation on both sides of a quoted (QP, QS, and QE macros) paragraph.

Effective: next paragraph.

Default: 5 n.

\n[PORPHANS]

Defines the minimum number of initial lines of any paragraph that should be kept to-
gether, to avoid orphan lines at the bottom of a page. If a new paragraph is started
close to the bottom of a page, and there is insufficient space to accommodate POR-
PHANS lines before an automatic page break, then the page break is forced, before
the start of the paragraph.

Effective: next paragraph.

Default: 1.

Section Heading Settings

\n[PSINCR]

Defines an increment in point size, which is applied to section headings at nesting
levels below the value specified in GROWPS. The value of PSINCR should be specified
in points, with the p scaling factor, and may include a fractional component; for ex-
ample, ‘.nr PSINCR 1.5p’ sets a point size increment of 1.5 p.

Effective: next section heading.

Default: 1 p.

\n[GROWPS]

Defines the heading level below which the point size increment set by PSINCR be-
comes effective. Section headings at and above the level specified by GROWPS are
printed at the point size set by PS; for each level below the value of GROWPS, the point
size is increased in steps equal to the value of PSINCR. Setting GROWPS to any value
less than 2 disables the incremental heading size feature.

Effective: next section heading.

Default: 0.

\n[HORPHANS]

Defines the minimum number of lines of an immediately succeeding paragraph that
should be kept together with any section heading introduced by the NH or SH macros.
If a section heading is placed close to the bottom of a page, and there is insufficient



Major Macro Packages -74-

space to accommodate both the heading and at least HORPHANS lines of the following
paragraph, before an automatic page break, then the page break is forced before the
heading.

Effective: next paragraph.

Default: 1.

\*[SN-STYLE]

Defines the style used to print section numbers within numbered section headings.
See Headings.

Effective: next section heading.

Default: alias of SN-DOT

Footnote Settings

\n[FI]

Defines the footnote indentation.

Effective: next footnote.

Default: 2 n.

\n[FF]

The footnote format:

0 Print the footnote number as a superscript; indent the footnote (de-
fault).

1 Print the number followed by a period (like 1.) and indent the foot-
note.

2 Like 1, without an indentation.

3 Like 1, but print the footnote number as a hanging paragraph.

Effective: next footnote.

Default: 0.

\n[FPS]

Defines the footnote point size. If the value is larger than or equal to 1000, divide it
by 1000 to get a fractional point size.

Effective: next footnote.

Default: \n[PS] - 2.

\n[FVS]

Defines the footnote vertical spacing. If the value is larger than or equal to 1000, di-
vide it by 1000 to get a fractional point size.

Effective: next footnote.

Default: \n[FPS] + 2.

\n[FPD]

Defines the footnote paragraph spacing.

Effective: next footnote.

Default: \n[PD] / 2.



Major Macro Packages -75-

\*[FR]

Defines the ratio of the footnote line length to the current line length.

Effective: next footnote in single-column arrangements, next page otherwise.

Default: 11/12.

The default footnote line length is 11/12ths of the normal line length for compatibility with
the expectations of historical ms documents; you may wish to set the FR string to ‘1’ to align
with contemporary typesetting practices. In the past,11 an FL register was used for the line
length in footnotes; however, setting this register at document initialization time had no ef-
fect on the footnote line length in multi-column arrangements.

FR should be used in preference to the old FL register in contemporary documents. The
footnote line length is effectively computed as ‘\n[column-width] * \*[FR]’. If an abso-
lute footnote line length is required, recall that arithmetic expressions in roff languages
are evaluated from left to right.

.ds FR 0+3i \" Set footnote line length to 3 inches.

Other Settings

\n[DD]

Sets the vertical spacing before and after a display, a tbl table, an eqn equation, or a
pic image.

Effective: next paragraph.

Default: 0.5 v.

\n[MINGW]

Defines the minimum width between columns in a multi-column document.

Effective: next page.

Default: 2 n.

4.6.4. Cover page macros

Use the following macros to create a cover page for your document in the order shown.

.RP [no]
Specifies the report format for your document. The report format creates a separate
cover page. The default action (no RP macro) is to print a subset of the cover page
on page 1 of your document.

If you use the word no as an optional argument, groff prints a title page but does not
repeat any of the title page information (title, author, abstract, etc.) on page 1 of the
document.

.P1

(P-one) Prints the header on page 1.  The default is to suppress the header.

.DA [...]

(optional) Prints the current date, or the arguments to the macro if any, on the title
page (if specified) and in the footers. This is the default for nroff.

11 in Version 7 Unix ms, its descendants, and GNU ms prior to groff version 1.23.0



Major Macro Packages -76-

.ND [...]

(optional) Prints the current date, or the arguments to the macro if any, on the title
page (if specified) but not in the footers. This is the default for troff.

.TL

Specifies the document title. groff collects text following the TL macro into the title,
until reaching the author name or abstract.

.AU

Specifies the author’s name, which appears on the line (or lines) immediately follow-
ing. You can specify multiple authors as follows:

.AU

John Doe

.AI

University of West Bumblefuzz

.AU

Martha Buck

.AI

Monolithic Corporation

...

.AI

Specifies the author’s institution. You can specify multiple institutions in the same
way that you specify multiple authors.

.AB [no]
Begins the abstract. The default is to print the word ABSTRACT, centered and in ital-
ics, above the text of the abstract. The word no as an optional argument suppresses
this heading.

.AE

Ends the abstract.

The following is example mark-up for a title page.



Major Macro Packages -77-

.RP

.TL

The Inevitability of Code Bloat

in Commercial and Free Software

.AU

J. Random Luser

.AI

University of West Bumblefuzz

.AB

This report examines the long-term growth

of the code bases in two large, popular software

packages; the free Emacs and the commercial

Microsoft Word.

While differences appear in the type or order

of features added, due to the different

methodologies used, the results are the same

in the end.

.PP

The free software approach is shown to be

superior in that while free software can

become as bloated as commercial offerings,

free software tends to have fewer serious

bugs and the added features are in line with

user demand.

.AE

... the rest of the paper follows ...

4.6.5. Body text

This section describes macros used to mark up the body of your document. Examples in-
clude paragraphs, sections, and other groups.

4.6.5.1. Paragraphs

The following paragraph types are available.

.PP

Sets a paragraph with an initial indentation.

.LP

Sets a paragraph without an initial indentation.

.QP

Sets a paragraph that is indented at both left and right margins by the amount of the
register QI. The next paragraph or heading returns margins to normal. QP inserts
vertical space of amount set by register PD before the paragraph.



Major Macro Packages -78-

.QS

.QE

These macros begin and end a quoted section. The QI register controls the amount
of indentation. Both QS and QE insert inter-paragraph vertical space set by register
PD. The text between QS and QE can be structured further by use of the macros LP or
PP.

.XP

Sets a paragraph whose lines are indented, except for the first line. This is a Berke-
ley extension.

The following markup uses all four paragraph macros.

.NH 2

Cases used in the study

.LP

The following software and versions were

considered for this report.

.PP

For commercial software, we chose

.B "Microsoft Word for Windows" ,

starting with version 1.0 through the

current version (Word 2000).

.PP

For free software, we chose

.B Emacs ,

from its first appearance as a standalone

editor through the current version (v20).

See [Bloggs 2002] for details.

.QP

Franklin's Law applied to software:

software expands to outgrow both

RAM and disk space over time.

.LP

Bibliography:

.XP

Bloggs, Joseph R.,

.I "Everyone's a Critic" ,

Underground Press, March 2002.

A definitive work that answers all questions

and criticisms about the quality and usability of

free software.

The PORPHANS register (see Document control settings) operates in conjunction with each of
these macros, to inhibit the printing of orphan lines at the bottom of any page.

4.6.5.2. Headings



Major Macro Packages -79-

Use headings to create a hierarchical structure for your document. The ms macros print
headings in bold using the same font family and, by default, point size as the body text.
Numbered and unnumbered section headings are available. Text lines after heading
macros are treated as part of the heading, rendered on the same output line in the same
style.

.NH level

.NH S section-level-index ...
Numbered heading.

The level argument instructs ms to number sections in the form x.y.z , to any depth
desired, with the numbering of each level increasing automatically and being reset
when a more significant level is increased. “1” is the most significant or coarsest divi-
sion of the document.  Only nonzero values are output.

If you specify heading levels with a gap in an ascending sequence, such as by invok-
ing ‘.NH 3’ after ‘.NH 1’, groff ms emits a warning on the standard error stream.

Alternatively, a first argument of S can be given, followed by integral arguments to
number the levels of the heading explicitly. Further automatic section numbering, if
used, resumes using the specified section numbers as their predecessors.

An example may be illustrative.

.NH 1

Animalia

.NH 2

Arthropoda

.NH 3

Crustacea

.NH 2

Chordata

.NH S 6 6 6

Daimonia

.NH 1

Plantae

The above results in section numbering as follows; the vertical space that normally precedes
each section heading is omitted.

1. Animalia

1.1. Arthropoda

1.1.1. Crustacea

1.2. Chordata

6.6.6. Daimonia

7. Plantae

\*[SN-STYLE]

\*[SN-DOT]
\*[SN-NO-DOT]

After invocation of NH, the assigned section number is made available in the strings
SN-DOT (as it appears in a printed section heading with default formatting, followed by



Major Macro Packages -80-

a terminating period), and SN-NO-DOT (with the terminating period omitted).

You can control the style used to print section numbers within numbered section
headings by defining an appropriate alias for the string SN-STYLE. By default, SN-
STYLE is aliased to SN-DOT. If you prefer to omit the terminating period from section
numbers appearing in numbered section headings, you may define the alias as fol-
lows.

.als SN-STYLE SN-NO-DOT

Any such change in section numbering style becomes effective from the next use of
NH, following redefinition of the alias for SN-STYLE.

.SH [match-level]

Unnumbered subheading.

The optional match-level argument is a GNU extension. It is a number indicating the
level of the heading corresponding to the level argument to NH. Its purpose is to
match the point size at which the heading is printed to the size of a numbered head-
ing at the same level when the GROWPS and PSINCR heading size adjustment mecha-
nism is in effect.

If the GROWPS register is set to a value greater than the level argument to NH or SH, the point
size of a heading produced by these macros increases by PSINCR units over the size speci-
fied by PS, multiplied by the difference between level and GROWPS. The value stored in
PSINCR is interpreted in groff basic units; the p scaling factor should be employed when
assigning a value specified in points. For example, the sequence

.nr PS 10

.nr GROWPS 3

.nr PSINCR 1.5p

.NH 1

Carnivora

.NH 2

Felinae

.NH 3

Felis catus

.SH 2

Machairodontinae

will cause “1. Carnivora” to be printed in 13-point text, followed by “1.1. Felinae” in 11.5-point
text, while “1.1.1. Felis catus” and all more deeply nested heading levels will remain in the 10-point
text specified by the PS register. “Machairodontinae” is printed at 11.5 points, since it corresponds
to heading level\˜2.

The HORPHANS register operates in conjunction with the NH and SH macros to inhibit the
printing of orphaned section headings at the bottom of a page; it specifies the minimum
number of lines of an immediately subsequent paragraph that must be kept on the same
page as the heading. If insufficient space remains on the current page to accommodate
the heading and this number of lines of paragraph text, a page break is forced before the
heading is printed. Any display macro or tbl, pic, or eqn region between the heading and
the subsequent paragraph suppresses this grouping.



Major Macro Packages -81-

4.6.5.3. Highlighting

The ms macros provide a variety of methods to highlight or emphasize text.

.B [txt [post [pre]]]

Sets its first argument in bold type. If you specify a second argument, groff ms

prints it in the previous font after the bold text, with no intervening space (this allows
you to set punctuation after the highlighted text without highlighting the punctuation).
Similarly, it prints the third argument (if any) in the previous font before the first argu-
ment. For example,

.B foo ) (

prints ‘(foo)’.

If you give this macro no arguments, groff ms prints all text following in bold until the
next highlighting, paragraph, or heading macro.

.R [txt [post [pre]]]

Sets its first argument in roman (or regular) type. It operates similarly to the B macro
otherwise.

.I [txt [post [pre]]]

Sets its first argument in italic type. It operates similarly to the B macro otherwise.

.BI [txt [post [pre]]]

Sets its first argument in bold italic type. It operates similarly to the B macro other-
wise.

.CW [txt [post [pre]]]

Sets its first argument in a constant-width (monospaced) roman typeface. It oper-
ates similarly to the B macro otherwise. This is a Version 10 Research Unix exten-
sion.

In groff ms you might prefer to change the font family to Courier, which is mono-
spaced, by setting the FAM string to ‘C’. You can then use all four style macros above,
returning to the default family (Times) with ‘.ds FAM T’.

.BX [txt]

Prints its argument and draws a box around it. If you want to box a string that con-
tains spaces, use a digit-width space (\0).

.UL [txt [post]]

Prints its first argument with an underline. If you specify a second argument, groff
prints it in the previous font after the underlined text, with no intervening space.

.LG

Prints all text following in larger type (two points larger than the current point size) un-
til the next font size, highlighting, paragraph, or heading macro. You can specify this
macro multiple times to enlarge the point size as needed.

.SM

Prints all text following in smaller type (two points smaller than the current point size)
until the next type size, highlighting, paragraph, or heading macro. You can specify
this macro multiple times to reduce the point size as needed.

.NL

Prints all text following in the normal point size (that is, the value of the PS register).



Major Macro Packages -82-

\*[{]

\*[}]
Text enclosed with \*{ and \*} is printed as a superscript.

\*[<]

\*[>]
Text enclosed with \*< and \*> is printed as a subscript.

4.6.5.4. Lists

The IP macro handles duties for all lists.

.IP [marker [width]]

The marker is usually a bullet glyph (\[bu]) for unordered lists, a number (or auto-in-
crementing register) for numbered lists, or a word or phrase for indented (glossary-
style) lists.

The width specifies the indentation for the body of each list item; its default unit is ‘n’.
Once specified, the indentation remains the same for all list items in the document
until specified again.

The PORPHANS register (see Document control settings) operates in conjunction with
the IP macro, to inhibit the printing of orphaned list markers at the bottom of any
page.

The following is an example of a bulleted list.

A bulleted list:

.IP \[bu] 2

lawyers

.IP \[bu]

guns

.IP \[bu]

money

Produces:

A bulleted list:

• lawyers

• guns

• money

The following is an example of a numbered list.



Major Macro Packages -83-

.nr step 1 1

A numbered list:

.IP \n[step] 3

lawyers

.IP \n+[step]

guns

.IP \n+[step]

money

Produces:

A numbered list:

1. lawyers

2. guns

3. money

Note the use of the auto-incrementing register in this example.

The following is an example of a glossary-style list.

A glossary-style list:

.IP lawyers 0.4i

Two or more attorneys.

.IP guns

Firearms, preferably

large-caliber.

.IP money

Gotta pay for those

lawyers and guns!

Produces:

A glossary-style list:

lawyers

Two or more attorneys.

guns Firearms, preferably large-caliber.

money

Gotta pay for those lawyers and guns!

In the last example, the IP macro places the definition on the same line as the term if it
has enough space; otherwise, it breaks to the next line and starts the definition below the
term. This may or may not be the effect you want, especially if some of the definitions
break and some do not.  The following examples show two possible ways to force a break.



Major Macro Packages -84-

The first workaround uses the br request to force a break after printing the term or label.

A glossary-style list:

.IP lawyers 0.4i

Two or more attorneys.

.IP guns

.br

Firearms, preferably large-caliber.

.IP money

Gotta pay for those lawyers and guns!

The second workaround uses the \p escape to force the break. Note the space following the escape;
this is important. If you omit the space, groff prints the first word on the same line as the term or la-
bel (if it fits) then breaks the line.

A glossary-style list:

.IP lawyers 0.4i

Two or more attorneys.

.IP guns

\p Firearms, preferably large-caliber.

.IP money

Gotta pay for those lawyers and guns!

4.6.5.5. Indented regions

You may need to indent a section of text while still wrapping and filling.

.RS

Begin a region indented by the amount of the PI register, affecting the placement of
headings, paragraphs, and displays.

.RE

End the most recent indented region.

You can use RS/RE regions to line up text under hanging and indented paragraphs. For ex-
ample, you may wish to nest lists; the input



Major Macro Packages -85-

.IP \[bu] 2

Lawyers:

.RS

.IP \[bu]

Dewey,

.IP \[bu]

Cheatham,

and

.IP \[bu]

and Howe.

.RE

.IP \[bu]

Guns

produces

• Lawyers:

• Dewey,

• Cheatham, and

• Howe.

• Guns

as output.

See Displays and keeps, for macros to indent regions with filling disabled.

4.6.5.6. Tab stops

Use the ta request to define tab stops as needed. See Tabs and Fields.

.TA

Use this macro to reset the tab stops to the default for ms (every 5n). You can rede-
fine the TA macro to create a different set of default tab stops.

4.6.5.7. Displays and keeps

Use displays to show text-based examples or figures (such as code listings).

Displays turn off filling, so lines of code are displayed as-is without inserting br requests in
between each line. Displays can be kept on a single page, or allowed to break across
pages.

.DS L

.LD

.DE

Left-justified display. The ‘.DS L’ call generates a page break, if necessary, to keep
the entire display on one page. The LD macro allows the display to break across
pages. The DE macro ends the display.



Major Macro Packages -86-

.DS I

.ID

.DE

Indents the display as defined by the DI register. The ‘.DS I’ call generates a page
break, if necessary, to keep the entire display on one page. The ID macro allows the
display to break across pages. The DE macro ends the display.

.DS B

.BD

.DE

Sets a block-centered display: the entire display is left-justified, but indented so that
the longest line in the display is centered on the page. The ‘.DS B’ call generates a
page break, if necessary, to keep the entire display on one page. The BD macro al-
lows the display to break across pages. The DE macro ends the display.

.DS C

.CD

.DE

Sets a centered display: each line in the display is centered. The ‘.DS C’ call gener-
ates a page break, if necessary, to keep the entire display on one page. The CD

macro allows the display to break across pages. The DE macro ends the display.

.DS R

.RD

.DE

Right-justifies each line in the display. The ‘.DS R’ call generates a page break, if
necessary, to keep the entire display on one page. The RD macro allows the display
to break across pages. The DE macro ends the display.

On occasion, you may want to keep other text together on a page. For example, you may
want to keep two paragraphs together, or a paragraph that refers to a table (or list, or other
item) immediately following. The ms macros provide the KS and KE macros for this pur-
pose.

.KS

.KE

The KS macro begins a block of text to be kept on a single page, and the KE macro
ends the block.

.KF

.KE

Specifies a floating keep; if the keep cannot fit on the current page, groff holds the
contents of the keep and allows text following the keep (in the source file) to fill in the
remainder of the current page. When the page breaks, whether by an explicit bp re-
quest or by reaching the end of the page, groff prints the floating keep at the top of
the new page. This is useful for printing large graphics or tables that do not need to
appear exactly where specified.

You can also use the ne request to force a page break if there is not enough vertical space
remaining on the page.

Use the following macros to draw a box around a section of text (such as a display).



Major Macro Packages -87-

.B1

.B2

Marks the beginning and ending of text that is to have a box drawn around it. The B1
macro begins the box; the B2 macro ends it. Text in the box is automatically placed
in a diversion (keep).

4.6.5.8. Tables, figures, equations, and references

The ms macros support the standard groff preprocessors: tbl, pic, eqn, and refer. You
mark text meant for preprocessors by enclosing it in pairs of tags as follows.

.TS [H]

.TE

Denotes a table, to be processed by the tbl preprocessor. The optional argument H
to TS instructs groff to create a running header with the information up to the TH
macro. groff prints the header at the beginning of the table; if the table runs onto an-
other page, groff prints the header on the next page as well.

.PS

.PE

Denotes a graphic, to be processed by the pic preprocessor. You can create a pic
file by hand, using the AT&T pic manual available on the Web as a reference, or by
using a graphics program such as xfig.

.EQ [align]

.EN

Denotes an equation, to be processed by the eqn preprocessor. The optional align
argument can be C, L, or I to center (the default), left-justify, or indent the equation.

.[

.]

Denotes a reference, to be processed by the refer preprocessor. The GNU refer(1)
man page provides a comprehensive reference to the preprocessor and the format of
the bibliographic database. Type ‘man refer’ at the command line to view it.

4.6.5.9. An example multi-page table

The following is an example of how to set up a table that may print across two or more
pages.



Major Macro Packages -88-

.TS H

allbox expand;

cb | cb .

Text ...of heading...

_

.TH

.T&

l | l .

... the rest of the table follows...

.CW

.TE

4.6.5.10. Footnotes

The ms macro package has a flexible footnote system. You can specify either numbered
footnotes or symbolic footnotes (that is, using a marker such as a dagger symbol).

\*[*]

Specifies the location of a numbered footnote marker in the text.

.FS

.FE

Specifies the text of the footnote. The default action is to create a numbered foot-
note; you can create a symbolic footnote by specifying a mark glyph (such as \[dg]

for the dagger glyph) in the body text and as an argument to the FS macro, followed
by the text of the footnote and the FE macro.

You can control how ms prints footnote numbers by changing the value of the FF register.
See Document control settings.

Footnotes can be safely used within keeps and displays, but you should avoid using num-
bered footnotes within floating keeps. You can set a second \** marker between a \**
and its corresponding FS entry; as long as each FS macro occurs after the corresponding
\** and the occurrences of FS are in the same order as the corresponding occurrences of
\**.

4.6.6. Page layout

The default output from the ms macros provides a minimalist page layout: it prints a single
column, with the page number centered at the top of each page. It prints no footers.

You can change the layout by setting the proper registers and strings.

4.6.6.1. Headers and footers

For documents that do not distinguish between odd and even pages, set the following
strings:

\*[LH]

\*[CH]
\*[RH]

Sets the left, center, and right headers.



Major Macro Packages -89-

\*[LF]

\*[CF]
\*[RF]

Sets the left, center, and right footers.

For documents that need different information printed in the even and odd pages, use the
following macros:

.OH 'left'center'right'

.EH 'left'center'right'

.OF 'left'center'right'

.EF 'left'center'right'

The OH and EH macros define headers for the odd and even pages; the OF and EF

macros define footers for the odd and even pages. This is more flexible than defining
the individual strings.

You can replace the quote (') marks with any character not appearing in the header
or footer text.

To specify custom header and footer processing, redefine the following macros:

.PT

.HD

.BT

The PT macro defines a custom header; the BT macro defines a custom footer.
These macros must handle odd/even/first page differences if necessary.

The HD macro defines additional header processing to take place after executing the
PT macro.

4.6.6.2. Margins

You control margins using a set of registers. See Document control settings, for details.

4.6.6.3. Multiple columns

The ms macros can set text in as many columns as reasonably fit on the page. The follow-
ing macros are available; all of them force a page break if a multi-column mode is already
set. If the current mode is single-column, starting a multi-column mode does not force a
page break.

.1C

Single-column mode.

.2C

Two-column mode.

.MC [width [gutter]]

Multi-column mode. If you specify no arguments, it is equivalent to the 2C macro.
Otherwise, width is the width of each column and gutter is the space between col-
umns. The MINGW register controls the default gutter width.

4.6.6.4. Creating a table of contents



Major Macro Packages -90-

The facilities in the ms macro package for creating a table of contents are semi-automated
at best. Assuming that you want the table of contents to consist of the document’s head-
ings, you need to repeat those headings wrapped in XS and XE macros.

.XS [page]

.XA [page]

.XE

These macros define a table of contents or an individual entry in the table of con-
tents, depending on their use. The macros are very simple; they cannot indent a
heading based on its level. The easiest way to work around this is to add tabs to the
table of contents string.  The following is an example:

.NH 1

Introduction

.XS

Introduction

.XE

.LP

...

.CW

.NH 2

Methodology

.XS

Methodology

.XE

.LP

...

You can manually create a table of contents by beginning with the XS macro for the first en-
try, specifying the page number for that entry as the argument to XS. Add subsequent entries
using the XA macro, specifying the page number for that entry as the argument to XA. The
following is an example:

.XS 1
Introduction
.XA 2
A Brief History of the Universe
.XA 729
Details of Galactic Formation
...
.XE

.TC [no]
Prints the table of contents on a new page, setting the page number to i (Roman low-
ercase numeral one). You should usually place this macro at the end of the file,
since groff is a single-pass formatter and can only print what has been collected up
to the point that the TC macro appears.



Major Macro Packages -91-

The optional argument no suppresses printing the title specified by the string TOC.

.PX [no]
Prints the table of contents on a new page, using the current page numbering se-
quence. Use this macro to print a manually generated table of contents at the begin-
ning of your document.

The optional argument no suppresses printing the title specified by the string TOC.

The Groff and Friends HOWTO includes a sed script that automatically inserts XS and XE

macro entries after each heading in a document.

Altering the NH macro to automatically build the table of contents is perhaps initially more
difficult, but would save a great deal of time in the long run if you use ms regularly.

4.6.6.5. Strings and Special Characters

The ms macros provide the following predefined strings. You can change the string defini-
tions to help in creating documents in languages other than English.

\*[REFERENCES]

Contains the string printed at the beginning of the references (bibliography) page.
The default is ‘References’.

\*[ABSTRACT]

Contains the string printed at the beginning of the abstract. The default is ‘AB-
STRACT’.

\*[TOC]

Contains the string printed at the beginning of the table of contents.

\*[MONTH1]

\*[MONTH2]
\*[MONTH3]
\*[MONTH4]
\*[MONTH5]
\*[MONTH6]
\*[MONTH7]
\*[MONTH8]
\*[MONTH9]
\*[MONTH10]
\*[MONTH11]
\*[MONTH12]

Prints the full name of the month in dates. The default is ‘January’, ‘February’, etc.

The following special characters are available.12

\*[-]

Prints an em dash.

\*[Q]

\*[U]
Prints typographer’s quotes where available, and neutral quotes otherwise. \*Q is
the left quote and \*U is the right quote.

12 For an explanation of what special characters are Special Characters.



Major Macro Packages -92-

Improved accent marks are available in the ms macros.

.AM

Specify this macro at the beginning of your document to enable extended accent
marks and special characters. This is a Berkeley extension.

To use the accent marks, place them after the character being accented.

Note that groff’s native support for accents is superior to the following definitions.

The following accent marks are available after invoking the AM macro:

\*[']

Acute accent.

\*[‘]
Grave accent.

\*[ˆ]
Circumflex.

\*[,]

Cedilla.

\*[˜]
Tilde.

\*[:]

Umlaut.

\*[v]

Hacek.

\*[_]

Macron (overbar).

\*[.]

Underdot.

\*[o]

Ring above.

The following are standalone characters available after invoking the AM macro:

\*[?]

Upside-down question mark.

\*[!]

Upside-down exclamation point.

\*[8]

German ß ligature.

\*[3]

Yogh.

\*[Th]

Uppercase thorn.

\*[th]

Lowercase thorn.



Major Macro Packages -93-

\*[D-]

Uppercase eth.

\*[d-]

Lowercase eth.

\*[q]

Hooked o.

\*[ae]

Lowercase æ ligature.

\*[Ae]

Uppercase Æ ligature.

4.6.7. Differences from AT&T ms

This section lists the (minor) differences between the groff ms macros and AT&T troff ms

macros.

• The internals of groff ms differ from the internals of AT&T ‘troff -ms’. Docu-
ments that depend upon implementation details of AT&T troff ms may not format
properly with groff ms.

• The general error-handling policy of groff ms is to detect and report errors, rather
than silently to ignore them.

• groff ms does not work in compatibility mode (that is, with the -C option).

• There is no special support for terminal devices.

• groff ms does not provide cut marks.

• Multiple line spacing is not supported.  Use a larger vertical spacing instead.

• Some Unix ms documentation says that the CW and GW registers can be used to
control the column width and gutter width, respectively. These registers are not
used in groff ms.

• Macros that cause a reset (paragraphs, headings, etc.) may change the indenta-
tion. Macros that change the indentation do not increment or decrement the in-
dentation, but rather set it absolutely. This can cause problems for documents
that define additional macros of their own. The solution is to use not the in re-
quest but instead the RS and RE macros.

• To make groff ms use the default page offset (which also specifies the left mar-
gin), the PO register must stay undefined until the first -ms macro is evaluated.
This implies that PO should not be used early in the document, unless it is
changed also: accessing an undefined register automatically defines it.

• Displays are left-adjusted by default, not indented. In AT&T troff ms, ‘.DS’ is
synonymous with ‘.DS I’; in groff ms, it is synonymous with ‘.DS L’.

• Right-adjusted displays are available. The AT&T troff ms manual observes that
“it is tempting to assume that ‘.DS R’ will right adjust lines, but it doesn’t work”.13

In groff ms, it does.

13 “Typing Documents on the UNIX System: Using the -ms Macros with Troff and Nroff”; M. E. Lesk; Bell
Laboratories; 1978.



Major Macro Packages -94-

\n[GS]

This register is set to 1 by the groff ms macros, but it is not used by the AT&T troff

ms macros. Documents that need to determine whether they are being formatted with
AT&T ‘troff -ms’ or groff ms should use this register.

4.6.7.1. troff macros not appearing in groff

Macros missing from groff ms are specific to Bell Labs and Berkeley. The macros known
to be missing are:

.TM Technical memorandum; a cover sheet style

.IM Internal memorandum; a cover sheet style

.MR Memo for record; a cover sheet style

.MF Memo for file; a cover sheet style

.EG Engineer’s notes; a cover sheet style

.TR Computing Science Technical Report; a cover sheet style

.OK Other keywords

.CS Cover sheet information

.MH Murray Hill Bell Laboratories postal address

4.6.7.2. groff macros not appearing in AT&T troff

The groff ms macros have a few minor extensions to the AT&T ‘troff -ms’ macros.

.AM

Use improved accent marks. See Strings and Special Characters, for details. This is
a Berkeley extension.

.CW

Set text in a constant-width (monospaced) typeface. This is a Version 10 Research
Unix extension.

.IX

Write an indexing term to the standard error stream. You can write a script to cap-
ture and process an index generated in this manner.

The following additional registers appear in groff ms.

\n[MINGW]

Specifies a minimum space (“gutter width”) between columns (for multi-column out-
put); this takes the place of the GW register that was introduced in the Seventh Edition
Unix (1979) version of the AT&T ‘troff -ms’ macros.

Several new strings are available as well. You can change these to handle (for example)
the local language. See Strings and Special Characters, for details.



Major Macro Packages -95-

4.6.8. ms Naming Conventions

The following conventions are used for names of macros, strings, and registers. External
names available to documents that use the groff ms macros contain only uppercase let-
ters and digits.

Internally the macros are divided into modules. The naming conventions are as follows.

• Names used only within one module are of the form module*name.

• Names used outside the module in which they are defined are of the form mod-
ule@name.

• Names associated with a particular environment are of the form environ-
ment:name; these are used only within the par module.

• name does not have a module prefix.

• Constructed names used to implement arrays are of the form array!index .

Thus the groff ms macros reserve the following names.

• Names containing the characters *, @, and :.

• Names containing only uppercase letters and digits.



gtroff Reference -96-

5. gtroff Reference

This chapter covers all of the facilities of the GNU troff formatting engine. Users of
macro packages may skip it if not interested in details.

5.1. Text

AT&T troff was designed to take input as it would be composed on a typewriter, including
the teletypewriters used as early computer terminals, and relieve the user of having to be
concerned with the precise line length that the final version of the document would use,
where words should be hyphenated, and how to achieve straight margins on both the left
and right sides of the page. Early in its development, the program gained the ability to pre-
pare output for a phototypesetter; a document could then be prepared for output to either a
teletypewriter, a phototypesetter, or both. GNU troff continues this tradition of permitting
an author to compose a single master version of a document which can then be rendered
for a variety of output formats or devices.

GNU troff input files contain text with directives to control the typesetter interspersed
throughout. Even in the absence of such directives, GNU troff still processes its input in
several ways, by filling, hyphenating, breaking, and adjusting it.

5.1.1. Filling

When GNU troff starts up, it obtains information about the device for which it is preparing
output.14 A crucial example is the length of the output line, such as “6.5 inches”.

GNU troff reads its input character by character, collecting words as it goes, and fits as
many words together on one output line as it can—this is known as filling . To GNU troff,
a word is any sequence of one or more characters that aren’t spaces, tabs, or newlines.
Words are separated by spaces, tabs, newlines, or file boundaries.15

It is a truth universally acknowledged

that a single man in possession of a

good fortune must be in want of a wife.

⇒ It is a truth universally acknowledged that a

⇒ single man in possession of a good fortune must

⇒ be in want of a wife.

5.1.2. Sentences

A passionate debate has raged for decades among writers of the English language over
whether more space should appear between adjacent sentences than between words
within a sentence, and if so, how much, and what other circumstances should influence
this spacing.16 GNU troff follows the example of AT&T troff, attempting to detect the
boundaries between sentences, and supplying additional inter-sentence space between

14 Device and Font Files.
15 There are also escape sequences which can function as word characters, word-separating space, or

neither—the last simply have no effect on GNU troff’s idea of whether its input is within a word or not.
16 A well-researched jeremiad appreciated by groff contributors on both sides of the sentence-spacing

debate can be found at https://web.archive.org/web/20171217060354/http://www.heracliteanriver.com
/?p=324.

https://web.archive.org/web/20171217060354/http://www.heracliteanriver.com/?p=324
https://web.archive.org/web/20171217060354/http://www.heracliteanriver.com/?p=324


gtroff Reference -97-

them.

Hello, world!

Welcome to groff.

⇒ Hello, world! Welcome to groff.

GNU troff does this by flagging certain characters (normally ‘!’, ‘?’, and ‘.’) as end-of-
sentence characters; when GNU troff encounters one of these characters at the end of a
line, or one of them is followed by two or more spaces on the same input line, it appends a
normal space followed by an inter-sentence space in the formatted output.

R. Harper subscribes to a maxim of P. T. Barnum.

⇒ R. Harper subscribes to a maxim of P. T. Barnum.

In the above example, inter-sentence space is not added after ‘P.’ or ‘T.’ because the peri-
ods do not occur at the end of an input line, nor are they followed by two or more spaces.
Let’s imagine that we’ve heard something about defamation from Mr. Harper’s attorney, re-
cast the sentence, and reflowed it in our text editor.

I submit that R. Harper subscribes to a maxim of P. T.

Barnum.

⇒ I submit that R. Harper subscribes to a maxim of

⇒ P. T. Barnum.

“Barnum” doesn’t begin a sentence! What to do? Let us meet our first escape sequence,
a series of input characters that give special instructions to GNU troff instead of being
copied as-is to output device glyphs.17 An escape sequence begins with the backslash
character \ by default, an uncommon character in natural language text, and is always fol-
lowed by at least one other character, hence the term “sequence”.

The non-printing input break escape sequence \& can be used after an end-of-sentence
character to defeat end-of-sentence detection on a per-instance basis. We can therefore
rewrite our input more defensively.

I submit that R.\& Harper subscribes to a maxim of P.\&

T.\& Barnum.

⇒ I submit that R. Harper subscribes to a maxim of

⇒ P. T. Barnum.

Adding text caused our input to wrap; now, we don’t need the escape after ‘T.’ but we do
after ‘P.’. Ensuring that potential sentence boundaries are robust to editing activities and
reliably understood both by GNU troff and the document author is a goal of the advice
presented in Input Conventions.

Normally, the occurrence of a visible non-end-of-sentence character (as opposed to a
space or tab) after an end-of-sentence character cancels detection of the end of a sen-
tence. For example, it would be incorrect for GNU troff to infer the end of a sentence af-
ter the dot in ‘3.14159’. However, several characters are treated transparently after the oc-
curence of an end-of-sentence character. That is, GNU troff does not cancel the end-of-
sentence detection process when it processes them. This is because such characters are
often used as footnote markers or to close quotations and parentheticals. The default set
is ‘"’, ‘’’, ‘)’, ‘]’, ‘*’, \[dg], \[dd], \[rq], and \[cq]. The last four are examples of special
characters, escape sequences whose purpose is to obtain glyphs that are not easily typed

17 This statement oversimplifes; there are escape sequences whose purpose is precisely to produce
glyphs on the output device, and input characters that aren’t part of escape sequences can undergo a great
deal of processing before getting to the output.



gtroff Reference -98-

at the keyboard, or which have special meaning to GNU troff (like \ itself).18

\[lq]The idea that the poor should have leisure has always

been shocking to the rich.\[rq]

(Bertrand Russell, 1935)

⇒ "The idea that the poor should have

⇒ leisure has always been shocking to

⇒ the rich." (Bertrand Russell, 1935)

The sets of characters that potentially end sentences or are transparent to sentence end-
ings are configurable. See the cflags request in Using Symbols. To change the addi-
tional inter-sentence spacing amount—even to remove it entirely—see the ss request in
Manipulating Filling and Adjustment.

5.1.3. Hyphenation

It is uncommon for the most recent word collected from the input to exactly fill the output
line. Typically, there is enough room left over for part of the next word. The process of
splitting a word so that it appears partially on one line (with a hyphen to indicate to the
reader that the word has been broken) with the remainder of the word on the next is
hyphenation. GNU troff uses a hyphenation algorithm and language-specific pattern
files (based on but simplified from those used in TEX) to decide which words can be hy-
phenated and where.

Hyphenation does not always occur even when the hyphenation rules for a word allow it; it
can be disabled, and when not disabled there are several parameters that can prevent it in
certain circumstances. See Manipulating Hyphenation.

5.1.4. Breaking

Once an output line has been filled, whether or not hyphenation has occurred on that line,
the next word read from the input will be placed on a different output line; this is called a
break . In this manual and in roff discussions generally, a “break” if not further qualified
always refers to the termination of an output line. When the formatter is filling text, it intro-
duces breaks automatically to keep output lines from exceeding the current line length. Af-
ter an automatic break, GNU troff adjusts the line if applicable (see below), and then re-
sumes collecting and filling text on the next output line.

Sometimes, a line cannot be broken automatically. This typically does not happen with
natural language text unless the output line length has been manipulated to be extremely
short, but it can with specialized text like program source code. We can use perl at the
shell prompt to contrive an example of failure to break the output line. The regular output
is omitted below.

$ perl -e 'print "#" x 80, "\n";' | nroff

error troff: <standard input>:1: warning [p 1, 0.0i]:

error can't break line

The remedy for these cases is to tell GNU troff where the line may be broken without hy-
phens. This is done with the non-printing break point escape sequence ‘\:’; see Manipu-
lating Hyphenation.

18 The mnemonics for the special characters shown here are “dagger”, “double dagger”, “right (double)
quote”, and “closing (single) quote”.  See the groff_char(7) man page.



gtroff Reference -99-

What if the document author wants to stop filling lines temporarily, for instance to start a
new paragraph? There are several solutions. A blank line not only causes a break, but by
default it also outputs a one-line vertical space (effectively a blank line). This behavior can
be modified with the blank line macro request blm. See Blank Line Traps. Macro pack-
ages may discourage or disable the blank line method of paragraphing in favor of their own
macros.

A line that begins with a space causes a break and the space is output at the beginning of
the next line. This space isn’t adjusted (see below); however, this behavior can be modi-
fied with the leading spaces macro request lsm. See Leading Space Traps. Again, macro
packages may provide other methods of producing indented paragraphs.

What if there is no next input word? Or the file ends before enough words have been col-
lected to fill an output line? The end of the file also causes a break, resolving both of
these cases. Certain requests also cause breaks, implicitly or explicitly. This is discussed
in Manipulating Filling and Adjustment.

5.1.5. Adjustment

Once GNU troff has filled a line and broken it, it inserts additional inter-sentence space.
If the break was automatic, it then tries to adjust the line: inter-word spaces are widened
until the text reaches the right margin. Extra spaces between words are preserved, but
trailing spaces on an input line are ignored. Leading spaces are handled as noted above.
Text can be adjusted to the left or right margins only (instead of both), or centered; see
Manipulating Filling and Adjustment. As a rule, an output line that has not been filled will
not be adjusted.

5.1.6. Tab Stops

GNU troff translates horizontal tab characters, also called simply “tabs”, in the input into
movements to the next tab stop. These tab stops are by default located every half inch
across the page. With them, simple tables can be made easily.19 However, this method
can be deceptive as the appearance (and width) of the text on a terminal and the results
from GNU troff can vary greatly, particularly when proportional typefaces are used.

A further possible difficulty is that lines beginning with tab characters are still filled, possi-
bly producing unexpected results.20

1 2 3
4 5

The above example produces the following output.

1 2 3 4 5
GNU troff provides sufficient facilities for sophisticated table composition; Tabs and
Fields. There are many details to track when using such low-level features, so most users
turn to the tbl(1) preprocessor for table construction.

19 “Tab” is short for “tabulation”, revealing the term’s origin as a spacing mechanism for table arrangement.
20 It works well, on the other hand, for a traditional practice of paragraph composition wherein a tab is

used to create a first-line indentation.



gtroff Reference -100-

5.1.7. Requests and Macros

We have now encountered almost all of the syntax there is in roff languages, with one
conspicuous exception.

A request is an instruction to the formatter that occurs after a control character. A control
character must occur at the beginning of an input line to be recognized.21 The regular
control character has a counterpart, the no-break control character , which suppresses the
break that is implied by some requests. The default control characters are the dot (.) and
the neutral apostrophe ('), the latter being the no-break control character. These charac-
ters were chosen because it is uncommon for lines of text in natural languages to begin
with periods or apostrophes.

Lines beginning with a control character are called control lines.22 Every line of input that is
not a control line is a text line.

Requests often take arguments, words separated from the request name and each other
by spaces that specify details of the action GNU troff is expected to perform. If a request
is meaningless without arguments, it is typically ignored.

GNU troff requests, combined with its escape sequences, comprise the control language
of the formatter. Of key importance are the requests that define macros. Macros are in-
voked like requests, enabling the request repertoire to be extended or overridden.23

A macro can be thought of as an abbreviation you can define for a collection of control and
text lines. When the macro is called, it is replaced with what it stands for. The process of
replacing a macro call is known as interpolation.24 Interpolations are handled as soon as
they are recognized, and once performed, a roff formatter scans the replacement for fur-
ther requests, macro calls, and escape sequences.

In roff systems, the de request defines a macro.25

.de DATE

2020-11-14

..

The foregoing input produces no output by itself; all we have done is store some informa-
tion. Observe the pair of dots that end the macro definition. This is a default; you can
specify your own terminator for the macro definition as the second argument to the de re-
quest.

.de NAME ENDNAME

Heywood Jabuzzoff

.ENDNAME

In fact, the ending marker can itself be the name of a macro that will be called if it is de-
fined at the time the macro definition begins.

.de END

Big Rip

..

21 Occasionally a control character is expected as part of another request, such as if or while.
22 or a continuation of one (see Line Control)
23 Argument handling in macros is more flexible but also more complex. See Request and Macro Argu-

ments.
24 Some escape sequences undergo interpolation as well.
25 GNU troff offers additional ones. See Writing Macros.



gtroff Reference -101-

.de START END

Big Bang

.END

.START

⇒ Big Rip Big Bang

In the foregoing example, “Big Rip” printed before “Big Bang” because its macro was
called first. Consider what would happen if we dropped END from the ‘.de START’ line and
added .. after .END. Would the order change?

Let us consider a more elaborate example.

.de DATE

2020-10-05

..

.

.de BOSS

D.\& Kruger,

J.\& Peterman

..

.

.de NOTICE

Approved:

.DATE

by

.BOSS

..

.

Insert tedious regulatory compliance paragraph here.

.NOTICE

Insert tedious liability disclaimer paragraph here.

.NOTICE

⇒ Insert tedious regulatory compliance paragraph here.

⇒
⇒ Approved: 2020-10-05 by D. Kruger, J. Peterman

⇒
⇒ Insert tedious liability disclaimer paragraph here.

⇒
⇒ Approved: 2020-10-05 by D. Kruger, J. Peterman

The above document started with a series of lines beginning with the control character.
Three macros were defined, with a de request declaring the macro’s name, and the “body”
of the macro starting on the next line and continuing until a line with two dots ‘..’ marked
its end. The text proper began only after the macros were defined; this is a common pat-
tern. Only the NOTICE macro was called “directly” by the document; DATE and BOSS were
called only by NOTICE itself. Escape sequences were used in BOSS, two levels of macro in-
terpolation deep.



gtroff Reference -102-

The advantage in typing and maintenance economy may not be obvious from such a short
example, but imagine a much longer document with dozens of such paragraphs, each re-
quiring a notice of managerial approval. Consider what must happen if you are in charge of
generating a new version of such a document with a different date, for a different boss.
With well-chosen macros, you only have to change each datum in one place.

In practice, we would probably use strings (see Strings) instead of macros for such simple
interpolations; what is important here is to glimpse the potential of macros and the power
of recursive interpolation.

We could have defined DATE and BOSS in the opposite order; perhaps less obviously, we
could also have defined them after NOTICE. “Forward references” like this are acceptable
because the body of a macro definition is not (completely) interpreted, but stored instead
(see Copy Mode). While a macro is being defined, requests are not interpreted and
macros not interpolated, whereas some commonly used escape sequences are interpo-
lated. roff systems also support recursive macros—as long as you have a way to break
the recursion (see Conditionals and Loops). For maintainable roff documents, arrange
your macro definitions so that they are most easily understood when read from beginning
to end.

5.1.8. Macro Packages

Macro definitions can be collected into macro files, roff input files designed to produce no
output themselves but instead ease the preparation of other roff documents. There is no
syntactical difference between a macro file and any other roff document; only its purpose
distinguishes it. When a macro file is installed into a standard location and suitable for use
by a general audience, it is often termed a macro package.26 Macro packages can be
loaded by supplying the -m option to groff or troff. Alternatively, a groff document wish-
ing to use a macro package can load it with the mso (“macro source”) request.

5.1.9. Input Encodings

The groff front end calls the preconv preprocessor to handle most input character encod-
ing issues without troubling the user. Direct input to GNU troff, on the other hand, must
be in one of two encodings it can recognize.

cp1047 The code page 1047 input encoding works only on EBCDIC platforms (and con-
versely, the other input encodings don’t work with EBCDIC); the file
cp1047.tmac is loaded at start-up.

latin1 ISO Latin-1, an encoding for Western European languages, is the default input
encoding on non-EBCDIC platforms; the file latin1.tmac is loaded at start-up.

Any document that is encoded in ISO 646:1991 (a descendant of USAS X3.4-1968 or “US-
ASCII”), or, equivalently, uses only code points from the “C0 Controls” and “Basic Latin”
parts of the Unicode character set is also a valid ISO Latin-1 document; the standards are
interchangeable in their first 128 code points.27

26 Macro packages frequently define registers and strings as well.
27 The semantics of certain punctuation code points have gotten stricter with the successive standards, a

cause of some frustration among man page writers; see the groff_char(7) man page.



gtroff Reference -103-

The remaining encodings require support that is not built-in to the GNU troff executable;
instead, they use macro packages.

latin2 To use ISO Latin-2, an encoding for Central and Eastern European languages,
either use ‘.mso latin2.tmac’ at the very beginning of your document or use
‘-mlatin2’ as a command-line argument to groff.

latin5 To use ISO Latin-5, an encoding for the Turkish language, either use ‘.mso
latin5.tmac’ at the very beginning of your document or use ‘-mlatin5’ as a
command-line argument to groff.

latin9 ISO Latin-9 is a successor to Latin-1. Its main difference from Latin-1 is that
Latin-9 contains the Euro sign. To use this encoding, either use ‘.mso
latin9.tmac’ at the very beginning of your document or use ‘-mlatin9’ as a
command-line argument to groff.

Some input encoding characters may not be available for a particular output device. For
terminal devices, fallbacks are defined, like ‘EUR’ for the Euro sign and ‘(C)’ for the copy-
right sign. For typesetter devices it usually suffices to install fonts that have compatible
metrics with other fonts used in the document and contain the necessary glyphs.

Due to the importance of the Euro glyph in Europe, groff is distributed with a POSTSCRIPT

font called freeeuro.pfa, which provides various glyph shapes for the Euro. In other
words, Latin-9 encoding is supported for the -Tps device out of the box (Latin-2 isn’t).

The -Tutf8 device supports characters from all other input encodings. -Tdvi has support
for both Latin-2 and Latin-9 if the command-line -mec is used also to load the file ec.tmac

(which flips to the EC fonts).

5.1.10. Input Conventions

Since GNU troff fills text automatically, it is common practice in roff languages to not at-
tempt careful visual composition of text in input files: it is the esthetic appeal of the format-
ted output that matters. Instead, troff input should be arranged such that it is easy for
authors and maintainers to compose and develop the document, understand the syntax of
roff requests, macro calls, and preprocessor languages used, and predict the behavior of
the formatter. Several traditions have accrued in service of these goals.

• Break input lines after sentence-ending punctuation to ease their recognition (see
Sentences). It is frequently convenient to break after colons and semicolons as
well, as these typically precede independent clauses. Consider breaking after
commas; they often occur in lists that become easy to scan when itemized by
line, or constitute supplements to the sentence that are added, deleted, or up-
dated to clarify it.  Parenthetical and quoted phrases are also good candidates
for placement on input lines by themselves.

• Set your text editor’s line length to 72 characters or fewer.28 This limit, combined
with the previous advice regarding breaking around punctuation, makes it less
common that an input line will wrap in your text editor, and thus will help you per-
ceive excessively long constructions in your text. Recall that natural languages
originate in speech, not writing, and that punctuation is correlated with pauses for
breathing and changes in prosody.

28 Emacs: fill-column: 72; Vim: textwidth=72



gtroff Reference -104-

• Use \& after ‘!’, ‘?’, and ‘.’ if they are followed by space, tab, or newline charac-
ters and don’t end a sentence.

• Do not attempt to format the input in a WYSIWYG manner (i.e., don’t try using
spaces to get proper indentation or align columns of a table).

• Comment your document. It is never too soon to apply comments to record infor-
mation of use to future document maintainers (including your future self). We
thus introduce another escape sequence, \", which causes GNU troff to ignore
the remainder of the input line.

• Use the empty request—a control character followed immediately by a newline—
to visually manage separation of material in input files. The groff project’s own
documents use an empty request between sentences, after macro definitions,
and where a break is expected, and two empty requests between paragraphs or
other requests or macro calls that will introduce vertical space into the document.
You can combine the empty request with the comment escape to include whole-
line comments in your document, and even “comment out” sections of it.

We conclude this section with an example sufficiently long to illustrate the above sugges-
tions in practice. For the purpose of fitting the example between the margins of this man-
ual with the font used for its typeset version, we have shortened the input line length to 58
columns. We have also used an arrow→ to indicate a tab character.



gtroff Reference -105-

.\" raw roff input example

.\" nroff this_file.roff | less

.\" groff this_file.roff > this_file.ps

→The theory of relativity is intimately connected with the

theory of space and time.

.

I shall therefore begin with a brief investigation of the

origin of our ideas of space and time,

although in doing so I know that I introduce a

controversial subject.

.

.\" remainder of paragraph elided

.

.

→The experiences of an individual appear to us arranged in

a series of events;

in this series the single events which we remember appear

to be ordered according to the criterion of

\[lq]earlier\[rq] and \[lq]later\[rq], \" punct swapped

which cannot be analysed further.

.

There exists,

therefore,

for the individual,

an I-time,

or subjective time.

.

This itself is not measurable.

.

I can,

indeed,

associate numbers with the events,

in such a way that the greater number is associated with

the later event than with an earlier one;

but the nature of this association may be quite arbitrary.

.

This association I can define by means of a clock by

comparing the order of events furnished by the clock with

the order of a given series of events.

.

We understand by a clock something which provides a series

of events which can be counted,

and which has other properties of which we shall speak

later.

.\" Albert Einstein, _The Meaning of Relativity_, 1922



gtroff Reference -106-

5.2. Measurements

gtroff (like many other programs) requires numeric parameters to specify various mea-
surements. Most numeric parameters29 may have a measurement unit attached. These
units are specified as a single character that immediately follows the number or expres-
sion. Each of these units are understood, by gtroff, to be a multiple of its basic unit . So,
whenever a different measurement unit is specified gtroff converts this into its basic
units. This basic unit, represented by a ‘u’, is a device dependent measurement, which is
quite small, ranging from 1/75 th to 1/72000 th of an inch. The values may be given as
fractional numbers; however, fractional basic units are always rounded to integers.

Some of the measurement units are independent of any of the current settings (e.g., type
size) of GNU troff.

Although GNU troff’s basic unit is device-dependent, it may still be smaller than the
smallest unit the device is capable of producing. The register .H specifies how many groff

basic units constitute the current device’s basic unit horizontally, and the register .V speci-
fies this value vertically.

i Inches. An antiquated measurement unit still in use in certain backwards coun-
tries with incredibly low-cost computer equipment. One inch is defined to be
2.54 cm (worldwide since 1964).

c Centimeters. One centimeter is about 0.3937 in.

p Points. This is a typesetter’s measurement used for measure type size. It is
72 points to an inch.

P Pica. Another typesetting measurement. 6 picas to an inch (and 12 points to a
pica).

s

z See Fractional Type Sizes, for a discussion of these units.

f Fractions. Value is 65536. See Colors, for usage.

The other measurements understood by gtroff depend on settings currently in effect in
gtroff. These are very useful for specifying measurements that should look proper with
any size of text.

m Ems. This unit is equal to the current font size in points. So called because it is
approximately the width of the letter ‘m’ in the current font.

n Ens. In groff, this is half of an em.

v Vertical space. This is equivalent to the current line spacing. See Sizes.

M 100ths of an em.

5.2.1. Default Units

Many requests take a default unit. While this can be helpful at times, it can cause strange
errors in some expressions. For example, the line length request expects em units. Here
are several attempts to get a line length of 3.5 inches and their results:

29 those that specify vertical or horizontal motion or a type size



gtroff Reference -107-

3.5i ⇒ 3.5i

7/2 ⇒ 0i

7/2i ⇒ 0i

(7 / 2)u  ⇒ 0i

7i/2 ⇒ 0.1i

7i/2u ⇒ 3.5i

Everything is converted to basic units first. In the above example it is assumed that 1 i
equals 240 u, and 1 m equals 10 p (thus 1 m equals 33 u). The value 7 i/2 is first handled
as 7 i/2 m, then converted to 1680 u/66 u, which is 25 u, and this is approximately 0.1 i. As
can be seen, a scaling indicator after a closing parenthesis is simply ignored.

Thus, the safest way to specify measurements is to always attach a scaling indicator. If
you want to multiply or divide by a certain scalar value, use ‘u’ as the unit for that value.

5.3. Expressions

gtroff has most arithmetic operators common to other languages:

• Arithmetic: ‘+’ (addition), ‘-’ (subtraction), ‘/’ (division), ‘*’ (multiplication), ‘%’
(modulo). gtroff only provides integer arithmetic. The internal type used for
computing results is ‘int’, which is usually a 32-bit signed integer.

• Comparison: ‘<’ (less than), ‘>’ (greater than), ‘<=’ (less than or equal), ‘>=’
(greater than or equal), ‘=’ (equal), ‘==’ (the same as ‘=’).

• Logical: ‘&’ (logical and), ‘:’ (logical or).

• Unary operators: ‘-’ (negating, i.e., changing the sign), ‘+’ (just for completeness;
does nothing in expressions), ‘!’ (logical not; this works only within if and while

requests).30 See below for the use of unary operators in motion requests.

The logical not operator, as described above, works only within if and while re-
quests. Furthermore, it may appear only at the beginning of an expression, and
negates the entire expression. Attempting to insert the ‘!’ operator within the ex-
pression results in a ‘numeric expression expected’ warning. This maintains
compatibility with AT&T troff.

Example:

.nr X 1

.nr Y 0

.\" This does not work as expected.

.if (\n[X])&(!\n[Y]) .nop X only

.

.\" Use this construct instead.

.if (\n[X]=1)&(\n[Y]=0) .nop X only

• Extrema: ‘>?’ (maximum), ‘<?’ (minimum). Example:

.nr x 5

.nr y 3

.nr z (\n[x] >? \n[y])

30 For example, ‘!(-1)’ evaluates to ‘true’ because GNU troff treats both negative numbers and zero as
‘false’.



gtroff Reference -108-

The register z now contains 5.

• Scaling: (c;e). Evaluate e using c as the default scaling indicator. If c is miss-
ing, ignore scaling indicators in the evaluation of e.

Parentheses may be used as in any other language. However, in gtroff they are neces-
sary to ensure order of evaluation. gtroff has no operator precedence; expressions are
evaluated left to right. This means that gtroff evaluates ‘3+5*4’ as if it were parenthe-
sized like ‘(3+5)*4’, not as ‘3+(5*4)’, as might be expected.

For many requests that cause a motion on the page, the unary operators ‘+’ and ‘-’ work
differently if leading an expression. They then indicate a motion relative to the current po-
sition (down or up, respectively).

Similarly, a leading ‘|’ operator indicates an absolute position. For vertical movements, it
specifies the distance from the top of the page; for horizontal movements, it gives the dis-
tance from the beginning of the input line.

‘+’ and ‘-’ are also treated differently by the following requests and escapes: bp, in, ll, lt,
nm, nr, pl, pn, po, ps, pvs, rt, ti, \H, \R, and \s. Here, leading plus and minus signs indi-
cate increments and decrements.

See Setting Registers, for some examples.

\B'anything'
Return 1 if anything is a valid numeric expression; or 0 if anything is empty or not a
valid numeric expression.

Due to the way arguments are parsed, spaces are not allowed in expressions, unless the
entire expression is surrounded by parentheses.

See Request and Macro Arguments, and Conditionals and Loops.

5.4. Identifiers

Like any other language, GNU troff has rules for properly formed identifiers—labels for
objects with syntactical importance, like registers, names (macros, strings, diversions, or
boxes), environments, fonts, styles, and glyphs. In GNU troff, an identifier is a sequence
of one or more characters with the following exceptions.

• Spaces, tabs, or newlines.

• Invalid input characters; these are certain control characters (from the sets “C0
Controls” and “C1 Controls” as Unicode describes them). When GNU troff en-
counters one in an identifier, it produces a warning diagnostic of type ‘input’ (see
Debugging). On a machine using the ISO 646, 8859, or 10646 character encod-
ings, invalid input characters are 0x00, 0x08, 0x0B, 0x0D–0x1F, and 0x80–0x9F.

On an EBCDIC host, they are 0x00–0x01, 0x08, 0x09, 0x0B, 0x0D–0x14,
0x17–0x1F, and 0x30–0x3F.

Some of these code points are used by GNU troff internally, making it non-trivial
to extend the program to cover Unicode or other character encodings that use
characters from these ranges.31

Invalid characters are removed during parsing; an identifier foo, followed by an
31 Consider what happens when a C1 control 0x80–0x9F is necessary as a continuation byte in a UTF-8

sequence.



gtroff Reference -109-

invalid character, followed by bar is treated as foobar.

For example, any of the following identifiers is valid.

br

PP

(l

end-list

@_

An identifier longer than two characters with a closing bracket (‘]’) in its name can’t be ac-
cessed with bracket-form escape sequences that expect an identifier as a parameter. For
example, ‘\[foo]]’ accesses the glyph ‘foo’, followed by ‘]’ in whatever the surrounding
context is, whereas ‘\C’foo]’’ really asks for glyph ‘foo]’.

To avoid problems with the refer preprocessor, macro names should not start with ‘[’ or
‘]’. Due to backwards compatibility, everything after ‘.[’ and ‘.]’ is handled as a special
argument to refer. For example, ‘.[foo’ makes refer to start a reference, using ‘foo’ as
a parameter.

\A'ident'
Test whether an identifier ident is valid in gtroff. It expands to the character 1 or 0
according to whether its argument (usually delimited by quotes) is or is not accept-
able as the name of a string, macro, diversion, register, environment, or font. It re-
turns 0 if no argument is given. This is useful for looking up user input in some sort
of associative table.

\A’end-list’

⇒ 1

See Escapes, for details on parameter delimiting characters.

Identifiers in gtroff can be any length, but, in some contexts, gtroff needs to be told
where identifiers end and text begins (and in different ways depending on their length):

• Single character.

• Two characters. Must be prefixed with ‘(’ in some situations.

• Arbitrary length (gtroff only). Must be bracketed with ‘[’ and ‘]’ in some situa-
tions. Any length identifier can be put in brackets.

Unlike many other programming languages, undefined identifiers are silently ignored or ex-
panded to nothing. When gtroff finds an undefined identifier, it emits a warning, doing
the following:

• If the identifier is a string, macro, or diversion, gtroff defines it as empty.

• If the identifier is a register, gtroff defines it with a value of 0.

See Warnings, Interpolating Registers, and Strings.

Identifiers for macros, strings, diversions (and boxes) share a name space.

.de xxx

. nop foo

..

.

.di xxx

bar



gtroff Reference -110-

.br

.di

.

.xxx

⇒ bar

As the previous example shows, GNU troff reuses the identifier ‘xxx’, changing it from a
macro to a diversion. No warning is emitted! The contents of the first macro definition are
lost.

See Interpolating Registers, and Strings.

5.5. Embedded Commands

To support the needs of documents that require more than filling, automatic line breaking
and hyphenation, and adjustment, GNU troff allows commands to be embedded into the
text. This is done in two ways.

One is a request that takes up an entire line, and often performs some large-scale opera-
tion such as breaking a lines or starting a new page.

The other is an escape that can usually be embedded anywhere in the text; most requests
can accept an escape even as an argument. Escapes typically implement relatively minor
operations like sub- and superscripting or interpolating a symbol.

5.5.1. Requests

A request line begins with a control character, which is either a single quote (‘’’, the no-
break control character ) or a period (‘.’, the normal control character ). These can be
changed; see Character Translations, for details. After this there may be optional tabs or
spaces followed by an identifier, which is the name of the request. This may be followed
by any number of space-separated arguments (no tabs here).

Since spaces and tabs are ignored after a control character, it is common practice to use
them to structure the source of documents or macro files.

.de foo

. tm This is foo.

..

.

.

.de bar

. tm This is bar.

..

Another possibility is to use the blank line macro request blm by assigning an empty macro
to it.

.de do-nothing

..

.blm do-nothing  \" activate blank line macro

.de foo

. tm This is foo.



gtroff Reference -111-

..

.de bar

. tm This is bar.

..

.blm \" deactivate blank line macro

See Blank Line Traps.

To begin a line with a control character without it being interpreted, precede it with \&. This
represents a non-printing input break, which means it does not affect the output.

In most cases the period is used as a control character. Several requests cause a break
implicitly; using the single quote control character prevents this.

\n[.br]

A read-only register, which is set to 1 if a macro is called with the normal control
character (as defined with the cc request), and set to 0 otherwise.

This allows reliable modification of requests.

.als bp*orig bp

.de bp

. tm before bp

. ie \\n[.br] .bp*orig

. el ’bp*orig

. tm after bp

..

Using this register outside of a macro makes no sense (it always returns zero in such
cases).

If a macro is called as a string (that is, using \*), the value of the .br register is in-
herited from the caller.

5.5.1.1. Request and Macro Arguments

Arguments to requests and macros are separated by space characters.32 Only one space
between arguments is necessary; additional ones are harmless and ignored.

A macro argument that must contain space characters can either be enclosed in double
quotes—this is not true of requests—or one of several varieties of escape with a spacing
function can be used instead.

Consider calls to a hypothetical macro uh:

.uh The Mouse Problem

.uh "The Mouse Problem"

.uh The\˜Mouse\˜Problem

.uh The\ Mouse\ Problem

The first line is the uh macro being called with three arguments, ‘The’, ‘Mouse’, and ‘Prob-
lem’. The remainder call the uh macro with one argument, ‘The Mouse Problem’. The last

32 Plan 9 troff also allows tabs for argument separation—GNU troff intentionally doesn’t support this.



gtroff Reference -112-

solution, using escaped spaces, is “classical” in the sense that it can be found in docu-
ments prepared for AT&T troff. Nevertheless, it is not optimal in most situations, since ‘\
’ inserts a fixed-width, non-breaking space character that can’t be adjusted. GNU troff
provides a different command \˜ to insert a adjustable, non-breaking space.33

A double quote that isn’t preceded by a space doesn’t start a macro argument. If not clos-
ing a string, it is printed literally.

For example,

.xxx a" "b c" "de"fg"

has the arguments ‘a"’, ‘b c’, ‘de’, and ‘fg"’. Don’t rely on this obscure behaviour!

There are two possibilities to get a double quote reliably.

• Enclose the whole argument with double quotes and use two consecutive double
quotes to represent a single one. This traditional solution has the disadvantage
that double quotes don’t survive argument expansion again if called in compatibil-
ity mode (using the -C option of groff):

.de xx

. tm xx: ‘\\$1’ ‘\\$2’ ‘\\$3’

.

. yy "\\$1" "\\$2" "\\$3"

..

.de yy

. tm yy: ‘\\$1’ ‘\\$2’ ‘\\$3’

..

.xx A "test with ""quotes""" .

⇒ xx: ‘A’ ‘test with "quotes"’ ‘.’

⇒ yy: ‘A’ ‘test with ’ ‘quotes""’

If not in compatibility mode, you get the expected result

xx: ‘A’ ‘test with "quotes"’ ‘.’

yy: ‘A’ ‘test with "quotes"’ ‘.’

since gtroff preserves the input level.

• Use the double-quote glyph \(dq. This works with and without compatibility
mode enabled since GNU troff doesn’t convert \(dq back to a double-quote in-
put character. This method won’t work with AT&T troff since it doesn’t define
the ‘dq‘ special character.

Double quotes in the ds request are handled differently. See Strings, for more details.

5.5.2. Escapes

Escapes may occur anywhere in the input to gtroff. They usually begin with a backslash
and are followed by a single character, which indicates the function to be performed. The
escape character can be changed; see Character Translations.

33 \˜ is also supported by Heirloom Doctools troff 050915 (September 2005) and mandoc 1.14.5 (March
2019) but not by Plan 9 troff, Solaris troff, DWB troff or onroff, or neatroff.



gtroff Reference -113-

Escape sequences that require an identifier as a parameter accept three possible syntax
forms.

• The next single character is the identifier.

• If this single character is an opening parenthesis, take the following two charac-
ters as the identifier. There is no closing parenthesis after the identifier.

• If this single character is an opening bracket, take all characters until a closing
bracket as the identifier.

Examples:

\fB

\n(XX

\*[TeX]

Other escapes may require several arguments and/or some special format. In such cases
the argument is traditionally enclosed in single quotes (and quotes are always used in this
manual for the definitions of escape sequences). The enclosed text is then processed ac-
cording to what that escape expects. Example:

\l’1.5i\(bu’

The quote character can be replaced with any other character that does not occur in the
argument (even a newline or a space character) in the following escapes: \o, \b, and \X.
This makes e.g.

A caf

\o

e\’

in Paris

⇒ A café in Paris

possible, but it is better not to use this feature to avoid confusion.

The following escape sequences (which are handled similarly to characters since they
don’t take a parameter) are also allowed as delimiters: \%, ‘\ ’, \|, \ˆ, \{, \}, \’, \‘, \-,
\_, \!, \?, \), \/, \,, \&, \:, \˜, \0, \a, \c, \d, \e, \E, \p, \r, \t, and \u. Again, don’t use
these if possible.

No newline characters as delimiters are allowed in the following escapes: \A, \B, \Z, \C,
and \w.

Finally, the escapes \D, \h, \H, \l, \L, \N, \R, \s, \S, \v, and \x can’t use the following
characters as delimiters:

• The digits 0-9.

• The (single-character) operators ‘+-/*%<>=&:().’.

• The space, tab, and newline characters.

• All escape sequences except \%, \:, \{, \}, \’, \‘, \-, \_, \!, \/, \c, \e, and \p.

To have a backslash (actually, the current escape character) appear in the output several
escapes are defined: \\, \e or \E. These are very similar, and only differ with respect to
being used in macros or diversions. See Character Translations, for an exact description
of those escapes.



gtroff Reference -114-

See Implementation Differences, Copy Mode, Diversions, and Identifiers.

5.5.2.1. Comments

One of the most common forms of escape is the comment.34

\"

Start a comment.  Everything to the end of the input line is ignored.

This may sound simple, but it can be tricky to keep the comments from interfering
with the appearance of the final output.

If the escape is to the right of some text or a request, that portion of the line is ig-
nored, but the space leading up to it is noticed by gtroff. This only affects the ds
and as request and its variants.

One possibly irritating idiosyncrasy is that tabs should not be used to vertically align
comments in the source document. Tab characters are not treated as separators be-
tween a request name and its argument, nor between arguments.

A comment on a line by itself is treated as a blank line, because after eliminating the
comment, that is all that remains:

Test

\" comment

Test

produces

Test

Test

To avoid this, it is common to start the line with .\", which causes the line to be
treated as an undefined request and thus ignored completely.

Another commenting scheme seen sometimes is three consecutive single quotes
(”’) at the beginning of a line. This works, but gtroff gives a warning about an un-
defined macro (namely ”), which is harmless, but irritating.

\#

To avoid all this, gtroff has a new comment mechanism using the \# escape. This
escape works the same as \" except that the newline is also ignored:

Test

\# comment

Test

produces

Test Test

as expected.

.ig [end ]
Ignore all input until gtroff encounters the macro named .end on a line by itself (or
.. if end is not specified). This is useful for commenting out large blocks of text:

34 This claim may be more aspirational than descriptive.



gtroff Reference -115-

text text text...

.ig

This is part of a large block

of text that has been

temporarily(?) commented out.

We can restore it simply by removing

the .ig request and the ".." at the

end of the block.

..

More text text text...

produces

text text text...  More text text text...

The commented-out block of text does not cause a break.

The input is read in copy-mode; auto-incremented registers are affected (see Auto-
increment).

5.6. Registers

Numeric variables in GNU troff are called registers. There are a number of built-in regis-
ters, supplying anything from the date to details of formatting parameters.

See Identifiers, for details on register identifiers.

5.6.1. Setting Registers

Define or set registers using the nr request or the \R escape.

Although the following requests and escapes can be used to create registers, simply using
an undefined register will cause it to be set to zero.

.nr ident value
\R'ident value'

Set register ident to value. If ident doesn’t exist, GNU troff creates it.

The argument to \R usually has to be enclosed in quotes. See Escapes, for details
on parameter delimiting characters.

(Later, we will discuss additional forms of nr and \R that can change a register’s
value after it is dereferenced. Auto-increment.)

The \R escape doesn’t produce an input token in GNU troff; in other words, it van-
ishes completely after GNU troff has processed it.

For example, the following two lines are equivalent:

.nr a (((17 + (3 * 4))) % 4)

\R'a (((17 + (3 * 4))) % 4)'

⇒ 1

The complete transparency of \R can cause surprising effects if you use registers like
.k, which get evaluated at the time they are accessed.

.ll 1.6i



gtroff Reference -116-

.

aaa bbb ccc ddd eee fff ggg hhh\R':k \n[.k]'

.tm :k == \n[:k]

⇒ :k == 126950

.

.br

.

aaa bbb ccc ddd eee fff ggg hhh\h'0'\R':k \n[.k]'

.tm :k == \n[:k]

⇒ :k == 15000

If you process this with the POSTSCRIPT device (-Tps), there will be a line break eventu-
ally after ggg in both input lines. However, after processing the space after ggg, the
partially collected line is not overfull yet, so GNU troff continues to collect input until
it sees the space (or in this case, the newline) after hhh. At this point, the line is
longer than the line length, and the line gets broken.

In the first input line, since the \R escape leaves no traces, the check for the overfull
line hasn’t been done yet at the point where \R gets handled, and you get a value for
the .k register that is even greater than the current line length.

In the second input line, the insertion of \h’0’ to emit an invisible zero-width space
forces GNU troff to check the line length, which in turn causes the start of a new
output line. Now .k returns the expected value.

Both nr and \R have two additional special forms to increment or decrement a register.

.nr ident +value

.nr ident -value
\R'ident +value'
\R'ident -value'

Increment (decrement) register ident by value.

.nr a 1

.nr a +1

\na

⇒ 2

To assign the negated value of a register to another register, some care must be
taken to get the desired result:

.nr a 7

.nr b 3

.nr a -\nb

\na

⇒ 4

.nr a (-\nb)

\na

⇒ -3

The surrounding parentheses prevent the interpretation of the minus sign as a decre-
menting operator. An alternative is to start the assignment with a ‘0’:

.nr a 7

.nr b -3



gtroff Reference -117-

.nr a \nb

\na

⇒ 4

.nr a 0\nb

\na

⇒ -3

.rr ident
Remove register ident . If ident doesn’t exist, the request is ignored. Technically,
only the name is removed; the register’s contents are still accessible under aliases
created with aln, if any.

.rnn ident1 ident2
Rename register ident1 to ident2 . If either ident1 or ident2 doesn’t exist, the request
is ignored.

.aln new old
Create an alias new for an existing register old , causing the names to refer to the
same stored object. If old is undefined, a warning of type ‘reg’ is generated and the
request is ignored.  See Debugging, for information about warnings.

To remove a register alias, call rr on its name. A register’s contents do not become
inaccessible until it has no more names.

5.6.2. Interpolating Registers

Numeric registers can be accessed via the \n escape.

\ni
\n(id
\n[ident ]

Interpolate register with name ident (one-character name i , two-character name id ).
This means that the value of the register is expanded in-place while gtroff is pars-
ing the input line. Nested assignments (also called indirect assignments) are possi-
ble.

.nr a 5

.nr as \na+\na

\n(as

⇒ 10

.nr a1 5

.nr ab 6

.ds str b

.ds num 1

\n[a\n[num]]

⇒ 5

\n[a\*[str]]

⇒ 6



gtroff Reference -118-

5.6.3. Auto-increment

Number registers can also be auto-incremented and auto-decremented. The increment or
decrement value can be specified with a third argument to the nr request or \R escape.

.nr ident value incr
Set register ident to value; the increment for auto-incrementing is set to incr . The \R

escape doesn’t support this notation.

To activate auto-incrementing, the escape \n has a special syntax form.

\n+i
\n-i
\n+(id
\n-(id
\n+[ident ]
\n-[ident ]

Before interpolating, increment or decrement ident (one-character name i , two-char-
acter name id ) by the auto-increment value as specified with the nr request (or the
\R escape). If no auto-increment value has been specified, these syntax forms are
identical to \n.

For example,

.nr a 0 1

.nr xx 0 5

.nr foo 0 -2

\n+a, \n+a, \n+a, \n+a, \n+a

.br

\n-(xx, \n-(xx, \n-(xx, \n-(xx, \n-(xx

.br

\n+[foo], \n+[foo], \n+[foo], \n+[foo], \n+[foo]

produces

1, 2, 3, 4, 5

-5, -10, -15, -20, -25

-2, -4, -6, -8, -10

To change the increment value without changing the value of a register (a in the example),
the following can be used:

.nr a \na 10

5.6.4. Assigning Formats

When a register is used, it is always textually replaced (or interpolated) with a representa-
tion of that number. This output format can be changed to a variety of formats (numbers,
Roman numerals, etc.). This is done using the af request.

.af ident format
Change the output format of a register. The first argument ident is the name of the
register to be changed, and the second argument format is the output format. The
following output formats are available:



gtroff Reference -119-

1 Decimal arabic numbers. This is the default format: 0, 1, 2, 3, ...

0...0 Decimal numbers with as many digits as specified. So, ‘00’ would
result in printing numbers as 01, 02, 03, ...

In fact, any digit instead of zero does work; gtroff only counts how
many digits are specified. As a consequence, af’s default format ‘1’
could be specified as ‘0’ also (and exactly this is returned by the \g
escape, see below).

I Upper-case Roman numerals: 0, I, II, III, IV, ...

i Lower-case Roman numerals: 0, i, ii, iii, iv, ...

A Upper-case letters: 0, A, B, C, ..., Z, AA, AB, ...

a Lower-case letters: 0, a, b, c, ..., z, aa, ab, ...

Omitting the register format causes a warning of type ‘missing’. See Debug-
ging, for more details. Specifying a nonexistent format causes an error.

The following example produces ‘10, X, j, 010’:

.nr a 10

.af a 1           \" the default format

\na,

.af a I

\na,

.af a a

\na,

.af a 001

\na

The largest number representable for the ‘i’ and ‘I’ formats is 39999 (or
−39999); Unix troff uses ‘z’ and ‘w’ to represent 10000 and 5000 in Roman
numerals, and so does gtroff. Currently, the correct glyphs of Roman nu-
meral five thousand and Roman numeral ten thousand (Unicode code points
U+2182 and U+2181, respectively) are not available.

If ident doesn’t exist, it is created.

Changing the output format of a read-only register causes an error. It is neces-
sary to first copy the register’s value to a writable register, then apply the af re-
quest to this other register.

\gi
\g(id
\g[ident ]

Return the current format of the specified register ident (one-character name i , two-
character name id ). For example, ‘\ga’ after the previous example would produce
the string ‘000’. If the register hasn’t been defined yet, nothing is returned.

5.6.5. Built-in Registers



gtroff Reference -120-

The following lists some built-in registers that are not described elsewhere in this manual.
Any register that begins with a ‘.’ is read-only. A complete listing of all built-in registers
can be found in Register Index.

\n[.F] This string-valued register returns the current input file name.

\n[.H] Number of basic units per horizontal unit of output device resolution. See Mea-
surements.

\n[.R] The number of registers available. This is always 10000 in GNU troff; it exists
for backward compatibility.

\n[.U] If gtroff is called with the -U command-line option to activate unsafe mode, the
register .U is set to 1, and to zero otherwise. See Options.

\n[.V] Number of basic units per vertical unit of output device resolution. See Mea-
surements.

\n[seconds]

The number of seconds after the minute, normally in the range 0 to 59, but can
be up to 61 to allow for leap seconds. Initialized at start-up of gtroff.

\n[minutes]

The number of minutes after the hour, in the range 0 to 59. Initialized at start-up
of gtroff.

\n[hours]

The number of hours past midnight, in the range 0 to 23. Initialized at start-up of
gtroff.

\n[dw] Day of the week (1–7).

\n[dy] Day of the month (1–31).

\n[mo] Current month (1–12).

\n[year] The current year.

\n[yr] The current year minus 1900. Unfortunately, the documentation of Unix Ver-
sion 7’s troff had a year 2000 bug: It incorrectly claimed that yr contains the
last two digits of the year. That claim has never been true of either AT&T troff

or GNU troff. Old troff input that looks like this:

’\" The following line stopped working after 1999

This document was formatted in 19\n(yr.

can be corrected as follows:

This document was formatted in \n[year].

or, to be portable to older troff versions, as follows:

.nr y4 1900+\n(yr

This document was formatted in \n(y4.



gtroff Reference -121-

\n[.c]

\n[c.] The current input line number. Register ‘.c’ is read-only, whereas ‘c.’ (a
gtroff extension) is writable also, affecting both ‘.c’ and ‘c.’.

\n[ln] The current output line number after a call to the nm request to activate line
numbering.

See Miscellaneous, for more information about line numbering.

\n[.x] The major version number. For example, if the version number is 1.03 then .x
contains ‘1’.

\n[.y] The minor version number. For example, if the version number is 1.03 then .y
contains ‘03’.

\n[.Y] The revision number of groff.

\n[$$] The process ID of gtroff.

\n[.g] Always 1. Macros should use this to determine whether they are running under
GNU troff.

\n[.A] If the command-line option -a is used to produce an ASCII approximation of the
output, this is set to 1, zero otherwise. See Options.

\n[.O] This read-only register is set to the suppression nesting level (see escapes \O).
See Suppressing output.

\n[.P] This register is set to 1 (and to 0 otherwise) if the current page is actually being
printed, i.e., if the -o option is being used to only print selected pages. See Op-
tions, for more information.

\n[.T] If gtroff is called with the -T command-line option, the register .T is set to 1,
and zero otherwise. See Options.

5.7. Manipulating Filling and Adjustment

Various ways of causing breaks were shown in Breaking. The br request likewise causes
a break. Several other requests also cause breaks implicitly. These are bp, ce, cf, fi, fl,
in, nf, rj, sp, ti, and trf. If the no-break control character is used with any of these re-
quests, GNU troff suppresses the break.

An output line is said to be pending if some input has been collected but an output line
corresponding to it has not yet been written. If no output line is pending, it is as if a break
has already happened; additional breaks, whether explicit or implicit, have no effect.

.br

Break the current line: any input collected on the pending output line is emitted with-
out adjustment.

foo bar

.br

baz

'br

qux



gtroff Reference -122-

⇒ foo bar

⇒ baz qux

Initially, GNU troff fills text and adjusts it to both margins. Filling can be disabled via the
nf request and re-enabled with the fi request.

.fi

\n[.u]

Activate fill mode; a pending output line is broken. The read-only register .u is set
to 1.

Fill mode enablement status is associated with the current environment (see Environ-
ments).

See Line Control, for interaction with the \c escape.

.nf

Activate no-fill mode: the output line length (see Line Layout) is ignored and output
lines are broken where the input lines are. A pending output line is broken and ad-
justment is suppressed.  The register .u is set to 0.

Fill mode enablement status is associated with the current environment (see Environ-
ments).

See Line Control, for interaction with the \c escape.

.ad [mode]
\n[.j]

Set adjustment mode to mode, taking effect when the pending (or next) output line is
broken. Adjustment is suppressed in no-fill mode.

mode can have one of the following values.

b

n Adjust “normally”: to both margins. This is the GNU troff default.

c Center filled text. Contrast with the ce request, which centers text
without filling.

l Adjust text to the left margin, producing what is sometimes called
ragged-right text.

r Adjust text to the right margin, producing ragged-left text.

Finally, mode can be the numeric argument returned by the .j register.

Using ad without an argument is the same as ‘.ad \n[.j]’. In particular, GNU
troff adjusts lines in the same way it did before adjustment was deactivated
(with a call to na, say). For example, this input code

.de AD

. br

. ad \\$1

..

.

.de NA

. br

. na



gtroff Reference -123-

..

.

left

.AD r

.nr ad \n[.j]

right

.AD c

center

.NA

left

.AD

center

.AD \n[ad]

right

produces the following output:

left

right

center

left

center

right

The current adjustment mode is available in the read-only register .j; it can be
stored and subsequently used to set adjustment.

The adjustment mode and enablement status are associated with the current
environment (see Environments).

The value of .j for any adjustment mode is an implementation detail and
should not be relied upon as a programmer’s interface.

.na

Disable adjustment. This produces the same output as adjustment to the left margin,
but the value of the adjustment mode register .j is altered differently.

The adjustment mode and enablement status are associated with the current envi-
ronment (see Environments).

.brp

\p

Break, adjusting the line per the current adjustment mode.

With \p, this break will happen at the next word boundary. The \p itself is removed
entirely, adding neither a break nor a space where it appears in input; it can thus be
placed in the middle of a word to cause a break at the end of that word.

In most cases this produces ugly results since GNU troff doesn’t have a sophisti-
cated paragraph-building algorithm (as TEX has, for example); instead, GNU troff
fills and adjusts a paragraph line by line.

.ll 4.5i

This is an uninteresting sentence.

This is an uninteresting sentence.\p

This is an uninteresting sentence.



gtroff Reference -124-

is formatted as follows.

This is an uninteresting sentence. This is

an uninteresting sentence.

This is an uninteresting sentence.

.ce [nnn]
\n[.ce]

Center the next nnn input text lines without filling them. A pending output line is bro-
ken. The number of lines still to be centered is associated with the current environ-
ment (see Environments).

While the ‘.ad c’ request also centers text, it fills the text as well. The following ex-
ample demonstrates the difference.

.de FR

This is a small text fragment that shows the differences

between the '.ce' and the '.ad c' requests.

..

.ll 4i

.ce 1000

.FR

.ce 0

.ad c

.FR

⇒ This is a small text fragment that shows

⇒ the differences

⇒ between the ‘.ce’ and the ‘.ad c’ requests.

⇒
⇒ This is a small text fragment that shows

⇒ the differences between the ‘.ce’ and

⇒ the ‘.ad c’ requests.

With no arguments, ce centers the next line of text. nnn specifies the number of lines
to be centered.  If the argument is zero or negative, centering is disabled.

The basic length for centering text is the line length (as set with the ll request) mi-
nus the indentation (as set with the in request). Temporary indentation is ignored.

The previous example illustrates a common idiom of turning centering on for a quan-
tity of lines far in excess of what is required, and off again after the text to be cen-
tered. This pattern is useful for any request that takes a count of input lines as an ar-
gument.

The .ce read-only register contains the number of lines remaining to be centered, as
set by the ce request.

.rj [nnn]
\n[.rj]

Align the next nnn input text lines to the right margin without filling them. A pending
output line is broken. The .rj read-only register is the number of lines to be right-
justified as set by the rj request. The number of lines still to be right-justified is as-
sociated with the current environment (see Environments).



gtroff Reference -125-

.ss word-space-size [additional-sentence-space-size]
\n[.ss]

\n[.sss]

Set the sizes of spaces between words and sentences.35 Their units are twelfths of
the space width parameter of the current font. Initially both the word-space-size and
additional-sentence-space-size are 12. Negative values are not permitted. The re-
quest is ignored if there are no arguments.

The first argument, the inter-word space size, is a minimum; if automatically ad-
justed, it may increase.

The optional second argument sets the amount of additional space separating sen-
tences on the same output line in fill mode. If the second argument is omitted, addi-
tional-sentence-space-size is set to word-space-size.

The read-only registers .ss and .sss hold the values of minimal inter-word space
and additional inter-sentence space, respectively. These parameters are associated
with the current environment (see Environments), and rounded down to the nearest
multiple of 12 on terminal output devices.

Additional inter-sentence spacing is used only in fill mode, and only if the output line
is not full when the end of a sentence occurs in the input. If a sentence ends at the
end of an input line, then both an inter-word space and an inter-sentence space are
added to the output; if two spaces follow the end of a sentence in the middle of an in-
put line, then the second space becomes an inter-sentence space in the output. Ad-
ditional inter-sentence space is not adjusted, but the inter-word space that always
precedes it may be. Further input spaces after the second, if present, are adjusted
as normal.

A related application of the ss request is to insert discardable horizontal space; i.e.,
space that is discarded at a line break. For example, some footnote styles collect the
notes into a single paragraph with large spaces between each.

.ie n .ll 50n

.el .ll 2.75i

.ss 12 48

1. J. Fict. Ch. Soc. 6 (2020), 3\[en]14.

2. Better known for other work.

The result has obvious inter-sentence spacing.

1. J. Fict. Ch. Soc. 6 (2020), 3-14.     2. Better

known for other work.

If undiscardable space is required, use the \h escape.

5.8. Manipulating Hyphenation

GNU troff hyphenates words automatically by default. Automatic hyphenation of words
in natural languages is a subject requiring algorithms and data, and is susceptible to con-
ventions and preferences. Before tackling automatic hyphenation, let us consider how it
can be done manually.

35 See Filling and Sentences for the definitions of word and sentence boundaries, respectively.



gtroff Reference -126-

Explicitly hyphenated words such as “mother-in-law” are eligible for breaking after each of
their hyphens when GNU troff fills lines. Relatively few words in a language offer such
obvious break points, however, and automatic hyphenation is not perfect, particularly for
unusual words found in domain-specific jargon. We may wish to explicitly instruct GNU
troff how to hyphenate words if the need arises.

.hw word ...
Define each hyphenation exception word with each hyphen ‘-’ in the word indicating
a hyphenation point.  For example, the request

.hw in-sa-lub-rious alpha

marks potential hyphenation points in “insalubrious”, and prevents “alpha” from being
hyphenated at all.

Besides the space character, any character whose hyphenation code is zero can be
used to separate the arguments of hw (see the hcode request below). In addition,
this request can be used more than once.

Hyphenation points specified with hw are not subject to the restrictions given by the
hy request (see below).

Hyphenation exceptions specified with the hw request are associated with the hy-
phenation language (see below) and environment (see Environments); calling the hw
request in the absence of a hyphenation language is an error.

The request is ignored if there are no parameters.

These are known as hyphenation exceptions in the expectation that most users will avail
themselves of automatic hyphenation; these exceptions override any rules that would nor-
mally apply to a word matching a hyphenation exception defined with hw.

Situations also arise when only a specific occurrence of a word needs its hyphenation al-
tered or suppressed, or when something that is not a word in a natural language, like a
URL, needs to be broken in sensible places without hyphens.

\%

\:

To tell GNU troff how to hyphenate words as they occur in input, use the \% es-
cape, also known as the hyphenation character . Preceding a word with this escape
prevents it from being automatically hyphenated; each instance within a word indi-
cates to GNU troff that the word may be hyphenated at that point. This mechanism
affects only that occurrence of the word; to change the hyphenation of a word for the
remainder of the document, use the hw request.

GNU troff regards the escapes \X and \Y as starting a word; that is, the \% escape
in, say, ‘\X’...’\%foobar’ or ‘\Y’...’\%foobar’ no longer prevents hyphenation of
‘foobar’ but inserts a hyphenation point just prior to it; most likely this isn’t what you
want. See Postprocessor Access.

The \: escape inserts a non-printing break point; that is, the word can break there,
but the soft hyphen glyph is not written to the output if it does. Breaks are word
boundaries, so if a break is inserted, the remainder of the (input) word is subject to
hyphenation as normal.

You can use \: and \% in combination to control breaking of a file name or URL.

... check \%/var/log/\:\%httpd/\:\%access_log ...



gtroff Reference -127-

.hc [char ]
Change the hyphenation character to char . This character then works as the \% es-
cape normally does, and thus no longer appears in the output.36 Without an argu-
ment, hc resets the hyphenation character to \% (the default).

The hyphenation character is associated with the current environment (see Environ-
ments).

.shc [glyph]
Set the soft hyphen character to glyph.37 If the argument is omitted, the soft hyphen
character is set to the default, \[hy]. The soft hyphen character is the glyph that is
inserted when a word is automatically hyphenated at a line break.38 If the soft hy-
phen character does not exist in the font of the character immediately preceding a
potential break point, then the line is not broken at that point. Neither character defi-
nitions (specified with the char and similar requests) nor translations (specified with
the tr request) are considered when assigning the soft hyphen character.

Several requests influence automatic hyphenation. Because conventions vary, a variety of
hyphenation modes is available to the hy request; these determine whether automatic hy-
phenation will apply to a word prior to breaking a line at the end of a page (more or less;
see below for details), and at which positions within that word hyphenation is permissible.
The places within a word that are eligible for hyphenation are determined by language-spe-
cific data and lettercase relationships. Furthermore, hyphenation of a word might be sup-
pressed because too many previous lines have been hyphenated (hlm), the line has not
reached a certain minimum length (hym), or the line can instead be adjusted with up to a
certain amount of additional inter-word space (hys).

.hy [mode]
\n[.hy]

Set hyphenation mode to mode. The optional numeric argument mode encodes
conditions for hyphenation.

Typesetting practice generally does not avail itself of every opportunity for hyphena-
tion, but the details differ by language and site mandates. The hyphenation modes of
AT&T troff were implemented with English-language publishing practices of the
1970s in mind, not a scrupulous enumeration of conceivable parameters. GNU
troff extends those modes such that finer-grained control is possible, favoring com-
patibility with older implementations over a more intuitive arrangement. The means
of hyphenation mode control is a set of numbers that can be added up to encode the
behavior sought.39 The entries in the table below are termed values, and the sum of
the desired values is the mode.

0 disables hyphenation.

36 \% itself stops marking hyphenation points but still produces no output glyph.
37 “Soft hyphen character ” is a misnomer since it is an output glyph.
38 It is “soft” because it only appears in output where hyphenation is actually performed; a “hard” hyphen,

as in “long-term”, always appears.
39 The mode is a vector of booleans encoded as an integer. To a programmer, this fact is easily deduced

from the exclusive use of powers of two for the configuration parameters; they are computationally easy to
“mask off” and compare to zero. To almost everyone else, the arrangement seems recondite and unfriendly.



gtroff Reference -128-

1 enables hyphenation except after the first and before the last charac-
ter of a word; this is the default if mode is omitted and also the start-
up value of GNU troff.

The remaining values “imply” 1; that is, they enable hyphenation under the
same conditions as ‘.hy 1’, and then apply or lift restrictions relative to that ba-
sis.

2 disables hyphenation of the last word on a page.40

4 disables hyphenation before the last two characters of a word.

8 disables hyphenation after the first two characters of a word.

16 enables hyphenation before the last character of a word.

32 enables hyphenation after the first character of a word.

Any restrictions imposed by the hyphenation mode are not respected for words
whose hyphenations have been explicitly specified with the hyphenation char-
acter (‘\%’ by default) or the hw request.

The nonzero values in the previous table are additive. For example, value 12
causes GNU troff to hyphenate neither the last two nor the first two charac-
ters of a word. Some values cannot be used together because they contradict;
for instance, values 4 and 16, and values 8 and 32. As noted, it is superfluous
to add 1 to any nonzero even mode.

The automatic placement of hyphens in words is determined by pattern files,
which are derived from TEX and available for several languages. The number
of characters at the beginning of a word after which the first hyphenation point
should be inserted is determined by the patterns themselves; it can’t be re-
duced further without introducing additional, invalid hyphenation points (unfor-
tunately, this information is not part of a pattern file—you have to know it in ad-
vance). The same is true for the number of characters at the end of a word be-
fore the last hyphenation point should be inserted. For example, you can sup-
ply the following input to ‘echo $(nroff)’.

.ll 1

.hy 48

splitting

You will get

s- plit- t- in- g

instead of the correct ‘split- ting’. U.S. English patterns as distributed with GNU
troff need two characters at the beginning and three characters at the end;
this means that value 4 of hy is mandatory. Value 8 is possible as an additional
restriction, but values 16 and 32 should be avoided, as should mode 1 (the

40 This value prevents hyphenation if the next page location trap is closer than the next text baseline would
be. GNU troff automatically inserts an implicit vertical position trap at the end of each page to cause a
page transition. This value can be used in traps planted by users or macro packages to prevent hyphenation
of the last word in a column in multi-column page layouts or before floating figures or tables. See Page Loca-
tion Traps.



gtroff Reference -129-

default!). Modes 4 and 6 are typical.

A table of left and right minimum character counts for hyphenation as needed
by the patterns distributed with GNU troff follows; see the groff_tmac(5) man
page for more information on GNU troff’s language macro files.

language                pattern name left min right min
Czech cs 2 2
U.S. English            us                   2           3
French fr 2 3
German traditional det 2 2
German reformed den 2 2
Swedish sv 1 2

Hyphenation exceptions within pattern files (i.e., the words within a TEX \hy-

phenation group) also obey the hyphenation restrictions given by hy. However,
exceptions specified with hw do not.

The hyphenation mode is associated with the current environment (see Envi-
ronments).

The hyphenation mode can be found in the read-only register ‘.hy’.

.nh

Disable hyphenation; i.e., set the hyphenation mode to 0 (see above). The hyphena-
tion mode of the last call to hy is not remembered.

.hpf pattern-file

.hpfa pattern-file

.hpfcode a b [c d ] ...
Read hyphenation patterns from pattern-file. This file is sought in the same way that
macro files are with the mso request or the -mname command-line option to groff.

The pattern-file should have the same format as (simple) TEX pattern files. More
specifically, the following scanning rules are implemented.

• A percent sign starts a comment (up to the end of the line) even if preceded
by a backslash.

• “Digraphs” like \$ are not supported.

• ˆˆxx (where each x is 0–9 or a–f) and ˆˆc (character c in the code point
range 0–127 decimal) are recognized; other uses of ˆ cause an error.

• No macro expansion is performed.

• hpf checks for the expression \patterns{...} (possibly with whitespace
before or after the braces). Everything between the braces is taken as hy-
phenation patterns. Consequently, { and } are not allowed in patterns.

• Similarly, \hyphenation{...} gives a list of hyphenation exceptions.

• \endinput is recognized also.

• For backwards compatibility, if \patterns is missing, the whole file is
treated as a list of hyphenation patterns (except that the % character is rec-
ognized as the start of a comment).



gtroff Reference -130-

The hpfa request appends a file of patterns to the current list.

The hpfcode request defines mapping values for character codes in pattern
files. It is an older mechanism no longer used by GNU troff’s own macro
files; for its successor, see hcode below. hpf or hpfa apply the mapping after
reading the patterns but before replacing or appending to the active list of pat-
terns. Its arguments are pairs of character codes—integers from 0 to 255. The
request maps character code a to code b, code c to code d , and so on. Char-
acter codes that would otherwise be invalid in GNU troff can be used. By de-
fault, every code maps to itself except those for letters ‘A’ to ‘Z’, which map to
those for ‘a’ to ‘z’.

The set of hyphenation patterns is associated with the language set by the hla
request. The hpf request is usually invoked by the troffrc or troffrc-end

file; by default, troffrc loads hyphenation patterns and exceptions for U.S.
English (in files hyphen.us and hyphenex.us).

A second call to hpf (for the same language) replaces the hyphenation patterns
with the new ones.

Invoking hpf or hpfa causes an error if there is no hyphenation language.

If no hpf request is specified (either in the document, in a troffrc or troffrc-
end file, or in a macro package), GNU troff won’t automatically hyphenate at
all.

.hcode c1 code1 [c2 code2 ] ...
Set the hyphenation code of character c1 to code1, that of c2 to code2 , and so on.
A hyphenation code must be a single input character (not a special character) other
than a digit or a space. The request is ignored if it has no parameters.

For hyphenation to work, hyphenation codes must be set up. At start-up, GNU troff
assigns hyphenation codes to the letters ‘a’–‘z’ (mapped to themselves), to the letters
‘A’–‘Z’ (mapped to ‘a’–‘z’), and zero to all other characters. Normally, hyphenation
patterns contain only lowercase letters which should be applied regardless of case.
In other words, they assume that the words ‘FOO’ and ‘Foo’ should be hyphenated
exactly as ‘foo’ is. The hcode request extends this principle to letters outside the Uni-
code basic Latin alphabet; without it, words containing such letters won’t be hyphen-
ated properly even if the corresponding hyphenation patterns contain them. For ex-
ample, the following hcode requests are necessary to assign hyphenation codes to
the letters ‘ÄäÖöÜüß’ (needed for German):

.hcode ä ä Ä ä

.hcode ö ö Ö ö

.hcode ü ü Ü ü

.hcode ß ß

Without those assignments, GNU troff treats German words like ‘Kindergärten’ (the
plural form of ‘kindergarten’) as two substrings ‘kinderg’ and ‘rten’ because the hy-
phenation code of the umlaut a is zero by default. There is a German hyphenation
pattern that covers ‘kinder’, so GNU troff finds the hyphenation ‘kin-der’. The other
two hyphenation points (‘kin-der-gär-ten’) are missed.



gtroff Reference -131-

.hla lang
\n[.hla]

Set the hyphenation language to lang . Hyphenation exceptions specified with the hw
request and hyphenation patterns and exceptions specified with the hpf and hpfa re-
quests are associated with the hyphenation language. The hla request is usually in-
voked by the troffrc or troffrc-end files; troffrc sets the default language to ‘us’
(U.S. English).

The hyphenation language is associated with the current environment (see Environ-
ments).

The hyphenation language is available as a string in the read-only register ‘.hla’.

.ds curr_language \n[.hla]

\*[curr_language]

⇒ us

.hlm [n]
\n[.hlm]

\n[.hlc]

Set the maximum number of consecutive hyphenated lines to n. If n is negative,
there is no maximum. If omitted, n is −1. This value is associated with the current
environment (see Environments). Only lines output from a given environment count
towards the maximum associated with that environment. Hyphens resulting from \%
are counted; explicit hyphens are not.

The .hlm read-only register stores this maximum. The count of immediately preced-
ing consecutive hyphenated lines is available in the read-only register .hlc.

.hym [length]
\n[.hym]

Set the (right) hyphenation margin to length. If the adjustment mode is not ‘b’ or ‘n’,
the line is not hyphenated if it is shorter than length. Without an argument, the hy-
phenation margin is reset to its default value, 0. The default scaling indicator is ‘m’.
The hyphenation margin is associated with the current environment (see Environ-
ments).

A negative argument resets the hyphenation margin to zero, emitting a warning of
type ‘range’.

The hyphenation margin is available in the .hym read-only register.

.hys [hyphenation-space]
\n[.hys]

Suppress hyphenation of the line in adjustment modes ‘b’ or ‘n’ if it can be justified by
adding no more than hyphenation-space extra space to each inter-word space.
Without an argument, the hyphenation space adjustment threshold is set to its de-
fault value, 0. The default scaling indicator is ‘m’. The hyphenation space adjustment
threshold is associated with the current environment (see Environments).

A negative argument resets the hyphenation space adjustment threshold to zero,
emitting a warning of type ‘range’.

The hyphenation space adjustment threshold is available in the .hys read-only regis-
ter.



gtroff Reference -132-

5.9. Manipulating Spacing

.sp [distance]
Space downwards distance. With no argument it advances 1 line. A negative argu-
ment causes gtroff to move up the page the specified distance. If the argument is
preceded by a ‘|’ then gtroff moves that distance from the top of the page. This re-
quest causes a line break, and that adds the current line spacing to the space you
have just specified.  The default scaling indicator is ‘v’.

For convenience you may wish to use the following macros to set the height of the
next line at a given distance from the top or the bottom of the page:

.de y-from-top-down

. sp |\\$1-\\n[.v]u

..

.

.de y-from-bot-up

. sp |\\n[.p]u-\\$1-\\n[.v]u

..

A call to ‘.y-from-bot-up 10c’ means that the bottom of the next line will be at
10 cm from the paper edge at the bottom.

If a vertical trap is sprung during execution of sp, the amount of vertical space after
the trap is discarded.  For example, this

.de xxx

..

.

.wh 0 xxx

.

.pl 5v

foo

.sp 2

bar

.sp 50

baz

results in

foo

bar

baz

The amount of discarded space is available in the register .trunc.

To protect sp against vertical traps, use the vpt request:

.vpt 0

.sp -3

.vpt 1



gtroff Reference -133-

.ls [nnn]
\n[.L]

Output nnn−1 blank lines after each line of text. With no argument, gtroff uses the
previous value before the last ls call.

.ls 2    \" This causes double-spaced output

.ls 3    \" This causes triple-spaced output

.ls \" Again double-spaced

The line spacing is associated with the current environment (see Environments).

The read-only register .L contains the current line spacing setting.

See Changing Type Sizes, for the requests vs and pvs as alternatives to ls.

\x'spacing'
\n[.a]

Sometimes, extra vertical spacing is only needed occasionally, e.g. to allow space for
a tall construct (like an equation). The \x escape does this. The escape is given a
numerical argument, usually enclosed in quotes (like ‘\x’3p’’); the default scaling in-
dicator is ‘v’. If this number is positive extra vertical space is inserted below the cur-
rent line. A negative number adds space above. If this escape is used multiple times
on the same line, the maximum of the values is used.

See Escapes, for details on parameter delimiting characters.

The .a read-only register contains the most recent (non-negative) extra vertical line
space.

Using \x can be necessary in combination with the \b escape, as the following ex-
ample shows.

This is a test with the \[rs]b escape.

.br

This is a test with the \[rs]b escape.

.br

This is a test with \b’xyz’\x’-1m’\x’1m’.

.br

This is a test with the \[rs]b escape.

.br

This is a test with the \[rs]b escape.

produces

This is a test with the \b escape.

This is a test with the \b escape.

x

This is a test with y.

z

This is a test with the \b escape.

This is a test with the \b escape.

.ns

.rs

\n[.ns]

Enable no-space mode. In this mode, spacing (either via sp or via blank lines) is



gtroff Reference -134-

disabled. The bp request to advance to the next page is also disabled, except if it is
accompanied by a page number (see Page Control). This mode ends when actual
text is output or the rs request is encountered, which ends no-space mode. The
read-only register .ns is set to 1 as long as no-space mode is active.

This request is useful for macros that conditionally insert vertical space before the
text starts (for example, a paragraph macro could insert some space except when it
is the first paragraph after a section header).

5.10. Tabs and Fields

A tab character (ASCII char 9, EBCDIC char 5) causes a horizontal movement to the next
tab stop (much like it did on a typewriter).

\t

This escape is a non-interpreted tab character. In copy mode (see Copy Mode), \t
is the same as a real tab character.

.ta [n1 n2 ... nn T r1 r2 ... rn]
\n[.tabs]

Change tab stop positions. This request takes a series of tab specifiers as argu-
ments (optionally divided into two groups with the letter ‘T’) that indicate where each
tab stop is to be (overriding any previous settings).

Tab stops can be specified absolutely, i.e., as the distance from the left margin. For
example, the following sets 6 tab stops every one inch.

.ta 1i 2i 3i 4i 5i 6i

Tab stops can also be specified using a leading ‘+’, which means that the specified
tab stop is set relative to the previous tab stop. For example, the following is equiva-
lent to the previous example.

.ta 1i +1i +1i +1i +1i +1i

gtroff supports an extended syntax to specify repeat values after the ‘T’ mark
(these values are always taken as relative)—this is the usual way to specify tabs set
at equal intervals. The following is, yet again, the same as the previous examples. It
does even more since it defines an infinite number of tab stops separated by one
inch.

.ta T 1i

Now we are ready to interpret the full syntax given at the beginning: Set tabs at posi-
tions n1, n2 , ..., nn and then set tabs at nn+r1, nn+r2 , ..., nn+rn and then at
nn+rn+r1, nn+rn+r2 , ..., nn+rn+rn, and so on.

Example: ‘4c +6c T 3c 5c 2c’ is equivalent to ‘4c 10c 13c 18c 20c 23c 28c 30c
...’.

The material in each tab column (i.e., the column between two tab stops) may be jus-
tified to the right or left or centered in the column. This is specified by appending ‘R’,
‘L’, or ‘C’ to the tab specifier. The default justification is ‘L’. Example:

.ta 1i 2iC 3iR

Some notes:



gtroff Reference -135-

• The default unit of the ta request is ‘m’.

• A tab stop is converted into a non-breakable horizontal movement that can
be neither stretched nor squeezed. For example,

.ds foo a\tb\tc

.ta T 5i

\*[foo]

creates a single line, which is a bit longer than 10 inches (a string is used to
show exactly where the tab characters are).  Now consider the following:

.ds bar a\tb b\tc

.ta T 5i

\*[bar]

gtroff first converts the tab stops of the line into unbreakable horizontal
movements, then splits the line after the second ‘b’ (assuming a sufficiently
short line length).  Usually, this isn’t what the user wants.

• Superfluous tabs (i.e., tab characters that do not correspond to a tab stop)
are ignored except the first one, which delimits the characters belonging to
the last tab stop for right-justifying or centering. Consider the following ex-
ample

.ds Z   foo\tbar\tfoo

.ds ZZ  foo\tbar\tfoobar

.ds ZZZ foo\tbar\tfoo\tbar

.ta 2i 4iR

\*[Z]

.br

\*[ZZ]

.br

\*[ZZZ]

.br

which produces the following output:

foo bar foo

foo bar foobar

foo bar foobar

The first line right-justifies the second ‘foo’ relative to the tab stop. The sec-
ond line right-justifies ‘foobar’. The third line finally right-justifies only ‘foo’
because of the additional tab character, which marks the end of the string
belonging to the last defined tab stop.

• Tab stops are associated with the current environment (see Environments).

• Calling ta without an argument removes all tab stops.

• The start-up value of gtroff is ‘T 0.5i’.

The read-only register .tabs contains a string representation of the current tab
settings suitable for use as an argument to the ta request.

.ds tab-string \n[.tabs]

\*[tab-string]



gtroff Reference -136-

⇒ T120u

The troff version of the Plan 9 operating system uses register .S for the same
purpose.

.tc [fill-glyph]
Normally, GNU troff writes no glyph when moving to a tab stop (some output de-
vices may explicitly output space characters to achieve this motion). A tab repetition
character can be specified with the tc request, causing GNU troff to write as many
instances of fill-glyph as are necessary to occupy the interval from the current hori-
zontal location to the next tab stop. With no argument, GNU troff reverts to the de-
fault behavior. The tab repetition character is associated with the current environ-
ment (see Environments).41 Only a single fill-glyph is recognized; any excess is ig-
nored.

.linetabs n
\n[.linetabs]

If n is missing or not zero, enable line-tabs mode, or disable it otherwise (the default).
In line-tabs mode, gtroff computes tab distances relative to the (current) output line
instead of the input line.

For example, the following code:

.ds x a\t\c

.ds y b\t\c

.ds z c

.ta 1i 3i

\*x

\*y

\*z

in normal mode, results in the output

a b c

in line-tabs mode, the same code outputs

a b  c

Line-tabs mode is associated with the current environment. The read-only register
.linetabs is set to 1 if in line-tabs mode, and 0 in normal mode.

5.10.1. Leaders

Sometimes it may be desirable to use the tc request to fill a particular tab stop with a
given glyph (for example dots in a table of contents), but also normal tab stops on the rest
of the line. For this GNU troff provides an alternate tab mechanism, called leaders,
which does just that.42

A leader character (character code 1) behaves similarly to a tab character: It moves to the
next tab stop. The only difference is that for this movement, the fill glyph defaults to a pe-
riod character and not to space.

41 Tab repetition character is a misnomer since it is an output glyph.
42 This is pronounced to rhyme with “feeder”, and refers to how the glyphs “lead” the eye across the page

to the corresponding page number or other datum.



gtroff Reference -137-

\a

This escape is a non-interpreted leader character. In copy mode (see Copy Mode),
\a is the same as a real leader character.

.lc [fill-glyph]
When writing a leader, GNU troff fills the space to the next tab stop with dots ‘.’. A
different leader repetition character can be specified with the lc request, causing
GNU troff to write as many instances of fill-glyph as are necessary to occupy the
interval from the current horizontal location to the next tab stop. With no argument,
GNU troff treats leaders the same as tabs. The leader repetition character is asso-
ciated with the current environment (see Environments).43 Only a single fill-glyph is
recognized; any excess is ignored.

For a table of contents, to name an example, tab stops may be defined so that the section
number is one tab stop, the title is the second with the remaining space being filled with a
line of dots, and then the page number slightly separated from the dots.

.ds entry 1.1\tFoo\a\t12

.lc .

.ta 1i 5i +.25i

\*[entry]

This produces

1.1 Foo.......................................... 12

5.10.2. Fields

Fields are a more general way of laying out tabular data. A field is defined as the data be-
tween a pair of delimiting characters. It contains substrings that are separated by padding
characters. The width of a field is the distance on the input line from the position where
the field starts to the next tab stop. A padding character inserts stretchable space similar
to TEX’s \hss command (thus it can even be negative) to make the sum of all substring
lengths plus the stretchable space equal to the field width. If more than one padding char-
acter is inserted, the available space is evenly distributed among them.

.fc [delim-char [padding-char ]]
Define a delimiting and a padding character for fields. If the latter is missing, the
padding character defaults to a space character. If there is no argument at all, the
field mechanism is disabled (which is the default). In contrast to, e.g., the tab repeti-
tion character, delimiting and padding characters are not associated with the current
environment (see Environments).

.fc # ˆ

.ta T 3i

#fooˆbarˆsmurf#
.br

#fooˆˆbarˆsmurf#
⇒ foo bar smurf

⇒ foo bar smurf

43 Leader repetition character is a misnomer since it is an output glyph.



gtroff Reference -138-

5.11. Character Translations

The control character (‘.’) and the no-break control character (‘’’) can be changed with the
cc and c2 requests, respectively.

.cc [c ]
Set the control character to c . With no argument the default control character ‘.’ is
restored. The value of the control character is associated with the current environ-
ment (see Environments).

.c2 [c ]
Set the no-break control character to c . With no argument the default control charac-
ter ‘’’ is restored. The value of the no-break control character is associated with the
current environment (see Environments).

See Requests.

.eo

Disable the escape mechanism completely. After executing this request, the back-
slash character ‘\’ no longer starts an escape sequence.

This request can be very helpful in writing macros since it is not necessary then to
double the escape character. Here an example:

.\" This is a simplified version of the

.\" .BR request from the man macro package

.eo

.de BR

. ds result \&

. while (\n[.$] >= 2) \{\

. as result \fB\$1\fR\$2

. shift 2

. \}

. if \n[.$] .as result \fB\$1

\*[result]

. ft R

..

.ec

.ec [c ]
Set the escape character to c . With no argument the default escape character ‘\’ is
restored. It can be also used to re-enable the escape mechanism after an eo re-
quest.

Changing the escape character globally likely breaks macro packages, since GNU
troff has no mechanism to ‘intern’ macros, i.e., to convert a macro definition into an
internal form that is independent of its representation (TEX has such a mechanism).
If a macro is called, it is executed literally.

.ecs

.ecr

The ecs request saves the current escape character in an internal register. Use this
request in combination with the ec request to temporarily change the escape charac-
ter.

The ecr request restores the escape character saved with ecs. Without a previous



gtroff Reference -139-

call to ecs, this request sets the escape character to \.

\\

\e

\E

Print the current escape character (which is the backslash character ‘\’ by default).

\\ is a ‘delayed’ backslash; more precisely, it is the default escape character followed
by a backslash, which no longer has special meaning due to the leading escape
character. It is not an escape sequence in the usual sense! In any unknown escape
sequence \X the escape character is ignored and X is printed. But if X is equal to
the current escape character, no warning is emitted.

As a consequence, only at the top level or in a diversion is a backslash glyph printed;
in copy mode, it expands to a single backslash, which then combines with the follow-
ing character to form an escape sequence.

The \E escape differs from \e by printing an escape character that is not interpreted
in copy mode. Use this to define strings with escapes that work when used in copy
mode (for example, as a macro argument). The following example defines strings to
begin and end a superscript:

.ds { \v'-.3m'\s'\En[.s]*60/100'

.ds } \s0\v'.3m'

Another example to demonstrate the differences between the various escape se-
quences, using a strange escape character, ‘-’.

.ec -

.de xxx

--A'foo'

..

.xxx

⇒ -A'foo'

The result is surprising for most users, expecting ‘1’ since ‘foo’ is a valid identifier.
What has happened? As mentioned above, the leading escape character makes the
following character ordinary. Written with the default escape character the sequence
‘–’ becomes ‘\-’—this is the minus sign.

If the escape character followed by itself is a valid escape sequence, only \E yields
the expected result:

.ec -

.de xxx

-EA'foo'

..

.xxx

⇒ 1

\.

Similar to \\, the sequence \. isn’t a real escape sequence. As before, a warning
message is suppressed if the escape character is followed by a dot, and the dot itself
is printed.

.de foo



gtroff Reference -140-

. nop foo

.

. de bar

. nop bar

\\..

.

..

.foo

.bar

⇒ foo bar

The first backslash is consumed while the macro is read, and the second is swal-
lowed while executing macro foo.

A translation is a mapping of an input character to an output glyph. The mapping occurs at
output time, i.e., the input character gets assigned the metric information of the mapped
output character right before input tokens are converted to nodes (see gtroff Internals,
for more on this process).

.tr abcd ...

.trin abcd ...
Translate character a to glyph b, character c to glyph d , etc. If there is an odd num-
ber of arguments, the last one is translated to an unstretchable space (‘\ ’).

The trin request is identical to tr, but when you unformat a diversion with asciify
it ignores the translation. See Diversions, for details about the asciify request.

Some notes:

• Special characters (\(xx, \[xxx], \C’xxx’, \’, \‘, \-, \_), glyphs defined
with the char request, and numbered glyphs (\N’xxx’) can be translated
also.

• The \e escape can be translated also.

• Characters can be mapped onto the \% and \˜ escapes (but \% and \˜ can’t
be mapped onto another glyph).

• The following characters can’t be translated: space (with one exception, see
below), backspace, newline, leader (and \a), tab (and \t).

• Translations are not considered for finding the soft hyphen character set
with the shc request.

• The pair ‘c\&’ (this is an arbitrary character c followed by the non-printing in-
put break) maps this character to nothing.

.tr a\&

foo bar

⇒ foo br

It is even possible to map the space character to nothing:

.tr aa \&

foo bar

⇒ foobar

As shown in the example, the space character can’t be the first charac-
ter/glyph pair as an argument of tr. Additionally, it is not possible to map



gtroff Reference -141-

the space character to any other glyph; requests like ‘.tr aa x’ undo ‘.tr
aa \&’ instead.

If justification is active, lines are justified in spite of the ‘empty’ space char-
acter (but there is no minimal distance, i.e. the space character, between
words).

• After an output glyph has been constructed (this happens at the moment
immediately before the glyph is appended to an output glyph list, either by
direct output, in a macro, diversion, or string), it is no longer affected by tr.

• Translating character to glyphs where one of them or both are undefined is
possible also; tr does not check whether the entities in its argument do ex-
ist. See gtroff Internals.

• troff no longer has a hard-coded dependency on Latin-1; all charXXX enti-
ties have been removed from the font description files. This has a notable
consequence that shows up in warnings like ‘can’t find character with
input code XXX’ if the tr request isn’t handled properly. Consider the fol-
lowing translation:

.tr éÉ

This maps input character é onto glyph É, which is identical to glyph
char201. But this glyph intentionally doesn’t exist! Instead, \[char201] is
treated as an input character entity and is by default mapped onto \[’E],
and gtroff doesn’t handle translations of translations.

The right way to write the above translation is

.tr é\['E]

In other words, the first argument of tr should be an input character or en-
tity, and the second one a glyph entity.

• Without an argument, the tr request is ignored.

.trnt abcd ...
trnt is the same as the tr request except that the translations do not apply to text
that is transparently throughput into a diversion with \!. See Diversions.

For example,

.tr ab

.di x

\!.tm a

.di

.x

prints ‘b’ to the standard error stream; if trnt is used instead of tr it prints ‘a’.

5.12. troff and nroff Modes

Historically, nroff and troff were two separate programs; the former for terminal output,
the latter for typesetters. GNU troff merges both functions into one executable44 that

44 A GNU nroff program is available for convenience; it calls GNU troff to perform the formatting.



gtroff Reference -142-

sends its output to a device driver (grotty for terminal devices, grops for POSTSCRIPT, etc.)
which interprets this intermediate output format. When discussing AT&T troff, it makes
sense to talk about nroff mode and troff mode since the differences are hard-coded.
GNU troff takes information from device and font description files without handling re-
quests specially if a terminal output device is used, so such a strong distinction is unnec-
essary.

Usually, a macro package can be used with all output devices. Nevertheless, it is some-
times necessary to make a distinction between terminal and non-terminal devices: GNU
troff provides two built-in conditions ‘n’ and ‘t’ for the if, ie, and while requests to de-
cide whether GNU troff shall behave like nroff or like troff.

.troff

Make the ‘t’ built-in condition true (and the ‘n’ built-in condition false) for if, ie, and
while conditional requests. This is the default if GNU troff (not groff) is started
with the -R switch to avoid loading of the start-up files troffrc and troffrc-end.
Without -R, GNU troff stays in troff mode if the output device is not a terminal
(e.g., ‘ps’).

.nroff

Make the ‘n’ built-in condition true (and the ‘t’ built-in condition false) for if, ie, and
while conditional requests. This is the default if GNU troff uses a terminal output
device; the code for switching to nroff mode is in the file tty.tmac, which is loaded
by the start-up file troffrc.

See Conditionals and Loops, for more details on built-in conditions.

5.13. Line Layout

The following drawing shows the dimensions that gtroff uses for placing a line of output
onto the page. They are labeled with the request that manipulates each dimension.

-->| in |<--

|<-----------ll------------>|

+----+----+----------------------+----+

| : :     : |

+----+----+----------------------+----+

-->| po |<--

|<--------paper width---------------->|

These dimensions are:

po Page offset —this is the leftmost position of text on the final output, defining the
left margin.

in Indentation—this is the distance from the left margin where text is printed.

ll Line length—this is the distance from the left margin to right margin.

A simple demonstration:

.ll 3i

This is text without indentation.

The line length has been set to 3\˜inch.
.in +.5i



gtroff Reference -143-

.ll -.5i

Now the left and right margins are both increased.

.in

.ll

Calling .in and .ll without parameters restore

the previous values.

Result:

This is text without indenta-

tion. The line length has

been set to 3 inch.

Now the left and

right margins are

both increased.

Calling .in and .ll without

parameters restore the  previ-

ous values.

.po [offset ]

.po +offset

.po -offset
\n[.o]

Set horizontal page offset to offset (or increment or decrement the current value by
offset ). This request does not cause a break, so changing the page offset in the
middle of text being filled may not yield the expected result. The initial value is 1 i.
For terminal output devices, it is set to 0 in the startup file troffrc; the default scal-
ing indicator is ‘m’. This request is incorrectly documented in the AT&T troff manual
as using a default scaling indicator of ‘v’.

The current page offset can be found in the read-only register ‘.o’.

If po is called without an argument, the page offset is reset to the previous value be-
fore the last call to po.

.po 3i

\n[.o]

⇒ 720

.po -1i

\n[.o]

⇒ 480

.po

\n[.o]

⇒ 720

.in [indent ]

.in +indent

.in -indent
\n[.i]

Set indentation to indent (or increment or decrement the current value by indent ).
This request causes a break.  Initially, there is no indentation.

If in is called without an argument, the indentation is reset to the previous value be-
fore the last call to in. The default scaling indicator is ‘m’.



gtroff Reference -144-

The indentation is associated with the current environment (see Environments).

If a negative indentation value is specified (which is not allowed), gtroff emits a
warning of type ‘range’ and sets the indentation to zero.

The effect of in is delayed until a partially collected line (if it exists) is output. A tem-
porary indentation value is reset to zero also.

The current indentation (as set by in) can be found in the read-only register ‘.i’.

.ti offset

.ti +offset

.ti -offset
\n[.in]

Temporarily indent the next output line by offset . If an increment or decrement value
is specified, adjust the temporary indentation relative to the value set by the in re-
quest.

This request causes a break; its value is associated with the current environment
(see Environments). The default scaling indicator is ‘m’. A call of ti without an argu-
ment is ignored.

If the total indentation value is negative (which is not allowed), gtroff emits a warn-
ing of type ‘range’ and sets the temporary indentation to zero. ‘Total indentation’ is
either offset if specified as an absolute value, or the temporary plus normal indenta-
tion, if offset is given as a relative value.

The effect of ti is delayed until a partially collected line (if it exists) is output.

The read-only register .in is the indentation that applies to the current output line.

The difference between .i and .in is that the latter takes into account whether a
partially collected line still uses the old indentation value or a temporary indentation
value is active.

.ll [length]

.ll +length

.ll -length
\n[.l]

\n[.ll]

Set the line length to length (or increment or decrement the current value by length).
Initially, the line length is set to 6.5 i. The effect of ll is delayed until a partially col-
lected line (if it exists) is output.  The default scaling indicator is ‘m’.

If ll is called without an argument, the line length is reset to the previous value be-
fore the last call to ll. If a negative line length is specified (which is not allowed),
gtroff emits a warning of type ‘range’ and sets the line length to zero.

The line length is associated with the current environment (see Environments).

The current line length (as set by ll) can be found in the read-only register ‘.l’. The
read-only register .ll is the line length that applies to the current output line.

Similar to .i and .in, the difference between .l and .ll is that the latter takes into
account whether a partially collected line still uses the old line length value.



gtroff Reference -145-

5.14. Line Control

It is important to understand how gtroff handles input and output lines.

Many escapes use positioning relative to the input line. For example, this

This is a \h’|1.2i’test.

This is a

\h’|1.2i’test.

produces

This is a   test.

This is a             test.

The main usage of this feature is to define macros that act exactly at the place where
called.

.\" A simple macro to underline a word

.de underline

. nop \\$1\l’|0\[ul]’

..

In the above example, ‘|0’ specifies a negative distance from the current position (at the
end of the just emitted argument \$1) back to the beginning of the input line. Thus, the ‘\l’
escape draws a line from right to left.

gtroff makes a difference between input and output line continuation; the latter is also
called interrupting a line.

\RET,
\c,
\n[.int]

Continue a line. \RET (this is a backslash at the end of a line immediately followed by
a newline) works on the input level, suppressing the effects of the following newline in
the input.

This is a \

.test

⇒ This is a .test

The ‘|’ operator is also affected.

\c works on the output level. Anything after this escape on the same line is ignored
except \R, which works as usual. Anything before \c on the same line is appended
to the current partial output line. The next non-command line after an interrupted line
counts as a new input line.

The visual results depend on whether no-fill mode is active.

• If no-fill mode is active (using the nf request), the next input text line after \c
is handled as a continuation of the same input text line.

.nf

This is a \c

test.

⇒ This is a test.



gtroff Reference -146-

• If fill mode is active (using the fi request), a word interrupted with \c is con-
tinued with the text on the next input text line, without an intervening space.

This is a te\c

st.

⇒ This is a test.

An intervening control line that causes a break is stronger than \c, flushing out
the current partial line in the usual way.

The .int register contains a positive value if the last output line was interrupted
with \c; this is associated with the current environment (see Environments).

5.15. Page Layout

GNU troff provides some primitive operations for controlling page layout.

.pl [length]

.pl +length

.pl -length
\n[.p]

Set the page length to length (or increment or decrement the current value by
length). This is the length of the physical output page. The default scaling indicator
is ‘v’.

The current setting can be found in the read-only register ‘.p’.

This specifies only the size of the page, not the top and bottom margins. Those are
not set by GNU troff directly. See Traps, for further information on how to do this.

Negative pl values are possible also, but not very useful: no trap is sprung, and each
line is output on a single page (thus suppressing all vertical spacing).

If no argument or an invalid argument is given, pl sets the page length to 11 i.

GNU troff provides several operations that help in setting up top and bottom titles (also
known as headers and footers).

.tl 'left'center 'right'
Print a title line. It consists of three parts: a left-justified portion, a centered portion,
and a right-justified portion. The argument separator ‘’’ can be replaced with any
character not occurring in the title line. The ‘%’ character is replaced with the current
page number. This character can be changed with the pc request (see below).

Without argument, tl is ignored.

Some notes:

• The line length set by the ll request is not honoured by tl; use the lt re-
quest (described below) instead, to control line length for text set by tl.

• A title line is not restricted to the top or bottom of a page.

• tl prints the title line immediately, ignoring a partially filled line (which stays
untouched).

• It is not an error to omit closing delimiters. For example, ‘.tl /foo’ is
equivalent to ‘.tl /foo///’: It prints a title line with the left-justified word
‘foo’; the centered and right-justified parts are empty.



gtroff Reference -147-

• tl accepts the same parameter delimiting characters as the \A escape; see
Escapes.

.lt [length]

.lt +length

.lt -length
\n[.lt]

The title line is printed using its own line length, which is specified (or incremented or
decremented) with the lt request. Initially, the title line length is set to 6.5 i. If a neg-
ative line length is specified (which is not allowed), gtroff emits a warning of type
‘range’ and sets the title line length to zero. The default scaling indicator is ‘m’. If lt
is called without an argument, the title length is reset to the previous value before the
last call to lt.

The current setting of this is available in the .lt read-only register; it is associated
with the current environment (see Environments).

.pn page

.pn +page

.pn -page
\n[.pn]

Change (increase or decrease) the page number of the next page. The only argu-
ment is the page number; the request is ignored without a parameter.

The read-only register .pn contains the number of the next page: either the value set
by a pn request, or the number of the current page plus 1.

.pc [char ]
Change the page number character (used by the tl request) to a different character.
With no argument, this mechanism is disabled. This doesn’t affect the register %.

See Traps.

5.16. Page Control

.bp [page]

.bp +page

.bp -page
\n[%]

Stop processing the current page and move to the next page. This request causes a
break. It can also take an argument to set (increase, decrease) the page number of
the next page (which becomes the current page after bp has finished). The differ-
ence between bp and pn is that pn does not cause a break or actually eject a page.
See Page Layout.

.de newpage                         \" define macro

’bp \" begin page

’sp .5i                             \" vertical space

.tl ’left top’center top’right top’ \" title

’sp .3i                             \" vertical space

.. \" end macro

bp has no effect if not called within the top-level diversion (see Diversions).

The writable register % holds the current page number.



gtroff Reference -148-

The register .pe is set to 1 while bp is active. See Page Location Traps.

.ne [space]
It is often necessary to force a certain amount of space before a new page occurs.
This is most useful to make sure that there is not a single orphan line left at the bot-
tom of a page. The ne request ensures that there is a certain distance, specified by
the first argument, before the next page is triggered (see Traps). The default scaling
indicator for ne is ‘v’; the default value of space is 1 v if no argument is given.

For example, to make sure that no fewer than 2 lines get orphaned, do the following
before each paragraph:

.ne 2

text text text

ne then automatically causes a page break if there is space for one line only.

.sv [space]

.os

sv is similar to the ne request; it reserves the specified amount of vertical space. If
the desired amount of space exists before the next trap (or the bottom page bound-
ary if no trap is set), the space is output immediately (ignoring a partially filled line,
which stays untouched). If there is not enough space, it is stored for later output via
the os request. The default value is 1 v if no argument is given; the default scaling in-
dicator is ‘v’.

Both sv and os ignore no-space mode. While the sv request allows negative values
for space, os ignores them.

\n[nl]

This register contains the current vertical position. If the vertical position is zero and
the top of page transition hasn’t happened yet, nl is set to negative value. gtroff it-
self does this at the very beginning of a document before anything has been printed,
but the main usage is to plant a header trap on a page if this page has already
started.

Consider the following:

.de xxx

. sp

. tl ”Header”

. sp

..

.

First page.

.bp

.wh 0 xxx

.nr nl (-1)

Second page.

Result:

First page.

...



gtroff Reference -149-

Header

Second page.

...

Without resetting nl to a negative value, the just planted trap would be active begin-
ning with the next page, not the current one.

See Diversions, for a comparison with the .h and .d registers.

5.17. Fonts and Symbols

gtroff can switch fonts at any point in the text.

The basic set of fonts is ‘R’, ‘I’, ‘B’, and ‘BI’. These are Times roman, italic, bold, and bold-
italic. For non-terminal devices, there is also at least one symbol font that contains various
special symbols (Greek, mathematics).

5.17.1. Changing Fonts

.ft [font ]
\ff
\f(fn
\f[font ]
\n[.sty]

The ft request and the \f escape change the current font to font (one-character
name f , two-character name fn).

If font is a style name (as set with the sty request or with the styles command in
the DESC file), use it within the current font family (as set with the fam request, the \F

escape, or the family command in the DESC file).

It is not possible to switch to a font with the name ‘DESC’ (whereas this name could be
used as a style name; however, this is not recommended).

With no argument or using ‘P’ as an argument, ft switches to the previous font. Use
\f[] to do this with the escape. The old syntax forms \fP or \f[P] are also sup-
ported.

Fonts are generally specified as upper-case strings, which are usually 1 to 4 charac-
ters representing an abbreviation or acronym of the font name. This is no limitation,
just a convention.

The example below produces two identical lines.

eggs, bacon,

.ft B

spam

.ft

and sausage.

eggs, bacon, \fBspam\fP and sausage.



gtroff Reference -150-

\f doesn’t produce an input token in GNU troff. As a consequence, it can be used
in requests like mc (which expects a single character as an argument) to change the
font on the fly:

.mc \f[I]x\f[]

The current style name is available in the read-only register ‘.sty’ (this is a string-val-
ued register); if the current font isn’t a style, the empty string is returned. It is associ-
ated with the current environment.

See Font Positions, for an alternative syntax.

.ftr f [g ]
Translate font f to font g . Whenever a font named f is referred to in a \f escape se-
quence, in the F and S conditional operators, or in the ft, ul, bd, cs, tkf, special,
fspecial, fp, or sty requests, font g is used. If g is missing or equal to f the trans-
lation is undone.

Font translations cannot be chained.

.ftr XXX TR

.ftr XXX YYY

.ft XXX

⇒ warning: can’t find font ’XXX’

.fzoom f [zoom]
\n[.zoom]

Set magnification of font f to factor zoom, which must be a non-negative integer mul-
tiple of 1/1000th. This request is useful to adjust the optical size of a font in relation
to the others. In the example below, font CR is magnified by 10% (the zoom factor is
thus 1.1).

.fam P

.fzoom CR 1100

.ps 12

Palatino and \f[CR]Courier\f[]

A missing or zero value of zoom is the same as a value of 1000, which means no
magnification. f must be a real font name, not a style.

The magnification of a font is completely transparent to GNU troff; a change of the
zoom factor doesn’t cause any effect except that the dimensions of glyphs, (word)
spaces, kerns, etc., of the affected font are adjusted accordingly.

The zoom factor of the current font is available in the read-only register ‘.zoom’, in
multiples of 1/1000th.  It returns zero if there is no magnification.

5.17.2. Font Families

Due to the variety of fonts available, gtroff has added the concept of font families and
font styles. The fonts are specified as the concatenation of the font family and style.
Specifying a font without the family part causes gtroff to use that style of the current fam-
ily.



gtroff Reference -151-

Currently, fonts for the devices -Tps, -Tpdf, -Tdvi, -Tlj4, -Tlbp, and the X11 fonts are
set up to this mechanism. By default, gtroff uses the Times family with the four styles ‘R’,
‘I’, ‘B’, and ‘BI’.

This way, it is possible to use the basic four fonts and to select a different font family on the
command line (see Options).

.fam [family ]
\n[.fam]

\Ff
\F(fm
\F[family ]
\n[.fn]

Switch font family to family (one-character name f , two-character name fm). If no ar-
gument is given, switch back to the previous font family. Use \F[] to do this with the
escape; \FP selects font family ‘P’ instead.

The value at start-up is ‘T’. The current font family is available in the read-only regis-
ter ‘.fam’ (this is a string-valued register); it is associated with the current environ-
ment.

spam,

.fam H    \" helvetica family

spam, \" used font is family H + style R = HR

.ft B     \" family H + style B = font HB

spam,

.fam T    \" times family

spam, \" used font is family T + style B = TB

.ft AR    \" font AR (not a style)

baked beans,

.ft R     \" family T + style R = font TR

and spam.

\F doesn’t produce an input token in GNU troff. As a consequence, it can be used
in requests like mc (which expects a single character as an argument) to change the
font family on the fly.

.mc \F[P]x\F[]

The ‘.fn’ register contains the current real font name of the current font. This is a
string-valued register. If the current font is a style, the value of \n[.fn] is the proper
concatenation of family and style name.

.sty n style
Associate style with font position n. A font position can be associated either with a
font or with a style. The current font is the index of a font position and so is also ei-
ther a font or a style. If it is a style, the font that is actually used is the font whose
name is the concatenation of the name of the current family and the name of the cur-
rent style. For example, if the current font is 1 and font position 1 is associated with
style ‘R’ and the current font family is ‘T’, then font ‘TR’ is used. If the current font is
not a style, then the current family is ignored. If the requests cs, bd, tkf, uf, or
fspecial are applied to a style, they are instead applied to the member of the cur-
rent family corresponding to that style.



gtroff Reference -152-

n must be a non-negative integer.

The default family can be set with the -f option (see Options). The styles com-
mand in the DESC file controls which font positions (if any) are initially associated with
styles rather than fonts. For example, the default setting for POSTSCRIPT fonts

styles R I B BI

is equivalent to

.sty 1 R

.sty 2 I

.sty 3 B

.sty 4 BI

fam and \F always check whether the current font position is valid; this can give sur-
prising results if the current font position is associated with a style.

In the following example, we want to access the POSTSCRIPT font FooBar from the font
family Foo:

.sty \n[.fp] Bar

.fam Foo

⇒ warning: can’t find font ‘FooR’

The default font position at start-up is 1; for the POSTSCRIPT device, this is associated
with style ‘R’, so gtroff tries to open FooR.

A solution to this problem is to use a dummy font like the following:

.fp 0 dummy TR    \" set up dummy font at position 0

.sty \n[.fp] Bar  \" register style ‘Bar’

.ft 0             \" switch to font at position 0

.fam Foo          \" activate family ‘Foo’

.ft Bar           \" switch to font ‘FooBar’

See Font Positions.

5.17.3. Font Positions

For compatibility with AT&T troff, GNU troff has the concept of font positions at which
various fonts are mounted .

.fp pos font [external-name]
\n[.f]

\n[.fp]

Mount font font at position pos (which must be a non-negative integer). This nu-
meric position can then be referred to with font-changing commands. When GNU
troff starts, it uses font position 1 (which must exist; position 0 is unused at
start-up.45 )

The current font in use, as a font position, is available in the read-only register ‘.f’.
This can be useful to save the current font for later recall. It is associated with the
current environment (see Environments).

.nr save-font \n[.f]

45 Usually.



gtroff Reference -153-

.ft B

... text text text ...

.ft \n[save-font]

The number of the next free font position is available in the read-only register ‘.fp’.
This is useful when mounting a new font, like so:

.fp \n[.fp] NEATOFONT

Fonts not listed in the DESC file are automatically mounted on the next available font
position when they are referenced. If a font is to be mounted explicitly with the fp re-
quest on an unused font position, it should be mounted on the first unused font posi-
tion, which can be found in the .fp register, although GNU troff does not enforce
this strictly.

The fp request has an optional third argument. This argument gives the external
name of the font, which is used for finding the font description file. The second argu-
ment gives the internal name of the font, which is used to refer to the font in gtroff
after it has been mounted. If there is no third argument then the internal name is
used as the external name. This feature makes it possible to use fonts with long
names in compatibility mode.

Both the ft request and the \f escape have alternative syntax forms to access font posi-
tions.

.ft nnn
\fn
\f(nn
\f[nnn]

Change the current font position to nnn (one-digit position n, two-digit position nn),
which must be a non-negative integer.

If nnn is associated with a style (as set with the sty request or with the styles com-
mand in the DESC file), use it within the current font family (as set with the fam re-
quest, the \F escape, or the family command in the DESC file).

this is font 1

.ft 2

this is font 2

.ft \" switch back to font 1

.ft 3

this is font 3

.ft

this is font 1 again

See Changing Fonts, for the standard syntax form.

5.17.4. Using Symbols

A glyph is a graphical representation of a character . While a character is an abstract en-
tity containing semantic information, a glyph is something that can be actually seen on
screen or paper. It is possible that a character has multiple glyph representation forms (for
example, the character ‘A’ can be either written in a roman or an italic font, yielding two dif-
ferent glyphs); sometimes more than one character maps to a single glyph (this is a



gtroff Reference -154-

ligature—the most common is ‘fi’).

A symbol is simply a named glyph. Within gtroff, all glyph names of a particular font are
defined in its font file. If the user requests a glyph not available in this font, gtroff looks
up an ordered list of special fonts. By default, the POSTSCRIPT output device supports the two
special fonts ‘SS’ (slanted symbols) and ‘S’ (symbols) (the former is looked up before the
latter). Other output devices use different names for special fonts. Fonts mounted with the
fonts keyword in the DESC file are globally available. To install additional special fonts lo-
cally (i.e. for a particular font), use the fspecial request.

Here are the exact rules how gtroff searches a given symbol:

• If the symbol has been defined with the char request, use it. This hides a symbol
with the same name in the current font.

• Check the current font.

• If the symbol has been defined with the fchar request, use it.

• Check whether the current font has a font-specific list of special fonts; test all
fonts in the order of appearance in the last fspecial call if appropriate.

• If the symbol has been defined with the fschar request for the current font, use it.

• Check all fonts in the order of appearance in the last special call.

• If the symbol has been defined with the schar request, use it.

• As a last resort, consult all fonts loaded up to now for special fonts and check
them, starting with the lowest font number. This can sometimes lead to surprising
results since the fonts line in the DESC file often contains empty positions, which
are filled later on.  For example, consider the following:

fonts 3 0 0 FOO

This mounts font foo at font position 3. We assume that FOO is a special font,
containing glyph foo, and that no font has been loaded yet. The line

.fspecial BAR BAZ

makes font BAZ special only if font BAR is active. We further assume that BAZ is
really a special font, i.e., the font description file contains the special keyword,
and that it also contains glyph foo with a special shape fitting to font BAR. After
executing fspecial, font BAR is loaded at font position 1, and BAZ at position 2.

We now switch to a new font XXX, trying to access glyph foo that is assumed to
be missing. There are neither font-specific special fonts for XXX nor any other
fonts made special with the special request, so gtroff starts the search for spe-
cial fonts in the list of already mounted fonts, with increasing font positions. Con-
sequently, it finds BAZ before FOO even for XXX, which is not the intended behav-
iour.

See Device and Font Files, and Special Fonts, for more details.

The list of available symbols is device dependent; see the groff_char(7) man page for a
complete list of all glyphs. For example, say

man -Tdvi groff_char > groff_char.dvi

for a list using the default DVI fonts (not all versions of the man program support the -T op-
tion). If you want to use an additional macro package to change the used fonts, groff



gtroff Reference -155-

must be called directly:

groff -Tdvi -mec -man groff_char.7 > groff_char.dvi

Glyph names not listed in groff_char(7) are derived algorithmically, using a simplified ver-
sion of the Adobe Glyph List (AGL) algorithm, which is described in https://github.com
/adobe-type-tools/agl-aglfn. The (frozen) set of glyph names that can’t be derived algorith-
mically is called the groff glyph list (GGL).

• A glyph for Unicode character U+XXXX [X [X ]], which is not a composite charac-
ter is named uXXXX[X[X]]. X must be an uppercase hexadecimal digit. Exam-
ples: u1234, u008E, u12DB8. The largest Unicode value is 0x10FFFF. There must
be at least four X digits; if necessary, add leading zeroes (after the ‘u’). No zero
padding is allowed for character codes greater than 0xFFFF. Surrogates (i.e.,
Unicode values greater than 0xFFFF represented with character codes from the
surrogate area U+D800-U+DFFF) are not allowed either.

• A glyph representing more than a single input character is named
‘u’ component1 ‘_’ component2 ‘_’ component3 ...

Example: u0045_0302_0301.

For simplicity, all Unicode characters that are composites must be maximally de-
composed to NFD;46 for example, u00CA_0301 is not a valid glyph name since
U+00CA (LATIN CAPITAL LETTER E WITH CIRCUMFLEX) can be further decomposed into
U+0045 (LATIN CAPITAL LETTER E) and U+0302 (COMBINING CIRCUMFLEX ACCENT).
u0045_0302_0301 is thus the glyph name for U+1EBE, LATIN CAPITAL LETTER E WITH

CIRCUMFLEX AND ACUTE.

• groff maintains a table to decompose all algorithmically derived glyph names that
are composites itself. For example, u0100 (LATIN LETTER A WITH MACRON) is automati-
cally decomposed into u0041_0304. Additionally, a glyph name of the GGL is pre-
ferred to an algorithmically derived glyph name; groff also automatically does
the mapping.  Example: The glyph u0045_0302 is mapped to ˆE.

• glyph names of the GGL can’t be used in composite glyph names; for example,
ˆE_u0301 is invalid.

\(nm
\[name]
\[component1 component2 ...]

Insert a symbol name (two-character name nm) or a composite glyph with compo-
nent glyphs component1, component2 , ... There is no special syntax for one-charac-
ter names—the natural form ‘\n’ would collide with escapes.47

If name is undefined, a warning of type ‘char’ is generated, and the escape is ig-
nored. See Debugging, for information about warnings.

groff resolves \[...] with more than a single component as follows:

46 This is “Normalization Form D” as documented in Unicode Standard Annex #15 (https://unicode.org
/reports/tr15/).

47 A one-character symbol is not the same as an input character, i.e., the character a is not the same as
\[a]. By default, groff defines only a single one-character symbol, \[-]; it is usually accessed as \-. On
the other hand, GNU troff has the special feature that \[charXXX] is the same as the input character with
character code XXX . For example, \[char97] is identical to the letter a if ASCII encoding is active.

https://github.com/adobe-type-tools/agl-aglfn
https://github.com/adobe-type-tools/agl-aglfn
https://unicode.org/reports/tr15/
https://unicode.org/reports/tr15/


gtroff Reference -156-

• Any component that is found in the GGL is converted to the uXXXX form.

• Any component uXXXX that is found in the list of decomposable glyphs is de-
composed.

• The resulting elements are then concatenated with ‘_’ in between, dropping
the leading ‘u’ in all elements but the first.

No check for the existence of any component (similar to tr request) is done.

Examples:

\[A ho] ‘A’ maps to u0041, ‘ho’ maps to u02DB, thus the final glyph name
would be u0041_02DB. Note this is not the expected result: The
ogonek glyph ‘ho’ is a spacing ogonek, but for a proper composite a
non-spacing ogonek (U+0328) is necessary. Looking into the file
composite.tmac one can find ‘.composite ho u0328’, which
changes the mapping of ‘ho’ while a composite glyph name is con-
structed, causing the final glyph name to be u0041_0328.

\[ˆE u0301]
\[ˆE aa] 
\[E aˆ aa]

\[E ˆ '] ‘ˆE’ maps to u0045_0302, thus the final glyph name is
u0045_0302_0301 in all forms (assuming proper calls of the compos-
ite request).

It is not possible to define glyphs with names like ‘A ho’ within a groff font file.
This is not really a limitation; instead, you have to define u0041_0328.

\C'xxx'
Typeset the glyph named xxx .48 Normally it is more convenient to use \[xxx], but
\C has the advantage that it is compatible with newer versions of AT&T troff and is
available in compatibility mode.

.composite from to
Map glyph name from to glyph name to if it is used in \[...] with more than one
component. See above for examples.

This mapping is based on glyph names only; no check for the existence of either
glyph is done.

A set of default mappings for many accents can be found in the file composite.tmac,
which is loaded at start-up.

\N'n'
Typeset the glyph with code n in the current font (n is not the input character code).
The number n can be any non-negative decimal integer. Most devices only have
glyphs with codes between 0 and 255; the Unicode output device uses codes in the
range 0–65535. If the current font does not contain a glyph with that code, special
fonts are not searched. The \N escape sequence can be conveniently used in con-
junction with the char request:

.char \[phone] \f[ZD]\N'37'

The code of each glyph is given in the fourth column in the font description file after
48 \C is actually a misnomer since it accesses an output glyph.



gtroff Reference -157-

the charset command. It is possible to include unnamed glyphs in the font descrip-
tion file by using a name of ‘—’; the \N escape sequence is the only way to use
these.

No kerning is applied to glyphs accessed with \N.

Some escape sequences directly map onto special glyphs.

\’

This is a backslash followed by the apostrophe character, ASCII character 0x27

(EBCDIC character 0x7D). The same as \[aa], the acute accent.

\‘

This is a backslash followed by ASCII character 0x60 (EBCDIC character 0x79 usu-
ally). The same as \[ga], the grave accent.

\-

This is the same as \[-], the minus sign in the current font.

\_

This is the same as \[ul], the underline character.

.cflags n c1 c2 ...
Assign properties encoded by the number n to characters c1, c2 , and so on.

Input characters, including special characters introduced by an escape, have certain
properties associated with them.49 These properties can be modified with this re-
quest. The first argument is the sum of the desired flags and the remaining argu-
ments are the characters to be assigned those properties. Spaces between the cn
arguments are optional. Any argument cn can be a character class defined with the
class request rather than an individual character. See Character Classes.

The non-negative integer n is the sum of any of the following. Some combinations
are nonsensical, such as ‘33’ (1 + 32).

1 Recognize the character as ending a sentence if followed by a new-
line or two spaces. Initially, characters ‘.?!’ have this property.

2 Enable breaks before the character. A line is not broken at a charac-
ter with this property unless the characters on each side both have
non-zero hyphenation codes. This exception can be overridden by
adding 64. Initially, no characters have this property.

4 Enable breaks after the character. A line is not broken at a character
with this property unless the characters on each side both have non-
zero hyphenation codes. This exception can be overridden by
adding 64. Initially, characters ‘\-\[hy]\[em]’ have this property.

8 Mark the glyph associated with this character as overlapping other
instances of itself horizontally. Initially, characters
‘\[ul]\[rn]\[ru]\[radicalex]\[sqrtex]’ have this property.

16 Mark the glyph associated with this character as overlapping other
instances of itself vertically. Initially, the character ‘\[br]’ has this
property.

49 Output glyphs don’t have such properties. For GNU troff, a glyph is a box numbered with an index
into a font, a given height above and depth below the baseline, and a width—nothing more.



gtroff Reference -158-

32 Mark the character as transparent for the purpose of end-of-sen-
tence recognition. In other words, an end-of-sentence character fol-
lowed by any number of characters with this property is treated as
the end of a sentence if followed by a newline or two spaces. This is
the same as having a zero space factor in TEX. Initially, characters
‘"’)]*\[dg]\[dd]\[rq]\[cq]’ have this property.

64 Ignore hyphenation codes of the surrounding characters. Use this in
combination with values 2 and 4 (initially, no characters have this
property).

For example, if you need an automatic break point after the en-dash
in numerical ranges like “3000–5000”, insert

.cflags 68 \[en]

into your document. Note, however, that this can lead to bad layout
if done without thinking; in most situations, a better solution instead
of changing the cflags value is to insert \: right after the hyphen at
the places that really need a break point.

The remaining values were implemented for East Asian language support;
those who use alphabetic scripts exclusively can disregard them.

128 Prohibit a line break before the character, but allow a line break after
the character. This works only in combination with flags 256 and
512 and has no effect otherwise. Initially, no characters have this
property.

256 Prohibit a line break after the character, but allow a line break before
the character. This works only in combination with flags 128 and
512 and has no effect otherwise. Initially, no characters have this
property.

512 Allow line break before or after the character. This works only in
combination with flags 128 and 256 and has no effect otherwise. Ini-
tially, no characters have this property.

In contrast to values 2 and 4, the values 128, 256, and 512 work pairwise. If,
for example, the left character has value 512, and the right character 128, no
break will be automatically inserted between them. If we use value 6 instead
for the left character, a break after the character can’t be suppressed since the
neighboring character on the right doesn’t get examined.

.char g [string ]

.fchar g [string ]

.fschar f g [string ]

.schar g [string ]
Define a new character or glyph g to be string , which can be empty. More precisely,
char defines a groff object (or redefines an existing one) that is accessed with the
name g on input, and produces string on output. Every time glyph g needs to be
printed, string is processed in a temporary environment and the result is wrapped up
into a single object. Compatibility mode is turned off and the escape character is set
to \ while string is processed. Any emboldening, constant spacing, or track kerning



gtroff Reference -159-

is applied to this object rather than to individual glyphs in string .

An object defined by these requests can be used just like a normal glyph provided by
the output device. In particular, other characters can be translated to it with the tr or
trin requests; it can be made the leader character with the lc request; repeated
patterns can be drawn with it using the \l and \L escape sequences; and words
containing g can be hyphenated correctly if the hcode request is used to give the ob-
ject a hyphenation code.

There is a special anti-recursion feature: use of the object within its own definition is
handled like a normal character (not defined with char).

The tr and trin requests take precedence if char accesses the same symbol.

.tr XY

X

⇒ Y

.char X Z

X

⇒ Y

.tr XX

X

⇒ Z

The fchar request defines a fallback glyph: gtroff only checks for glyphs defined
with fchar if it cannot find the glyph in the current font. gtroff carries out this test
before checking special fonts.

fschar defines a fallback glyph for font f : gtroff checks for glyphs defined with
fschar after the list of fonts declared as font-specific special fonts with the fspecial
request, but before the list of fonts declared as global special fonts with the special
request.

Finally, the schar request defines a global fallback glyph: gtroff checks for glyphs
defined with schar after the list of fonts declared as global special fonts with the spe-
cial request, but before the already mounted special fonts.

See Character Classes.

.rchar c1 c2 ...

.rfschar f c1 c2 ...
Remove the definitions of glyphs c1, c2 , ..., undoing the effect of a char, fchar, or
schar request.

Spaces and tabs are optional between cn arguments.

The request rfschar removes glyph definitions defined with fschar for font f .

See Special Characters.

5.17.5. Character Classes

Classes are particularly useful for East Asian languages such as Chinese, Japanese, and
Korean, where the number of needed characters is much larger than in European lan-
guages, and where large sets of characters share the same properties.



gtroff Reference -160-

.class name c1 c2 ...
Define a character class (or simply “class”) name comprising the characters c1, c2 ,
and so on.

A class thus defined can then be referred to in lieu of listing all the characters within
it. Currently, only the cflags request can handle references to character classes.

In the request’s simplest form, each cn is a character (or special character).

.class [quotes] ' \[aq] \[dq] \[oq] \[cq] \[lq] \[rq]

Since class and glyph names share the same name space, it is recommended to
start and end the class name with [ and ], respectively, to avoid collisions with exist-
ing character names defined by GNU troff or the user (with char and related re-
quests). This practice applies the presence of ] in the class name to prevent the use
of the special character escape form \[...], thus you must use the \C escape to ac-
cess a class with such a name.

You can also use a character range notation consisting of a start character followed
by ‘-’ and then an end character. Internally, GNU troff converts these two symbol
names to Unicode code points (according to the groff glyph list [GGL]), which then
give the start and end value of the range. If that fails, the class definition is skipped.

Furthermore, classes can be nested.

.class [prepunct] , : ; > }

.class [prepunctx] \C'[prepunct]' \[u2013]-\[u2016]

The class ‘[prepunctx]’ thus contains the contents of the class [prepunct] as de-
fined above (the set ‘, : ; > }’), and characters in the range between U+2013 and
U+2016.

If you want to include ‘-’ in a class, it must be the first character value in the argu-
ment list, otherwise it gets misinterpreted as part of the range syntax.

It is not possible to use class names as end points of range definitions.

A typical use of the class request is to control line-breaking and hyphenation rules
as defined by the cflags request. For example, to inhibit line breaks before the char-
acters belonging to the prepunctx class defined in the previous example, you can
write the following.

.cflags 2 \C'[prepunctx]'

See the cflags request in Using Symbols, for more details.

5.17.6. Special Fonts

Special fonts are those that gtroff searches when it cannot find the requested glyph in
the current font. The Symbol font is usually a special font.

gtroff provides the following two requests to add more special fonts. See Using
Symbols, for a detailed description of the glyph searching mechanism in gtroff.

Usually, only non-TTY devices have special fonts.

.special [s1 s2 ...]

.fspecial f [s1 s2 ...]
Use the special request to define special fonts. Initially, this list is empty.



gtroff Reference -161-

Use the fspecial request to designate special fonts only when font f is active. Ini-
tially, this list is empty.

Previous calls to special or fspecial are overwritten; without arguments, the partic-
ular list of special fonts is set to empty. Special fonts are searched in the order they
appear as arguments.

All fonts that appear in a call to special or fspecial are loaded.

See Using Symbols, for the exact search order of glyphs.

5.17.7. Artificial Fonts

There are a number of requests and escapes for artificially creating fonts. These are
largely vestiges of the days when output devices did not have a wide variety of fonts, and
when nroff and troff were separate programs. Most of them are no longer necessary in
GNU troff. Nevertheless, they are supported.

\H'height'
\H'+height'
\H'-height'
\n[.height]

Change (increment, decrement) the height of the current font, but not the width. If
height is zero, restore the original height. Default scaling indicator is ‘z’.

The read-only register .height contains the font height as set by \H.

Currently, only the -Tps and -Tpdf devices support this feature.

\H doesn’t produce an input token in GNU troff. As a consequence, it can be used
in requests like mc (which expects a single character as an argument) to change the
font on the fly:

.mc \H'+5z'x\H'0'

In compatibility mode, gtroff behaves differently: If an increment or decrement is
used, it is always taken relative to the current point size and not relative to the previ-
ously selected font height.  Thus,

.cp 1

\H'+5'test \H'+5'test

prints the word ‘test’ twice with the same font height (five points larger than the cur-
rent font size).

\S'slant'
\n[.slant]

Slant the current font by slant degrees. Positive values slant to the right. Only inte-
ger values are possible.

The read-only register .slant contains the font slant as set by \S.

Currently, only the -Tps and -Tpdf devices support this feature.

\S doesn’t produce an input token in GNU troff. As a consequence, it can be used
in requests like mc (which expects a single character as an argument) to change the
font on the fly:

.mc \S'20'x\S'0'



gtroff Reference -162-

This escape is incorrectly documented in the AT&T troff manual; the slant is always
set to an absolute value.

.ul [lines]
The ul request normally underlines subsequent lines if a TTY output device is used.
Otherwise, the lines are printed in italics (only the term ‘underlined’ is used in the fol-
lowing). The single argument is the number of input lines to be underlined; with no
argument, the next line is underlined. If lines is zero or negative, stop the effects of
ul (if it was active). Requests and empty lines do not count for computing the num-
ber of underlined input lines, even if they produce some output like tl. Lines in-
serted by macros (e.g. invoked by a trap) do count.

At the beginning of ul, the current font is stored and the underline font is activated.
Within the span of a ul request, it is possible to change fonts, but after the last line
affected by ul the saved font is restored.

This number of lines still to be underlined is associated with the current environment
(see Environments). The underline font can be changed with the uf request.

The ul request does not underline spaces.

.cu [lines]
The cu request is similar to ul but underlines spaces as well (if a TTY output device
is used).

.uf font
Set the underline font (globally) used by ul and cu. By default, this is the font at po-
sition 2. font can be either a non-negative font position or the name of a font.

.bd font [offset ]

.bd font1 font2 [offset ]
\n[.b]

Artificially create a bold font by printing each glyph twice, slightly offset.

Two syntax forms are available.

• Imitate a bold font unconditionally. The first argument specifies the font to
embolden, and the second is the number of basic units, minus one, by
which the two glyphs are offset. If the second argument is missing, embold-
ening is turned off. font can be either a non-negative font position or the
name of a font.

offset is available in the .b read-only register if a special font is active; in the
bd request, its default unit is ‘u’.

• Imitate a bold form conditionally. Embolden font1 by offset only if font font2
is the current font. This request can be issued repeatedly to set up different
emboldening values for different current fonts. If the second argument is
missing, emboldening is turned off for this particular current font. This af-
fects special fonts only (either set up with the special command in font files
or with the fspecial request).

.cs font [width [em-size]]
Switch to and from constant glyph space mode. If activated, the width of every glyph
is width/36 ems. The em size is given absolutely by em-size; if this argument is
missing, the em value is taken from the current font size (as set with the ps request)



gtroff Reference -163-

when the font is effectively in use. Without second and third argument, constant
glyph space mode is deactivated.

Default scaling indicator for em-size is ‘z’; width is an integer.

5.17.8. Ligatures and Kerning

Ligatures are groups of characters that are run together, i.e, producing a single glyph. For
example, the letters ‘f’ and ‘i’ can form a ligature ‘fi’ as in the word ‘file’. This produces a
cleaner look (albeit subtle) to the printed output. Usually, ligatures are not available in
fonts for TTY output devices.

Most POSTSCRIPT fonts support the fi and fl ligatures. The C/A/T typesetter that was the tar-
get of AT&T troff also supported ‘ff’, ‘ffi’, and ‘ffl’ ligatures. Advanced typesetters or ‘ex-
pert’ fonts may include ligatures for ‘ft’ and ‘ct’, although GNU troff does not support
these (yet).

Only the current font is checked for ligatures and kerns; neither special fonts nor entities
defined with the char request (and its siblings) are taken into account.

.lg [flag ]
\n[.lg]

Switch the ligature mechanism on or off; if the parameter is non-zero or missing, liga-
tures are enabled, otherwise disabled. Default is on. The current ligature mode can
be found in the read-only register .lg (set to 1 or 2 if ligatures are enabled, 0 other-
wise).

Setting the ligature mode to 2 enables the two-character ligatures (fi, fl, and ff) and
disables the three-character ligatures (ffi and ffl).

Pairwise kerning is another subtle typesetting mechanism that modifies the distance be-
tween a glyph pair to improve readability. In most cases (but not always) the distance is
decreased. For example, compare the combination of the letters ‘V’ and ‘A’. With kerning,
‘VA’ is printed. Without kerning it appears as ‘VA’. Typewriter-like fonts and fonts for termi-
nals where all glyphs have the same width don’t use kerning.

.kern [flag ]
\n[.kern]

Switch kerning on or off. If the parameter is non-zero or missing, enable pairwise
kerning, otherwise disable it. The read-only register .kern is set to 1 if pairwise
kerning is enabled, 0 otherwise.

If the font description file contains pairwise kerning information, glyphs from that font
are kerned. Kerning between two glyphs can be inhibited by placing \& between
them: ‘V\&A’.

See Font File Format.

Track kerning expands or reduces the space between glyphs. This can be handy, for ex-
ample, if you need to squeeze a long word onto a single line or spread some text to fill a
narrow column. It must be used with great care since it is usually considered bad typogra-
phy if the reader notices the effect.

.tkf f s1 n1 s2 n2
Enable track kerning for font f . If the current font is f the width of every glyph is in-
creased by an amount between n1 and n2 (n1, n2 can be negative); if the current



gtroff Reference -164-

point size is less than or equal to s1 the width is increased by n1; if it is greater than
or equal to s2 the width is increased by n2 ; if the point size is greater than or equal
to s1 and less than or equal to s2 the increase in width is a linear function of the
point size.

The default scaling indicator is ‘z’ for s1 and s2 , ‘p’ for n1 and n2 .

The track kerning amount is added even to the rightmost glyph in a line; for large val-
ues it is thus recommended to increase the line length by the same amount to com-
pensate.

Sometimes, when typesetting letters of different fonts, more or less space at such bound-
aries is needed.  There are two escapes to help with this.

\/

Increase the width of the preceding glyph so that the spacing between that glyph and
the following glyph is correct if the following glyph is a roman glyph. For example, if
an italic f is immediately followed by a roman right parenthesis, then in many fonts
the top right portion of the f overlaps the top left of the right parenthesis. Use this
escape sequence whenever an italic glyph is immediately followed by a roman glyph
without any intervening space. This small amount of space is also called italic correc-
tion.

\f[I]f\f[R])

⇒ f)

\f[I]f\/\f[R])

⇒ f)

\,

Modify the spacing of the following glyph so that the spacing between that glyph and
the preceding glyph is correct if the preceding glyph is a roman glyph. Use this es-
cape sequence whenever a roman glyph is immediately followed by an italic glyph
without any intervening space. In analogy to above, this space could be called left
italic correction, but this term isn’t used widely.

q\f[I]f

⇒ qf

q\,\f[I]f

⇒ qf

\&

Insert a non-printing input break, which is invisible. Its intended use is to stop inter-
action of a character with its surroundings.

• It prevents the insertion of extra space after an end-of-sentence character.

Test.

Test.

⇒ Test. Test.

Test.\&

Test.

⇒ Test. Test.

• It prevents interpretation of a control character at the beginning of an input
line.



gtroff Reference -165-

.Test

error warning: macro 'Test' not defined

\&.Test

⇒ .Test

• It prevents kerning between two glyphs.
VA

⇒ VA

V\&A

⇒ VA

• It is needed to map an arbitrary character to nothing in the tr request (see
Character Translations).

\)

This escape is similar to \& except that it behaves like a character declared with the
cflags request to be transparent for the purposes of an end-of-sentence character.

Its main usage is in macro definitions to protect against arguments starting with a
control character.

.de xxx

\)\\$1

..

.de yyy

\&\\$1

..

This is a test.\c

.xxx '

This is a test.

⇒This is a test.'  This is a test.

This is a test.\c

.yyy '

This is a test.

⇒This is a test.' This is a test.

5.18. Sizes

GNU troff uses two dimensions with each line of text, type size and vertical spacing. The
type size is approximately the height of the tallest glyph.50 Vertical spacing is the amount
of space gtroff allows for a line of text; normally, this is about 20% larger than the current
type size. Ratios smaller than this can result in hard-to-read text; larger than this, it
spreads the text out more vertically (useful for term papers). By default, gtroff uses
10 point type on 12 point spacing.

Typesetters call the difference between type size and vertical spacing leading .51

50 This is usually the parenthesis. In most cases the real dimensions of the glyphs in a font are not re-
lated to its type size! For example, the standard POSTSCRIPT font families ‘Times’, ‘Helvetica’, and ‘Courier’
can’t be used together at 10 pt; to get acceptable output, the size of ‘Helvetica’ has to be reduced by one
point, and the size of ‘Courier’ must be increased by one point.

51 This is pronounced to rhyme with “sledding”, and refers to the use of lead metal (Latin: plumbum) in tra-
ditional typesetting.



gtroff Reference -166-

5.18.1. Changing Type Sizes

.ps [size]

.ps +size

.ps -size
\ssize
\n[.s]

Use the ps request or the \s escape to change (increase, decrease) the type size (in
points). Specify size as either an absolute point size, or as a relative change from
the current size. ps with no argument restores the previous size.

The default scaling indicator of size is ‘z’. If the resulting size is non-positive, it is set
to 1 u.

The read-only register .s returns the point size in points as a decimal fraction. This
is a string. To get the point size in scaled points, use the .ps register instead (see
Fractional Type Sizes).

.s is associated with the current environment (see Environments).

snap, snap,

.ps +2

grin, grin,

.ps +2

wink, wink, \s+2nudge, nudge,\s+8 say no more!

.ps 10

The \s escape may be called in a variety of ways. Much like other escapes there
must be a way to determine where the argument ends and the text begins. Any of
the following forms is valid:

\sn Set the point size to n points. n must be a single digit. If n is 0, re-
store the previous size.

\s+n

\s-n Increase or decrease the point size by n points. n must be exactly
one digit.

\s(nn Set the point size to nn points. nn must be exactly two digits.

\s+(nn

\s-(nn

\s(+nn

\s(-nn Increase or decrease the point size by nn points. nn must be exactly
two digits.

See Fractional Type Sizes, for additional syntactical forms of the \s escape
(which accept integers as well as fractions).

Note that \s doesn’t produce an input token in gtroff. As a consequence, it can be used
in requests like mc (which expects a single character as an argument) to change the font
on the fly:

.mc \s[20]x\s[0]

.sizes s1 s2 ... sn [0 ]



gtroff Reference -167-

Some devices may only have certain permissible sizes, in which case gtroff rounds
to the nearest permissible size. The DESC file specifies which sizes are permissible
for the device.

Use the sizes request to change the permissible sizes for the current output device.
Arguments are in scaled points; the sizescale line in the DESC file for the output de-
vice provides the scaling factor. For example, if the scaling factor is 1000, then the
value 12000 is 12 points.

Each argument can be a single point size (such as ‘12000’), or a range of sizes (such
as ‘4000-72000’). You can optionally end the list with a zero.

.vs [space]

.vs +space

.vs -space
\n[.v]

Change (increase, decrease) the vertical spacing by space. The default scaling indi-
cator is ‘p’.

If vs is called without an argument, the vertical spacing is reset to the previous value
before the last call to vs.

gtroff creates a warning of type ‘range’ if space is negative; the vertical spacing is
then set to smallest positive value, the vertical resolution (as given in the .V register).

‘.vs 0’ isn’t saved in a diversion since it doesn’t result in a vertical motion. You ex-
plicitly have to repeat this command before inserting the diversion.

The read-only register .v contains the current vertical spacing; it is associated with
the current environment (see Environments).

The effective vertical line spacing consists of four components. Breaking a line causes the
following actions (in the given order).

• Move the current point vertically by the extra pre-vertical line space. This is the
minimum value of all \x escapes with a negative argument in the current output
line.

• Move the current point vertically by the vertical line spacing as set with the vs re-
quest.

• Output the current line.

• Move the current point vertically by the extra post-vertical line space. This is the
maximum value of all \x escapes with a positive argument in the line that has just
been output.

• Move the current point vertically by the post-vertical line spacing as set with the
pvs request.

It is usually better to use vs or pvs instead of ls to produce double-spaced documents: vs
and pvs have a finer granularity for the inserted vertical space than ls; furthermore, cer-
tain preprocessors assume single spacing.

See Manipulating Spacing, for more details on the \x escape and the ls request.

.pvs [space]

.pvs +space

.pvs -space
\n[.pvs]



gtroff Reference -168-

Change (increase, decrease) the post-vertical spacing by space. The default scaling
indicator is ‘p’.

If pvs is called without an argument, the post-vertical spacing is reset to the previous
value before the last call to pvs.

gtroff creates a warning of type ‘range’ if space is zero or negative; the vertical
spacing is then set to zero.

The read-only register .pvs contains the current post-vertical spacing; it is associ-
ated with the current environment (see Environments).

5.18.2. Fractional Type Sizes

A scaled point is equal to 1/sizescale points, where sizescale is specified in the device de-
scription file DESC, and defaults to 1 . A new scale indicator ‘z’ has has the effect of multi-
plying by sizescale. Requests and escape sequences in GNU troff interpret arguments
that represent a point size as being in units of scaled points; that is, they evaluate each
such argument using a default scale indicator of ‘z’. Arguments treated in this way com-
prise those to the escapes \H and \s, to the request ps, the third argument to the cs re-
quest, and the second and fourth arguments to the tkf request.

For example, if sizescale is 1000, then a scaled point is one one-thousandth of a point.
The request ‘.ps 10.25’ is synonymous with ‘.ps 10.25z’ and sets the point size to
10250 scaled points, or 10.25 points.

Consequently, in GNU troff, the register .s can contain a non-integral point size.

It makes no sense to use the ‘z’ scale indicator in a numeric expression whose default
scale indicator is neither ‘u’ nor ‘z’, so GNU troff disallows this. Similarly, it is nonsensi-
cal to use a scaling indicator other than ‘z’ or ‘u’ in a numeric expression whose default
scale indicator is ‘z’, and so GNU troff disallows this as well.

Another new scale indicator ‘s’ multiplies by the number of basic units in a scaled point.
For instance, ‘\n[.ps]s’ is equal to ‘1m’ by definition. Do not confuse the ‘s’ and ‘z’ scale
indicators.

\n[.ps]

A read-only register returning the point size in scaled points.

.ps is associated with the current environment (see Environments).

\n[.psr]

\n[.sr]
The last-requested point size in scaled points is contained in the read-only register
.psr. The last-requested point size in points as a decimal fraction can be found in
the read-only string-valued register .sr.

The requested point sizes are device-independent, whereas the values returned by
the .ps and .s registers are not. For example, if a point size of 11 pt is requested,
and a sizes request (or a sizescale line in a DESC file) specifies 10.95 pt instead,
this value is actually used.

Both registers are associated with the current environment (see Environments).

The \s escape has the following syntax for working with fractional type sizes:



gtroff Reference -169-

\s[n]

\s’n’ Set the point size to n scaled points; n is a numeric expression with a default
scale indicator of ‘z’.

\s[+n]

\s[-n]

\s+[n]

\s-[n]

\s’+n’

\s’-n’

\s+’n’

\s-’n’ Increase or decrease the point size by n scaled points; n is a numeric expres-
sion (which may start with a minus sign) with a default scale indicator of ‘z’.

See Device and Font Files.

5.19. Strings

GNU troff has string variables primarily for user convenience. Only one string is prede-
fined by the language.

\*[.T,]

Contains the name of the output driver (for example, ‘utf8’ or ‘pdf’).

The ds (or ds1) request creates a string with a specified name and contents and the \* es-
cape dereferences its name, retrieving the contents. Dereferencing an undefined string
name defines it as empty.

.ds name [string ]

.ds1 name [string ]
\*n
\*(nm
\*[name [arg1 arg2 ...]]

Define a string variable name with contents string . If name already exists, it is re-
moved first (see rm below). The syntax form using brackets accepts arguments that
are handled as macro arguments are; recall Request and Macro Arguments. In con-
trast to macro invocations, however, a closing bracket as a string argument must be
enclosed in double quotes.

The \* escape interpolates (expands in place) a previously defined string variable
name (one-character name n, two-character name nm). More precisely, the stored
string is pushed onto the input stack, which is then parsed normally. Similarly to reg-
isters, it is possible to nest strings; i.e., string variables can be called within string
variables. An argument in a string definition must be escaped for correct behavior;
See Parameters.

.ds a \\$1 wildebeest

.ds b big, \*[a hairy]

I see a \*[b].

⇒ I see a big, hairy wildebeest.

If the string named by the \* escape does not exist, it is defined as empty, and a
warning of type ‘mac’ is emitted (see Debugging).



gtroff Reference -170-

If ds is called with only one argument, name is defined as an empty string.

Caution: Unlike other requests, the second argument to the ds request consumes
the remainder of the input line, including trailing spaces. This means that comments
on a line with such a request can introduce unwanted space into a string when they
are set off from the material they annotate, as is conventional.

.ds TeX T\h'-.2m'\v'.2m'E\v'-.2m'\h'-.1m'X \" Knuth's TeX

Instead, place the comment on another line or put the comment escape immediately
adjacent to the last character of the string.

.ds TeX T\h'-.2m'\v'.2m'E\v'-.2m'\h'-.1m'X\" Knuth's TeX

It is good style to end string definitions (and appendments; see below) with a com-
ment, even an empty one, to prevent unwanted space from creeping into them during
source document maintenance.

.ds author Alice Pleasance Liddell\"

.ds empty \" might be appended to later with .as

To store leading space in a string, start it with a double quote. A double quote is spe-
cial only in that position; double quotes in any other location are included in the string
(the effects of escape sequences notwithstanding).

.ds salutation "         Yours in a white wine sauce,\"

.ds c-var-defn "    char build_date[]="2020-07-29";\"

.ds sucmd sudo sh -c "fdisk -l /dev/sda > partitions"\"

Strings are not limited to a single line of input text. A string can span several lines by
escaping the newlines with a backslash. The resulting string is stored without the
newlines.

.ds foo This string contains \

text on multiple lines \

of input.

It is not possible to embed a newline in a string that will be interpreted as such when
the string is interpolated. To achieve that effect, use the \* escape to interpolate a
macro instead.

Strings, macros, diversions (and boxes) share a same name space; Identifiers. Inter-
nally, the same mechanism is used to store them. It is thus possible to invoke a
macro with string interpolation syntax and vice versa.

.de subject

Typesetting

..

.de predicate

rewards attention to detail

..

\*[subject] \*[predicate].

Truly.

⇒ Typesetting

⇒ rewards attention to detail Truly.

What went wrong? Strings don’t contain newlines, but macros do. String



gtroff Reference -171-

interpolation placed a newline at the end of ‘\*[subject]’, and the next thing on the
input was a space. Similarly, when ‘\*[predicate]’ was interpolated, it was followed
by the empty request ‘.’ on a line by itself. If we want to use macros as strings, we
must take interpolation behavior into account.

.de subject

Typesetting\\

..

.de predicate

rewards attention to detail\\

..

\*[subject] \*[predicate].

Truly.

⇒ Typesetting rewards attention to detail. Truly.

By ending each text line of the macros with an escaped ‘\RET’, we get the desired ef-
fect (see Line Control). What would have happened if we had used only one back-
slash at a time instead?

Interpolating a string does not hide existing macro arguments. Thus in a macro, a
more efficient way of doing

.xx \\$@

is

\\*[xx]\\

The latter calling syntax doesn’t change the value of \$0, which is then inherited from
the calling macro (see Parameters).

Diversions and boxes can be also called with string syntax. It is sometimes conve-
nient to copy one-line diversions or boxes to a string.

.di xxx

a \fItest\fR

.br

.di

.ds yyy This is \*[xxx]\c

\*[yyy].

⇒ This is a test.

As the previous example shows, it is possible to store formatted output in strings.
The \c escape prevents the subsequent newline from being interpreted as a break
(again, see Line Control).

Copying diversions longer than a single output line produces unexpected results.

.di xxx

a funny

.br

test

.br

.di

.ds yyy This is \*[xxx]\c

\*[yyy].



gtroff Reference -172-

⇒ test This is a funny.

Usually, it is not predictable whether a diversion contains one or more output lines, so
this mechanism should be avoided. With AT&T troff, this was the only solution to
strip off a final newline from a diversion. Another disadvantage is that the spaces in
the copied string are already formatted, making them unstretchable. This can cause
ugly results.

A clean solution to this problem is available in GNU troff, using the requests chop
to remove the final newline of a diversion, and unformat to make the horizontal spa-
ces stretchable again.

.box xxx

a funny

.br

test

.br

.box

.chop xxx

.unformat xxx

This is \*[xxx].

⇒ This is a funny test.

See gtroff Internals.

The ds1 request defines a string such that compatibility mode is off when the string is later
interpolated. To be more precise, a compatibility save input token is inserted at the begin-
ning of the string, and a compatibility restore input token at the end.

.nr xxx 12345

.ds aa The value of xxx is \\n[xxx].

.ds1 bb The value of xxx is \\n[xxx].

.

.cp 1

.

\*(aa

error warning: number register '[' not defined

⇒ The value of xxx is 0xxx].

\*(bb

⇒ The value of xxx is 12345.

.as name [string ]

.as1 name [string ]
The as request is similar to ds but appends string to the string stored as name in-
stead of redefining it. If name doesn’t exist yet, it is created. If as is called with only
one argument, no operation is performed (beyond dereferencing it).

.as salutation " with shallots, onions and garlic,\"

The as1 request is similar to as, but compatibility mode is switched off when the ap-
pended portion of the string is later interpolated. To be more precise, a compatibility
save input token is inserted at the beginning of the appended string, and a compati-
bility restore input token at the end.



gtroff Reference -173-

Several requests exist to perform rudimentary string operations. Strings can be queried
(length) and modified (chop, substring, stringup, stringdown), and their names can be
manipulated through renaming, removal, and aliasing (rn, rm, als).

.length reg anything
Compute the number of characters of anything and store the count in the register
reg . If reg doesn’t exist, it is created. anything is read in copy mode.

.ds xxx abcd\h'3i'efgh

.length yyy \*[xxx]

\n[yyy]

⇒ 14

.chop object
Remove the last character from the macro, string, or diversion named object . This is
useful for removing the newline from the end of a diversion that is to be interpolated
as a string. This request can be used repeatedly on the same object ; see gtroff In-
ternals, for details on nodes inserted additionally by GNU troff.

.substring str start [end ]
Replace the string named str with its substring bounded by the indices start and
end , inclusive. The first character in the string has index 0. If end is omitted, it is im-
plicitly set to the largest valid value (the string length minus one). Negative indices
count backwards from the end of the string: the last character has index −1, the
character before the last has index −2, and so on.

.ds xxx abcdefgh

.substring xxx 1 -4

\*[xxx]

⇒ bcde

.substring xxx 2

\*[xxx]

⇒ de

.stringdown str

.stringup str
Alter the string named str by replacing each of its bytes with its lowercase (string-
down) or uppercase (stringup) version (if one exists). GNU troff special characters
(see the groff_char(7) man page) can be used and the output will usually transform
in the expected way due to the regular naming convention of the special character
escapes.

.ds resume R\['e]sum\['e]

\*[resume]

.stringdown resume

\*[resume]

.stringup resume

\*[resume]

⇒ Résumé résumé RÉSUMÉ

(In pratice, we would end the ds request with a comment escape \" to prevent space from
creeping into the definition during source document maintenance.)



gtroff Reference -174-

.rn old new
Rename the request, macro, diversion, or string old to new .

.rm name
Remove the request, macro, diversion, or string name. GNU troff treats subse-
quent invocations as if the name had never been defined.

.als new old
Create an alias new for the existing request, string, macro, or diversion object named
old , causing the names to refer to the same stored object. If old is undefined, a
warning of type ‘mac’ is generated and the request is ignored.

To understand how the als request works, consider two different storage pools: one
for objects (macros, strings, etc.), and another for names. As soon as an object is
defined, GNU troff adds it to the object pool, adds its name to the name pool, and
creates a link between them. When als creates an alias, it adds a new name to the
name pool that gets linked to the same object as the old name.

Now consider this example.

.de foo

..

.

.als bar foo

.

.de bar

. foo

..

.

.bar

error input stack limit exceeded

error (probable infinite loop)

In the above, bar remains an alias—another name for—the object referred to by foo,
which the second de request replaces. Alternatively, imagine that the de request
dereferences its argument before replacing it. Either way, the result of calling bar is
a recursive loop that finally leads to an error. See Writing Macros.

To remove an alias, simply call rm on its name. The object itself is not destroyed until
it has no more names.

5.20. Conditionals and Loops

GNU troff has if and while control structures like other languages. However, the syntax
for grouping multiple input lines in the branches or bodies of these structures is unusual.

5.20.1. Operators in Conditionals

In if, ie, and while requests, in addition to ordinary numeric expressions (see Expres-
sions), several boolean operators are available.

c glyph True if a glyph is available, where glyph is a Unicode basic Latin character, a
GNU troff special character ‘\(xx’ or ‘\[xxx]’, ‘\N’xxx’’, or has been defined
by the char request.



gtroff Reference -175-

d name True if there is a string, macro, diversion, or request called name.

e True if the current page is even-numbered.

F font True if a font called font exists. font is handled as if it were opened with the ft
request (that is, font translation and styles are applied), without actually mount-
ing it.

This test doesn’t load the complete font, but only its header to verify its validity.

m color True if there is a color called color .

n True if the document is being processed in nroff mode (i.e., the nroff request
has been issued).  See Unknown.

o True if the current page is odd-numbered.

r reg True if there is a register called reg .

S style True if a style called style has been registered. Font translation is applied.

t True if the document is being processed in troff mode (i.e., the troff request
has been issued).  See Unknown.

v Always false. This condition is recognized only for compatibility with certain
other troff implementations.52

'xxx'yyy'

True if the output produced by xxx is equal to the output produced by yyy .
Other characters can be used in place of the single quotes; the same set of de-
limiters as for the \D escape is used (see Escapes). gtroff formats xxx and
yyy in separate environments; after the comparison the resulting data is dis-
carded.

.ie "|"\fR|\fP" \

true

.el \

false

⇒ true

The resulting motions, glyph sizes, and fonts have to match,53 and not the indi-
vidual motion, size, and font requests. In the previous example, ‘|’ and
‘\fR|\fP’ both result in a roman ‘|’ glyph with the same point size and at the
same location on the page, so the strings are equal. If ‘.ft I’ had been added
before the ‘.ie’, the result would be “false” because (the first) ‘|’ produces an
italic ‘|’ rather than a roman one.

To compare strings without processing, surround the data with \?.

.ie "\?|\?"\?\fR|\fP\?" \

true

.el \

52 This refers to vtroff, a translator that would convert the C/A/T output from early-vintage AT&T troff to
a form suitable for Versatec and Benson-Varian plotters.

53 The created output nodes must be identical. See gtroff Internals.



gtroff Reference -176-

false

⇒ false

Since data protected with \? is read in copy mode it is even possible to use in-
complete input without causing an error.

.ds a \[

.ds b \[

.ie '\?\*a\?'\?\*b\?' \

true

.el \

false

⇒ true

These operators can’t be combined with other operators like ‘:’ or ‘&’; only a leading ‘!’
(without spaces or tabs between the exclamation mark and the operator) can be used to
negate the result.

.nr x 1

.ie !r x register x is not defined

.el register x is defined

⇒ register x is defined

Spaces and tabs immediately after ‘!’ cause the condition to evaluate as zero (this bizarre
behavior maintains compatibility with AT&T troff).

.nr x 1

.ie ! r x register x is not defined

.el register x is defined

⇒ r x register x is not defined

The unexpected appearance of ‘r x’ in the output is a clue that our conditional was not in-
terpreted the way we planned, but matters may not always be so obvious.

Spaces and tabs are optional before the arguments to the ‘r’, ‘d’, and ‘c’ operators.

5.20.2. if-then

.if expr anything
Evaluate the expression expr , and execute anything (the remainder of the line) if
expr evaluates true (that is, to a value greater than zero). anything is interpreted as
though it were on a line by itself (except that leading spaces are ignored). See Oper-
ators in Conditionals.

.nr xxx 1

.nr yyy 2

.if ((\n[xxx] == 1) & (\n[yyy] == 2)) true

⇒ true

.nop anything
Executes anything . This is similar to ‘.if 1’.



gtroff Reference -177-

5.20.3. if-else

.ie expr anything

.el anything
Use the ie and el requests to write an if-then-else. The first request is the ‘if’ part
and the latter is the ‘else’ part.

.ie n .ls 2 \" double-spacing in nroff

.el .ls 1 \" single-spacing in troff

See Expressions.

5.20.4. Conditional Blocks

\{

\}

It is frequently desirable for a control structure to govern more than one request, call
more than one macro, span more than one input line of text, or mix the foregoing.
The opening and closing brace escapes \{ and \} perform such grouping. Brace es-
capes can be used outside of control structures, but when they are they have no
meaning and produce no output.

\{ should appear (after optional spaces and tabs) immediately subsequent to the re-
quest’s conditional expression. \} should appear on a line with other occurrences of
itself as necessary to match \{ escapes. It can be preceded by a control character,
spaces, and tabs. Input after an \} escape on the same line is only processed if all
the preceding conditions to which the escapes correspond are true. Furthermore, a
\} closing the body of a while request must be the last such escape on an input line.

A

.if 0 \{ B

C

D

\}E

F

⇒ A F

N

.if 1 \{ O

. if 0 \{ P

Q

R\} S\} T

U

⇒ N O U

If the above behavior challenges the intuition, keep in mind that it was implemented
to retain compatibility with AT&T troff. For clarity, it is common practice to end input
lines with \{, optionally followed by \RET to suppress a break before subsequent text
lines, and to have nothing more than a control character, spaces, and tabs before
any lines containing \}.

.de DEBUG

debug =



gtroff Reference -178-

.ie \\$1 \{\

ON,

development

\}

.el \{\

OFF,

production

\}

version

..

.DEBUG 0

.br

.DEBUG 1

Try omitting the \RETs from the foregoing example and see how the output changes.
Remember that, as noted above, after a true conditional (or after the el request if its
counterpart ie condition was false) any spaces or tabs on the same input line are in-
terpreted as if they were on an input line by themselves.

5.20.5. while

GNU troff provides a looping construct using the while request, which is used much like
the if request.

.while expr anything
Evaluate the expression expr , and repeatedly execute anything (the remainder of the
line) until expr evaluates false.

.nr a 0 1

.while (\na < 9) \{\

\n+a,

.\}

\n+a

⇒ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Some remarks.

• The body of a while request is treated like the body of a de request: gtroff
temporarily stores it in a macro that is deleted after the loop has been ex-
ited. It can considerably slow down a macro if the body of the while re-
quest (within the macro) is large. Each time the macro is executed, the
while body is parsed and stored again as a temporary macro.

.de xxx

. nr num 10

. while (\\n[num] > 0) \{\

. \" many lines of code

. nr num -1

. \}

..

The traditional and often better solution (AT&T troff lacked the while re-
quest) is to use a recursive macro instead that is parsed only once during



gtroff Reference -179-

its definition.

.de yyy

. if (\\n[num] > 0) \{\

. \" many lines of code

. nr num -1

. yyy

. \}

..

.

.de xxx

. nr num 10

. yyy

..

The number of available recursion levels is set to 1000 (this is a compile-
time constant value of gtroff).

• The closing brace of a while body must end a line.

.if 1 \{\

. nr a 0 1

. while (\n[a] < 10) \{\

. nop \n+[a]

.\}\}

⇒ unbalanced \{ \}

.break

Break out of a while loop. Be sure not to confuse this with the br request (causing a
line break).

.continue

Finish the current iteration of a while loop, immediately restarting the next iteration.

5.21. Writing Macros

A macro is a collection of text and embedded commands that can be invoked multiple
times. Use macros to define common operations. See Strings, for a (limited) alternative
syntax to call macros.

Although the following requests can be used to create macros, simply using an undefined
macro will cause it to be defined as empty. See Identifiers.

.de name [end ]

.de1 name [end ]

.dei name [end ]

.dei1 name [end ]
Define a new macro named name. gtroff copies subsequent lines (starting with the
next one) into an internal buffer until it encounters the line ‘..’ (two dots). If the op-
tional second argument to de is present it is used as the macro closure request in-
stead of ‘..’.

There can be spaces or tabs after the first dot in the line containing the ending token
(either ‘.’ or macro ‘end’). Don’t insert a tab character immediately after the ‘..’,



gtroff Reference -180-

otherwise it isn’t recognized as the end-of-macro symbol.54

Here is a small example macro called ‘P’ that causes a break and inserts some verti-
cal space. It could be used to separate paragraphs.

.de P

. br

. sp .8v

..

The following example defines a macro within another. Remember that expansion
must be protected twice; once for reading the macro and once for executing.

\# a dummy macro to avoid a warning

.de end

..

.

.de foo

. de bar end

. nop \f[B]Hello \\\\$1!\f[]

. end

..

.

.foo

.bar Joe

⇒ Hello Joe!

Since \f has no expansion, it isn’t necessary to protect its backslash. Had we de-
fined another macro within bar that takes a parameter, eight backslashes would be
necessary before ‘$1’.

The de1 request turns off compatibility mode while executing the macro. On entry,
the current compatibility mode is saved and restored at exit.

.nr xxx 12345

.

.de aa

The value of xxx is \\n[xxx].

..

.de1 bb

The value of xxx is \\n[xxx].

..

.

.cp 1

.

54 While it is possible to define and call a macro ‘.’ with

.de .

. tm foo

..

.

.. \" This calls macro ‘.’!

you can’t use this as the end-of-macro macro: during a macro definition, ‘..’ is never handled as a call to ‘.’,
even if you say ‘.de foo .’ explicitly.



gtroff Reference -181-

.aa

⇒ warning: number register ‘[’ not defined

⇒ The value of xxx is 0xxx].

.bb

⇒ The value of xxx is 12345.

The dei request defines a macro indirectly. That is, it expands strings whose names
are name or end before performing the append.

This:

.ds xx aa

.ds yy bb

.dei xx yy

is equivalent to:

.de aa bb

The dei1 request is similar to dei but with compatibility mode switched off during ex-
ecution of the defined macro.

If compatibility mode is on, de (and dei) behave similar to de1 (and dei1): A ‘compat-
ibility save’ token is inserted at the beginning, and a ‘compatibility restore’ token at
the end, with compatibility mode switched on during execution. See gtroff

Internals, for more information on switching compatibility mode on and off in a single
document.

Using trace.tmac, you can trace calls to de and de1.

Macro identifiers share their name space with identifiers for strings, diversions, and
boxes; Identifiers.

See the description of the als request, for possible pitfalls if redefining a macro that
has been aliased.

.am name [end ]

.am1 name [end ]

.ami name [end ]

.ami1 name [end ]
Works similarly to de except it appends onto the macro named name. So, to make
the previously defined ‘P’ macro set indented instead of block paragraphs, add the
necessary code to the existing macro.

.am P

.ti +5n

..

The am1 request turns off compatibility mode while executing the appended macro
piece. To be more precise, a compatibility save input token is inserted at the begin-
ning of the appended code, and a compatibility restore input token at the end.

The ami request appends indirectly, meaning that gtroff expands strings whose
names are name or end before performing the append.

The ami1 request is similar to ami but compatibility mode is switched off during exe-
cution of the defined macro.

Using trace.tmac, you can trace calls to am and am1.



gtroff Reference -182-

See Strings, for the als and rn request to create an alias and rename a macro, respec-
tively.

The am, as, da, de, di, and ds requests (together with their variants) only create a new ob-
ject if the name of the macro, diversion, or string is currently undefined or if it is defined as
a request; normally, they modify the value of an existing object.

.return [anything ]
Exit a macro, immediately returning to the caller.

If called with an argument, exit twice, namely the current macro and the macro one
level higher. This is used to define a wrapper macro for return in trace.tmac.

5.21.1. Copy Mode

When GNU troff processes certain requests, most importantly those which define a
macro, string, or diversion, it does so in copy mode: it copies the characters of the defini-
tion into a dedicated storage region, interpolating the escape sequences \n, \$, and \*, in-
tepreting \\ and \RET immediately and storing all other escape sequences in an encoded
form.

Since the escape character escapes itself, you can control whether any escape sequence
is interpreted at definition time or when it is later invoked or interpolated by selectively in-
sulating the escapes with an extra backslash.55

.nr x 20

.de y

.nr x 10

\&\nx

\&\\nx

..

.y

⇒ 20 10

The counterpart to copy mode—a roff program’s behavior when not defining a macro,
string or diversion—where escapes are interpolated, requests invoked, and macros called
immediately upon recognition, can be termed interpretation mode.

5.21.2. Parameters

The arguments to a macro or string can be examined using a variety of escapes.

\n[.$]

The number of arguments passed to a macro or string.  This is a read-only register.

The shift request can change its value.

Any individual argument can be retrieved with one of the following escapes:

\$n
\$(nn
\$[nnn]

Retrieve the n th, nn th or nnn th argument. As usual, the first form only accepts a
single number (larger than zero), the second a two-digit number (larger than or equal

55 Compare this to the \def and \edef commands in TEX.



gtroff Reference -183-

to 10), and the third any positive integer value (larger than zero). Macros and strings
can have an unlimited number of arguments. Because string and macro definitions
are read in copy mode, use two backslashes on these in practice to prevent their in-
terpolation until the macro is actually invoked.

.shift [n]
Shift the arguments 1 position, or as many positions as specified by its argument.
After executing this request, argument i becomes argument i -n; arguments 1 to n
are no longer available. Shifting by negative amounts is currently undefined.

The register .$ is adjusted accordingly.

\$*

\$@

In some cases it is convenient to use all of the arguments at once (for example, to
pass the arguments along to another macro). The \$* escape concatenates all the
arguments separated by spaces. A similar escape is \$@, which concatenates all the
arguments with each surrounded by double quotes, and separated by spaces. If not
in compatibility mode, the input level of double quotes is preserved (see Request and
Macro Arguments).

\$ˆ
Handle the parameters of a macro as if they were an argument to the ds or similar
requests.

.de foo

. tm $1=‘\\$1’

. tm $2=‘\\$2’

. tm $*=‘\\$*’

. tm $@=‘\\$@’

. tm $ˆ=‘\\$ˆ’

..

.foo " This is a "test"

⇒ $1=‘ This is a ’

⇒ $2=‘test"’

⇒ $*=‘ This is a test"’

⇒ $@=‘" This is a " "test""’

⇒ $ˆ=‘" This is a "test"’

This escape is useful mainly for macro packages like trace.tmac, which redefines
some requests and macros for debugging purposes.

\$0

The name used to invoke the current macro. The als request can make a macro
have more than one name.

If a macro is called as a string (within another macro), the value of \$0 isn’t changed.

.de foo

. tm \\$0

..

.als bar foo

.

.de aaa



gtroff Reference -184-

. foo

..

.de bbb

. bar

..

.de ccc

\\*[foo]\\

..

.de ddd

\\*[bar]\\

..

.

.aaa

error foo

.bbb

error bar

.ccc

error ccc

.ddd

error ddd

See Request and Macro Arguments.

5.22. Page Motions

See Manipulating Spacing, for a discussion of the main request for vertical motion, sp.

.mk [reg ]

.rt [dist ]
The request mk can be used to mark a location on a page, for movement to later.
This request takes a register name as an argument in which to store the current
page location. With no argument it stores the location in an internal register. The re-
sults of this can be used later by the rt or the sp request (or the \v escape).

The rt request returns upwards to the location marked with the last mk request. If
used with an argument, return to a position which distance from the top of the page
is dist (no previous call to mk is necessary in this case). Default scaling indicator is
‘v’.

If a page break occurs between a mk request and its matching rt request, the rt is
silently ignored.

Here a primitive solution for a two-column macro.

.nr column-length 1.5i

.nr column-gap 4m

.nr bottom-margin 1m

.

.de 2c

. br

. mk



gtroff Reference -185-

. ll \\n[column-length]u

. wh -\\n[bottom-margin]u 2c-trap

. nr right-side 0

..

.

.de 2c-trap

. ie \\n[right-side] \{\

. nr right-side 0

. po -(\\n[column-length]u + \\n[column-gap]u)

. \" remove trap

. wh -\\n[bottom-margin]u

. \}

. el \{\

. \" switch to right side

. nr right-side 1

. po +(\\n[column-length]u + \\n[column-gap]u)

. rt

. \}

..

.

.pl 1.5i

.ll 4i

This is a small test that shows how the

rt request works in combination with mk.

.2c

Starting here, text is typeset in two columns.

Note that this implementation isn’t robust

and thus not suited for a real two-column

macro.

Result:

This is a small test that shows how the

rt request works in combination with mk.

Starting here,  isn’t  robust

text is typeset    and   thus  not

in two columns.    suited  for   a

Note that  this    real two-column

implementation macro.

The following escapes give fine control of movements about the page.

\v'e'
Move vertically, usually from the current location on the page (if no absolute position
operator ‘|’ is used). The argument e specifies the distance to move; positive is
downwards and negative upwards. The default scaling indicator for this escape is ‘v’.
Beware, however, that gtroff continues text processing at the point where the mo-
tion ends, so you should always balance motions to avoid interference with text



gtroff Reference -186-

processing.

\v doesn’t trigger a trap. This can be quite useful; for example, consider a page bot-
tom trap macro that prints a marker in the margin to indicate continuation of a foot-
note or something similar.

There are some special-case escapes for vertical motion.

\r

Move upwards 1 v.

\u

Move upwards .5 v.

\d

Move down .5 v.

\h'e'
Move horizontally, usually from the current location (if no absolute position operator
‘|’ is used). The expression e indicates how far to move: positive is rightwards and
negative leftwards. The default scaling indicator for this escape is ‘m’.

This horizontal space is not discarded at the end of a line. To insert discardable
space of a certain length use the ss request.

There are a number of special-case escapes for horizontal motion.

\SP

An unbreakable and unpaddable (i.e. not expanded during filling) space. (Note: This
is a backslash followed by a space.)

\˜
An unbreakable space that stretches like a normal inter-word space when a line is
adjusted.

\|

A 1/6 th em unbreakable space. Ignored for TTY output devices (rounded to zero).

However, if there is a glyph defined in the current font file with name \| (note the
leading backslash), the width of this glyph is used instead (even for TTYs).

\ˆ
A 1/12 th em unbreakable space. Ignored for TTY output devices (rounded to zero).

However, if there is a glyph defined in the current font file with name \ˆ (note the
leading backslash), the width of this glyph is used instead (even for TTYs).

\0

An unbreakable space the size of a digit.

The following string sets the TEX logo:

.ds TeX T\h’-.1667m’\v’.224m’E\v’-.224m’\h’-.125m’X

\w'text'
\n[st]

\n[sb]

\n[rst]

\n[rsb]

\n[ct]

\n[ssc]



gtroff Reference -187-

\n[skw]

Return the width of the specified text in basic units. This allows horizontal movement
based on the width of some arbitrary text (e.g. given as an argument to a macro).

The length of the string ‘abc’ is \w’abc’u.

⇒ The length of the string ‘abc’ is 72u.

Font changes may occur in text , which don’t affect current settings.

After use, \w sets several registers:

st

sb The highest and lowest point of the baseline, respectively, in text .

rst

rsb Like the st and sb registers, but takes account of the heights and
depths of glyphs. In other words, this gives the highest and lowest
point of text . Values below the baseline are negative.

ct Defines the kinds of glyphs occurring in text :

0 only short glyphs, no descenders or tall glyphs.

1 at least one descender.

2 at least one tall glyph.

3 at least one each of a descender and a tall glyph.

ssc The amount of horizontal space (possibly negative) that should be
added to the last glyph before a subscript.

skw How far to right of the center of the last glyph in the \w argument, the
center of an accent from a roman font should be placed over that
glyph.

\kp
\k(ps
\k[position]

Store the current horizontal position in the input line in a register with the name posi-
tion (one-character name p, two-character name ps). Use this, for example, to re-
turn to the beginning of a string for highlighting or other decoration.

\n[hp]

The current horizontal position at the input line.

\n[.k]

A read-only register containing the current horizontal output position (relative to the
current indentation).

\o'abc'
Overstrike glyphs a, b, c , ...; the glyphs are centered, and the resulting spacing is the
largest width of the affected glyphs.

\zg
Print glyph g with zero width, i.e., without spacing. Use this to overstrike glyphs left-
aligned.



gtroff Reference -188-

\Z'anything'
Print anything , then restore the horizontal and vertical position. The argument may
not contain tabs or leaders.

The following is an example of a strike-through macro:

.de ST

.nr ww \w’\\$1’

\Z@\v’-.25m’\l’\\n[ww]u’@\\$1

..

.

This is

.ST "a test"

an actual emergency!

5.23. Drawing Requests

gtroff provides a number of ways to draw lines and other figures on the page. Used in
combination with the page motion commands (see Page Motions), a wide variety of figures
can be drawn. However, for complex drawings these operations can be quite cumbersome,
and it may be wise to use graphic preprocessors like gpic or ggrn. See gpic, and ggrn.

All drawing is done via escapes.

\l'l'
\l'lg'

Draw a line horizontally. l is the length of the line to be drawn. If it is positive, start
the line at the current location and draw to the right; its end point is the new current
location. Negative values are handled differently: The line starts at the current loca-
tion and draws to the left, but the current location doesn’t move.

l can also be specified absolutely (i.e. with a leading ‘|’), which draws back to the be-
ginning of the input line. Default scaling indicator is ‘m’.

The optional second parameter g is a glyph to draw the line with. If this second ar-
gument is not specified, gtroff uses the underscore glyph, \[ru].

To separate the two arguments (to prevent gtroff from interpreting a drawing glyph
as a scaling indicator if the glyph is represented by a single character) use \&.

.de box

\[br]\\$*\[br]\l’|0\[rn]’\l’|0\[ul]’

..

The above works by outputting a box rule (a vertical line), then the text given as an
argument and then another box rule. Finally, the line-drawing escapes both draw
from the current location to the beginning of the input line—this works because the
line length is negative, not moving the current point.

\L'l'
\L'lg'

Draw vertical lines. Its parameters are similar to the \l escape, except that the de-
fault scaling indicator is ‘v’. The movement is downwards for positive values, and up-
wards for negative values. The default glyph is the box rule glyph, \[br]. As with
the vertical motion escapes, text processing blindly continues where the line ends.



gtroff Reference -189-

This is a \L’3v’test.

Here is the result, produced with grotty.

This is a

|

|

|test.

\D'command arg ...'
The \D escape provides a variety of drawing functions. On character devices, only
vertical and horizontal lines are supported within grotty; other devices may only
support a subset of the available drawing functions.

The default scaling indicator for all subcommands of \D is ‘m’ for horizontal distances
and ‘v’ for vertical ones. Exceptions are ‘\D’f ...’’ and ‘\D’t ...’’, which use u as
the default, and ‘\D’Fx ...’’, which arguments are treated similar to the defcolor
request.

\D’l dx dy’

Draw a line from the current location to the relative point specified by
(dx ,dy ), where positive values mean right and down, respectively.
The end point of the line is the new current location.

The following example is a macro for creating a box around a text
string; for simplicity, the box margin is taken as a fixed value, 0.2 m.

.de BOX

. nr @wd \w’\\$1’

\h’.2m’\

\h’-.2m’\v’(.2m - \\n[rsb]u)’\

\D’l 0 -(\\n[rst]u - \\n[rsb]u + .4m)’\

\D’l (\\n[@wd]u + .4m) 0’\

\D’l 0 (\\n[rst]u - \\n[rsb]u + .4m)’\

\D’l -(\\n[@wd]u + .4m) 0’\

\h’.2m’\v’-(.2m - \\n[rsb]u)’\

\\$1\

\h’.2m’

..

First, the width of the string is stored in register @wd. Then, four lines
are drawn to form a box, properly offset by the box margin. The reg-
isters rst and rsb are set by the \w escape, containing the largest
height and depth of the whole string.

\D’c d’ Draw a circle with a diameter of d with the leftmost point at the cur-
rent position. After drawing, the current location is positioned at the
rightmost point of the circle.

\D’C d’ Draw a solid circle with the same parameters and behaviour as an
outlined circle. No outline is drawn.

\D’e x y’

Draw an ellipse with a horizontal diameter of x and a vertical diame-
ter of y with the leftmost point at the current position. After drawing,



gtroff Reference -190-

the current location is positioned at the rightmost point of the ellipse.

\D’E x y’

Draw a solid ellipse with the same parameters and behaviour as an
outlined ellipse. No outline is drawn.

\D’a dx1 dy1 dx2 dy2’

Draw an arc clockwise from the current location through the two
specified relative locations (dx1,dy1) and (dx2 ,dy2 ). The coordi-
nates of the first point are relative to the current position, and the co-
ordinates of the second point are relative to the first point. After
drawing, the current position is moved to the final point of the arc.

\D’˜ dx1 dy1 dx2 dy2 ...’

Draw a spline from the current location to the relative point (dx1,dy1)
and then to (dx2 ,dy2 ), and so on. The current position is moved to
the terminal point of the drawn curve.

\D’f n’ Set the shade of gray to be used for filling solid objects to n; n must
be an integer between 0 and 1000, where 0 corresponds solid white
and 1000 to solid black, and values in between correspond to inter-
mediate shades of gray. This applies only to solid circles, solid el-
lipses, and solid polygons. By default, a level of 1000 is used.

Nonintuitively, the current point is moved horizontally to the right
by n.

Don’t use this command! It has the serious drawback that it is al-
ways rounded to the next integer multiple of the horizontal resolution
(the value of the hor keyword in the DESC file). Use \M (see Colors)
or ‘\D’Fg ...’’ instead.

\D’p dx1 dy1 dx2 dy2 ...’

Draw a polygon from the current location to the relative position
(dx1,dy1) and then to (dx2 ,dy2 ) and so on. When the specified data
points are exhausted, a line is drawn back to the starting point. The
current position is changed by adding the sum of all arguments with
odd index to the actual horizontal position and the even ones to the
vertical position.

\D’P dx1 dy1 dx2 dy2 ...’

Draw a solid polygon with the same parameters and behaviour as an
outlined polygon.  No outline is drawn.

Here a better variant of the box macro to fill the box with some color.
The box must be drawn before the text since colors in GNU troff
are not transparent; the filled polygon would hide the text completely.

.de BOX

. nr @wd \w’\\$1’

\h’.2m’\

\h’-.2m’\v’(.2m - \\n[rsb]u)’\

\M[lightcyan]\

\D’P 0 -(\\n[rst]u - \\n[rsb]u + .4m) \



gtroff Reference -191-

(\\n[@wd]u + .4m) 0 \

0 (\\n[rst]u - \\n[rsb]u + .4m) \

-(\\n[@wd]u + .4m) 0’\

\h’.2m’\v’-(.2m - \\n[rsb]u)’\

\M[]\

\\$1\

\h’.2m’

..

If you want a filled polygon that has exactly the same size as an un-
filled one, you must draw both an unfilled and a filled polygon. A
filled polygon is always smaller than an unfilled one because the lat-
ter uses straight lines with a given line thickness to connect the poly-
gon’s corners, while the former simply fills the area defined by the
coordinates.

\h’1i’\v’1i’\

\# increase line thickness

\Z’\D’t 5p”\
\# draw unfilled polygon

\Z’\D’p 3 3 -6 0”\
\# draw filled polygon

\Z’\D’P 3 3 -6 0”

\D’t n’ Set the current line thickness to n basic units. A value of zero se-
lects the smallest available line thickness. A negative value makes
the line thickness proportional to the current point size (this is the
default behaviour of AT&T troff).

Nonintuitively, the current point is moved horizontally to the right
by n.

\D’Fscheme color_components’

Change current fill color. scheme is a single letter denoting the color
scheme: ‘r’ (rgb), ‘c’ (cmy), ‘k’ (cmyk), ‘g’ (gray), or ‘d’ (default color).
The color components use exactly the same syntax as in the def-
color request (see Colors); the command \D’Fd’ doesn’t take an
argument.

No position changing!

Examples:

\D’Fg .3’      \" same gray as \D’f 700’

\D’Fr #0000ff’ \" blue

See Graphics Commands.

\b'string'
Pile a sequence of glyphs vertically, and center it vertically on the current line. Use it
to build large brackets and braces.

Here an example how to create a large opening brace:

\b’\[lt]\[bv]\[lk]\[bv]\[lb]’



gtroff Reference -192-

The first glyph is on the top, the last glyph in string is at the bottom. GNU troff sep-
arates the glyphs vertically by 1 m, and the whole object is centered 0.5 m above the
current baseline; the largest glyph width is used as the width for the whole object.
This rather inflexible positioning algorithm doesn’t work with -Tdvi since the bracket
pieces vary in height for this device. Instead, use the eqn preprocessor.

See Manipulating Spacing, how to adjust the vertical spacing with the \x escape.

5.24. Traps

Traps are locations in the output, or conditions on the input that, when reached or fulfilled,
cause a specified macro to be called. These traps can occur at a given location on the
page, at a given location in the current diversion (together, these are known as vertical po-
sition traps), at a blank line, at a line with leading space characters, after a certain number
of input lines, or at the end of input. Macros invoked by traps have no arguments. Setting
a trap is also called planting . It is also said that a trap is sprung if the associated macro is
executed.

5.24.1. Vertical Position Traps

Vertical position traps perform an action when GNU troff reaches or passes a certain
vertical location on the output page or in a diversion. They have a variety of purposes.

• setting headers and footers

• setting body text in multiple columns

• setting footnotes

The location parameter used in vertical position traps has a default scaling indicator of ‘v’,
and its value is rounded to be multiples of the vertical resolution (as given in register .V).

.vpt [flag ]
\n[.vpt]

Enable vertical position traps if flag is non-zero or absent; disable them otherwise.
Vertical position traps are those set by the wh request or by dt within a diversion.
The parameter that controls whether vertical position traps are enabled is global. Ini-
tially, vertical position traps are enabled. The current setting of this is available in the
.vpt read-only register.

A page can’t be ejected if vpt is set to zero.

5.24.1.1. Page Location Traps

.wh dist [name]
Call macro name when the vertical position dist on the page is reached or passed in
the downward direction. Non-negative values for dist set the trap relative to the top
of the page; negative values set the trap relative to the bottom of the page. An exist-
ing visible trap (see below) at dist is removed; this is wh’s sole function if name is
missing.

A trap is sprung only if it is visible, meaning that its location is reachable on the
page56 and it is not hidden by another trap at the same location already planted

56 A trap planted at ‘20i’ or ‘-30i’ will not be sprung on a page of length ‘11i’.



gtroff Reference -193-

there.

An example of how a macro package might set headers and footers follows.

.de hd                \" page header

' sp .5i

. tl '\\*[Title]''\\*[Date]'

' sp .3i

..

.

.de fo                \" page footer

' sp 1v

. tl ''%''

' bp

..

.

.wh 0   hd            \" trap at top of the page

.wh -1i fo            \" trap one inch from bottom

A trap above the top or at or below the bottom of the page can be made visible by ei-
ther moving it into the page area or increasing the page length so that the trap is on
the page. Negative trap values always use the current page length; they are not
converted to an absolute vertical position. We can use the ptr request to dump our
page location traps to the standard error stream (see Debugging). Their positions
are reported in basic units appropriate to the device; an nroff device example fol-
lows.

.pl 5i

.wh -1i xx

.ptr

error xx -240

.pl 100i

.ptr

error xx -240

It is possible to have more than one trap at the same location (although only one at a
time can be visible); to achieve this, the traps must be defined at different locations,
then moved to the same place with the ch request. In the following example, the
many empty lines caused by the bp request are not shown in the output.

.de a

. nop a

..

.de b

. nop b

..

.de c

. nop c

..

.

.wh 1i a

.wh 2i b



gtroff Reference -194-

.wh 3i c

.bp

⇒ a b c

.ch b 1i

.ch c 1i

.bp

⇒ a

.ch a 0.5i

.bp

⇒ a b

\n[.t]

The read-only register .t holds the distance to the next vertical position trap. If there
are no traps between the current position and the bottom of the page, it contains the
distance to the page bottom. Within a diversion, in the absence of a diversion trap,
this distance is the largest representable integer in basic units—effectively infinite.

.ch name [dist ]
Change the location of a trap by moving macro name to new location dist , or by un-
planting it altogether if dist is absent. Parameters to ch are specified in the opposite
order from wh. If name is the earliest planted macro of multiple traps at the same lo-
cation, (re)moving it from that location exposes the macro next least recently planted
at the same place.57

Changing a trap’s location is useful for building up footnotes in a diversion to allow
more space at the bottom of the page for them.

The same macro can be installed simultaneously at multiple locations; however, only the
earliest-planted instance—that has not yet been deleted with wh—will be moved by ch.
The following example (using an nroff device) illustrates this behavior.58 Blank lines have
been elided from the output.

.de T

Trap sprung at \\n(nlu.

.br

..

.wh 1i T

.wh 2i T

foo

.sp 11i

.bp

.ch T 4i

bar

.sp 11i

.bp

.ch T 5i

baz

.sp 11i

57 It may help to think of each trap location as maintaining a queue; wh operates on the head of the queue,
and ch operates on its tail. Only the trap at the head of the queue is visible.

58 ...which is compatible with Heirloom Doctools troff.



gtroff Reference -195-

.bp

.wh 5i

.ch T 6i

qux

.sp 11i

⇒ foo

⇒ Trap sprung at 240u.

⇒ Trap sprung at 480u.

⇒ bar

⇒ Trap sprung at 480u.

⇒ Trap sprung at 960u.

⇒ baz

⇒ Trap sprung at 480u.

⇒ Trap sprung at 1200u.

⇒ qux

⇒ Trap sprung at 1440u.

\n[.ne]

The read-only register .ne contains the amount of space that was needed in the last
ne request that caused a trap to be sprung; it is useful in conjunction with the .trunc
register. See Page Control.

Since the .ne register is set only by traps it doesn’t make much sense to use it out-
side of trap macros.

\n[.trunc]

A read-only register containing the amount of vertical space truncated from an sp re-
quest by the most recently sprung vertical position trap, or, if the trap was sprung by
an ne request, minus the amount of vertical motion produced by the ne request. In
other words, at the point a trap is sprung, it represents the difference of what the ver-
tical position would have been but for the trap, and what the vertical position actually
is.

Since the .trunc register is only set by traps it doesn’t make much sense to use it
outside of trap macros.

\n[.pe]

A read-only register that is set to 1 while a page is ejected with the bp request (or by
the end of input).

Outside of traps this register is always zero. In the following example, only the sec-
ond call to x is caused by bp.

.de x

\&.pe=\\n[.pe]

.br

..

.wh 1v x

.wh 4v x

A line.

.br

Another line.

.br



gtroff Reference -196-

⇒ A line.

.pe=0

Another line.

.pe=1

An important fact to consider while designing macros is that diversions and traps do not in-
teract normally. For example, if a trap invokes a header macro (while outputting a diver-
sion) that tries to change the font on the current page, the effect is not visible before the di-
version has completely been printed (except for input protected with \! or \?) since the
data in the diversion is already formatted. In most cases, this is not the expected behav-
iour.

5.24.1.2. Diversion Traps

.dt [dist name]
Set a trap within a diversion at location dist . The location is interpreted relative to di-
version rather than page boundaries. If called with fewer than two arguments, the di-
version trap is removed.

There exists only a single diversion trap.

The register .t works within diversions. See Diversions.

5.24.2. Input Line Traps

.it n name

.itc n name
Set an input line trap, calling macro name after the next n lines of text input have
been read. Lines beginning with the control character or no-break control character
are not counted.

Consider a macro ‘.B n’ which sets the next n input lines in bold.

.de B

. it \\$1 EB

. ft B

..

.de EB \" end bold

. ft R

..

With itc, interrupted text lines are not counted separately.

.de Monospace

. it \\$1 End-Monospace

. fam C

..

.de End-Monospace

. fam T

..

Syntax:

.Monospace 1



gtroff Reference -197-

.ft B

mycommand \c

[\c

.ft I

operand \c

]

Both requests are associated with the current environment (see Environments); switching
to another environment disables the current input trap, and going back reactivates it,
restoring the count of already processed lines.

5.24.3. Blank Line Traps

.blm [name]
Set a blank line trap, calling the macro name when GNU troff encounters a blank
line in an input file, instead of the usual behavior (see Breaking). A line consisting
only of spaces is also treated as blank and subject to this trap. If no argument is
supplied, the default blank line behavior is (re-)established.

5.24.4. Leading Space Traps

.lsm [name]
\n[lsn]

\n[lss]

Set a leading space trap, calling the macro name when GNU troff encounters lead-
ing spaces in an input line; the implicit line break that normally happens in this case
is suppressed. If no argument is supplied, the default leading space behavior is
(re-)established (see Breaking).

The count of leading spaces on an input line is stored in register lsn, and the amount
of corresponding horizontal motion in register lss, irrespective of whether a leading
space trap is set. When it is, the leading spaces are removed from the input line,
and no motion is produced before calling name.

5.24.5. End-of-input Traps

.em [name]
Set a trap at the end of input, calling macro name after the last line of the last input
file has been processed. If no argument is given, any existing end-of-input trap is re-
moved.

For example, if the document had to have a section at the bottom of the last page for
someone to approve it, the em request could be used.

.de approval

\c

. ne 3v

. sp (\\n[.t]u - 3v)

. in +4i

. lc _

. br



gtroff Reference -198-

Approved:\t\a

. sp

Date:\t\t\a

..

.

.em approval

The \c in the above example needs explanation. For historical reasons (and for
compatibility with AT&T troff), the end-of-input macro exits as soon as it causes a
page break and no remaining data is in the partially collected line.

Let us assume that there is no \c in the above approval macro, and that the page is
full and has been ended with, say, a br request. The ne request now causes the
start of a new page, which in turn makes troff exit immediately for the reasons just
described. In most situations this is not intended.

To force processing of the whole end-of-input macro independently of this behavior, it
is thus advisable to insert something that starts an empty partially collected line (\c)
whenever there is a chance that a page break can happen. In the above example,
the call of the ne request assures that the remaining code stays on the same page,
so we have to insert \c only once.

The next example shows how to append three lines, then start a new page uncondi-
tionally. Since ‘.ne 1’ doesn’t give the desired effect—there is always one line avail-
able or we are already at the beginning of the next page—we temporarily increase
the page length by one line so that we can use ‘.ne 2’.

.de EM

.pl +1v

\c

.ne 2

line one

.br

\c

.ne 2

line two

.br

\c

.ne 2

line three

.br

.pl -1v

\c

'bp

..

.em EM

This specific feature affects only the first potential page break caused by the end-of-
input macro; further page breaks emitted by the macro are handled normally.

Another possible use of the em request is to make GNU troff emit a single large
page instead of multiple pages. For example, one may want to produce a long plain
text file for reading in a terminal or emulator without page footers and headers



gtroff Reference -199-

interrupting the body of the document. One approach is to set the page length at the
beginning of the document to a very large value to hold all the text,59 and automati-
cally adjust it to the exact height of the document after the text has been output.

.de adjust-page-length

. br

. pl \\n[nl]u \" \n[nl]: current vertical position

..

.

.de single-page-mode

. pl 99999

. em adjust-page-length

..

.

.\" Activate the above code if configured.

.if \n[do-continuous-rendering] \

. single-page-mode

Since only one end-of-input trap exists and another macro package may already use
it, care must be taken not to break the mechanism. A simple solution would be to ap-
pend the above macro to the macro package’s end-of-input macro using the am re-
quest.

5.25. Diversions

In roff systems it is possible to format text as if for output, but instead of writing it immedi-
ately, one can divert the formatted text into a named storage area. The same name space
is used for such diversions as for strings and macros; Identifiers. Such text is sometimes
said to be “stored in a macro”, but this coinage obscures the important distinction between
macros and strings on one hand and diversions on the other; the former store unformatted
input text, and the latter capture formatted output. Applications of diversions include
“keeps” (preventing a page break from occurring at an inconvenient place by forcing a set
of output lines to be set as a group), footnotes, tables of contents, and indices. For orthog-
onality it is said that GNU troff is in the top-level diversion if no diversion is active (that is,
formatted output is being “diverted” immediately to the output device).

Dereferencing an undefined diversion will create an empty one of that name and cause a
warning of type ‘mac’ to be emitted (see Debugging). A diversion does not exist for the pur-
pose of testing with the d conditional operator until it ends (see Operators in Conditionals).
The .z register can be used to test the identity of the current diversion. The following re-
quests are used to create and alter diversions.

.di macro

.da macro
Begin a diversion. Like the de request, it takes an argument of a macro name to di-
vert subsequent text into. The da macro appends to an existing diversion.

di or da without an argument ends the diversion.

The current partially filled line is included into the diversion. See the box request be-
low for an example. Switching to another (empty) environment (with the ev request)

59 Another, taken by the groff man macros, is to intercept ne requests and wrap bp ones.



gtroff Reference -200-

avoids the inclusion of the current partially filled line; Environments.

.box macro

.boxa macro
Begin (or append to) a diversion like the di and da requests. The difference is that
box and boxa do not include a partially filled line in the diversion.

Compare this:

Before the box.

.box xxx

In the box.

.br

.box

After the box.

.br

⇒ Before the box. After the box.

.xxx

⇒ In the box.

with this:

Before the diversion.

.di yyy

In the diversion.

.br

.di

After the diversion.

.br

⇒ After the diversion.

.yyy

⇒ Before the diversion. In the diversion.

box or boxa without an argument ends the diversion.

\n[.z]

\n[.d]
Diversions may be nested. The read-only register .z contains the name of the cur-
rent diversion (this is a string-valued register). The read-only register .d contains the
current vertical place in the diversion. If not in a diversion, it is the same as register
nl.

\n[.h]

The read-only register .h stores the high-water mark on the current page or in the
current diversion. It corresponds to the text baseline of the lowest line on the page.60

.tm .h==\n[.h], nl==\n[nl]

⇒ .h==0, nl==-1

This is a test.

.br

.sp 2

.tm .h==\n[.h], nl==\n[nl]

60 Thus, the “water” gets “higher” proceeding down the page.



gtroff Reference -201-

⇒ .h==40, nl==120

As the previous example shows, empty lines are not considered in the return value of
the .h register.

\n[dn]

\n[dl]
After completing a diversion, the writable registers dn and dl contain the vertical and
horizontal size of the diversion. Only the just-processed lines are counted: for the
computation of dn and dl, the requests da and boxa are handled as if di and box had
been used—lines that have been already stored in a macro are not taken into ac-
count.

.\" Center text both horizontally and vertically.

.

.\" Disable the escape character with .eo so that we

.\" don't have to double backslashes on the \n escapes.

.eo

.\" Macro .(c starts centering mode.

.de (c

. br

. ev (c

. evc 0

. in 0

. nf

. di @c

..

.\" Macro .)c terminates centering mode.

.de )c

. br

. ev

. di

. nr @s (((\n[.t]u - \n[dn]u) / 2u) - 1v)

. sp \n[@s]u

. ce 1000

. @c

. ce 0

. sp \n[@s]u

. br

. fi

. rr @s

. rm @c

..

.\" End of macro definitions; restore escape character.

.ec

\!

\?anything \?
Prevent requests, macros, and escapes from being interpreted when read into a di-
version. Both escapes take the given text and transparently embed it into the diver-
sion. This is useful for macros that shouldn’t be invoked until the diverted text is



gtroff Reference -202-

actually output.

The \! escape transparently embeds text up to and including the end of the line.
The \? escape transparently embeds text until the next occurrence of the \? escape.
Example:

\?anything\?

anything may not contain newlines; use \! to embed newlines in a diversion. The
escape sequence \? is also recognized in copy mode and turned into a single inter-
nal code; it is this code that terminates anything . Thus the following example
prints 4.

.nr x 1

.nf

.di d

\?\\?\\\\?\\\\\\\\nx\\\\?\\?\?

.di

.nr x 2

.di e

.d

.di

.nr x 3

.di f

.e

.di

.nr x 4

.f

Both escapes read the data in copy mode.

If \! is used in the top-level diversion, its argument is directly embedded into the
gtroff intermediate output. This can be used for example to control a postproces-
sor that processes the data before it is sent to the device driver.

The \? escape used in the top-level diversion produces no output at all; its argument
is simply ignored.

.output string
Emit string directly to the gtroff intermediate output (subject to copy mode interpre-
tation); this is similar to \! used at the top level. An initial double quote in string is
stripped off to allow initial blanks.

This request can’t be used before the first page has started—if you get an error, sim-
ply insert .br before the output request.

Without argument, output is ignored.

Use with caution! It is normally only needed for mark-up used by a postprocessor
that does something with the output before sending it to the output device, filtering
out string again.

.asciify div
Unformat the diversion div in a way such that Unicode basic Latin (ASCII) charac-
ters, characters translated with the trin request, space characters, and some es-
cape sequences, that were formatted and diverted into div are treated like ordinary



gtroff Reference -203-

input characters when div is reread. Doing so can be useful in conjunction with the
writem request. asciify can be also used for gross hacks; for example, the follow-
ing sets register n to 1.

.tr @.

.di x

@nr n 1

.br

.di

.tr @@

.asciify x

.x

asciify cannot return all items in a diversion back to their source equivalent; nodes
such as those produced by \N[...] will remain nodes, so the result cannot be guar-
anteed to be a pure string.

See Copy Mode.

.unformat div
Like asciify, unformat the diversion div . However, unformat handles only tabs and
spaces between words, the latter usually arising from spaces or newlines in the in-
put. Tabs are treated as input tokens, and spaces become stretchable again.

The vertical sizes of lines are not preserved, but glyph information (font, font size,
space width, etc.) is retained. unformat can be useful in conjunction with the box

and boxa requests.

5.26. Environments

It happens frequently that some text should be printed in a certain format regardless of
what may be in effect at the time, for example, in a trap invoked macro to print headers and
footers. To solve this gtroff processes text in environments. An environment contains
most of the parameters that control text processing. It is possible to switch amongst these
environments; by default gtroff processes text in environment 0. The following is the in-
formation kept in an environment.

• font parameters (size, family, style, glyph height and slant, space and inter-sen-
tence space size)

• page parameters (line length, title length, vertical spacing, line spacing, indenta-
tion, line numbering, centering, right-justifying, underlining, hyphenation data)

• fill and adjust mode

• tab stops, tab and leader characters, escape character, no-break and hyphen in-
dicators, margin character data

• partially collected lines

• input traps

• drawing and fill colours

These environments may be given arbitrary names (see Identifiers.) Old versions of troff
only had environments named ‘0’, ‘1’, and ‘2’.



gtroff Reference -204-

.ev [env ]
\n[.ev]

Switch to another environment. The argument env is the name of the environment to
switch to. With no argument, gtroff switches back to the previous environment.
There is no limit on the number of named environments; they are created the first
time that they are referenced. The .ev read-only register contains the name or num-
ber of the current environment. This is a string-valued register.

A call to ev (with argument) pushes the previously active environment onto a stack.
If, say, environments ‘foo’, ‘bar’, and ‘zap’ are called (in that order), the first ev re-
quest without parameter switches back to environment ‘bar’ (which is popped off the
stack), and a second call switches back to environment ‘foo’.

Here is an example:

.ev footnote-env

.fam N

.ps 6

.vs 8

.ll -.5i

.ev

...

.ev footnote-env

\(dg Note the large, friendly letters.

.ev

.evc env
Copy the environment env into the current environment.

The following environment data is not copied:

• Partially filled lines.

• The status whether the previous line was interrupted.

• The number of lines still to center, or to right-justify, or to underline (with or
without underlined spaces); they are set to zero.

• The status whether a temporary indentation is active.

• Input traps and its associated data.

• Line numbering mode is disabled; it can be reactivated with ‘.nm +0’.

• The number of consecutive hyphenated lines (set to zero).

\n[.w]

\n[.cht]
\n[.cdp]
\n[.csk]

The \n[.w] register contains the width of the last glyph added to the current environ-
ment.

The \n[.cht] register contains the height of the last glyph added to the current envi-
ronment.

The \n[.cdp] register contains the depth of the last glyph added to the current



gtroff Reference -205-

environment. It is positive for glyphs extending below the baseline.

The \n[.csk] register contains the skew (how far to the right of the glyph’s center
that gtroff should place an accent) of the last glyph added to the current environ-
ment.

\n[.n]

The \n[.n] register contains the length of the previous output line in the current en-
vironment.

5.27. Suppressing output

\Onum
Disable or enable output depending on the value of num:

‘\O0’ Disable any glyphs from being emitted to the device driver, provided
that the escape occurs at the outer level (see \O[3] and \O[4]).
Motion is not suppressed so effectively \O[0] means pen up.

‘\O1’ Enable output of glyphs, provided that the escape occurs at the
outer level.

\O0 and \O1 also reset the four registers ‘opminx’, ‘opminy’, ‘opmaxx’, and ‘op-
maxy’ to −1. See Register Index. These four registers mark the top left and
bottom right hand corners of a box that encompasses all written glyphs.

For example the input text:

Hello \O[0]world \O[1]this is a test.

produces the following output:

Hello this is a test.

‘\O2’ Provided that the escape occurs at the outer level, enable output of
glyphs and also write out to stderr the page number and four regis-
ters encompassing the glyphs previously written since the last call to
\O.

‘\O3’ Begin a nesting level. At start-up, gtroff is at outer level. The cur-
rent level is contained within the read-only register .O. See Built-in
Registers.

‘\O4’ End a nesting level. The current level is contained within the read-
only register .O. See Built-in Registers.

‘\O[5Pfilename]’
This escape is grohtml specific. Provided that this escape occurs at
the outer nesting level write the filename to stderr. The position of
the image, P , must be specified and must be one of l, r, c, or i (left,
right, centered, inline). filename is associated with the production of
the next inline image.



gtroff Reference -206-

5.28. Colors

.color [n]
\n[.color]

If n is missing or non-zero, activate colors (this is the default); otherwise, turn it off.

The read-only register .color is 1 if colors are active, 0 otherwise.

Internally, color sets a global flag; it does not produce a token. Similar to the cp re-
quest, you should use it at the beginning of your document to control color output.

Colors can be also turned off with the -c command-line option.

.defcolor ident scheme color_components
Define color with name ident . scheme can be one of the following values: rgb (three
components), cmy (three components), cmyk (four components), and gray or grey

(one component).

Color components can be given either as a hexadecimal string or as positive decimal
integers in the range 0–65535. A hexadecimal string contains all color components
concatenated. It must start with either # or ##; the former specifies hex values in the
range 0–255 (which are internally multiplied by 257), the latter in the range 0–65535.
Examples: #FFC0CB (pink), ##ffff0000ffff (magenta). The default color name
value is device-specific (usually black). It is possible that the default color for \m and
\M is not identical.

A new scaling indicator f has been introduced, which multiplies its value by 65536;
this makes it convenient to specify color components as fractions in the range 0 to 1
(1f equals 65536u). Example:

.defcolor darkgreen rgb 0.1f 0.5f 0.2f

Note that f is the default scaling indicator for the defcolor request, thus the above
statement is equivalent to

.defcolor darkgreen rgb 0.1 0.5 0.2

.gcolor [color ]
\mc
\m(co
\m[color ]
\n[.m]

Set (glyph) drawing color. The following examples show how to turn the next four
words red.

.gcolor red

these are in red

.gcolor

and these words are in black.

\m[red]these are in red\m[] and these words are in black.

The escape \m[] returns to the previous color, as does a call to gcolor without an
argument.

The name of the current drawing color is available in the read-only, string-valued reg-
ister ‘.m’.



gtroff Reference -207-

The drawing color is associated with the current environment (see Environments).

\m doesn’t produce an input token in GNU troff. As a consequence, it can be used
in requests like mc (which expects a single character as an argument) to change the
color on the fly:

.mc \m[red]x\m[]

.fcolor [color ]
\Mc
\M(co
\M[color ]
\n[.M]

Set fill (background) color for filled objects drawn with the \D’...’ commands.

A red ellipse can be created with the following code:

\M[red]\h’0.5i’\D’E 2i 1i’\M[]

The escape \M[] returns to the previous fill color, as does a call to fcolor without an
argument.

The name of the current fill (background) color is available in the read-only, string-val-
ued register ‘.M’.

The fill color is associated with the current environment (see Environments).

\M doesn’t produce an input token in GNU troff.

5.29. I/O

gtroff has several requests for including files:

.so file
Read in the specified file and include it in place of the so request. This is quite use-
ful for large documents, e.g. keeping each chapter in a separate file. See gsoelim,
for more information.

Since gtroff replaces the so request with the contents of file, it makes a difference
whether the data is terminated with a newline or not: Assuming that file xxx contains
the word ‘foo’ without a final newline, this

This is

.so xxx

bar

yields ‘This is foobar’.

The search path for file can be controlled with the -I command-line option.

.pso command
Read the standard output from the specified command and include it in place of the
pso request.

This request causes an error if used in safer mode (which is the default). Use
groff’s or troff’s -U option to activate unsafe mode.

The comment regarding a final newline for the so request is valid for pso also.



gtroff Reference -208-

.mso file
Identical to the so request except that gtroff searches for the specified file in the
same directories as macro files for the -m command-line option. If the file name to
be included has the form name.tmac and it isn’t found, mso tries to include tmac.name

and vice versa. If the file does not exist, a warning of type ‘file’ is emitted. See De-
bugging, for information about warnings.

.trf file

.cf file
Transparently output the contents of file. Each line is output as if it were preceded by
\!; however, the lines are not subject to copy mode interpretation. If the file does not
end with a newline, then a newline is added (trf only). For example, to define a
macro x containing the contents of file f, use

.ev 1

.di x

.trf f

.di

.ev

The calls to ev prevent that the current partial input line becomes part of the diver-
sion.

Both trf and cf, when used in a diversion, embeds an object in the diversion which,
when reread, causes the contents of file to be transparently copied through to the
output. In Unix troff, the contents of file is immediately copied through to the out-
put regardless of whether there is a current diversion; this behaviour is so anomalous
that it must be considered a bug.

While cf copies the contents of file completely unprocessed, trf disallows charac-
ters such as NUL that are not valid gtroff input characters (see Identifiers).

For cf, within a diversion, ‘completely unprocessed’ means that each line of a file to
be inserted is handled as if it were preceded by \!\\!.

Both requests cause a line break.

.nx [file]
Force gtroff to continue processing of the file specified as an argument. If no argu-
ment is given, immediately jump to the end of file.

.rd [prompt [arg1 arg2 ...]]
Read from standard input, and include what is read as though it were part of the in-
put file. Text is read until a blank line is encountered.

If standard input is a TTY input device (keyboard), write prompt to standard error, fol-
lowed by a colon (or send BEL for a beep if no argument is given).

Arguments after prompt are available for the input.  For example, the line

.rd data foo bar

with the input ‘This is \$2.’ prints

This is bar.

Using the nx and rd requests, it is easy to set up form letters. The form letter template is
constructed like this, putting the following lines into a file called repeat.let:



gtroff Reference -209-

.ce

\*(td

.sp 2

.nf

.rd

.sp

.rd

.fi

Body of letter.

.bp

.nx repeat.let

When this is run, a file containing the following lines should be redirected in. Requests in-
cluded in this file are executed as though they were part of the form letter. The last block
of input is the ex request, which tells GNU troff to stop processing. If this were not there,
troff would not know when to stop.

Trent A. Fisher

708 NW 19th Av., #202

Portland, OR  97209

Dear Trent,

Len Adollar

4315 Sierra Vista

San Diego, CA  92103

Dear Mr. Adollar,

.ex

.pi pipe
Pipe the output of gtroff to the shell command(s) specified by pipe. This request
must occur before gtroff has a chance to print anything.

pi causes an error if used in safer mode (which is the default). Use groff’s or
troff’s -U option to activate unsafe mode.

Multiple calls to pi are allowed, acting as a chain.  For example,

.pi foo

.pi bar

...

is the same as ‘.pi foo | bar’.

The intermediate output format of GNU troff is piped to the specified commands.
Consequently, calling groff without the -Z option normally causes a fatal error.

.sy cmds
\n[systat]

Execute the shell command(s) specified by cmds. The output is not saved any-
where, so it is up to the user to do so.

This request causes an error if used in safer mode (which is the default). Use



gtroff Reference -210-

groff’s or troff’s -U option to activate unsafe mode.

For example, the following code fragment introduces the current time into a docu-
ment:

.sy perl -e ’printf ".nr H %d\\n.nr M %d\\n.nr S %d\\n",\

(localtime(time))[2,1,0]’ > /tmp/x\n[$$]

.so /tmp/x\n[$$]

.sy rm /tmp/x\n[$$]

\nH:\nM:\nS

This works by having the Perl script (run by sy) print out the nr requests that set the
registers H, M, and S, and then reading those commands in with the so request.

For most practical purposes, the registers seconds, minutes, and hours, which are
initialized at start-up of GNU troff, should be sufficient. Use the af request to for-
mat their values for output.

.af hours 00

.af minutes 00

.af seconds 00

\n[hours]:\n[minutes]:\n[seconds]

The writable register systat contains the return value of the system() function exe-
cuted by the last sy request.

.open stream file

.opena stream file
Open the specified file for writing and associates the specified stream with it.

The opena request is like open, but if the file exists, append to it instead of truncating
it.

Both open and opena cause an error if used in safer mode (which is the default). Use
groff’s or troff’s -U option to activate unsafe mode.

.write stream data

.writec stream data
Write to the file associated with the specified stream. The stream must previously
have been the subject of an open request. The remainder of the line is interpreted
as the ds request reads its second argument: A leading ‘"’ is stripped, and it is read
in copy mode.

The writec request is like write, but only write appends a newline to the data.

.writem stream xx
Write the contents of the macro or string xx to the file associated with the specified
stream.

xx is read in copy mode, i.e., already formatted elements are ignored. Consequently,
diversions must be unformatted with the asciify request before calling writem.
Usually, this means a loss of information.

.close stream
Close the specified stream; the stream is no longer an acceptable argument to the
write request.

Here a simple macro to write an index entry.



gtroff Reference -211-

.open idx test.idx

.

.de IX

. write idx \\n[%] \\$*

..

.

.IX test entry

.

.close idx

\Ve
\V(ev
\V[env ]

Interpolate the contents of the specified environment variable env (one-character
name e, two-character name ev ) as returned by the function getenv. \V is inter-
preted in copy mode.

5.30. Postprocessor Access

There are two escapes that give information directly to the postprocessor. This is particu-
larly useful for embedding POSTSCRIPT into the final document.

.device xxx
\X'xxx'

Embeds its argument into the gtroff output preceded with ‘x X’.

The escapes \&, \), \%, and \: are ignored within \X, ‘\ ’ and \˜ are converted to
single space characters. All other escapes (except \\, which produces a backslash)
cause an error.

Contrary to \X, the device request simply processes its argument in copy mode (see
Copy Mode).

If the ‘use_charnames_in_special’ keyword is set in the DESC file, special characters
no longer cause an error; they are simply output verbatim. Additionally, the back-
slash is represented as \\.

‘use_charnames_in_special’ is currently used by grohtml only.

.devicem xx
\Yn
\Y(nm
\Y[name]

This is approximately equivalent to ‘\X’\*[name]’’ (one-character name n, two-char-
acter name nm). However, the contents of the string or macro name are not inter-
preted; also it is permitted for name to have been defined as a macro and thus con-
tain newlines (it is not permitted for the argument to \X to contain newlines). The in-
clusion of newlines requires an extension to the Unix troff output format, and con-
fuses drivers that do not know about this extension (see Device Control Commands).

See Output Devices.



gtroff Reference -212-

5.31. Miscellaneous

This section documents parts of gtroff that cannot (yet) be categorized elsewhere in this
manual.

.nm [start [inc [space [indent ]]]]
\n[.nm]

Print line numbers. start is the line number of the next output line. inc indicates
which line numbers are printed. For example, the value 5 means to emit only line
numbers that are multiples of 5; this defaults to 1. space is the space to be left be-
tween the number and the text; this defaults to one digit space. The fourth argument
is the indentation of the line numbers, defaulting to zero. Both space and indent are
given as multiples of digit spaces; they can be negative also. Without any argu-
ments, line numbers are turned off.

gtroff reserves three digit spaces for the line number (which is printed right-justi-
fied) plus the amount given by indent ; the output lines are concatenated to the line
numbers, separated by space, and without reducing the line length. Depending on
the value of the horizontal page offset (as set with the po request), line numbers that
are longer than the reserved space stick out to the left, or the whole line is moved to
the right.

Parameters corresponding to missing arguments are not changed; any non-digit ar-
gument (to be more precise, any argument starting with a character valid as a delim-
iter for identifiers) is also treated as missing.

If line numbering has been disabled with a call to nm without an argument, it can be
reactivated with ‘.nm +0’, using the previously active line numbering parameters.

The parameters of nm are associated with the current environment (see Environ-
ments). The current output line number is available in the register ln.

The .nm register tracks the enablement status of line numbering. Temporary suspen-
sion of numbering with the nn request does not alter its value.

.po 1m

.ll 2i

This test shows how line numbering works with groff.

.nm 999

This test shows how line numbering works with groff.

.br

.nm xxx 3 2

.ll -\w’0’u

This test shows how line numbering works with groff.

.nn 2

This test shows how line numbering works with groff.

The result is as follows.

This test shows how

line numbering works

999 with   groff.   This

1000 test shows how  line

1001 numbering works with

1002 groff.



gtroff Reference -213-

This test shows how

line numbering

works with groff.

This test shows how

1005 line   numbering

works with groff.

.nn [skip]
Temporarily turn off line numbering. The argument is the number of lines not to be
numbered; this defaults to 1.

.mc glyph [dist ]
Print a margin character to the right of the text.61 The first argument is the glyph to
be printed. The second argument is the distance away from the right margin. If
missing, the previously set value is used; default is 10 pt). For text lines that are too
long (that is, longer than the text length plus dist ), the margin character is directly ap-
pended to the lines.

With no arguments the margin character is turned off. If this occurs before a break,
no margin character is printed.

For compatibility with AT&T troff, a call to mc to set the margin character can’t be
undone immediately; at least one line gets a margin character. Thus

.ll 1i

.mc \[br]

.mc

xxx

.br

xxx

produces

xxx |

xxx

For empty lines and lines produced by the tl request no margin character is emitted.

The margin character is associated with the current environment (see Environments).

This is quite useful for indicating text that has changed, and, in fact, there are pro-
grams available for doing this (they are called nrchbar and changebar and can be
found in any ‘comp.sources.unix’ archive).

.ll 3i

.mc |

This paragraph is highlighted with a margin

character.

.sp

Vertical space isn’t marked.

.br

\&

.br

But we can fake it with ‘\&’.

61 Margin character is a misnomer since it is an output glyph.



gtroff Reference -214-

Result:

This paragraph is highlighted |

with a margin character.       |

Vertical space isn’t marked.   |

|

But we can fake it with ‘\&’.  |

.psbb filename
\n[llx]

\n[lly]

\n[urx]

\n[ury]

Retrieve the bounding box of the POSTSCRIPT image found in filename. The file must
conform to Adobe’s Document Structuring Conventions (DSC); the command
searches for a %%BoundingBox comment and extracts the bounding box values into
the registers llx, lly, urx, and ury. If an error occurs (for example, psbb cannot
find the %%BoundingBox comment), it sets the four registers to zero.

The search path for filename can be controlled with the -I command-line option.

5.32. gtroff Internals

gtroff processes input in three steps. One or more input characters are converted to an
input token.62 Then, one or more input tokens are converted to an output node. Finally,
output nodes are converted to the intermediate output language understood by all output
devices.

Actually, before step one happens, gtroff converts certain escape sequences into re-
served input characters (not accessible by the user); such reserved characters are used
for other internal processing also – this is the very reason why not all characters are valid
input. See Identifiers, for more on this topic.

For example, the input string ‘fi\[:u]’ is converted into a character token ‘f’, a character
token ‘i’, and a special token ‘:u’ (representing u umlaut). Later on, the character tokens
‘f’ and ‘i’ are merged to a single output node representing the ligature glyph ‘fi’ (provided
the current font has a glyph for this ligature); the same happens with ‘:u’. All output glyph
nodes are ‘processed’, which means that they are invariably associated with a given font,
font size, advance width, etc. During the formatting process, gtroff itself adds various
nodes to control the data flow.

Macros, diversions, and strings collect elements in two chained lists: a list of input tokens
that have been passed unprocessed, and a list of output nodes. Consider the following the
diversion.

.di xxx

a

\!b

c

.br

62 Except the escapes \f, \F, \H, \m, \M, \R, \s, and \S, which are processed immediately if not in copy
mode.



gtroff Reference -215-

.di

It contains these elements.

node list                 token list  element number

line start node       — 1
glyph node a — 2
word space node   — 3
— b 4
— \n 5
glyph node c — 6
vertical size node  — 7
vertical size node  — 8
— \n 9
Elements 1, 7, and 8 are inserted by gtroff; the latter two (which are always present)
specify the vertical extent of the last line, possibly modified by \x. The br request finishes
the current partial line, inserting a newline input token, which is subsequently converted to
a space when the diversion is reread. Note that the word space node has a fixed width
that isn’t stretchable anymore. To convert horizontal space nodes back to input tokens,
use the unformat request.

Macros only contain elements in the token list (and the node list is empty); diversions and
strings can contain elements in both lists.

Note that the chop request simply reduces the number of elements in a macro, string, or
diversion by one. Exceptions are compatibility save and compatibility ignore input tokens,
which are ignored.  The substring request also ignores those input tokens.

Some requests like tr or cflags work on glyph identifiers only; this means that the associ-
ated glyph can be changed without destroying this association. This can be very helpful
for substituting glyphs. In the following example, we assume that glyph ‘foo’ isn’t available
by default, so we provide a substitution using the fchar request and map it to input charac-
ter ‘x’.

.fchar \[foo] foo

.tr x \[foo]

Now let us assume that we install an additional special font ‘bar’ that has glyph ‘foo’.

.special bar

.rchar \[foo]

Since glyphs defined with fchar are searched before glyphs in special fonts, we must call
rchar to remove the definition of the fallback glyph. Anyway, the translation is still active;
‘x’ now maps to the real glyph ‘foo’.

Macro and request arguments preserve the compatibility mode:

.cp 1     \" switch to compatibility mode

.de xx

\\$1

..

.cp 0     \" switch compatibility mode off

.xx caf\[’e]

⇒ café



gtroff Reference -216-

Since compatibility mode is on while de is called, the macro xx activates compatibility
mode while executing. Argument $1 can still be handled properly because it inherits the
compatibility mode status which was active at the point where xx is called.

After expansion of the parameters, the compatibility save and restore tokens are removed.

5.33. Debugging

Standard troff voodoo, just put a power of two backslashes in
front of it until it works and if you still have problems add a \c.

--- Ron Natalie

GNU troff is not the easiest language to debug, in part thanks to its design features of re-
cursive interpolation and multi-stage pipeline processing. Nevertheless there exist several
features useful for troubleshooting.

Preprocessors use the lf request to preserve the identity of the line numbers and names
of input files. GNU troff emits a variety of error diagnostics and supports several cate-
gories of warning; the output of these can be selectively suppressed. Backtraces can be
enabled when errors or warnings occur, or triggered on demand. The tm and related re-
quests can be used to emit customized diagnostic messages or for instrumentation while
troubleshooting. The ex and ab requests cause early termination with successful and error
exit codes respectively, to halt further processing when continuing would be fruitless. The
state of the formatter can be examined with requests that write lists of defined names
(macros, strings, diversions, or boxes), environments, registers, and page location traps to
the standard error stream.

.lf line [filename]
Change the line number and optionally the file name GNU troff shall use for error
and warning messages. line is the input line number of the next line. Without an ar-
gument, the request is ignored.

This request is primarily a debugging aid for documents that undergo preprocessing.
Programs like tbl that transform input in their own languages to roff requests use it
so that any diagnostic messages emitted by troff correspond to the original source
document.

.tm string

.tm1 string

.tmc string
Send string , which consumes the remainder of the input line, to the standard error
stream.

string is read in copy mode.

The tm request ignores leading spaces of string ; tm1 handles its argument similar to
the ds request: a leading double quote in string is stripped to allow initial blanks.

The tmc request is similar to tm1 but does not append a newline (as is done in tm
and tm1).

.ab [string ]
Write string to the standard error stream (like tm)and then abort GNU troff; that is,
stop processing and terminate with a failure status. With no argument, the message
written is ‘User Abort.’.



gtroff Reference -217-

.ex

Exit GNU troff; that is, stop processing and terminate with a successful status. To
stop processing only the current file, use the nx request; See I/O.

When doing something involved it is useful to leave the debugging statements in the code
and have them turned on by a command-line flag.

.if \n[DB] .tm debugging output

To activate such statements, use the -r option to set the register.

groff -rDB=1 file

If it is known in advance that there are many errors and no useful output, GNU troff can
be forced to suppress formatted output with the -z option.

.pev

Report the contents of the current environment and all the currently defined environ-
ments (both named and numbered) to the standard error stream.

.pm

Report, to the standard error stream, the names of all defined macros, strings, and
diversions with their sizes in bytes. Since GNU troff sometimes adds nodes by it-
self, the returned sizes can be larger than expected.

.pnr

Report the names and contents of all currently defined registers to the standard error
stream.

.ptr

Report the names and positions of all page location traps to the standard error
stream. Empty slots in the list, where a trap has been planted but subsequently
(re)moved, are printed as well.

.fl

Instruct gtroff to flush its output immediately. The intent is for interactive use, but
this behaviour is currently not implemented in gtroff. Contrary to Unix troff, TTY
output is sent to a device driver also (grotty), making it non-trivial to communicate
interactively.

This request causes a line break.

.backtrace

Print a backtrace of the input stack to the standard error stream.

Consider the following in file test:

.de xxx

. backtrace

..

.de yyy

. xxx

..

.

.yyy

On execution, gtroff prints the following:

gtroff: backtrace: 'test':2: macro 'xxx'



gtroff Reference -218-

gtroff: backtrace: 'test':5: macro 'yyy'

gtroff: backtrace: file 'test':8

The option -b of gtroff causes a backtrace to be generated on each error and
warning. Warnings have to be enabled; see Warnings.

\n[slimit]

Use the slimit register to set the maximum number of objects on the input stack. If
slimit is less than or equal to 0, there is no limit set. With no limit, a buggy recur-
sive macro can exhaust virtual memory.

The default value is 1000; this is a compile-time constant.

.warnscale si
Set the scaling indicator used in warnings to si . Valid values for si are ‘u’, ‘i’, ‘c’, ‘p’,
and ‘P’. At startup, it is set to ‘i’.

.spreadwarn [limit ]
Emit a break warning if the additional space inserted for each space between words
in an output line adjusted to both margins with ‘.ad b’ is larger than or equal to limit .
A negative value is treated as zero; an absent argument toggles the warning on and
off without changing limit . The default scaling indicator is ‘m’. At startup, spreadwarn
is inactive and limit is 3 m.

For example,

.spreadwarn 0.2m

causes a warning if break warnings are not suppressed and gtroff must add 0.2 m
or more for each interword space in a line. See Warnings.

gtroff has command-line options for printing out more warnings (-w) and for printing
backtraces (-b) when a warning or an error occurs. The most verbose level of warnings is
-ww.

.warn [flags]
\n[.warn]

Control the level of warnings checked for. The flags are the sum of the numbers as-
sociated with each warning that is to be enabled; all other warnings are disabled.
The number associated with each warning is listed below. For example, ‘.warn 0’
disables all warnings, and ‘.warn 1’ disables all warnings except that about missing
glyphs. If no argument is given, all warnings are enabled.

The read-only register .warn contains the current warning level.

5.33.1. Warnings

The warnings that can be given to gtroff are divided into the following categories. The
name associated with each warning is used by the -w and -W options; the number is used
by the warn request and by the .warn register.

‘char’
‘1’ Non-existent glyphs.63 This is enabled by default.

63 char is a misnomer since it reports missing glyphs—there aren’t missing input characters, only invalid
ones.



gtroff Reference -219-

‘number’
‘2’ Invalid numeric expressions. This is enabled by default. See Expressions.

‘break’
‘4’ In fill mode, lines that could not be broken so that their length was less than the

line length.  This is enabled by default.

‘delim’
‘8’ Missing or mismatched closing delimiters.

‘el’
‘16’ Use of the el request with no matching ie request. See if-else.

‘scale’
‘32’ Meaningless scaling indicators.

‘range’
‘64’ Out of range arguments.

‘syntax’
‘128’ Invalid syntax.

‘di’
‘256’ Use of di or da without an argument when there is no current diversion.

‘mac’
‘512’ An undefined string, macro, diversion, or box was used. When such an object is

dereferenced, an empty object of that name is automatically created. So, in
most cases, at most one warning is given for each name.

This warning is also emitted upon an attempt to move an unplanted trap (see
Page Location Traps). In such cases, the unplanted macro is not dereferenced,
so it is not created if it does not exist.

‘reg’
‘1024’ Use of undefined registers. When an undefined register is used, that register is

automatically defined to have a value of 0. So, in most cases, at most one
warning is given for use of a particular name.

‘tab’
‘2048’ Use of a tab character where a number was expected.

‘right-brace’
‘4096’ Use of \} where a number was expected.

‘missing’
‘8192’ Requests that are missing non-optional arguments.

‘input’
‘16384’ Invalid input characters.

‘escape’
‘32768’ Unrecognized escape sequences. When an unrecognized escape sequence \X

is encountered, the escape character is ignored, and X is printed.



gtroff Reference -220-

‘space’
‘65536’ Missing space between a request or macro and its argument. This warning is

given when an undefined name longer than two characters is encountered, and
the first two characters of the name make a defined name. The request or
macro is not invoked. When this warning is given, no macro is automatically de-
fined. This is enabled by default. This warning never occurs in compatibility
mode.

‘font’
‘131072’ Non-existent fonts. This is enabled by default.

‘ig’
‘262144’ Invalid escapes in text ignored with the ig request. These are conditions that

are errors when they do not occur in ignored text.

‘color’
‘524288’ Color related warnings.

‘file’
‘1048576’ Missing files. The mso request gives this warning when the requested macro file

does not exist. This is enabled by default.

‘all’ All warnings except ‘di’, ‘mac’ and ‘reg’. It is intended that this covers all warn-
ings that are useful with traditional macro packages.

‘w’ All warnings.

5.34. Implementation Differences

GNU troff has a number of features that cause incompatibilities with documents written
using old versions of troff. Some GNU extensions to troff have become supported by
other implementations.

GNU troff does not always hyphenate words as AT&T troff does. The AT&T implemen-
tation uses a set of hard-coded rules specific to U.S. English, while GNU troff uses lan-
guage-specific hyphenation pattern files derived from TEX. Furthermore, in old versions of
troff there was a limited amount of space to store hyphenation exceptions (arguments to
the hw request); GNU troff has no such restriction.

Long names may be GNU troff’s most obvious innovation. AT&T troff interprets
‘.dsabcd’ as defining a string ‘ab’ with contents ‘cd’. Normally, GNU troff interprets this
as a call of a macro named dsabcd. AT&T troff also interprets \*[ and \n[ as a refer-
ence to a string or register, respectively, called ‘[’. In GNU troff, however, the ‘[’ is nor-
mally interpreted as delimiting a long name. In compatibility mode, GNU troff interprets
names in the traditional way, which means that they are limited to one or two characters.

.cp [n]

.do name
\n[.C]

\n[.cp]

If n is missing or non-zero, turn on compatibility mode; otherwise, turn it off.

The read-only register .C is 1 if compatibility mode is on, 0 otherwise.



gtroff Reference -221-

Compatibility mode can be also turned on with the -C command-line option.

The do request interprets the string, request, diversion, or macro name (along with
any further arguments) with compatibility mode disabled. Compatibility mode is re-
stored (only if it was active) when the expansion of name is interpreted; that is, the
restored compatibility state applies to the contents of the macro (string, ...) name as
well as file or pipe data read if name is the so, mso, or pso request.

The following example illustrates several aspects of do behavior.

.de mac1

FOO

..

.de1 mac2

groff

.mac1

..

.de mac3

compatibility

.mac1

..

.de ma

\\$1

..

.cp 1

.do mac1

.do mac2 \" mac2, defined with .de1, calls "mac1"

.do mac3 \" mac3 calls "ma" with argument "c1"

.do mac3 \[ti] \" groff syntax accepted in .do arguments

⇒ FOO groff FOO compatibility c1 ˜

The read-only register .cp, meaningful only when dereferenced from a do request,
is 1 if compatibility mode was on when the do request was encountered, and 0 if it
was not.  This register is specialized and may require a statement of rationale.

When writing macro packages or documents that use GNU troff features and which
may be mixed with other packages or documents that do not—common scenarios in-
clude serial processing of man pages or use of the so or mso requests—you may de-
sire correct operation regardless of compatibility mode in the surrounding context. It
may occur to you to save the existing value of ‘\n(.C’ into a register, say, ‘_C’, at the
beginning of your file, turn compatibility mode off with ‘.cp 0’, then restore it from
that register at the end with ‘.cp \n(_C’. At the same time, a modular design of a
document or macro package may lead you to multiple layers of inclusion. You cannot
use the same register name everywhere or you risk “clobbering” the value from a
preceding or enclosing context. The two-character register name space of AT&T
troff is confining and mnemonically challenging; you may wish to use the more ca-
pacious name space of GNU troff. However, attempting ‘.nr _my_saved_C \n(.C’
will not work in compatibility mode; the register name is too long. “This is exactly
what do is for,” you think, ‘.do nr _my_saved_C \n(.C’. The foregoing will always
save zero to your register, because do turns compatibility mode off while it interprets
its argument list.  What you need is:



gtroff Reference -222-

.do nr _my_saved_C \n[.cp]

.cp 0

at the beginning of your file, followed by

.cp _my_saved_C

at the end. As in the C language, we all have to share one big name space, so
choose a register name that is unlikely to collide with other uses.

AT&T troff and other implementations handle the lf request differently. For them, its line
argument changes the line number of the current line.

Normally, GNU troff preserves the input level in delimited arguments, but not in compati-
bility mode.

.ds xx '

\w'abc\*(xxdef'

⇒ 168 (normal mode on a terminal device)

⇒ 72def' (compatibility mode on a terminal device)

Furthermore, the escapes \f, \H, \m, \M, \R, \s, and \S are transparent for recognizing the
beginning of a line only in compatibility mode. For example, this code produces bold out-
put in both cases, but the text differs.

.de xx

Hello!

..

\fB.xx\fP

⇒ .xx (normal mode)

⇒ Hello! (compatibility mode)

GNU troff does not allow the use of the escape sequences \|, \ˆ, \&, \{, \}, \SP, \’, \‘,
\-, \_, \!, \%, and \c in names of strings, macros, diversions, registers, fonts, or environ-
ments; AT&T troff does. The \A escape sequence (see Identifiers) may be helpful in
avoiding use of these escape sequences in names.

Normally, the syntax form \sn accepts only a single character (a digit) for n, consistently
with other forms that originated in AT&T troff, like \*, \$, \f, \g, \k, \n, and \z. In com-
patibility mode only, a non-zero n must be in the range 4–39. Legacy documents relying
upon this quirk of parsing64 should be migrated to another \s form.

Fractional point sizes cause one noteworthy incompatibility. In AT&T troff the ps request
ignores scale indicators and thus ‘.ps 10u’ sets the point size to 10 points, whereas in
GNU troff it sets the point size to 10 scaled points. See Fractional Type Sizes.

The pm request differs from AT&T troff: GNU troff reports the sizes of macros, strings,
and diversions in bytes and ignores an argument to report only the sum of the sizes.

Unlike AT&T troff, GNU troff does not ignore the ss request if the output is a terminal
device; instead, the values of minimal inter-word and additional inter-sentence spacing are
each rounded down to the nearest multiple of 12.

64 The Graphic Systems C/A/T phototypesetter (the original device target for AT&T troff) supported only
a few discrete point sizes in the range 6–36, so Ossanna contrived a special case in the parser to do what
the user must have meant. Kernighan warned of this in the 1992 revision of CSTR #54 (§2.3), and more re-
cently, McIlroy referred to it as a “living fossil”.



gtroff Reference -223-

In GNU troff there is a fundamental difference between (unformatted) input characters
and (formatted) output glyphs. Everything that affects how a glyph is output is stored with
the glyph node; once a glyph node has been constructed, it is unaffected by any subse-
quent requests that are executed, including bd, cs, tkf, tr, or fp requests. Normally,
glyphs are constructed from input characters immediately before the glyph is added to the
current output line. Macros, diversions, and strings are all, in fact, the same type of object;
they contain lists of input characters and glyph nodes in any combination. Special charac-
ters can be both: before being added to the output, they act as input entities; afterwards,
they denote glyphs. A glyph node does not behave like an input character for the pur-
poses of macro processing; it does not inherit any of the special properties that the input
character from which it was constructed might have had.  Consider the following example.

.di x

\\\\

.br

.di

.x

It prints ‘\\’ in GNU troff; each pair of input backslashes is turned into one output back-
slash and the resulting output backslashes are not interpreted as escape characters when
they are reread. AT&T troff would interpret them as escape characters when they were
reread and would end up printing one ‘\’.

One correct way to obtain a printable backslash in most documents is to use the \e es-
cape sequence; this always prints a single instance of the current escape character,65 re-
gardless of whether or not it is used in a diversion; it also works in both GNU troff and
AT&T troff.

The other correct way, appropriate in contexts independent of the backslash’s common use
as a troff escape character—perhaps in discussion of character sets or other program-
ming languages—is the character escape \(rs or \[rs], for “reverse solidus”, from its
name in the ECMA-6 (ISO/IEC 646) standard.66

To store an escape sequence in a diversion that is interpreted when the diversion is
reread, either use the traditional \! transparent output facility, or, if this is unsuitable, the
new \? escape sequence. See Diversions and gtroff Internals.

In the somewhat pathological case where a diversion exists containing a partially-collected
line and a partially-collected line at the top-level diversion has never existed, AT&T troff

will output the partially-collected line at the end of input; GNU troff will not.

65 Naturally, if you’ve changed the escape character, you need to prefix the e with whatever it is—and
you’ll likely get something other than a backslash in the output.

66 This character escape is not portable to AT&T troff, but is to its lineal descendant, Heirloom Doctools
troff, as of its 060716 release (July 2006).



Preprocessors -224-

6. Preprocessors

This chapter describes all preprocessors that come with groff or which are freely avail-
able.

6.1. geqn

6.1.1. Invoking geqn

Name

eqn - format equations for GNU troff or MathML

Synopsis

eqn [-rCNR] [-d xy ] [-f F ] [-m n] [-M dir ] [-p n] [-s n] [-T name] [file . . .]
eqn --help
eqn -v
eqn --version

Description

The GNU version of eqn is part of the groff (7) document formatting system. eqn
compiles descriptions of equations embedded in roff (7) input files into commands
that are understood by troff (1). Normally, it should be invoked using the -e option of
groff (1). Its syntax is compatible with AT&T eqn, its output cannot be processed with
AT&T troff ; it must be processed with GNU troff . If no file operands are given on the
command line, or if file is “-”, the standard input stream is read. Unless the -R op-
tion is given, eqn searches for the file eqnrc in the directories given with the -M op-
tion first, then in /usr/local/lib/groff/site-tmac , /usr/local/share/groff/site-tmac , and fi-
nally in the standard macro directory /usr/local/share/groff/1.22.4/tmac . If it exists,
eqn processes it before the other input files.

Only the differences between GNU eqn and AT&T eqn are described in this docu-
ment. Most of the new features of the GNU eqn input language are based on TEX.
There are some references to the differences between TEX and GNU eqn below;
these may safely be ignored if you do not know TEX. Three points are worth special
note.

• GNU eqn emits Presentation MathML output when invoked with the
“-T MathML” option.

• GNU eqn does not provide the functionality of neqn: it does not support low-
resolution, typewriter-like devices (although it may work adequately for very
simple input).

• GNU eqn sets the input token “. . .” as three periods or low dots, rather than
the three centered dots of AT&T eqn. To get three centered dots, write
cdots or “cdot cdot cdot”.

Controlling delimiters

If not in compatibility mode, eqn recognizes
delim on

as a command to restore the delimiters which have been previously disabled with a
call to “delim off”. If delimiters haven’t been specified, the call has no effect.



Preprocessors -225-

Automatic spacing

eqn gives each component of an equation a type, and adjusts the spacing between
components using that type. Possible types are described in the table below.

ordinary an ordinary character such as “1” or “x ”
operator a large operator such as “Σ”
binary a binary operator such as “+”
relation a relation such as “=”
opening a opening bracket such as “(”
closing a closing bracket such as “)”
punctuation a punctuation character such as “,”
inner a subformula contained within brackets
suppress a type that suppresses automatic spacing adjustment

Components of an equation get a type in one of two ways.

type t e 
This yields an equation component that contains e but that has type t , where t
is one of the types mentioned above. For example, times is defined as follows.

type "binary" \(mu

The name of the type doesn’t have to be quoted, but quoting it protects it from
macro expansion.

chartype t text
Unquoted groups of characters are split up into individual characters, and the
type of each character is looked up; this changes the type that is stored for
each character; it says that the characters in text from now on have type t . For
example,

chartype "punctuation" .,;:

would make the characters “.,;:” have type punctuation whenever they subse-
quently appeared in an equation. The type t can also be letter or digit; in
these cases chartype changes the font type of the characters. See subsection
“Fonts” below.

New primitives

big e
Enlarges the expression it modifies; intended to have semantics like CSS
“large”. In troff output, the point size is increased by 5; in MathML output, the
expression uses

<mstyle mathsize='big'>

e1 smallover e2
This is similar to over; smallover reduces the size of e1 and e2 ; it also puts
less vertical space between e1 or e2 and the fraction bar. The over primitive
corresponds to the TEX \over primitive in display styles; smallover corresponds
to \over in non-display styles.

vcenter e
This vertically centers e about the math axis. The math axis is the vertical po-
sition about which characters such as “+” and “−” are centered; it is also the



Preprocessors -226-

vertical position used for fraction bars. For example, sum is defined as follows.

{ type "operator" vcenter size +5 \(*S }

vcenter is silently ignored when generating MathML.

e1 accent e2
This sets e2 as an accent over e1. e2 is assumed to be at the correct height
for a lowercase letter; e2 is moved down according to whether e1 is taller or
shorter than a lowercase letter. For example, hat is defined as follows.

accent { "ˆ" }

dotdot, dot, tilde, vec, and dyad are also defined using the accent primitive.

e1 uaccent e2
This sets e2 as an accent under e1. e2 is assumed to be at the correct height
for a character without a descender; e2 is moved down if e1 has a descender.
utilde is pre-defined using uaccent as a tilde accent below the baseline.

split "text "
This has the same effect as simply

text

but text is not subject to macro expansion because it is quoted; text is split up
and the spacing between individual characters is adjusted.

nosplit text
This has the same effect as

"text"

but because text is not quoted it is subject to macro expansion; text is not split
up and the spacing between individual characters is not adjusted.

e opprime
This is a variant of prime that acts as an operator on e. It produces a different
result from prime in a case such as “A opprime sub 1”: with opprime the “1”
is tucked under the prime as a subscript to the “A” (as is conventional in mathe-
matical typesetting), whereas with prime the “1” is a subscript to the prime
character. The precedence of opprime is the same as that of bar and under,
which is higher than that of everything except accent and uaccent. In un-
quoted text, a neutral apostrophe (') that is not the first character on the input
line is treated like opprime.

special text e 
This constructs a new object from e using a troff (1) macro named text . When
the macro is called, the string 0s contains the output for e, and the number reg-
isters 0w, 0h, 0d, 0skern, and 0skew contain the width, height, depth, sub-
script kern, and skew of e. (The subscript kern of an object indicates how
much a subscript on that object should be “tucked in”, or placed to the left rela-
tive to a non-subscripted glyph of the same size. The skew of an object is how
far to the right of the center of the object an accent over it should be placed.)
The macro must modify 0s so that it outputs the desired result with its origin at
the current point, and increase the current horizontal position by the width of
the object. The number registers must also be modified so that they corre-
spond to the result.



Preprocessors -227-

For example, suppose you wanted a construct that “cancels” an expression by
drawing a diagonal line through it.

.EQ

define cancel 'special Ca'

.EN

.de Ca

. ds 0s \

\Z'\\*(0s'\

\v'\\n(0du'\

\D'l \\n(0wu −\\n(0hu-\\n(0du'\
\v'\\n(0hu'

..

You could then cancel an expression e with “cancel { e }”.

Here’s a more complicated construct that draws a box around an expression.

.EQ

define box 'special Bx'

.EN

.de Bx

.ds 0s \

\Z'\h'1n'\\*(0s'\

\Z'\

\v'\\n(0du+1n'\

\D'l \\n(0wu+2n 0'\

\D'l 0 −\\n(0hu−\\n(0du-2n'\
\D'l −\\n(0wu−2n 0'\
\D'l 0 \\n(0hu+\\n(0du+2n'\

'\

\h'\\n(0wu+2n'

.nr 0w +2n

.nr 0d +1n

.nr 0h +1n

..

space n
A positive value of the integer n (in hundredths of an em) sets the vertical spac-
ing before the equation, a negative value sets the spacing after the equation,
replacing the default values. This primitive provides an interface to groff ’s \x
escape (but with opposite sign).

This keyword has no effect if the equation is part of a pic picture.

Extended primitives

col n { . . . }

ccol n { . . . }

lcol n { . . . }

rcol n { . . . }



Preprocessors -228-

pile n { . . . }

cpile n { . . . }

lpile n { . . . }

rpile n { . . . }
The integer value n (in hundredths of an em) increases the vertical spacing be-
tween rows, using groff ’s \x escape (the value has no effect in MathML mode).
Negative values are possible but have no effect. If there is more than a single
value given in a matrix, the biggest one is used.

Customization

When eqn is generating troff markup, the appearance of equations is controlled by a
large number of parameters. They have no effect when generating MathML mode,
which pushes typesetting and fine motions downstream to a MathML rendering en-
gine. These parameters can be set using the set command.

set p n 
This sets parameter p to value n, where n is an integer. For example,

set x_height 45

says that eqn should assume an x height of 0.45 ems.
Possible parameters are as follows. Values are in units of hundredths of
an em unless otherwise stated. These descriptions are intended to be
expository rather than definitive.

minimum_size
eqn won’t set anything at a smaller point size than this. The value is in
points.

fat_offset
The fat primitive emboldens an equation by overprinting two copies of the
equation horizontally offset by this amount. This parameter is not used in
MathML mode; instead, fat text uses

<mstyle mathvariant='double-struck'>

over_hang
A fraction bar is longer by twice this amount than the maximum of the
widths of the numerator and denominator; in other words, it overhangs
the numerator and denominator by at least this amount.

accent_width
When bar or under is applied to a single character, the line is this long.
Normally, bar or under produces a line whose length is the width of the
object to which it applies; in the case of a single character, this tends to
produce a line that looks too long.

delimiter_factor
Extensible delimiters produced with the left and right primitives have a
combined height and depth of at least this many thousandths of twice the
maximum amount by which the sub-equation that the delimiters enclose
extends away from the axis.



Preprocessors -229-

delimiter_shortfall
Extensible delimiters produced with the left and right primitives have a
combined height and depth not less than the difference of twice the maxi-
mum amount by which the sub-equation that the delimiters enclose ex-
tends away from the axis and this amount.

null_delimiter_space
This much horizontal space is inserted on each side of a fraction.

script_space
The width of subscripts and superscripts is increased by this amount.

thin_space
This amount of space is automatically inserted after punctuation charac-
ters.

medium_space
This amount of space is automatically inserted on either side of binary
operators.

thick_space
This amount of space is automatically inserted on either side of relations.

x_height
The height of lowercase letters without ascenders such as “x”.

axis_height
The height above the baseline of the center of characters such as “+” and
“−”. It is important that this value is correct for the font you are using.

default_rule_thickness
This should set to the thickness of the \[ru] character, or the thickness of
horizontal lines produced with the \D escape sequence.

num1
The over command shifts up the numerator by at least this amount.

num2
The smallover command shifts up the numerator by at least this amount.

denom1
The over command shifts down the denominator by at least this amount.

denom2
The smallover command shifts down the denominator by at least this
amount.

sup1
Normally superscripts are shifted up by at least this amount.

sup2
Superscripts within superscripts or upper limits or numerators of
smallover fractions are shifted up by at least this amount. This is usually
less than sup1.

sup3
Superscripts within denominators or square roots or subscripts or lower
limits are shifted up by at least this amount. This is usually less than
sup2.



Preprocessors -230-

sub1
Subscripts are normally shifted down by at least this amount.

sub2
When there is both a subscript and a superscript, the subscript is shifted
down by at least this amount.

sup_drop
The baseline of a superscript is no more than this much amount below
the top of the object on which the superscript is set.

sub_drop
The baseline of a subscript is at least this much below the bottom of the
object on which the subscript is set.

big_op_spacing1
The baseline of an upper limit is at least this much above the top of the
object on which the limit is set.

big_op_spacing2
The baseline of a lower limit is at least this much below the bottom of the
object on which the limit is set.

big_op_spacing3
The bottom of an upper limit is at least this much above the top of the ob-
ject on which the limit is set.

big_op_spacing4
The top of a lower limit is at least this much below the bottom of the ob-
ject on which the limit is set.

big_op_spacing5
This much vertical space is added above and below limits.

baseline_sep
The baselines of the rows in a pile or matrix are normally this far apart. In
most cases this should be equal to the sum of num1 and denom1.

shift_down
The midpoint between the top baseline and the bottom baseline in a ma-
trix or pile is shifted down by this much from the axis. In most cases this
should be equal to axis_height.

column_sep
This much space is added between columns in a matrix.

matrix_side_sep
This much space is added at each side of a matrix.

draw_lines
If this is non-zero, lines are drawn using the \D escape sequence, rather
than with the \l escape sequence and the \[ru] character.

body_height
The amount by which the height of the equation exceeds this is added as
extra space before the line containing the equation (using \x). The default
value is 85.



Preprocessors -231-

body_depth
The amount by which the depth of the equation exceeds this is added as
extra space after the line containing the equation (using \x). The default
value is 35.

nroff
If this is non-zero, then ndefine behaves like define and tdefine is ig-
nored, otherwise tdefine behaves like define and ndefine is ignored.
The default value is 0. (This is typically changed to 1 by the eqnrc file for
the ascii, latin1, utf8, and cp1047 devices.)

A more precise description of the role of many of these parameters can be
found in Appendix H of The TEXbook .

Macros

Macros can take arguments. In a macro body, $n where n is between 1 and 9, is re-
placed by the nth argument if the macro is called with arguments; if there are fewer
than n arguments, it is replaced by nothing. A word containing a left parenthesis
where the part of the word before the left parenthesis has been defined using the de-
fine command is recognized as a macro call with arguments; characters following
the left parenthesis up to a matching right parenthesis are treated as comma-sepa-
rated arguments. Commas inside nested parentheses do not terminate an argu-
ment.

sdefine name X anything X 
This is like the define command, but name is not recognized if called with argu-
ments.

include "file"

copy "file"
Include the contents of file (include and copy are synonyms). Lines of file be-
ginning with .EQ or .EN are ignored.

ifdef name X anything X 
If name has been defined by define (or has been automatically defined be-
cause name is the output device) process anything ; otherwise ignore anything .
X can be any character not appearing in anything .

undef name
Remove definition of name, making it undefined. Besides the macros men-
tioned above, the following definitions are available: Alpha, Beta, . . ., Omega
(this is the same as ALPHA, BETA, . . ., OMEGA), ldots (three dots on the
baseline), and dollar.

Fonts

eqn normally uses at least two fonts to set an equation: an italic font for letters, and a
roman font for everything else. The AT&T eqn gfont command changes the font that
is used as the italic font. By default this is I. The font that is used as the roman font
can be changed using the new grfont command.

grfont f
Set the roman font to f .



Preprocessors -232-

The italic primitive uses the current italic font set by gfont; the roman primitive uses
the current roman font set by grfont. There is also a new gbfont command, which
changes the font used by the bold primitive. If you only use the roman, italic and
bold primitives to changes fonts within an equation, you can change all the fonts
used by your equations just by using gfont, grfont and gbfont commands. You can
control which characters are treated as letters (and therefore set in italics) by using
the chartype command described above. A type of letter causes a character to be
set in italic type. A type of digit causes a character to be set in roman type.

Options

--help displays a usage message, while -v and --version show version informa-
tion; all exit afterward.

-C Recognize .EQ and .EN even when followed by a character other than space or
newline, and do not handle the “delim on” statement specially.

-d xy
Specify delimiters x and y for the left and right ends, respectively, of inline
equations. Any delim statements in the source file override this.

-f F This is equivalent to a “gfont F ” command.

-m n
Set the minimum point size to n. eqn will not reduce the size of subscripts or
superscripts to a smaller size than n.

-M dir
Search dir for eqnrc before the default directories.

-N Don’t allow newlines within delimiters. This option allows eqn to recover better
from missing closing delimiters.

-p n
This says that subscripts and superscripts should be n points smaller than the
surrounding text. This option is deprecated. Normally, eqn sets subscripts and
superscripts at 70% of the size of the surrounding text.

-r Only one size reduction.

-R Don’t load eqnrc .

-s n
This is equivalent to a “gsize n” command. This option is deprecated. eqn
normally sets equations at whatever the current point size is when the equation
is encountered.

-T name
The output is for device name. Normally, the only effect of this is to define a
macro name with a value of 1; eqnrc uses this to provide definitions appropri-
ate for the output device. However, if the specified device is “MathML”, the out-
put is MathML markup rather than troff commands, and eqnrc is not loaded at
all. The default output device is ps.

Files

/usr/local/share/groff/1.22.4/tmac/eqnrc
Initialization file.

MathML Mode Limitations



Preprocessors -233-

MathML is designed on the assumption that it cannot know the exact physical char-
acteristics of the media and devices on which it will be rendered. It does not support
fine control of motions and sizes to the same degree troff does. Thus:

• eqn parameters have no effect on the generated MathML.

• The special, up, down, fwd, and back operations cannot be implemented,
and yield a MathML “<merror>” message instead.

• The vcenter keyword is silently ignored, as centering on the math axis is the
MathML default.

• Characters that eqn sets extra large in troff mode—notably the integral sign—
may appear too small and need to have their “<mstyle>” wrappers adjusted by
hand.

As in its troff mode, eqn in MathML mode leaves the .EQ and .EN delimiters in place
for displayed equations, but emits no explicit delimiters around inline equations.
They can, however, be recognized as strings that begin with “<math>” and end with
“</math>” and do not cross line boundaries. See section “Bugs” below for translation
limits specific to eqn.

Bugs

Inline equations are set at the point size that is current at the beginning of the input
line.

In MathML mode, the mark and lineup features don’t work. These could, in theory,
be implemented with “<maligngroup>” elements. In MathML mode, each digit of a
numeric literal gets a separate “<mn></mn>” pair, and decimal points are tagged with
“<mo></mo>”. This is allowed by the specification, but inefficient.

See Also

“Typesetting Mathematics—User’s Guide” (2nd edition); Computing Science Techni-
cal Report #17; Brian W. Kernighan, Lorinda L. Cherry; AT&T Bell Laboratories;
1978.

The TEXbook ; Donald E. Knuth; Addison-Wesley Professional; 1984. groff(1),
troff(1), pic(1), groff_font(5)



Preprocessors -234-

6.2. gtbl

6.2.1. Invoking gtbl

Name

tbl - format tables for troff

Synopsis

tbl [-C] [file . . .]
tbl --help
tbl -v
tbl --version

Description

This manual page describes the GNU version of tbl, which is part of the groff docu-
ment formatting system. tbl compiles descriptions of tables embedded within troff
input files into commands that are understood by troff. Normally, it should be in-
voked using the -t option of groff. It is highly compatible with Unix tbl. The output
generated by GNU tbl cannot be processed with Unix troff; it must be processed
with GNU troff. If no files are given on the command line or a filename of - is given,
the standard input is read.

Overview

tbl expects to find table descriptions wrapped in the .TS (table start) and .TE (table
end) macros. Within each such table sections, another table can be defined by using
the request .T& before the final command .TE. Each table definition has the follow-
ing structure:

Global options 
This is optional. This table part can use several of these options distributed
in 1 or more lines. The global option part must always be finished by a
"semi-colon ;" .

Table format specification 
This part must be given, it is not optional. It determines the number of col-
umns (cells) of the table. Moreover each cell is classified by being central,
left adjusted, or numerical, etc. This specification can have several lines, but
must be finished by a dot . at the end of the last line. After each cell defini-
tion, column specifiers can be appended, but that’s optional.

Cells are separated by a tab character by default. That can be changed by the global
option tab(c ), where c is an arbitrary character.

Global options

The line immediately following the .TS macro may contain any of the following global
options (ignoring the case of characters – Unix tbl only accepts options with all char-
acters lowercase or all characters uppercase), separated by spaces, tabs, or com-
mas:

allbox
Enclose each item of the table in a box.



Preprocessors -235-

box Enclose the table in a box.

center
Center the table (default is left-justified). The alternative keyword name centre
is also recognized (this is a GNU tbl extension).

decimalpoint(c )
Set the character to be recognized as the decimal point in numeric columns
(GNU tbl only).

delim(xy )
Use x and y as start and end delimiters for eqn(1).

doublebox
Enclose the table in a double box.

doubleframe
Same as doublebox (GNU tbl only).

expand
Make the table as wide as the current line length (providing a column separa-
tion factor). Ignored if one or more ‘x’ column specifiers are used (see below).

In case the sum of the column widths is larger than the current line length, the
column separation factor is set to zero; such tables extend into the right margin,
and there is no column separation at all.

frame
Same as box (GNU tbl only).

linesize(n)
Set lines or rules (e.g., from box) in n-point type.

nokeep
Don’t use diversions to prevent page breaks (GNU tbl only). Normally tbl at-
tempts to prevent undesirable breaks in boxed tables by using diversions. This
can sometimes interact badly with macro packages’ own use of diversions—
when footnotes, for example, are used.

nospaces
Ignore leading and trailing spaces in data items (GNU tbl only).

nowarn
Turn off warnings related to tables exceeding the current line width (GNU tbl
only).

tab(x )
Use the character x instead of a tab to separate items in a line of input data.
The global options must end with a semicolon. There might be whitespace be-
tween an option and its argument in parentheses.

Table format specification

After global options come lines describing the format of each line of the table. Each
such format line describes one line of the table itself, except that the last format line
(which you must end with a period) describes all remaining lines of the table. A sin-
gle-key character describes each column of each line of the table. Key characters
can be separated by spaces or tabs. You may run format specifications for multiple
lines together on the same line by separating them with commas.



Preprocessors -236-

You may follow each key character with specifiers that determine the font and point
size of the corresponding item, that determine column width, inter-column spacing,
etc. The longest format line defines the number of columns in the table; missing for-
mat descriptors at the end of format lines are assumed to be L. Extra columns in the
data (which have no corresponding format entry) are ignored.

The available key characters are:

a,A Center longest line in this column and then left-justifies all other lines in this col-
umn with respect to that centered line. The idea is to use such alphabetic sub-
columns (hence the name of the key character) in combination with L; they are
called sub-columns because A items are indented by 1n relative to L entries.
Example:

.TS

tab(;);

ln,an.

item one;1

sub-item two;2

sub-item three;3

.T&

ln,an.

item eleven;11

sub-item twenty-two;22

sub-item thirty-three;33

.TE

Result:

item one                             1
sub-item two 2
sub-item three                  3

item eleven 11
sub-item twenty-two 22
sub-item thirty-three       33

c,C Center item within the column.

l,L Left-justify item within the column.

n,N Numerically justify item in the column; that is, align columns of numbers verti-
cally at the units place. If there are one or more dots adjacent to a digit, use
the rightmost one for vertical alignment. If there is no dot, use the rightmost
digit for vertical alignment; otherwise, center the item within the column. Align-
ment can be forced to a certain position using ‘\&’; if there are one or more in-
stances of this special (non-printing) character present within the data, use the
leftmost one for alignment.  Example:

.TS

n.

1

1.5

1.5.3

abcde



Preprocessors -237-

a\&bcde

.TE

Result:

1
1.5

1.5.3
abcde
abcde

If numerical entries are combined with L or R entries—this this can happen if
the table format is changed with .T&—center the widest number (of the data
entered under the N specifier regime) relative to the widest L or R entry, pre-
serving the alignment of all numerical entries. Contrary to A type entries, there
is no extra indentation.

Using equations (to be processed with eqn) within columns which use the
N specifier is problematic in most cases due to tbl ’s algorithm for finding the
vertical alignment, as described above. Using the global delim option, how-
ever, it is possible to make tbl ignore the data within eqn delimiters for that pur-
pose.

r,R Right-justify item within the column.

s,S Span previous item on the left into this column. Not allowed for the first col-
umn.

ˆ Span down entry from previous row in this column. Not allowed for the first
row.

_,- Replace this entry with a horizontal line. Note that ‘_’ and ‘-’ can be used for ta-
ble fields only, not for column separator lines.

= Replace this entry with a double horizontal line. Note that ‘=’ can be used for
table fields only, not for column separator lines.

| The corresponding column becomes a vertical rule (if two of these are adja-
cent, a double vertical rule). A vertical bar to the left of the first key letter or to
the right of the last one produces a line at the edge of the table.

To change the data format within a table, use the .T& command (at the start of a
line). It is followed by format and data lines (but no global options) similar to the .TS
request.

Column specifiers

Here are the specifiers that can appear in suffixes to column key letters (in any or-
der):

b,B Short form of “fB” (make affected entries bold).

d,D Start an item that vertically spans rows, using the “^” column specifier or “\^”
data item, at the bottom of its range rather than vertically centering it (GNU tbl
only). Example:

.TS

tab(;) allbox;

l l



Preprocessors -238-

l ld

r ˆ
l rd.

0000;foobar

T{

1111

.br

2222

T};foo

r;

T{

3333

.br

4444

T};bar

\ˆ;\ˆ
.TE

Result:

0000 foobar
1111
2222

r foo

bar
3333
4444

e,E Make equally-spaced columns. All columns marked with this specifier get the
same width; this happens after the affected column widths have been com-
puted (this means that the largest-width value controls).

f,F Either of these specifiers may be followed by a font name (either one or two
characters long), font number (a single digit), or long name in parentheses (this
last form is a GNU tbl extension). A one-letter font name must be separated by
one or more blanks from whatever follows.

i,I Short form of “fI” (make affected entries italic).

m,M Call named macro before outputting table cell text (GNU tbl only). Either of
these specifiers may be followed by a macro name (either one or two charac-
ters long), or long name in parentheses. A one-letter macro name must be
separated by one or more blanks from whatever follows. The macro which
name can be specified here must be defined before creating the table. As im-
plemented currently, this macro is only called if block input is used, that is, text
between “T{” and “T}”. The macro should contain only simple roff requests to
change the text block formatting, like text adjustment, hyphenation, size, or font.
The macro is called after other cell modifications like “b”, “f”, or “v” are output.
Thus the macro can overwrite other modification specifiers.

p,P Followed by a number, this does a point size change for the affected fields. If
signed, the current point size is incremented or decremented (using a signed
multi-digit number is a GNU tbl extension). A point size specifier followed by a



Preprocessors -239-

column separation number must be separated by one or more blanks.

t,T Start an item vertically spanning rows at the top of its range rather than verti-
cally centering it.

u,U Move the corresponding column up one half-line.

v,V Followed by a number, this indicates the vertical line spacing to be used in a
multi-line table entry. If signed, the current vertical line spacing is incremented
or decremented (using a signed number instead of a signed digit is a GNU tbl
extension). A vertical line spacing specifier followed by a column separation
number must be separated by one or more blanks. No effect if the correspond-
ing table entry isn’t a text block.

w,W Minimum column width value. Must be followed either by a troff (1) width ex-
pression in parentheses or a unitless integer. If no unit is given, en units are
used. Also used as the default line length for included text blocks. If used mul-
tiple times to specify the width for a particular column, the last entry takes ef-
fect.

x,X An expanded column. After computing all column widths without an x specifier,
use the remaining line width for this column. If there is more than one ex-
panded column, distribute the remaining horizontal space evenly among the af-
fected columns (this is a GNU extension). This feature has the same effect as
specifying a minimum column width.

z,Z Ignore the corresponding column for width-calculation purposes, this is, don’t
use the fields but only the specifiers of this column to compute its width. A
number suffix on a key character is interpreted as a column separation in en
units (multiplied in proportion if the expand option is on – in case of overfull ta-
bles this might be zero). Default separation is 3n.

The column specifier x is mutually exclusive with e and w (but e is not mutually ex-
clusive with w); if specified multiple times for a particular column, the last entry takes
effect: x unsets both e and w, while either e or w overrides x.

Table data

The format lines are followed by lines containing the actual data for the table, fol-
lowed finally by .TE. Within such data lines, items are normally separated by tab
characters (or the character specified with the tab option). Long input lines can be
broken across multiple lines if the last character on the line is ‘\’ (which vanishes after
concatenation). Note that tbl computes the column widths line by line, applying \w
on each entry which isn’t a text block. As a consequence, constructions like

.TS

c,l.

\s[20]MM

MMMM

.TE

fail; you must either say

.TS

cp20,lp20.

MM

MMMM



Preprocessors -240-

.TE

or

.TS

c,l.

\s[20]MM

\s[20]MMMM

.TE

A dot starting a line, followed by anything but a digit is handled as a troff command,
passed through without changes. The table position is unchanged in this case. If a
data line consists of only ‘_’ or ‘=’, a single or double line, respectively, is drawn
across the table at that point; if a single item in a data line consists of only ‘_’ or ‘=’,
then that item is replaced by a single or double line, joining its neighbors. If a data
item consists only of ‘\_’ or ‘\=’, a single or double line, respectively, is drawn across
the field at that point which does not join its neighbors.

A data item consisting only of ‘\Rx’ (‘x’ any character) is replaced by repetitions of
character ‘x’ as wide as the column (not joining its neighbors). A data item consisting
only of ‘\ˆ’ indicates that the field immediately above spans downward over this row.

Text blocks

A text block can be used to enter data as a single entry which would be too long as a
simple string between tabs. It is started with ‘T{’ and closed with ‘T}’. The former
must end a line, and the latter must start a line, probably followed by other data col-
umns (separated with tabs or the character given with the tab global option).

By default, the text block is formatted with the settings which were active before en-
tering the table, possibly overridden by the m, v, and w tbl specifiers. If either ‘w’ or
‘x’ specifiers are not given for all columns of a text block span, the default length of
the text block (to be more precise, the line length used to process the text block di-
version) is computed as L×C/(N+1), where ‘L’ is the current line length, ‘C’ the num-
ber of columns spanned by the text block, and ‘N’ the total number of columns in the
table. Note, however, that the actual diversion width as returned in register \n[dl] is
used eventually as the text block width. If necessary, you can also control the text
block width with a direct insertion of a .ll request right after ‘T{’.

Miscellaneous

The number register \n[TW] holds the table width; it can’t be used within the table it-
self but is defined right before calling .TE so that this macro can make use of it.

tbl also defines a macro .T# which produces the bottom and side lines of a boxed ta-
ble. While tbl does call this macro itself at the end of the table, it can be used by
macro packages to create boxes for multi-page tables by calling it within the page
footer. An example of this is shown by the -ms macros which provide this functional-
ity if a table starts with .TS H instead of the standard call to the .TS macro.

Interaction with eqn

tbl(1) should always be called before eqn(1) (groff(1) automatically takes care of the
correct order of preprocessors).

GNU tbl enhancements

There is no limit on the number of columns in a table, nor any limit on the number of
text blocks. All the lines of a table are considered in deciding column widths, not just



Preprocessors -241-

the first 200. Table continuation (.T&) lines are not restricted to the first 200 lines.
Numeric and alphabetic items may appear in the same column.

Numeric and alphabetic items may span horizontally. tbl uses register, string, macro
and diversion names beginning with the digit 3. When using tbl you should avoid us-
ing any names beginning with a 3.

GNU tbl within macros

Since tbl defines its own macros (right before each table) it is necessary to use an
‘end-of-macro’ macro. Additionally, the escape character has to be switched off.
Here an example.

.eo

.de ATABLE ..

.TS

allbox tab(;);

cl.

\$1;\$2

.TE

...

.ec

.ATABLE A table

.ATABLE Another table

.ATABLE And "another one"

Note, however, that not all features of tbl can be wrapped into a macro because tbl
sees the input earlier than troff . For example, number formatting with vertically
aligned decimal points fails if those numbers are passed on as macro parameters be-
cause decimal point alignment is handled by tbl itself: it only sees \$1, \$2, etc., and
therefore can’t recognize the decimal point.

Options

--help displays a usage message, while -v and --version show version informa-
tion; all exit afterward.

-C Enable compatibility mode to recognize .TS and .TE even when followed by a
character other than space or newline. Leader characters (\a) are handled as
interpreted.

Bugs

You should use .TS H/.TH in conjunction with a supporting macro package for all
multi-page boxed tables. If there is no header that you wish to appear at the top of
each page of the table, place the .TH line immediately after the format section. Do
not enclose a multi-page table within keep/release macros, or divert it in any other
way. A text block within a table must be able to fit on one page.

The bp request cannot be used to force a page-break in a multi-page table. Instead,
define BP as follows

.de BP

. ie '\\n(.z'' .bp \\$1

. el \!.BP \\$1

..

and use BP instead of bp.



Preprocessors -242-

Using \a directly in a table to get leaders does not work (except in compatibility
mode). This is correct behavior: \a is an uninterpreted leader. To get leaders use a
real leader, either by using a control A or like this:

.ds a \a

.TS

tab(;);

lw(1i) l.

A\*a;B

.TE

A leading and/or trailing ‘|’ in a format line, such as

|l r|.

gives output which has a 1n space between the resulting bordering vertical rule and
the content of the adjacent column, as in

.TS

tab(#);

|l r|.

left column#right column

.TE

If it is desired to have zero space (so that the rule touches the content), this can
be achieved by introducing extra “dummy” columns, with no content and zero
separation, before and/or after, as in

.TS

tab(#);

r0|l r0|l.

#left column#right column#

.TE

The resulting “dummy” columns are invisible and have zero width; note that such col-
umns usually don’t work with terminal devices.

Simple Examples

A simple table definition follows.
.TS

c c c .

This is centered

Well, this also

.TE

By using c c c, each cell in the whole table will be centered. The separating charac-
ter is here the default tab. The result is

This is centered
Well, this also

This definition is identical to
.TS

tab(@);

ccc.

This@is@centered

Well,@this@also



Preprocessors -243-

.TE

Here, the separating tab character is changed to the letter @. Moreover a title can
be added and the centering directions can be changed to many other formats:

.TS

tab(@);

c s s

l c n .

Title

left@centers@123

another@number@75

.TE

The result is

Title
left centers 123
another number 75

Here l means left-justified , and n means numerical , which is here right-justified .

See Also

“Tbl—A Program to Format Tables”; Computing Science Technical Report #49; M. E.
Lesk; AT&T Bell Laboratories; 1979.

groff(1), troff(1)



Preprocessors -244-

6.3. gpic

6.3.1. Invoking gpic

Name

pic - compile pictures for troff or TeX

Synopsis

pic [-nCSU] [file . . .]
pic -t [-czCSU] [file . . .]
pic --help
pic -v
pic --version

Description

This manual page describes the GNU version of pic, which is part of the groff docu-
ment formatting system. pic compiles descriptions of pictures embedded within troff
or TEX input files into commands that are understood by TEX or troff. Each picture
starts with a line beginning with .PS and ends with a line beginning with .PE. Any-
thing outside of .PS and .PE is passed through without change. It is the user’s re-
sponsibility to provide appropriate definitions of the PS and PE macros. When the
macro package being used does not supply such definitions (for example, old ver-
sions of -ms), appropriate definitions can be obtained with -mpic: These will center
each picture.

Options

--help displays a usage message, while -v and --version show version informa-
tion; all exit afterward.

-C Recognize .PS and .PE even when followed by a character other than space
or newline.

-S Safer mode; do not execute sh commands. This can be useful when operat-
ing on untrustworthy input (enabled by default).

-U Unsafe mode; revert the default option -S.

-n Don’t use the groff extensions to the troff drawing commands. You should
use this if you are using a postprocessor that doesn’t support these exten-
sions. The extensions are described in groff_out(5). The -n option also
causes pic not to use zero-length lines to draw dots in troff mode.

-t TEX mode.

-c Be more compatible with tpic . Implies -t. Lines beginning with \ are not
passed through transparently. Lines beginning with . are passed through
with the initial . changed to \. A line beginning with .ps is given special treat-
ment: it takes an optional integer argument specifying the line thickness (pen
size) in milliinches; a missing argument restores the previous line thickness;
the default line thickness is 8 milliinches. The line thickness thus specified
takes effect only when a non-negative line thickness has not been specified
by use of the thickness attribute or by setting the linethick variable.



Preprocessors -245-

-z In TEX mode draw dots using zero-length lines.

The following options supported by other versions of pic are ignored:

-D Draw all lines using the \D escape sequence. pic always does this.

-T dev
Generate output for the troff device dev . This is unnecessary because the
troff output generated by pic is device-independent.

Usage

This section describes only the differences between GNU pic and the original ver-
sion of pic. Many of these differences also apply to newer versions of Unix pic. A
complete documentation is available in the file

/usr/local/share/doc/groff-1.22.4/pic.ms

TEX mode

TEX mode is enabled by the -t option. In TEX mode, pic will define a vbox called
\graph for each picture. Use the figname command to change the name of the
vbox. You must yourself print that vbox using, for example, the command

\centerline{\box\graph}
Actually, since the vbox has a height of zero (it is defined with \vtop) this will produce
slightly more vertical space above the picture than below it;

\centerline{\raise 1em\box\graph}
would avoid this.

To make the vbox having a positive height and a depth of zero (as used e.g., by
LATEX’s graphics.sty), define the following macro in your document:

\def\gpicbox#1{%
\vbox{\unvbox\csname #1\endcsname\kern 0pt}}

Now you can simply say \gpicbox{graph} instead of \box\graph. You must use a
TEX driver that supports tpic version 2 specials. (tpic was a fork of AT&T pic by Tim
Morgan of the University of California at Irvine that diverged from its source around
1984. It is best known today for lending its name to a group of \special commands it
produced for TEX.)

Lines beginning with \ are passed through transparently; a % is added to the end of
the line to avoid unwanted spaces. You can safely use this feature to change fonts or
to change the value of \baselineskip. Anything else may well produce undesirable
results; use at your own risk. Lines beginning with a period are not given any special
treatment.

Commands

for variable = expr1 to expr2 [by [*]expr3 ] do X body X
Set variable to expr1. While the value of variable is less than or equal to
expr2 , do body and increment variable by expr3 ; if by is not given, increment
variable by 1. If expr3 is prefixed by * then variable will instead be multiplied by
expr3 . The value of expr3 can be negative for the additive case; variable is
then tested whether it is greater than or equal to expr2 . For the multiplicative
case, expr3 must be greater than zero. If the constraints aren’t met, the loop
isn’t executed. X can be any character not occurring in body .



Preprocessors -246-

if expr then X if-true X [else Y if-false Y]
Evaluate expr ; if it is non-zero then do if-true, otherwise do if-false. X can be
any character not occurring in if-true. Y can be any character not occurring in
if-false.

print arg . . .
Concatenate the arguments and print as a line on stderr. Each arg must be an
expression, a position, or text. This is useful for debugging.

command arg . . .
Concatenate the arguments and pass them through as a line to troff or TEX.
Each arg must be an expression, a position, or text. This has a similar effect to
a line beginning with . or \, but allows the values of variables to be passed
through. For example,

.PS
x = 14
command ".ds string x is " x "."
.PE
\*[string]

prints

x is 14.

sh X command X
Pass command to a shell. X can be any character not occurring in command .

copy "filename"
Include filename at this point in the file.

copy ["filename"] thru X body X [until "word "]

copy ["filename"] thru macro [until "word "]
This construct does body once for each line of filename; the line is split into
blank-delimited words, and occurrences of $i in body , for i between 1 and 9,
are replaced by the i -th word of the line. If filename is not given, lines are
taken from the current input up to .PE. If an until clause is specified, lines will
be read only until a line the first word of which is word ; that line will then be dis-
carded. X can be any character not occurring in body . For example,

.PS
copy thru % circle at ($1,$2) % until "END"
1 2
3 4
5 6
END
box
.PE

is equivalent to

.PS
circle at (1,2)
circle at (3,4)
circle at (5,6)
box



Preprocessors -247-

.PE

The commands to be performed for each line can also be taken from a macro
defined earlier by giving the name of the macro as the argument to thru. reset

reset variable1[,] variable2 ... 
Reset pre-defined variables variable1, variable2 ... to their default values. If no
arguments are given, reset all pre-defined variables to their default values.
Note that assigning a value to scale also causes all pre-defined variables that
control dimensions to be reset to their default values times the new value of
scale.

plot expr ["text "]
This is a text object which is constructed by using text as a format string for
sprintf with an argument of expr . If text is omitted a format string of "%g" is
used. Attributes can be specified in the same way as for a normal text object.
Be very careful that you specify an appropriate format string; pic does only
very limited checking of the string.  This is deprecated in favour of sprintf.

variable := expr
This is similar to = except variable must already be defined, and expr will be
assigned to variable without creating a variable local to the current block. (By
contrast, = defines the variable in the current block if it is not already defined
there, and then changes the value in the current block only.) For example, the
following:

.PS
x = 3
y = 3
[
x := 5
y = 5

]
print x " " y
.PE

prints

5 3

Arguments of the form

X anything X are also allowed to be of the form

{ anything }

In this case anything can contain balanced occurrences of { and }. Strings may con-
tain X or imbalanced occurrences of { and }.

Expressions

The syntax for expressions has been significantly extended: x ˆ y (exponentiation)
sin(x )
cos(x )
atan2(y , x )
log(x ) (base 10)
exp(x ) (base 10, i.e. 10x )
sqrt(x )



Preprocessors -248-

int(x )
rand() (return a random number between 0 and 1)
rand(x ) (return a random number between 1 and x ; deprecated)
srand(x ) (set the random number seed)
max(e1, e2 )
min(e1, e2 )
!e
e1 && e2
e1 || e2
e1 == e2
e1 != e2
e1 >= e2
e1 > e2
e1 <= e2
e1 < e2
"str1" == "str2"
"str1" != "str2"

String comparison expressions must be parenthesised in some contexts to avoid am-
biguity.

Other changes

A bare expression, expr , is acceptable as an attribute; it is equivalent to dir expr ,
where dir is the current direction. For example

line 2i

means draw a line 2 inches long in the current direction. The ‘i’ (or ‘I’) character is ig-
nored; to use another measurement unit, set the scale variable to an appropriate
value. The maximum width and height of the picture are taken from the variables
maxpswid and maxpsht. Initially these have values 8.5 and 11.

Scientific notation is allowed for numbers. For example
x = 5e-2

Text attributes can be compounded.  For example,
"foo" above ljust

is valid. There is no limit to the depth to which blocks can be examined. For exam-
ple,

[A: [B: [C: box ]]] with .A.B.C.sw at 1,2
circle at last [].A.B.C

is acceptable.

Arcs now have compass points determined by the circle of which the arc is a part.
Circles, ellipses, and arcs can be dotted or dashed. In TEX mode splines can be dot-
ted or dashed also.

Boxes can have rounded corners. The rad attribute specifies the radius of the quar-
ter-circles at each corner. If no rad or diam attribute is given, a radius of boxrad is
used. Initially, boxrad has a value of 0. A box with rounded corners can be dotted or
dashed. Boxes can have slanted sides. This effectively changes the shape of a box
from a rectangle to an arbitrary parallelogram. The xslanted and yslanted attributes
specify the x and y offset of the box’s upper right corner from its default position.



Preprocessors -249-

The .PS line can have a second argument specifying a maximum height for the pic-
ture. If the width of zero is specified the width will be ignored in computing the scal-
ing factor for the picture. Note that GNU pic will always scale a picture by the same
amount vertically as well as horizontally. This is different from the DWB 2.0 pic
which may scale a picture by a different amount vertically than horizontally if a height
is specified. Each text object has an invisible box associated with it. The compass
points of a text object are determined by this box. The implicit motion associated
with the object is also determined by this box. The dimensions of this box are taken
from the width and height attributes; if the width attribute is not supplied then the
width will be taken to be textwid; if the height attribute is not supplied then the height
will be taken to be the number of text strings associated with the object times textht.
Initially textwid and textht have a value of 0.

In (almost all) places where a quoted text string can be used, an expression of the
form

sprintf("format ", arg ,. . .) can also be used; this will produce the arguments
formatted according to format , which should be a string as described in
printf(3) appropriate for the number of arguments supplied. Only the flags ‘#’,
‘-’, ‘’, and ‘ ’ (space), a minimum field width, an optional precision, and the con-
version specifications %e, %E, %f, %g, %G, and %% are supported.

The thickness of the lines used to draw objects is controlled by the linethick variable.
This gives the thickness of lines in points. A negative value means use the default
thickness: in TEX output mode, this means use a thickness of 8 milliinches; in TEX
output mode with the -c option, this means use the line thickness specified by .ps
lines; in troff output mode, this means use a thickness proportional to the pointsize.
A zero value means draw the thinnest possible line supported by the output device.
Initially it has a value of -1.  There is also a thick[ness] attribute. For example,

circle thickness 1.5

would draw a circle using a line with a thickness of 1.5 points. The thickness of lines
is not affected by the value of the scale variable, nor by the width or height given in
the .PS line. Boxes (including boxes with rounded corners or slanted sides), circles
and ellipses can be filled by giving them an attribute of fill[ed]. This takes an op-
tional argument of an expression with a value between 0 and 1; 0 will fill it with white,
1 with black, values in between with a proportionally gray shade. A value greater
than 1 can also be used: this means fill with the shade of gray that is currently being
used for text and lines. Normally this will be black, but output devices may provide a
mechanism for changing this. Without an argument, then the value of the variable fil-
lval will be used. Initially this has a value of 0.5. The invisible attribute does not af-
fect the filling of objects. Any text associated with a filled object will be added after
the object has been filled, so that the text will not be obscured by the filling.

Three additional modifiers are available to specify colored objects: outline[d] sets
the color of the outline, shaded the fill color, and colo[u]r[ed] sets both. All three
keywords expect a suffix specifying the color, for example

circle shaded "green" outline "black"

Currently, color support isn’t available in TEX mode. Predefined color names for groff
are in the device macro files, for example ps.tmac; additional colors can be defined
with the .defcolor request (see the manual page of troff(1) for more details). To
change the name of the vbox in TEX mode, set the pseudo-variable figname (which



Preprocessors -250-

is actually a specially parsed command) within a picture. Example:

.PS
figname = foobar;
...
.PE

The picture is then available in the box \foobar.

pic assumes that at the beginning of a picture both glyph and fill color are set to the
default value. Arrow heads will be drawn as solid triangles if the variable arrowhead
is non-zero and either TEX mode is enabled or the -n option has not been given. Ini-
tially arrowhead has a value of 1. Note that solid arrow heads are always filled with
the current outline color.

The troff output of pic is device-independent. The -T option is therefore redundant.
All numbers are taken to be in inches; numbers are never interpreted to be in troff
machine units. Objects can have an aligned attribute. This will only work if the post-
processor is grops, or gropdf. Any text associated with an object having the
aligned attribute will be rotated about the center of the object so that it is aligned in
the direction from the start point to the end point of the object. Note that this attribute
will have no effect for objects whose start and end points are coincident.

In places where nth is allowed ‘expr ’th is also allowed. Note that ’th is a single to-
ken: no space is allowed between the ’ and the th. For example,

for i = 1 to 4 do {
line from ‘i’th box.nw to ‘i+1’th box.se

}

Conversion

To obtain a stand-alone picture from a pic file, enclose your pic code with .PS and
.PE requests; roff configuration commands may be added at the beginning of the
file, but no roff text. It is necessary to feed this file into groff without adding any
page information, so you must check which .PS and .PE requests are actually called.
For example, the mm macro package adds a page number, which is very annoying.
At the moment, calling standard groff without any macro package works. Alterna-
tively, you can define your own requests, e.g., to do nothing:

.de PS

..

.de PE

..
groff itself does not provide direct conversion into other graphics file formats. But
there are lots of possibilities if you first transform your picture into PostScript® format
using the groff option -Tps. Since this ps-file lacks BoundingBox information it is
not very useful by itself, but it may be fed into other conversion programs, usually
named ps2other or pstoother or the like. Moreover, the PostScript interpreter
ghostscript (gs) has built-in graphics conversion devices that are called with the op-
tion

gs -sDEVICE=<devname>
Call



Preprocessors -251-

gs --help
for a list of the available devices.

An alternative may be to use the -Tpdf option to convert your picture directly into
PDF format. The MediaBox of the file produced can be controlled by passing a -P-p
papersize to groff. As the Encapsulated PostScript File Format EPS is getting more
and more important, and the conversion wasn’t regarded trivial in the past you might
be interested to know that there is a conversion tool named ps2eps which does the
right job. It is much better than the tool ps2epsi packaged with gs.

For bitmapped graphic formats, you should use pstopnm; the resulting (intermedi-
ate) PNM file can be then converted to virtually any graphics format using the tools of
the netpbm package.

Files

/usr/local/share/groff/1.22.4/tmac/pic.tmac
Example definitions of the PS and PE macros.

Bugs

Characters that are invalid as input to GNU troff (see the groff Texinfo manual or
groff_char (7) for a list) are rejected even in TEX mode. The interpretation of fillval is
incompatible with the pic in Tenth Edition Research Unix, which interprets 0 as black
and 1 as white.

See Also

/usr/local/share/doc/groff-1.22.4/pic.ps
“Making Pictures with GNU pic”; Eric S. Raymond. This file, together with its
source, pic.ms, is part of the groff distribution.

“PIC—A Graphics Language for Typesetting: User Manual”; Computing Science
Technical Report #116; Brian W. Kernighan; AT&T Bell Laboratories; 1991. ps2eps
is available from CTAN mirrors, e.g., ftp://ftp.dante.de/tex-archive/support/ps2eps/

W. Richard Stevens, Turning PIC into HTML W. Richard Stevens, "Examples of pic
Macros"

troff(1), groff_out(5), tex(1), gs(1), ps2eps(1), pstopnm(1), ps2epsi(1), pnm(5)

ftp://ftp.dante.de/tex-archive/support/ps2eps/
http://www.kohala.com/start/troff/pic2html.html
http://www.kohala.com/start/troff/pic.examples.ps
http://www.kohala.com/start/troff/pic.examples.ps


Preprocessors -252-

6.3.2. Using gpic

Making Pictures With GNU PIC

Eric S. Raymond

〈esr@snark.thyrsus.com〉
The pic language is a troff extension that makes it easy

to create and alter box-and-arrow diagrams of the kind frequently used
in technical papers and textbooks.

This paper is both an introduction to and reference for gpic (1),
the implementation distributed by the Free Software Foundation for use

with groff (1).
It also catalogs other implementations and explains the differences

among them.

6.3.3. Introduction to PIC

6.3.3.1. Why PIC?

The pic language provides an easy way to write procedural box-and-arrow diagrams to be included in troff docu-
ments. The language is sufficiently flexible to be quite useful for state charts, Petri-net diagrams, flow charts, simple cir-
cuit schematics, jumper layouts, and other kinds of illustration involving repetitive uses of simple geometric forms and
splines. Because these descriptions are procedural and object-based, they are both compact and easy to modify.

The phrase “GNU pic” may refer to either of two pic implementations distributed by the Free Software Foundation
and intended to accept the same input language. The gpic (1) implementation is for use with the groff (1) implementation
of troff. The pic2plot (1) implementation runs standalone and is part of the plotutils package. Because both implemen-
tations are widely available in source form for free, they are good bets for writing very portable documentation.

6.3.3.2. PIC Versions

The original 1984 pre-ditroff (1) version of pic is long obsolete. The rewritten 1991 version is still available as part
of the Documenter’s Work Bench module of System V.

Where differences between Documenter’s Work Bench (1991) pic and GNU pic need to be described, original
pic is referred to as “DWB pic”.  Details on the history of the program are given at the end of this document.

The pic2plot program does not require the rest of the groff (1) toolchain to render graphics. It can display pic di-
agrams in an X window, or generate output plots in a large number of other formats. These formats include: PNG, PBM,
PGM, PPM, GIF, SVG, Adobe Illustrator format, idraw-editable Postscript, the WebCGM format for Web-based vector
graphics, the format used by the xfig drawing editor, the Hewlett-Packard PCL 5 printer language, the Hewlett-Packard
Graphics Language (by default, HP-GL/2), the ReGIS (remote graphics instruction set) format developed by DEC, Tek-
tronix format, and device-independent GNU graphics metafile format.

In this document, gpic (1) and pic2plot (1) extensions are marked as such.

6.3.4. Invoking PIC

Every pic description is a little program describing drawing actions. The [gtn]roff-dependent versions compile
the program by pic (1) into gtroff (1) macros; the pic2plot (1) implementation uses a plotting library to draw the picture di-
rectly. Programs that process or display gtroff (1) output need not know or care that parts of the image began life as pic
descriptions.

The pic (1) program tries to translate anything between .PS and .PE markers, and passes through everything
else. The normal definitions of .PS and .PE in the ms macro package and elsewhere have also the side-effect of center-
ing the pic output on the page.

6.3.4.1. PIC Error Messages

If you make a pic syntax error, gpic (1) issues an error message in the standard gcc (1)-like syntax. A typical error
message looks like this



Preprocessors -253-

pic:pic.ms:<nnn>: parse error before ‘<token>’
pic:pic.ms:<nnn>: giving up on this picture

where 〈nnn〉 is a line number, and 〈token〉 is a token near (usually just after) the error location.

6.3.5. Basic PIC Concepts

Pictures are described procedurally, as collections of objects connected by motions. Normally, pic tries to string
together objects left-to-right in the sequence they are described, joining them at visually natural points. Here is an exam-
ple illustrating the flow of data in pic processing:

document gpic (1)
gtbl (1) or geqn(1)

(optional)
gtroff (1) PostScript

Figure 6-1: Flow of pic data

This was produced from the following pic program:

.PS
ellipse "document";
arrow;
box width 0.6 "\fIgpic\/\fP(1)"
arrow;
box width 1.1 "\fIgtbl\/\fP(1) or \fIgeqn\/\fP(1)" "(optional)" dashed;
arrow;
box width 0.6 "\fIgtroff\/\fP(1)";
arrow;
ellipse "PostScript"
.PE

This little program illustrates several pic basics. Firstly, we see how to invoke three object types; ellipses, arrows, and
boxes. We see how to declare text lines to go within an object (and that text can have font changes in it). We see how to
change the line style of an object from solid to dashed. And we see that a box can be made wider than its default size to
accommodate more text (we’ll discuss this facility in detail in the next section).

We also get to see pic’s simple syntax. Statements are ended by newlines or semicolons. String quotes are re-
quired around all text arguments, whether or not they contain spaces. In general, the order of command arguments and
modifiers like “width 1.2” or “dashed” doesn’t matter, except that the order of text arguments is significant.

Here are all but one of the basic pic objects at their default sizes:

box
line arrow

circle ellipse

arc

Figure 6-2: Basic pic objects

The missing simple object type is a spline. There is also a way to collect objects into block composites which al-
lows you to treat the whole group as a single object (resembling a box) for many purposes. We’ll describe both of these
later on.

The box, ellipse, circle, and block composite objects are closed ; lines, arrows, arcs and splines are open. This
distinction is often important in explaining command modifiers.

Figure 6-2 was produced by the following pic program, which introduces some more basic concepts:



Preprocessors -254-

.PS
box "box";
move;
line "line" "";
move;
arrow "arrow" "";
move;
circle "circle";
move;
ellipse "ellipse";
move;
arc; down; move; "arc"
.PE

The first thing to notice is the move command, which moves a default distance (1/2 inch) in the current movement
direction.

Secondly, see how we can also decorate lines and arrows with text. The line and arrow commands each take two
arguments here, specifying text to go above and below the object. If you wonder why one argument would not do, con-
template the output of arrow "ow!":

ow!

Figure 6-3: Text centered on an arrow

When a command takes one text string, pic tries to place it at the object’s geometric center. As you add more
strings, pic treats them as a vertical block to be centered.  The program

line "1";
line "1" "2";
line "1" "2" "3";
line "1" "2" "3" "4";
line "1" "2" "3" "4" "5";

for example, gives you this:

1
1
2

1
2
3

1
2
3
4

1
2
3
4
5

Figure 6-4: Effects of multiple text arguments

The last line of Figure 3-2’s program, ‘arc; down; move; "arc"’, describing the captioned arc, introduces several
new ideas. Firstly, we see how to change the direction in which objects are joined. Had we written arc; move; "arc",
omitting down the caption would have been joined to the top of the arc, like this:

arc

Figure 6-5: Result of arc; move;

This is because drawing an arc changes the default direction to the one its exit end points at. To reinforce this
point, consider:



Preprocessors -255-

arc

Figure 6-6: Result of arc cw; move;

All we’ve done differently here is specify “cw” for a clockwise arc (“ccw” specifies counter-clockwise direction).
Observe how it changes the default direction to down, rather than up.

Another good way to see this via with the following program:

line; arc; arc cw; line

which yields:

Figure 6-7: Result of line; arc; arc cw; line

Notice that we did not have to specify “up” for the second arc to be joined to the end of the first.

Finally, observe that a string, alone, is treated as text to be surrounded by an invisible box of a size either speci-
fied by width and height attributes or by the defaults textwid and textht. Both are initially zero (because we don’t know
the default font size).

6.3.6. Sizes and Spacing

Sizes are specified in inches. If you don’t like inches, it’s possible to set a global style variable scale that
changes the unit. Setting scale = 2.54 effectively changes the internal unit to centimeters (all other size variable values
are scaled correspondingly).

6.3.6.1. Default Sizes of Objects

Here are the default sizes for pic objects:

Object     Default Size

box          0.75" wide by 0.5" high
circle        0.5" diameter
ellipse      0.75" wide by 0.5" high
arc           0.5" radius
line          0.5" long
arrow       0.5" long

The simplest way to think about these defaults is that they make the other basic objects fit snugly into a default-
sized box.

pic2plot (1) does not necessarily emit a physical inch for each virtual inch in its drawing coordinate system. In-
stead, it draws on a canvas 8 virtual inches by 8 virtual inches wide. If its output page size is “letter”, these virtual inches
will map to real ones. Specifying a different page size (such as, say, “a4”) will scale virtual inches so they are output as
one eighth of the page width. Also, pic2plot (1) centers all images by default, though the -n option can be used to pre-
vent this.

6.3.6.2. Objects Do Not Stretch!

Text is rendered in the current font with normal troff line spacing. Boxes, circles, and ellipses do not automatically
resize to fit enclosed text. Thus, if you say box "this text far too long for a default box" you’ll get this:



Preprocessors -256-

this text is far too long for a default box

Figure 6-1: Boxes do not automatically resize

which is probably not the effect you want.

6.3.6.3. Resizing Boxes

To change the box size, you can specify a box width with the “width” modifier:

this text is far too long for a default box

Figure 6-2: Result of box width 3

This modifier takes a dimension in inches. There is also a “height” modifier that changes a box’s height. The
width keyword may be abbreviated to wid; the height keyword to ht.

6.3.6.4. Resizing Other Object Types

To change the size of a circle, give it a rad[ius] or diam[eter] modifier; this changes the radius or diameter of the
circle, according to the numeric argument that follows.

0.1

0.2 0.3

Figure 6-3: Circles with increasing radii

The move command can also take a dimension, which just tells it how many inches to move in the current direc-
tion.

Ellipses are sized to fit in the rectangular box defined by their axes, and can be resized with width and height like
boxes.

You can also change the radius of curvature of an arc with rad[ius] (which specifies the radius of the circle of
which the arc is a segment).  Larger values yield flatter arcs.

0.1 0.2 0.3

Figure 6-4: arc rad with increasing radii

Observe that because an arc is defined as a quarter circle, increasing the radius also increases the size of the
arc’s bounding box.

6.3.6.5. The ‘same’ Keyword

In place of a dimension specification, you can use the keyword same. This gives the object the same size as the
previous one of its type. As an example, the program



Preprocessors -257-

.PS
box; box wid 1 ht 1; box same; box
.PE

gives you

Figure 6-5: The same keyword

6.3.7. Generalized Lines and Splines

6.3.7.1. Diagonal Lines

It is possible to specify diagonal lines or arrows by adding multiple up, down, left, and right modifiers to the line
object. Any of these can have a multiplier. To understand the effects, think of the drawing area as being gridded with
standard-sized boxes.

arrow up left 0.5 arrow up left 1 arrow up left 1.5 arrow up left 2

Figure 6-1: Diagonal arrows (dotted boxes show the implied 0.5-inch grid)

6.3.7.2. Multi-Segment Line Objects

A “line” or “arrow” object may actually be a path consisting of any number of segments of varying lengths and di-
rections. To describe a path, connect several line or arrow commands with the keyword then.

Figure 6-2: line right 1 then down .5 left 1 then right 1

If a path starts with then, the first segment is assumed to be into the current direction, using the default length.

6.3.7.3. Spline Objects

If you start a path with the spline keyword, the path vertices are treated as control points for a spline curve fit.

The spline curve...

1 2

3 4

...with tangents displayed

Figure 6-3: spline right 1 then down .5 left 1 then right 1



Preprocessors -258-

You can describe many natural-looking but irregular curves this way. For example:

spline right then up then left then down ->; spline left then up right then down right ->;

Figure 6-4: Two more spline examples

Note the arrow decorations. Arrowheads can be applied naturally to any path-based object, line or spline. We’ll see how
in the next section.

6.3.8. Decorating Objects

6.3.8.1. Text Special Effects

All pic implementations support the following font-styling escapes within text objects:

\fR, \f1
Set Roman style (the default)

\fI, \f2 Set Italic style

\fB, \f3
Set Bold style

\fP
Revert to previous style; only works one level deep, does not stack.

In the pic implementations that are preprocessors for a toolchain that include [gtn]roff, text objects may also con-
tain [gtn]roff vertical- and horizontal-motion escapes such as \h or \v. Troff special glyphs are also available. All \-es-
capes will be passed through to the postprocessing stage and have their normal effects. The base font family is set by
the [gtn]roff environment at the time the picture is rendered.

pic2plot replaces [gtn]roff horizontal- and vertical-motion escapes with \-escapes of its own. Troff special glyphs
are not available, but in most back ends Latin-1 special characters and a square-root radical will be. See the pic2plot
documentation for full details.

6.3.8.2. Dashed Objects

We’ve already seen that the modifier dashed can change the line style of an object from solid to dashed. GNU
gpic permits you to dot or dash ellipses, circles, and arcs (and splines in TEX mode only); some versions of DWB may
only permit dashing of lines and boxes. It’s possible to change the dash interval by specifying a number after the modi-
fier.

default 0.05 0.1 0.15 0.2

Figure 6-1: Dashed objects

6.3.8.3. Dotted Objects

Another available qualifier is dotted. GNU gpic permits you to dot or dash ellipses, circles, and arcs (and splines
in TEX mode only); some versions of DWB may only permit dashing of lines and boxes. It too can be suffixed with a num-
ber to specify the interval between dots:



Preprocessors -259-

default 0.05 0.1 0.15 0.2

Figure 6-2: Dotted objects

6.3.8.4. Rounding Box Corners

It is also possible, in GNU gpic only, to modify a box so it has rounded corners:

rad 0.05 rad 0.1 rad 0.15 rad 0.2 rad 0.25

Figure 6-3: box rad with increasing radius values

Radius values higher than half the minimum box dimension are silently truncated to that value.

6.3.8.5. Slanted Boxes

GNU gpic supports slanted boxes:

xslanted 0.1 yslanted -0.1
xslanted -0.2
yslanted 0.1

Figure 6-4: Various slanted boxes.

The xslanted and yslanted attributes specify the x and y offset, respectively, of the box’s upper right corner from
its default position.

6.3.8.6. Arrowheads

Lines and arcs can be decorated as well. Any line or arc (and any spline as well) can be decorated with arrow-
heads by adding one or more as modifiers:

Figure 6-5: Double-headed line made with  line <- ->

In fact, the arrow command is just shorthand for line ->. And there is a double-head modifier <->, so the figure
above could have been made with line <->.

Arrowheads have a width attribute, the distance across the rear; and a height attribute, the length of the arrow-
head along the shaft.

Arrowhead style is controlled by the style variable arrowhead. The DWB and GNU versions interpret it differently.
DWB defaults to open arrowheads and an arrowhead value of 2; the Kernighan paper says a value of 7 makes solid ar-
rowheads. GNU gpic defaults to solid arrowheads and an arrowhead value of 1; a value of 0 produces open arrow-
heads. Note that solid arrowheads are always filled with the current outline color.

6.3.8.7. Line Thickness

It’s also possible to change the line thickness of an object (this is a GNU extension, DWB pic doesn’t support it).
The default thickness of the lines used to draw objects is controlled by the linethick variable. This gives the thickness of
lines in points. A negative value means use the default thickness: in TEX output mode, this means use a thickness of 8
milliinches; in TEX output mode with the -c option, this means use the line thickness specified by .ps lines; in troff output
mode, this means use a thickness proportional to the pointsize. A zero value means draw the thinnest possible line sup-
ported by the output device. Initially it has a value of -1. There is also a thickness attribute (which can be abbreviated to



Preprocessors -260-

thick). For example, circle thickness 1.5 would draw a circle using a line with a thickness of 1.5 points. The thickness
of lines is not affected by the value of the scale variable, nor by any width or height given in the .PS line.

6.3.8.8. Invisible Objects

The modifier invis[ible] makes an object entirely invisible. This used to be useful for positioning text in an invisi-
ble object that is properly joined to neighboring ones. Newer DWB versions and GNU pic treat stand-alone text in ex-
actly this way.

6.3.8.9. Filled Objects

It is possible to fill boxes, circles, and ellipses. The modifier fill[ed] accomplishes this. You can suffix it with a fill
value; the default is given by the style variable fillval.

DWB pic and gpic have opposite conventions for fill values and different defaults. DWB fillval defaults to 0.3 and
smaller values are darker; GNU fillval uses 0 for white and 1 for black.

Figure 6-6: circle fill; move; circle fill 0.4; move; circle fill 0.9;

GNU gpic makes some additional guarantees. A fill value greater than 1 can also be used: this means fill with
the shade of gray that is currently being used for text and lines. Normally this is black, but output devices may provide a
mechanism for changing this. The invisible attribute does not affect the filling of objects. Any text associated with a filled
object is added after the object has been filled, so that the text is not obscured by the filling.

The closed-object modifier solid is equivalent to fill with the darkest fill value (DWB pic had this capability but
mentioned it only in a reference section).

6.3.8.10. Colored Objects

As a GNU extension, three additional modifiers are available to specify colored objects. outline sets the color of
the outline, shaded the fill color, and color sets both. All three keywords expect a suffix specifying the color. Example:

Figure 6-7: box color "yellow"; arrow color "cyan"; circle shaded "green" outline "black";

Alternative spellings are colour, colored, coloured, and outlined.

Predefined color names for [gtn]roff -based pic implementations are defined in the device macro files, for example
ps.tmac; additional colors can be defined with the .defcolor request (see the manual page of GNU troff (1) for more de-
tails). Currently, color support is not available at all in TEX mode.

The pic2plot (1) carries with its own set of color names, essentially those recognized by the X window system with
“grey” accepted as a variant of “gray”.

pic assumes that at the beginning of a picture both glyph and fill color are set to the default value.

6.3.9. More About Text Placement

By default, text is centered at the geometric center of the object it is associated with. The modifier ljust causes
the left end to be at the specified point (which means that the text lies to the right of the specified place!), the modifier
rjust puts the right end at the place. The modifiers above and below center the text one half line space in the given di-
rection.

Text attributes can be combined:



Preprocessors -261-

ljust text rjust text
ljust above

rjust below

Figure 6-1: Text attributes

What actually happens is that n text strings are centered in a box that is textwid wide by textht high. Both these
variables are initially zero (that is pic’s way of not making assumptions about [tg]roff (1)’s default point size).

In GNU gpic, objects can have an aligned attribute. This only works if the postprocessor is grops or gropdf.
Any text associated with an object having the aligned attribute is rotated about the center of the object so that it is
aligned in the direction from the start point to the end point of the object. Note that this attribute has no effect for objects
whose start and end points are coincident.

6.3.10. More About Direction Changes

We’ve already seen how to change the direction in which objects are composed from rightwards to downwards.
Here are some more illustrative examples:

right; box; arrow; circle; arrow; ellipse

left; box; arrow; circle; arrow; ellipse

Figure 6-1: Effects of different motion directions (right and left)

down; box; arrow; circle; arrow; ellipse; up; box; arrow; circle; arrow; ellipse;

Figure 6-2: Effects of different motion directions (up and down)

Something that may appear surprising happens if you change directions in the obvious way:



Preprocessors -262-

Figure 6-3: box; arrow; circle; down; arrow; ellipse

You might have expected that program to yield this:

Figure 6-4: More intuitive?

But, in fact, to get Figure 6.3.10.3 you have to do this:

.PS
box;
arrow;
circle;
move to last circle .s;
down;
arrow;
ellipse
.PE

Why is this? Because the exit point for the current direction is already set when you draw the object. The second arrow
in Figure 6.3.10.2 dropped downwards from the circle’s attachment point for an object to be joined to the right.

The meaning of the command move to last circle .s should be obvious. In order to see how it generalizes, we’ll
need to go into detail on two important topics; locations and object names.

6.3.11. Naming Objects

The most natural way to name locations in pic is relative to objects. In order to do this, you have to be able to
name objects. The pic language has rich facilities for this that try to emulate the syntax of English.

6.3.11.1. Naming Objects By Order Of Drawing

The simplest (and generally the most useful) way to name an object is with a last clause. It needs to be followed
by an object type name; box, circle, ellipse, line, arrow, spline, "", or [] (the last type refers to a composite object
which we’ll discuss later). So, for example, the last circle clause in the program attached to Figure 6.3.11.1.3 refers to
the last circle drawn.

More generally, objects of a given type are implicitly numbered (starting from 1). You can refer to (say) the third
ellipse in the current picture with 3rd ellipse, or to the first box as 1st box, or to the fifth text string (which isn’t an attri-
bute to another object) as 5th "".

Objects are also numbered backwards by type from the last one. You can say 2nd last box to get the second-to-
last box, or 3rd last ellipse to get the third-to-last ellipse.



Preprocessors -263-

In places where nth is allowed, ‘expr ’th is also allowed. Note that ’th is a single token: no space is allowed be-
tween the ’ and the th. For example,

for i = 1 to 4 do {
line from ‘i’th box.nw to ‘i+1’th box.se

}

6.3.11.2. Naming Objects With Labels

You can also specify an object by referring to a label. A label is a word (which must begin with a capital letter) fol-
lowed by a colon; you declare it by placing it immediately before the object drawing command.  For example, the program

.PS
A: box "first" "object"
move;
B: ellipse "second" "object"
move;
arrow right at A .r;
.PE

declares labels A and B for its first and second objects. Here’s what that looks like:

first
object

second
object

Figure 6-1: Example of label use

The at statement in the fourth line uses the label A (the behavior of at is explained in the next section). We’ll see later on
that labels are most useful for referring to block composite objects.

Labels are not constants but variables (you can view colon as a sort of assignment). You can say something like
A: A + (1,0); and the effect is to reassign the label A to designate a position one inch to the right of its old value.

6.3.12. Describing locations

The location of points can be described in many different ways. All these forms are interchangeable as for as the
pic language syntax is concerned; where you can use one, any of the others that would make semantic sense are al-
lowed.

The special label Here always refers to the current position.

6.3.12.1. Absolute Coordinates

The simplest is absolute coordinates in inches; pic uses a Cartesian system with (0,0) at the lower left corner of
the virtual drawing surface for each picture (that is, X increases to the right and Y increases upwards). An absolute loca-
tion may always be written in the conventional form as two comma-separated numbers surrounded by parentheses (and
this is recommended for clarity). In contexts where it creates no ambiguity, the pair of X and Y coordinates suffices with-
out parentheses.

It is a good idea to avoid absolute coordinates, however. They tend to make picture descriptions difficult to under-
stand and modify. Instead, there are quite a number of ways to specify locations relative to pic objects and previous lo-
cations.

Another possibility of surprise is the fact that pic crops the picture to the smallest bounding box before writing it
out. For example, if you have a picture consisting of a small box with its lower left corner at (2,2) and another small box
with its upper right corner at (5,5), the width and height of the image are both 3 units and not 5. To get the origin at (0,0)
included, simply add an invisible object to the picture, positioning the object’s left corner at (0,0).

6.3.12.2. Locations Relative to Objects

The symbol Here always refers to the position of the last object drawn or the destination of the last move.



Preprocessors -264-

Alone and unqualified, a last circle or any other way of specifying a closed-object or arc location refers as a posi-
tion to the geometric center of the object. Unqualified, the name of a line or spline object refers to the position of the ob-
ject start.

Also, pic objects have quite a few named locations associated with them. One of these is the object center,
which can be indicated (redundantly) with the suffix .center (or just .c). Thus, last circle .center is equivalent to last cir-
cle.

6.3.12.2.1. Locations Relative to Closed Objects

Every closed object (box, circle, ellipse, or block composite) also has eight compass points associated with it;

.c

.n .ne

.e

.se.s.sw

.w

.nw

.c

.n
.ne

.e

.se
.s

.sw

.w

.nw

.c

.n
.ne

.e

.se
.s

.sw

.w

.nw

Figure 6-1: Compass points

these are the locations where eight compass rays from the geometric center would intersect the figure. So when we say
last circle .s we are referring to the south compass point of the last circle drawn. The explanation of Figure 8-3’s pro-
gram is now complete.

(In case you dislike compass points, the names .top, .bottom, .left and .right are synonyms for .n, .s, .e, and .w
respectively; they can even be abbreviated to .t, .b, .l and .r).

The names center, top, bottom, left, right, north, south, east, and west can also be used (without the leading
dot) in a prefix form marked by of; thus, center of last circle and top of 2nd last ellipse are both valid object refer-
ences. Finally, the names left and right can be prefixed with upper and lower which both have the obvious meaning.

Arc objects also have compass points; they are the compass points of the implied circle.

Non-closed objects (line, arrow, or spline) have compass points too, but the locations of them are completely arbi-
trary. In particular, different pic implementations return different locations.

6.3.12.2.2. Locations Relative to Open Objects

Every open object (line, arrow, arc, or spline) has three named points: .start, .center (or .c), and .end. They can
also be used without leading dots in the of prefix form. The center of an arc is the center of its circle, but the center of a
line, path, or spline is halfway between its endpoints.

.center

.start

.end

.center

.start

.end

.center

.start

.end

.center

.start

.end

Figure 6-2: Special points on open objects

6.3.12.3. Ways of Composing Positions

Once you have two positions to work with, there are several ways to combine them to specify new positions.



Preprocessors -265-

6.3.12.3.1. Vector Sums and Displacements

Positions may be added or subtracted to yield a new position (to be more precise, you can only add a position
and an expression pair; the latter must be on the right side of the addition or subtraction sign). The result is the conven-
tional vector sum or difference of coordinates. For example, last box .ne + (0.1, 0) is a valid position. This example illus-
trates a common use, to define a position slightly offset from a named one (say, for captioning purposes).

6.3.12.3.2. Interpolation Between Positions

A position may be interpolated between any two positions. The syntax is ‘fraction of the way between position1
and position2’. For example, you can say 1/3 of the way between Here and last ellipse .ne. The fraction may be in
numerator/denominator form or may be an ordinary number (values are not restricted to [0,1]). As an alternative to this
verbose syntax, you can say ‘fraction <position1 , position2>’; thus, the example could also be written as 1/3 <Here, last
ellipse>.

P

Figure 6-3: P: 1/3 of the way between last arrow .start and last arrow .end

This facility can be used, for example, to draw double connections.

yin yang

Figure 6-4: Doubled arrows

You can get Figure 6-4 from the following program:

.PS
A: box "yin"; move;
B: box "yang";
arrow right at 1/4 <A.e,A.ne>;
arrow left  at 1/4 <B.w,B.sw>;
.PE

Note the use of the short form for interpolating points.

6.3.12.3.3. Projections of Points

Given two positions p and q, the position (p, q) has the X coordinate of p and the Y coordinate of q. This can be
helpful in placing an object at one of the corners of the virtual box defined by two other objects.

(B,A) is here

B(A,B) is here

A

Figure 6-5: Using (x, y) composition

6.3.12.4. Using Locations



Preprocessors -266-

There are four ways to use locations; at, from, to, and with. All four are object modifiers; that is, you use them
as suffixes to a drawing command.

The at modifier says to draw a closed object or arc with its center at the following location, or to draw a
line/spline/arrow starting at the following location.

The to modifier can be used alone to specify a move destination. The from modifier can be used alone in the
same way as at.

The from and to modifiers can be used with a line or arc command to specify start and end points of the object.
In conjunction with named locations, this offers a very flexible mechanism for connecting objects. For example, the fol-
lowing program

.PS
box "from"
move 0.75;
ellipse "to"
arc cw from 1/3 of the way \

between last box .n and last box .ne to last ellipse .n;
.PE

yields:

from to

Figure 6-6: A tricky connection specified with English-like syntax

The with modifier allows you to identify a named attachment point of an object (or a position within the object)
with another point. This is very useful for connecting objects in a natural way. For an example, consider these two pro-
grams:

box wid 0.5 ht 0.5; box wid 0.75 ht 0.75
box wid 0.5 ht 0.5;

box wid 0.75 ht 0.75 with .sw at last box .se;

Figure 6-7: Using the with modifier for attachments

6.3.12.5. The ‘chop’ Modifier

When drawing lines between circles that don’t intersect them at a compass point, it is useful to be able to shorten
a line by the radius of the circle at either or both ends. Consider the following program:



Preprocessors -267-

.PS
circle "x"
circle "y" at 1st circle - (0.4, 0.6)
circle "z" at 1st circle + (0.4, -0.6)
arrow from 1st circle to 2nd circle chop
arrow from 2nd circle to 3rd circle chop
arrow from 3rd circle to 1st circle chop
.PE

It yields the following:

x

y z

Figure 6-8: The chop modifier

Notice that the chop attribute moves arrowheads rather than stepping on them. By default, the chop modifier shortens
both ends of the line by circlerad. By suffixing it with a number you can change the amount of chopping.

If you say line . . . chop r1 chop r2 with r1 and r2 both numbers, you can vary the amount of chopping at both
ends. You can use this in combination with trigonometric functions to write code that deals with more complex intersec-
tions.

6.3.13. Object Groups

There are two different ways to group objects in pic; brace grouping and block composites.

6.3.13.1. Brace Grouping

The simpler method is simply to group a set of objects within curly bracket or brace characters. On exit from this
grouping, the current position and direction are restored to their value when the opening brace was encountered.

6.3.13.2. Block Composites

A block composite object is created a series of commands enclosed by square brackets. The composite can be
treated for most purposes like a single closed object, with the size and shape of its bounding box. Here is an example.
The program fragment

A: [
circle;
line up 1 at last circle .n;
line down 1 at last circle .s;
line right 1 at last circle .e;
line left 1 at last circle .w;
box dashed with .nw at last circle .se + (0.2, -0.2);
Caption: center of last box;

]

yields the block in figure 6-1, which we show both with and without its attachment points. The block’s location becomes
the value of A.



Preprocessors -268-

.c

.n .ne

.e

.se.s.sw

.w

.nw

Figure 6-1: A sample composite object

To refer to one of the composite’s attachment points, you can say (for example) A .s. For purposes of object naming,
composites are a class. You could write last [] .s as an equivalent reference, usable anywhere a location is needed.
This construction is very important for putting together large, multi-part diagrams.

Blocks are also a variable-scoping mechanism, like a groff (1) environment. All variable assignments done inside
a block are undone at the end of it. To get at values within a block, write a name of the block followed by a dot, followed
by the label you want. For example, we could refer the center of the box in the above composite as last [] .Caption or
A.Caption.

This kind of reference to a label can be used in any way any other location can be. For example, if we added
"Hi!" at A.Caption the result would look like this:

Hi!

Figure 6-2: Adding a caption using interior labeling

You can also use interior labels in either part of a with modifier. This means that the example composite could be
placed relative to its caption box by a command containing with A.Caption at.

Note that both width and height of the block composite object are always positive:



Preprocessors -269-

box wid -0.5 ht 0.5; box wid 0.75 ht 0.75 [box wid -0.5 ht 0.5]; box wid 0.75 ht 0.75

Figure 6-3: Composite block objects always have positive width and height

Blocks may be nested. This means you can use block attachment points to build up complex diagrams hierarchi-
cally, from the inside out. Note that last and the other sequential naming mechanisms don’t look inside blocks, so if you
have a program that looks like

.PS
P: [box "foo"; ellipse "bar"];
Q: [

[box "baz"; ellipse "quxx"]
"random text";

]
arrow from 2nd last [];
.PE

the arrow in the last line is attached to object P, not object Q.

In DWB pic, only references one level deep into enclosed blocks were permitted. GNU gpic removes this restric-
tion.

The combination of block variable scoping, assignability of labels and the macro facility that we’ll describe later on
can be used to simulate functions with local variables (just wrap the macro body in block braces).

6.3.14. Style Variables

There are a number of global style variables in pic that can be used to change its overall behavior. We’ve men-
tioned several of them in previous sections. They’re all described here. For each variable, the default is given.

Style Variable     Default     What It Does

boxht 0.5 Default height of a box
boxwid 0.75 Default width of a box
lineht 0.5 Default length of vertical line
linewid 0.75 Default length of horizontal line
linethick -1 Default line thickness
arcrad 0.25 Default radius of an arc
circlerad 0.25 Default radius of a circle
ellipseht 0.5 Default height of an ellipse
ellipsewid 0.75 Default width of an ellipse
moveht 0.5 Default length of vertical move
movewid 0.75 Default length of horizontal move
textht 0 Default height of box enclosing a text object
textwid 0 Default width of box enclosing a text object
arrowht                    0.1        Length of arrowhead along shaft
arrowwid                 0.05      Width of rear of arrowhead
arrowhead 1 Enable/disable arrowhead filling
dashwid 0.05 Interval for dashed lines
maxpswid 8.5 Maximum width of picture
maxpsht 11 Maximum height of picture
scale                       1           Unit scale factor
fillval 0.5 Default fill value

Any of these variables can be set with a simple assignment statement.  For example:



Preprocessors -270-

Figure 6-1: boxht=1; boxwid=0.3; movewid=0.2; box; move; box; move; box; move; box;

In GNU pic, setting the scale variable re-scales all size-related state variables so that their values remain equiva-
lent in the new units.

The command reset resets all style variables to their defaults. You can give it a list of variable names as argu-
ments (optionally separated by commas), in which case it resets only those.

State variables retain their values across pictures until reset.

6.3.15. Expressions, Variables, and Assignment

A number is a valid expression, of course (all numbers are stored internally as floating-point). Decimal-point no-
tation is acceptable; in GNU gpic, scientific notation in C’s ‘e’ format (like 5e-2) is accepted.

Anywhere a number is expected, the language also accepts a variable. Variables may be the built-in style vari-
able described in the last section, or new variables created by assignment.

DWB pic supports only the ordinary assignment via =, which defines the variable (on the left side of the equal
sign) in the current block if it is not already defined there, and then changes the value (on the right side) in the current
block. The variable is not visible outside of the block. This is similar to the C programming language where a variable
within a block shadows a variable with the same name outside of the block.

GNU gpic supports an alternate form of assignment using :=. The variable must already be defined, and the
value is assigned to that variable without creating a variable local to the current block. For example, this

x=5
y=5
[
x:=3
y=3

]
print x " " y

prints 3 5.

You can use the height, width, radius, and x and y coordinates of any object or corner in expressions. If A is an
object label or name, all the following are valid:

A.x # x coordinate of the center of A
A.ne.y # y coordinate of the northeast corner of A
A.wid # the width of A
A.ht # and its height
2nd last circle.rad  # the radius of the 2nd last circle

Note the second expression, showing how to extract a corner coordinate.

Basic arithmetic resembling those of C operators are available; +, *, -, /, and %. So is ˆ for exponentiation.
Grouping is permitted in the usual way using parentheses. GNU gpic allows logical operators to appear in expressions; !
(logical negation, not factorial), &&, | |, ==, !=, >=, <=, <, >.

Various built-in functions are supported: sin(x), cos(x), log(x), exp(x), sqrt(x), max(x,y), atan2(x,y), min(x,y),
int(x), rand(), and srand(). Both exp and log are base 10; int does integer truncation; rand() returns a random number
in [0-1), and srand() sets the seed for a new sequence of pseudo-random numbers to be returned by rand() (srand() is a
GNU extension).

GNU gpic also documents a one-argument form or rand, rand(x), which returns a random number between 1
and x, but this is deprecated and may be removed in a future version.



Preprocessors -271-

The function sprintf() behaves like a C sprintf (3) function that only takes %%, %e, %E, %f, %g, and %G conver-
sion specifications.

6.3.16. Macros

You can define macros in pic, with up to 32 arguments (up to 16 on EBCDIC platforms). This is useful for dia-
grams with repetitive parts. In conjunction with the scope rules for block composites, it effectively gives you the ability to
write functions.

The syntax is

define name { replacement text }

This defines name as a macro to be replaced by the replacement text (not including the braces). The macro may be
called as

name(arg1, arg2, . . . argn)

The arguments (if any) are substituted for tokens $1, $2 . . . $n appearing in the replacement text.

As an example of macro use, consider this:

.PS
# Plot a single jumper in a box, $1 is the on-off state.
define jumper { [

shrinkfactor = 0.8;
Outer: box invis wid 0.45 ht 1;

# Count on end ] to reset these
boxwid = Outer.wid * shrinkfactor / 2;
boxht = Outer.ht * shrinkfactor / 2;

box fill (!$1) with .s at center of Outer;
box fill ($1)  with .n at center of Outer;

] }

# Plot a block of six jumpers.
define jumperblock {

jumper($1);
jumper($2);
jumper($3);
jumper($4);
jumper($5);
jumper($6);

jwidth = last [].Outer.wid;
jheight = last [].Outer.ht;

box with .nw at 6th last [].nw wid 6*jwidth ht jheight;

# Use {} to avoid changing position from last box draw.
# This is necessary so move in any direction works as expected
{"Jumpers in state $1$2$3$4$5$6" at last box .s + (0,-0.2);}

}

# Sample macro invocations.
jumperblock(1,1,0,0,1,0);
move;
jumperblock(1,0,1,0,1,1);
.PE

It yields the following:



Preprocessors -272-

Jumpers in state 110010 Jumpers in state 101011

Figure 6-1: Sample use of a macro

This macro example illustrates how you can combine [], brace grouping, and variable assignment to write true functions.

One detail the example above does not illustrate is the fact that macro argument parsing is not token-oriented. If
you call jumper( 1 ), the value of $1 is " 1 ". You could even call jumper(big string) to give $1 the value "big string".

If you want to pass in a coordinate pair, you can avoid getting tripped up by the comma by wrapping the pair in
parentheses.

Macros persist through pictures. To undefine a macro, say undef name; for example,

undef jumper
undef jumperblock

would undefine the two macros in the jumper block example.

6.3.17. Import/Export Commands

Commands that import or export data between pic and its environment are described here.

6.3.17.1. File and Table Insertion

The statement

copy filename

inserts the contents of filename in the pic input stream. Any .PS/.PE pair in the file is ignored. You can use this to in-
clude pre-generated images.

A variant of this statement replicates the copy thru feature of grap(1). The call

copy filename thru macro

calls macro (which may be either a name or replacement text) on the arguments obtained by breaking each line of the file
into blank-separated fields. The macro may have up to 9 arguments. The replacement text may be delimited by braces
or by a pair of instances of any character not appearing in the rest of the text.

If you write

copy thru macro

omitting the filename, lines to be parsed are taken from the input source up to the next .PE.

In either of the last two copy commands, GNU gpic permits a trailing ‘until word ’ clause to be added which ter-
minates the copy when the first word matches the argument (the default behavior is therefore equivalent to until .PE).

Accordingly, the command

.PS
copy thru % circle at ($1,$2) % until "END"
1 2
3 4
5 6
END
box
.PE



Preprocessors -273-

is equivalent to

.PS
circle at (1,2)
circle at (3,4)
circle at (5,6)
box
.PE

6.3.17.2. Debug Messages

The command print accepts any number of arguments, concatenates their output forms, and writes the result to
standard error. Each argument must be an expression, a position, or a text string.

6.3.17.3. Escape to Post-Processor

If you write

command arg . . .

pic concatenates the arguments and pass them through as a line to troff or TEX. Each arg must be an expression, a po-
sition, or text. This has a similar effect to a line beginning with . or \ , but allows the values of variables to be passed
through.

For example,

.PS
x = 14
command ".ds string x is " x "."
.PE
\*[string]

prints

x is 14.

6.3.17.4. Executing Shell Commands

The command

sh { anything. . . }

macro-expands the text in braces, then executes it as a shell command. This could be used to generate images or data
tables for later inclusion. The delimiters shown as {} here may also be two copies of any one character not present in the
shell command text. In either case, the body may contain balanced {} pairs. Strings in the body may contain balanced or
unbalanced braces in any case.

6.3.18. Control-flow constructs

The pic language provides conditionals and looping.  For example,

pi = atan2(0,-1);
for i = 0 to 2 * pi by 0.1 do {

"-" at (i/2, 0);
"." at (i/2, sin(i)/2);
":" at (i/2, cos(i)/2);

}

which yields this:



Preprocessors -274-

-.

:

-.

:

-
.

:

-
.

:

-

.

:

-

.

:

-

.
:

-

.:

-

.:

-

.
:

-

.
:

-

.

:

-

.

:

-

.

:
-

.

:
-

.

: -

.

: -

.

: -

.

:
-

.

:
-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-
.

:

-
.

:

-.

:

-.

:

-.

:

-
.

:

-
.

:

-
.

:

-

.

:

-

.
:

-

.
:

-

.:

-

.:

-

.
:

-

.

:

-

.

:

-

.

:
-

.

:
-

.

: -

.

: -

.

: -

.

:
-

.

:
-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-
.

:

-
.

:

-.

:

Figure 6-1: Plotting with a for loop

The syntax of the for statement is:

for variable = expr1 to expr2 [by [*]expr3 ] do X body X

The semantics are as follows: Set variable to expr1. While the value of variable is less than or equal to expr2, do body
and increment variable by expr3; if by is not given, increment variable by 1. If expr3 is prefixed by * then variable is multi-
plied instead by expr3. The value of expr3 can be negative for the additive case; variable is then tested whether it is
greater than or equal to expr2. For the multiplicative case, expr3 must be greater than zero. If the constraints aren’t met,
the loop isn’t executed. X can be any character not occurring in body; or the two X s may be paired braces (as in the sh
command).

The syntax of the if statement is as follows:

if expr then X if-true X [else Y if-false Y ]

Its semantics are as follows: Evaluate expr; if it is non-zero then do if-true, otherwise do if-false. X can be any character
not occurring in if-true. Y can be any character not occurring in if-false.

Eithe or both of the X or Y pairs may instead be balanced pairs of braces ({ and }) as in the sh command. In ei-
ther case, the if-true may contain balanced pairs of braces. None of these delimiters are seen inside strings.

All the usual relational operators my be used in conditional expressions; ! (logical negation, not factorial), &&, | |,
==, !=, >=, <=, <, >.

String comparison is also supported using == and !=. String comparisons may need to be parenthesized to avoid
syntactic ambiguities.

6.3.19. Interface To [gt]roff

The output of pic is [gt]roff drawing commands. The GNU gpic (1) command warns that it relies on drawing ex-
tensions present in groff (1) that are not present in troff (1).

6.3.19.1. Scaling Arguments

The DWB pic (1) program accepts one or two arguments to .PS, which is interpreted as a width and height in
inches to which the results of pic (1) should be scaled (width and height scale independently). If there is only one argu-
ment, it is interpreted as a width to scale the picture to, and height is scaled by the same proportion.

GNU gpic is less general; it accepts a single width to scale to, or a zero width and a maximum height to scale to.
With two non-zero arguments, it scales to the maximum height.

6.3.19.2. How Scaling is Handled

When pic processes a picture description on input, it passes .PS and .PE through to the postprocessor. The .PS
gets decorated with two numeric arguments which are the X and Y dimensions of the picture in inches. The post-proces-
sor can use these to reserve space for the picture and center it.

The GNU incarnation of the ms macro package, for example, includes the following definitions:



Preprocessors -275-

.de PS

.br

.sp \\n[DD]u

.ie \\n[.$]<2 .@error bad arguments to PS (not preprocessed with pic?)

.el \{\

.   ds@need (u;\\$1)+1v

.   in +(u;\\n[.l]-\\n[.i]-\\$2/2>?0)

.\}

..

.de PE

.par@reset

.sp \\n[DD]u+.5m

..

Equivalent definition is supplied by GNU pic (1) if you use the -mpic option; this should make it usable with macro pages
other than ms(1).

If .PF is used instead of .PE, the troff position is restored to what it was at the picture start (Kernighan notes that
the F stands for “flyback”).

The invocation

.PS <file

causes the contents of file to replace the .PS line. This feature is deprecated; use ‘copy file’ instead).

6.3.19.3. PIC and [gt]roff commands

By default, input lines that begin with a period are passed to the postprocessor, embedded at the corresponding
point in the output. Messing with horizontal or vertical spacing is an obvious recipe for bugs, but point size and font
changes are usually safe.

Point sizes and font changes are also safe within text strings, as long as they are undone before the end of string.

The state of [gt]roff’s fill mode is preserved across pictures.

6.3.19.4. PIC and EQN

The Kernighan paper notes that there is a subtle problem with complicated equations inside pic pictures; they
come out wrong if eqn(1) has to leave extra vertical space for the equation. If your equation involves more than sub-
scripts and superscripts, you must add to the beginning of each equation the extra information space 0. He gives the fol-
lowing example:

arrow
box "$space 0 {H( omega )} over {1 - H( omega )}$"
arrow

H (ω)
1−H (ω)

Figure 6-1: Equations within pictures

6.3.19.5. Absolute Positioning of Pictures

A pic picture is positioned vertically by troff at the current position. The topmost position possible on a page is
not the paper edge but a position which is one baseline lower so that the first row of glyphs is visible. To make a picture
really start at the paper edge you have to make the baseline-to-baseline distance zero, this is, you must set the vertical
spacing to 0 (using .vs) before starting the picture.

6.3.20. Interface to TeX



Preprocessors -276-

TEX mode is enabled by the -t option. In TEX mode, pic defines a vbox called \graph for each picture; the name
can be changed with the pseudo-variable figname (which is actually a specially parsed command). You must yourself
print that vbox using, for example, the command

\centerline{\box\graph}

Actually, since the vbox has a height of zero (it is defined with \vtop) this produces slightly more vertical space above the
picture than below it;

\centerline{\raise 1em\box\graph}

would avoid this.

To make the vbox having a positive height and a depth of zero (as used e.g. by LATEX’s graphics.sty), define
the following macro in your document:

\def\gpicbox#1{%
\vbox{\unvbox\csname #1\endcsname\kern 0pt}}

Now you can simply say \gpicbox{graph} instead of \box\graph.

You must use a TEX driver that supports the tpic specials, version 2.

Lines beginning with \ are passed through transparently; a % is added to the end of the line to avoid unwanted
spaces. You can safely use this feature to change fonts or to change the value of \baselineskip. Anything else may well
produce undesirable results; use at your own risk.  Lines beginning with a period are not given any special treatment.

The TEX mode of pic (1) does not translate troff font and size changes included in text strings!

Here an example how to use figname.

.PS
figname = foo;
...
.PE

.PS
figname = bar;
...
.PE

\centerline{\box\foo \hss \box\bar}

Use this feature sparsingly and only if really needed: A different name means a new box register in TEX, and the maxi-
mum number of box registers is only 256. Also be careful not to use a predefined TEX or LATEX macro name as an argu-
ment to figname since this inevitably causes an error.

6.3.21. Obsolete Commands

GNU gpic (1) has a command

plot expr ["text"]

This is a text object which is constructed by using text as a format string for sprintf with an argument of expr. If text is
omitted a format string of "%g" is used. Attributes can be specified in the same way as for a normal text object. Be very
careful that you specify an appropriate format string; pic does only very limited checking of the string. This is deprecated
in favour of sprintf.

6.3.22. Some Larger Examples

Here are a few larger examples, with complete source code. One of our earlier examples is generated in an in-
structive way using a for loop:



Preprocessors -277-

.PS
# Draw a demonstration up left arrow with grid box overlay
define gridarrow
{

move right 0.1
[

{arrow up left $1;}
box wid 0.5 ht 0.5 dotted with .nw at last arrow .end;
for i = 2 to ($1 / 0.5) do
{

box wid 0.5 ht 0.5 dotted with .sw at last box .se;
}
move down from last arrow .center;
[

sprintf("\fBarrow up left %g\fP", $1)
]

]
move right 0.1 from last [] .e;

}
gridarrow(0.5);
gridarrow(1);
gridarrow(1.5);
gridarrow(2);
undef gridarrow
.PE

arrow up left 0.5 arrow up left 1 arrow up left 1.5 arrow up left 2

Figure 6-1: Diagonal arrows (dotted boxes show the implied 0.5-inch grid)

Here’s an example concocted to demonstrate layout of a large, multiple-part pattern:



Preprocessors -278-

.PS
define filter {box ht 0.25 rad 0.125}
lineht = 0.25;
Top: [

right;
box "\fBms\fR" "sources";
move;
box "\fBHTML\fR" "sources";
move;
box "\fBlinuxdoc-sgml\fP" "sources" wid 1.5;
move;
box "\fBTexinfo\fP" "sources";

line down from 1st box .s lineht;
A: line down;
line down from 2nd box .s; filter "\fBhtml2ms\fP";
B: line down;
line down from 3rd box .s; filter "\fBformat\fP";
C: line down;
line down from 4th box .s; filter "\fBtexi2roff\fP";
D: line down;

]
move down 1 from last [] .s;
Anchor: box wid 1 ht 0.75 "\fBms\fR" "intermediate" "form";
arrow from Top.A.end to Anchor.nw;
arrow from Top.B.end to 1/3 of the way between Anchor.nw and Anchor.ne;
arrow from Top.C.end to 2/3 of the way between Anchor.nw and Anchor.ne;
arrow from Top.D.end to Anchor.ne
{

# PostScript column
move to Anchor .sw;
line down left then down ->;
filter "\fBpic\fP";
arrow;
filter "\fBeqn\fP";
arrow;
filter "\fBtbl\fP";
arrow;
filter "\fBgroff\fP";
arrow;
box "PostScript";

# HTML column
move to Anchor .se;
line down right then down ->;
A: filter dotted "\fBpic2img\fP";
arrow;
B: filter dotted "\fBeqn2html\fP";
arrow;
C: filter dotted "\fBtbl2html\fP";
arrow;
filter "\fBms2html\fP";
arrow;
box "HTML";

# Nonexistence caption
box dashed wid 1 at B + (2,0) "These tools" "don’t yet exist";
line chop 0 chop 0.1 dashed from last box .nw to A.e ->;
line chop 0 chop 0.1 dashed from last box .w  to B.e ->;
line chop 0 chop 0.1 dashed from last box .sw to C.e ->;

}
.PE



Preprocessors -279-

ms
sources

HTML
sources

linuxdoc-sgml
sources

Texinfo
sources

html2ms format texi2roff

ms
intermediate

form

pic

eqn

tbl

groff

PostScript

pic2img

eqn2html

tbl2html

ms2html

HTML

These tools
don’t yet exist

Figure 6-2: Hypothetical production flow for dual-mode publishing

Master
1

Slave

Figure 6-3: Three-dimensional Boxes

Here the source code for figure 6-3:



Preprocessors -280-

.PS
# a three-dimensional block
#
# tblock(<width>, <height>, <text>)

define tblock { [
box ht $2 wid $1 \

color "gold" outlined "black" \
xslanted 0 yslanted 0 \
$3;

box ht .1 wid $1 \
color "yellow" outlined "black" \
xslanted .1 yslanted 0 \
with .sw at last box .nw;

box ht $2 wid .1 \
color "goldenrod" outlined "black" \
xslanted 0 yslanted .1 \
with .nw at 2nd last box .ne;

] }

tblock(1, .5, "Master" "1");
move -.1
tblock(.5, 1, "Slave");
.PE

6.3.23. PIC Reference

This is an annotated grammar of pic.

6.3.23.1. Lexical Items

In general, pic is a free-format, token-oriented language that ignores whitespace outside strings. But certain
lines and contructs are specially interpreted at the lexical level:

A comment begins with # and continues to \n (comments may also follow text in a line). A line beginning with a
period or backslash may be interpreted as text to be passed through to the post-processor, depending on command-line
options. An end-of-line backslash is interpreted as a request to continue the line; the backslash and following newline
are ignored.

Here are the grammar terminals:

INT A positive integer.

NUMBER
A floating point numeric constant. May contain a decimal point or be expressed in scientific notation in the
style of printf (3)’s %e escape. A trailing ‘i’ or ‘I’ (indicating the unit ‘inch’) is ignored.

TEXT A string enclosed in double quotes. A double quote within TEXT must be preceded by a backslash. In-
stead of TEXT you can use

sprintf ( TEXT [, <expr> ...] )

except after the ‘until’ and ‘last’ keywords, and after all ordinal keywords (‘th’ and friends).

VARIABLE
A string starting with a character from the set [a-z], optionally followed by one or more characters of the
set [a-zA-Z0-9_].  (Values of variables are preserved across pictures.)

LABEL A string starting with a character from the set [A-Z], optionally followed by one or more characters of the
set [a-zA-Z0-9_].

COMMAND-LINE
A line starting with a command character (‘.’ in groff mode, ‘\’ in TEX mode).

BALANCED-TEXT
A string either enclosed by ‘{’ and ‘}’ or with X and X, where X doesn’t occur in the string.



Preprocessors -281-

BALANCED-BODY
Delimiters as in BALANCED-TEXT; the body is interpreted as ‘〈command〉. . .’.

FILENAME
The name of a file. This has the same semantics as TEXT.

MACRONAME
Either VARIABLE or LABEL.

6.3.23.2. Semi-Formal Grammar

Tokens not enclosed in 〈 〉 are literals, except:

1. \n is a newline.

2. Three dots is a suffix meaning ‘replace with 0 or more repetitions of the preceding element(s).

3. An enclosure in square brackets has its usual meaning of ‘this clause is optional’.

4. Square-bracket-enclosed portions within tokens are optional.  Thus, ‘h[eigh]t’ matches either ‘height’ or ‘ht’.

If one of these special tokens has to be referred to literally, it is surrounded with single quotes.

The top-level pic object is a picture.

<picture> ::=
.PS [NUMBER [NUMBER]]\n
<statement> ...
.PE \n

The arguments, if present, represent the width and height of the picture, causing pic to attempt to scale it to the
given dimensions in inches. In no case, however, the X and Y dimensions of the picture exceed the values of the style
variables maxpswid and maxpsheight (which default to the normal 8.5i by 11i page size).

If the ending ‘.PE’ is replaced by ‘.PF’, the page vertical position is restored to its value at the time ‘.PS’ was en-
countered. Another alternate form of invocation is ‘.PS <FILENAME’, which replaces the ‘.PS’ line with a file to be inter-
preted by pic (but this feature is deprecated).

The ‘.PS’, ‘.PE’, and ‘.PF’ macros to perform centering and scaling are normally supplied by the post-processor.

In the following, either ‘|’ or a new line starts an alternative.

<statement> ::=
<command> ;
<command> \n

<command> ::=
<primitive> [<attribute>]
LABEL : [;] <command>
LABEL : [;] <command> [<position>]
{ <command> ... }
VARIABLE [:] = <any-expr>
figname = MACRONAME
up | down | left | right
COMMAND-LINE
command <print-arg> ...
print <print-arg> ...
sh BALANCED-TEXT
copy FILENAME
copy [FILENAME] thru MACRONAME [until TEXT]
copy [FILENAME] thru BALANCED-BODY [until TEXT]
for VARIABLE = <expr> to <expr> [by [*] <expr>] do BALANCED-BODY
if <any-expr> then BALANCED-BODY [else BALANCED-BODY]
reset [VARIABLE [[,] VARIABLE ...]]

<print-arg> ::=
TEXT
<expr>
<position>



Preprocessors -282-

The current position and direction are saved on entry to a ‘{ . . . }’ construction and restored on exit from it.

Note that in ‘if’ constructions, newlines can only occur in BALANCED-BODY. This means that

if
{ ... }
else
{ ... }

fails. You have to use the braces on the same line as the keywords:

if {
...
} else {
...
}

This restriction doesn’t hold for the body after the ‘do’ in a ‘for’ construction.

At the beginning of each picture, ‘figname’ is reset to the vbox name ‘graph’; this command has only a meaning in
TEX mode. While the grammar rules allow digits and the underscore in the value of ‘figname’, TEX normally accepts up-
percase and lowercase letters only as box names (you have to use ‘\csname’ if you really need to circumvent this limita-
tion).

<any-expr> ::=
<expr>
<text-expr>
<any-expr> <logical-op> <any-expr>
! <any-expr>

<logical-op> ::=
== | != | && | ’||’

<text-expr> ::=
TEXT == TEXT
TEXT != TEXT

Logical operators are handled specially by pic since they can deal with text strings also. pic uses strcmp(3) to
test for equality of strings; an empty string is considered as ‘false’ for ‘&&’ and ‘| |’.

<primitive> ::=
box # closed object — rectangle
circle # closed object — circle
ellipse # closed object — ellipse
arc # open object — quarter-circle
line # open object — line
arrow # open object — line with arrowhead
spline # open object — spline curve
move
TEXT TEXT ...         # text within invisible box
plot <expr> TEXT      # formatted text
’[’ <command> ... ’]’

Drawn objects within ‘[ . . . ]’ are treated as a single composite object with a rectangular shape (that of the bound-
ing box of all the elements). Variable and label assignments within a block are local to the block. Current direction of
motion is restored to the value at start of block upon exit. Position is not restored (unlike ‘{ }’); instead, the current posi-
tion becomes the exit position for the current direction on the block’s bounding box.



Preprocessors -283-

<attribute> ::=
h[eigh]t <expr>       # set height of closed figure
wid[th] <expr>        # set width of closed figure
rad[ius] <expr>       # set radius of circle/arc
diam[eter] <expr>     # set diameter of circle/arc
up [<expr>]           # move up
down [<expr>]         # move down
left [<expr>]         # move left
right [<expr>]        # move right
from <position>       # set from position of open figure
to <position>         # set to position of open figure
at <position>         # set center of open figure
with <path>           # fix corner/named point at specified location
with <position>       # fix position of object at specified location
by <expr-pair>        # set object’s attachment point
then # sequential segment composition
dotted [<expr>]       # set dotted line style
dashed [<expr>]       # set dashed line style
thick[ness] <expr>    # set thickness of lines
chop [<expr>]         # chop end(s) of segment
’->’ | ’<-’ | ’<->’   # decorate with arrows
invis[ible] # make primitive invisible
solid # make closed figure solid
fill[ed] [<expr>]     # set fill density for figure
xscaled <expr>        # slant box into x direction
yscaled <expr>        # slant box into y direction
colo[u]r[ed] TEXT     # set fill and outline color for figure
outline[d] TEXT       # set outline color for figure
shaded TEXT           # set fill color for figure
same # copy size of previous object
cw | ccw              # set orientation of curves
ljust | rjust         # adjust text horizontally
above | below         # adjust text vertically
aligned # align parallel to object
TEXT TEXT ...         # text within object
<expr> # motion in the current direction

Missing attributes are supplied from defaults; inappropriate ones are silently ignored. For lines, splines, and arcs,
height and width refer to arrowhead size.

The ‘at’ primitive sets the center of the current object. The ‘with’ attribute fixes the specified feature of the given
object to a specified location.  (Note that ‘with’ is incorrectly described in the Kernighan paper.)

The ‘by’ primitive is not documented in the tutorial portion of the Kernighan paper, and should probably be consid-
ered unreliable.

The primitive ‘arrow’ is a synonym for ‘line ->’.

Text is normally an attribute of some object, in which case successive strings are vertically stacked and centered
on the object’s center by default. Standalone text is treated as though placed in an invisible box.

A text item consists of a string or sprintf-expression, optionally followed by positioning information. Text (or
strings specified with ‘sprintf’) may contain font changes, size changes, and local motions, provided those changes are
undone before the end of the current item. Text may also contain \-escapes denoting special characters. The base font
and specific set of escapes supported is implementation dependent, but supported escapes always include the following:

\fR, \f1
Set Roman style (the default)

\fI, \f2 Set Italic style

\fB, \f3
Set Bold style

\fP
Revert to previous style; only works one level deep, does not stack.

Color names are dependent on the pic implementation, but in all modern versions color names recognized by the
X window system are supported.



Preprocessors -284-

A position is an (x,y) coordinate pair. There are lots of different ways to specify positions:

<position> ::=
<position-not-place>
<place>
( <position> )

<position-not-place> ::=
<expr-pair>
<position> + <expr-pair>
<position> - <expr-pair>
( <position> , <position> )
<expr> [of the way] between <position> and <position>
<expr> ’<’ <position> , <position> ’>’

<expr-pair> ::=
<expr> , <expr>
( expr-pair )

<place> ::=
<label>
<label> <corner>
<corner> [of] <label>
Here

<label> ::=
LABEL [. LABEL ...]
<nth-primitive>

<corner> ::=
.n | .e | .w | .s
.ne | .se | .nw | .sw
.c[enter] | .start | .end
.t[op] | .b[ot[tom]] | .l[eft] | .r[ight]
left | right | <top-of> | <bottom-of>
<north-of> | <south-of> | <east-of> | <west-of>
<center-of> | <start-of> | <end-of>
upper left | lower left | upper right | lower right

<xxx-of> ::=
xxx # followed by ‘of’

<nth-primitive> ::=
<ordinal> <object-type>
[<ordinal>] last <object-type>

<ordinal> ::=
INT th
INT st | INT nd | INT rd
‘ <any-expr> ’th



Preprocessors -285-

<object-type> ::=
box
circle
ellipse
arc
line
arrow
spline
’[]’
TEXT

As Kernighan notes, “since barbarisms like 1th and 3th are barbaric, synonyms like 1st and 3rd are accepted as
well.” Objects of a given type are numbered from 1 upwards in order of declaration; the last modifier counts backwards.

The “’th” form (which allows you to select a previous object with an expression, as opposed to a numeric literal) is
not documented in DWB’s pic (1).

The 〈xxx -of 〉 rule is special: The lexical parser checks whether xxx is followed by the token ‘of’ without eliminating
it so that the grammar parser can still see ‘of’.  Valid examples of specifying a place with corner and label are thus

A .n
.n of A
.n A
north of A

while

north A
A north

both cause a syntax error. (DWB pic also allows the weird form ‘A north of’.)

Here the special rules for the ‘with’ keyword using a path:

<path> ::=
<relative-path>
( <relative-path> , <relative-path> )

<relative-path> ::=
<corner>
. LABEL [. LABEL ...] [<corner>]

The following style variables control output:

Style Variable     Default     What It Does

boxht 0.5 Default height of a box
boxwid 0.75 Default width of a box
lineht 0.5 Default length of vertical line
linewid 0.75 Default length of horizontal line
arcrad 0.25 Default radius of an arc
circlerad 0.25 Default radius of a circle
ellipseht 0.5 Default height of an ellipse
ellipsewid 0.75 Default width of an ellipse
moveht 0.5 Default length of vertical move
movewid 0.75 Default length of horizontal move
textht 0 Default height of box enclosing a text object
textwid 0 Default width of box enclosing a text object
arrowht                    0.1        Length of arrowhead along shaft
arrowwid                 0.05      Width of rear of arrowhead
arrowhead 1 Enable/disable arrowhead filling
dashwid 0.05 Interval for dashed lines
maxpswid 8.5 Maximum width of picture
maxpsht 11 Maximum height of picture
scale                       1           Unit scale factor
fillval 0.5 Default fill value



Preprocessors -286-

Any of these can be set by assignment, or reset using the reset statement. Style variables assigned within ‘[ ]’ blocks are
restored to their beginning-of-block value on exit; top-level assignments persist across pictures. Dimensions are divided
by scale on output.

All pic expressions are evaluated in floating point; units are always inches (a trailing ‘i’ or ‘I’ is ignored). Expres-
sions have the following simple grammar, with semantics very similar to C expressions:

<expr> ::=
VARIABLE
NUMBER
<place> <place-attribute>
<expr> <op> <expr>
- <expr>
( <any-expr> )
! <expr>
<func1> ( <any-expr> )
<func2> ( <any-expr> , <any-expr> )
rand ( )

<place-attribute>
.x | .y | .h[eigh]t | .wid[th] | .rad

<op> ::=
+ | - | * | / | % | ˆ | ’<’ | ’>’ | ’<=’ | ’>=’

<func1> ::=
sin | cos | log | exp | sqrt | int | rand | srand

<func2> ::=
atan2 | max | min

Both exp and log are base 10; int does integer truncation; and rand() returns a random number in [0-1).

There are define and undef statements which are not part of the grammar (they behave as pre-processor
macros to the language).  These may be used to define pseudo-functions.

define name { replacement-text }

This defines name as a macro to be replaced by the replacement text (not including the braces). The macro may be
called as

name(arg1, arg2, . . ., argn)

The arguments (if any) are substituted for tokens $1, $2 . . . $n appearing in the replacement text. To undefine a macro,
say undef name, specifying the name to be undefined.

6.3.24. History and Acknowledgements

Original pic was written to go with Joseph Ossanna’s original troff (1) by Brian Kernighan, and later re-written by
Kernighan with substantial enhancements (apparently as part of the evolution of troff (1) into ditroff (1) to generate de-
vice-independent output).

The language had been inspired by some earlier graphics languages including ideal and grap. Kernighan credits
Chris van Wyk (the designer of ideal) with many of the ideas that went into pic.

The pic language was originally described by Brian Kernighan in Bell Labs Computing Science Technical Report
#116 (you can obtain a PostScript copy of the revised version, [1], by sending a mail message to netlib@re-
search.att.com with a body of ‘send 116 from research/cstr’). There have been two revisions, in 1984 and 1991.

The document you are reading effectively subsumes Kernighan’s description; it was written to fill in lacunæ in the
exposition and integrate in descriptions of the GNU gpic (1) and pic2plot (1) features.

The GNU gpic implementation was written by James Clark 〈 jjc@jclark.com〉.

The GNU pic2plot implementation is based on James Clark’s parser code and maintained by Robert Maier, prin-
cipal author of plotutils.



Preprocessors -287-

6.3.25. Bibliography

1. Kernighan, B. W. PIC — A Graphics Language for Typesetting (Revised User Manual). Bell Labs Computing
Science Technical Report #116, December 1991.

2. Van Wyk, C. J. A high-level language for specifying pictures. ACM Transactions On Graphics 1,2 (1982)
163-182.



Preprocessors -288-

6.4. ggrn

6.4.1. Invoking ggrn

Name

grn - groff preprocessor for gremlin files

Synopsis

grn [-C] [-Tdev ] [-Mdir ] [-Fdir ] [file . . .]
grn -?
grn --help
grn -v
grn --version

Description

grn is a preprocessor for including gremlin pictures in groff input. grn writes to stan-
dard output, processing only input lines between two that start with .GS and .GE.
Those lines must contain grn commands (see below). These commands request a
gremlin file, and the picture in that file is converted and placed in the troff input
stream. The .GS request may be followed by a C, L, or R to center, left, or right jus-
tify the whole gremlin picture (default justification is center). If no file is mentioned,
the standard input is read. At the end of the picture, the position on the page is the
bottom of the gremlin picture. If the grn entry is ended with .GF instead of .GE, the
position is left at the top of the picture. Please note that currently only the -me
macro package has support for .GS, .GE, and .GF.

Options

-? and --help display a usage message, while -v and --version show version in-
formation; all exit afterward.

-Tdev Prepare output for printer dev . The default device is ps. See groff(1) for ac-
ceptable devices.

-Mdir Prepend dir to the default search path for gremlin files. The default path is
(in that order) the current directory, the home directory, /usr/local/lib/groff/
site-tmac , /usr/local/share/groff/site-tmac , and /usr/local/share/groff/1.22.4/
tmac .

-Fdir Search dir for subdirectories dev name (name is the name of the device) for
the DESC file before the default font directories /usr/local/share/groff/
site-font , /usr/local/share/groff/1.22.4/font , and /usr/lib/font .

-C Recognize .GS and .GE (and .GF) even when followed by a character other
than space or newline.

grn Commands

Each input line between .GS and .GE may have one grn command. Commands
consist of one or two strings separated by white space, the first string being the com-
mand and the second its operand. Commands may be upper or lower case and ab-
breviated down to one character.



Preprocessors -289-

Commands that affect a picture’s environment (those listed before default, see be-
low) are only in effect for the current picture: The environment is reinitialized to the
defaults at the start of the next picture. The commands are as follows:

1 N

2 N

3 N

4 N Set gremlin ’s text size number 1 (2, 3, or 4) to N points. The default is 12 (16,
24, and 36, respectively).

roman f

italics f

bold f

special f
Set the roman (italics, bold, or special) font to troff ’s font f (either a name or
number). The default is R (I, B, and S, respectively).

l f

stipple f
Set the stipple font to troff ’s stipple font f (name or number). The command
stipple may be abbreviated down as far as ‘st’ (to avoid confusion with spe-
cial). There is no default for stipples (unless one is set by the default com-
mand), and it is invalid to include a gremlin picture with polygons without speci-
fying a stipple font.

x N

scale N
Magnify the picture (in addition to any default magnification) by N , a floating
point number larger than zero. The command scale may be abbreviated down
to ‘sc’.

narrow N

medium N

thick N
Set the thickness of gremlin ’s narrow (medium and thick, respectively) lines to
N times 0.15pt (this value can be changed at compile time). The default is 1.0
(3.0 and 5.0, respectively), which corresponds to 0.15pt (0.45pt and 0.75pt, re-
spectively). A thickness value of zero selects the smallest available line thick-
ness. Negative values cause the line thickness to be proportional to the current
point size.

pointscale <off/on>
Scale text to match the picture. Gremlin text is usually printed in the point size
specified with the commands 1, 2, 3, or 4, regardless of any scaling factors in
the picture. Setting pointscale will cause the point sizes to scale with the pic-
ture (within troff ’s limitations, of course). An operand of anything but off will
turn text scaling on.

default
Reset the picture environment defaults to the settings in the current picture.
This is meant to be used as a global parameter setting mechanism at the



Preprocessors -290-

beginning of the troff input file, but can be used at any time to reset the default
settings.

width N
Forces the picture to be N inches wide. This overrides any scaling factors
present in the same picture. ‘width 0 ’ is ignored.

height N
Forces picture to be N inches high, overriding other scaling factors. If both
‘width’ and ‘height’ are specified the tighter constraint will determine the scale
of the picture. Height and width commands are not saved with a default com-
mand. They will, however, affect point size scaling if that option is set.

file name
Get picture from gremlin file name located the current directory (or in the library
directory; see the -M option above). If two file commands are given, the sec-
ond one overrides the first. If name doesn’t exist, an error message is reported
and processing continues from the .GE line.

Notes about groff

Since grn is a preprocessor, it doesn’t know about current indents, point sizes, mar-
gins, number registers, etc. Consequently, no troff input can be placed between the
.GS and .GE requests. However, gremlin text is now processed by troff , so anything
valid in a single line of troff input is valid in a line of gremlin text (barring ‘.’ directives
at the beginning of a line). Thus, it is possible to have equations within a gremlin fig-
ure by including in the gremlin file eqn expressions enclosed by previously defined
delimiters (e.g., $$ ). When using grn along with other preprocessors, it is best to run
tbl before grn, pic , and/or ideal to avoid overworking tbl . Eqn should always be run
last.

A picture is considered an entity, but that doesn’t stop troff from trying to break it up
if it falls off the end of a page. Placing the picture between ‘keeps’ in -me macros
will ensure proper placement. grn uses troff ’s number registers g1 through g9 and
sets registers g1 and g2 to the width and height of the gremlin figure (in device units)
before entering the .GS request (this is for those who want to rewrite these macros).

Gremlin File Format

There exist two distinct gremlin file formats, the original format from the AED graphic
terminal version, and the SUN or X11 version. An extension to the SUN /X11 version
allowing reference points with negative coordinates is not compatible with the AED
version. As long as a gremlin file does not contain negative coordinates, either for-
mat will be read correctly by either version of gremlin or grn. The other difference
from SUN /X11 format is the use of names for picture objects (e.g., POLYGON,
CURVE) instead of numbers. Files representing the same picture are shown in Table
1 in each format.

sungremlinfile gremlinfile
0 240.00 128.00            0 240.00 128.00
CENTCENT 2
240.00 128.00               240.00 128.00
185.00 120.00               185.00 120.00
240.00 120.00               240.00 120.00



Preprocessors -291-

296.00 120.00               296.00 120.00
*                                     -1.00 -1.00
2 3                                 2 3
10 A Triangle                 10 A Triangle
POLYGON 6
224.00 416.00               224.00 416.00
96.00 160.00                 96.00 160.00
384.00 160.00               384.00 160.00
*                                     -1.00 -1.00
5 1                                 5 1
0 0
-1 -1

Table 1.  File examples

• The first line of each gremlin file contains either the string gremlinfile (AED
version) or sungremlinfile (SUN /X11)

• The second line of the file contains an orientation, and x and y values for a po-
sitioning point, separated by spaces. The orientation, either or 1, is ignored by
the SUN /X11 version. means that gremlin will display things in horizontal for-
mat (drawing area wider than it is tall, with menu across top). 1 means that
gremlin will display things in vertical format (drawing area taller than it is wide,
with menu on left side). x and y are floating point values giving a positioning
point to be used when this file is read into another file. The stuff on this line re-
ally isn’t all that important; a value of “1 0.00 0.00” is suggested.

• The rest of the file consists of zero or more element specifications. After the
last element specification is a line containing the string “-1”.

• Lines longer than 127 characters are chopped to this limit.

Element Specifications

• The first line of each element contains a single decimal number giving the type
of the element (AED version) or its ASCII name (SUN /X11 version). See Table
2.

gremlin File Format − Object Type Specification           

AED Number SUN /X11 Name Description
0 BOTLEFT               bottom-left-justified text
1 BOTRIGHT             bottom-right-justified text
2             CENTCENT           center-justified text
3 VECTOR vector
4 ARC arc
5 CURVE curve
6 POLYGON polygon
7 BSPLINE b-spline
8 BEZIER Bézier

10 TOPLEFT               top-left-justified text
11 TOPCENT              top-center-justified text



Preprocessors -292-

12 TOPRIGHT             top-right-justified text
13             CENTLEFT            left-center-justified text
14             CENTRIGHT          right-center-justified text
15 BOTCENT              bottom-center-justified text

Table 2.                                           
Type Specifications in gremlin Files

• After the object type comes a variable number of lines, each specifying a point
used to display the element. Each line contains an x-coordinate and a y-coor-
dinate in floating point format, separated by spaces. The list of points is termi-
nated by a line containing the string “-1.0 -1.0” (AED version) or a single as-
terisk, “*” (Sun/X11 version).

• After the points comes a line containing two decimal values, giving the brush
and size for the element. The brush determines the style in which things are
drawn. For vectors, arcs, and curves there are six valid brush values:

1 − thin dotted lines
2 − thin dot-dashed lines
3 − thick solid lines
4 − thin dashed lines
5 − thin solid lines
6 − medium solid lines

For polygons, one more value, 0, is valid. It specifies a polygon with an invisi-
ble border. For text, the brush selects a font as follows:

1 − roman (R font in groff)
2 − italics (I font in groff)
3 − bold (B font in groff)
4 − special (S font in groff)

If you’re using grn to run your pictures through groff , the font is really just a
starting font: The text string can contain formatting sequences like “\fI” or “\d”
which may change the font (as well as do many other things). For text, the size
field is a decimal value between 1 and 4. It selects the size of the font in which
the text will be drawn. For polygons, this size field is interpreted as a stipple
number to fill the polygon with. The number is used to index into a stipple font
at print time.

• The last line of each element contains a decimal number and a string of char-
acters, separated by a single space. The number is a count of the number of
characters in the string. This information is only used for text elements, and
contains the text string. There can be spaces inside the text. For arcs, curves,
and vectors, this line of the element contains the string “0”.

Notes on Coordinates

gremlin was designed for AEDs, and its coordinates reflect the AED coordinate
space. For vertical pictures, x-values range 116 to 511, and y-values from 0 to 483.
For horizontal pictures, x-values range from 0 to 511 and y-values range from 0 to
367. Although you needn’t absolutely stick to this range, you’ll get best results if you
at least stay in this vicinity. Also, point lists are terminated by a point of (-1, -1), so



Preprocessors -293-

you shouldn’t ever use negative coordinates. gremlin writes out coordinates using
format “%f1.2”; it’s probably a good idea to use the same format if you want to modify
the grn code.

Notes on Sun/X11 Coordinates

There is no longer a restriction on the range of coordinates used to create objects in
the SUN /X11 version of gremlin. However, files with negative coordinates will cause
problems if displayed on the AED .

Files

/usr/local/share/groff/1.22.4/font/dev name/DESC
Device description file for device name.

Authors

David Slattengren and Barry Roitblat wrote the original Berkeley grn. Daniel
Senderowicz and Werner Lemberg modified it for groff .

See Also

gremlin(1), groff(1), pic(1), ideal(1)



Preprocessors -294-

6.5. grap

A free implementation of grap, written by Ted Faber, is available as an extra package from
the following address:

http://www.lunabase.org/˜faber/Vault/software/grap/

6.6. gchem

6.6.1. Invoking gchem

Name

chem - groff preprocessor for producing chemical structure diagrams

Synopsis

chem [--] [filespec . . .]
chem -h
chem --help
chem -v
chem --version

Description

chem produces chemical structure diagrams. Today’s version is best suited for or-
ganic chemistry (bonds, rings). The chem program is a groff preprocessor like eqn,
pic, tbl, etc. It generates pic output such that all chem parts are translated into dia-
grams of the pic language. A filespec argument is either a file name of an existing
file or a minus character -, meaning standard input. If no argument is specified then
standard input is taken automatically. -h and --help display a usage message,
whereas -v and --version display version information; all exit.

The program chem originates from the Perl source file chem.pl . It tells pic to include
a copy of the macro file chem.pic . Moreover the groff source file pic.tmac is loaded.
In a style reminiscent of eqn and pic , the chem diagrams are written in a special lan-
guage.

A set of chem lines looks like this

.cstart
chem data
.cend
Lines containing the keywords
.cstart
and
.cend
start and end the input for
chem,
respectively.
In
pic
context, i.e., after the call of
.PS,

http://www.lunabase.org/~faber/Vault/software/grap/


Preprocessors -295-

chem
input can optionally be started by the line
begin chem
and ended by the line with the single word
end
instead.

Anything outside these initialization lines is copied through without modification; all
data between the initialization lines is converted into pic commands to draw the dia-
gram. As an example,

.cstart
CH3
bond
CH3
.cend

prints two CH3 groups with a bond between them. If you want to create just groff
output, you must run chem followed by groff with the option -p for the activation of
pic:

chem [file . . .] | groff -p . . .

The Language

The chem input language is rather small. It provides rings of several styles and a
way to glue them together as desired, bonds of several styles, moieties (e.g., C, NH3,
. . ., and strings.

Setting variables

There are some variables that can be set by commands. Such commands have two
possible forms, either

variable value
or

variable = value
This sets the given variable to the argument value. If more arguments are given only
the last argument is taken, all other arguments are ignored.

There are only a few variables to be set by these commands:

textht arg
Set the height of the text to arg ; default is 0.16.

cwid arg
Set the character width to arg ; default is 0.12.

db arg
Set the bond length to arg ; default is 0.2.

size arg
Scale the diagram to make it look plausible at point size arg ; default is 10 point.

Bonds

This
bond [direction] [length n] [from Name|picstuff ]

draws a single bond in direction from nearest corner of Name. bond can also be
double bond, front bond, back bond, etc.  (We will get back to Name soon.)



Preprocessors -296-

direction is the angle in degrees (0 up, positive clockwise) or a direction word like up,
down, sw (= southwest), etc. If no direction is specified, the bond goes in the cur-
rent direction (usually that of the last bond). Normally the bond begins at the last ob-
ject placed; this can be changed by naming a from place. For instance, to make a
simple alkyl chain:

CH3
bond (this one goes right from the CH3)
C (at the right end of the bond)
double bond up        (from the C)
O (at the end of the double bond)
bond right from C
CH3

A length in inches may be specified to override the default length. Other pic com-
mands can be tacked on to the end of a bond command, to created dotted or dashed
bonds or to specify a to place.

Rings

There are lots of rings, but only 5 and 6-sided rings get much support. ring by itself
is a 6-sided ring; benzene is the benzene ring with a circle inside. aromatic puts a
circle into any kind of ring.

ring [pointing (up|right|left|down)] [aromatic] [put Mol at n] [-
double i ,j k ,l . . . [picstuff ]

The vertices of a ring are numbered 1, 2, . . . from the vertex that points in the natural
compass direction. So for a hexagonal ring with the point at the top, the top vertex
is 1, while if the ring has a point at the east side, that is vertex 1. This is expressed
as

R1: ring pointing up
R2: ring pointing right

The ring vertices are named .V1, . . ., .Vn, with .V1 in the pointing direction. So the
corners of R1 are R1.V1 (the top), R1.V2, R1.V3, R1.V4 (the bottom), etc., whereas
for R2, R2.V1 is the rightmost vertex and R2.V4 the leftmost. These vertex names
are used for connecting bonds or other rings. For example,

R1: benzene pointing right
R2: benzene pointing right with .V6 at R1.V2
creates two benzene rings connected along a side.

Interior double bonds are specified as double n1,n2 n3 ,n4 . . .; each number pair
adds an interior bond.  So the alternate form of a benzene ring is

ring double 1,2 3,4 5,6 Heterocycles (rings with something other than carbon
at a vertex) are written as put X at V, as in

R: ring put N at 1 put O at 2

In this heterocycle, R.N and R.O become synonyms for R.V1 and R.V2. There are
two 5-sided rings. ring5 is pentagonal with a side that matches the 6-sided ring; it
has four natural directions. A flatring is a 5-sided ring created by chopping one cor-
ner of a 6-sided ring so that it exactly matches the 6-sided rings.



Preprocessors -297-

The description of a ring has to fit on a single line.

Moieties and strings

A moiety is a string of characters beginning with a capital letter, such as N(C2H5)2.
Numbers are converted to subscripts (unless they appear to be fractional values, as
in N2.5H). The name of a moiety is determined from the moiety after special charac-
ters have been stripped out: e.g., N(C2H5)2) has the name NC2H52. Moieties can
be specified in two kinds. Normally a moiety is placed right after the last thing men-
tioned, separated by a semicolon surrounded by spaces, e.g.,

B1: bond ; OH

Here the moiety is OH; it is set after a bond. As the second kind a moiety can be po-
sitioned as the first word in a pic -like command, e.g.,

CH3 at C + (0.5,0.5)

Here the moiety is CH3. It is placed at a position relative to C, a moiety used earlier
in the chemical structure. So moiety names can be specified as chem positions ev-
erywhere in the chem code. Beneath their printing moieties are names for places.

The moiety BP is special. It is not printed but just serves as a mark to be referred to
in later chem commands. For example,

bond ; BP sets a mark at the end of the bond. This can be used then for spec-
ifying a place. The name BP is derived from branch point (i.e., line crossing).

A string within double quotes " is interpreted as a part of a chem command. It repre-
sents a string that should be printed (without the quotes). Text within quotes ". . ." is
treated more or less like a moiety except that no changes are made to the quoted
part.

Names

In the alkyl chain above, notice that the carbon atom C was used both to draw some-
thing and as the name for a place. A moiety always defines a name for a place; you
can use your own names for places instead, and indeed, for rings you will have to. A
name is just

Name: . . . Name is often the name of a moiety like CH3, but it need not to be.
Any name that begins with a capital letter and which contains only letters and
numbers is valid:

First: " bond"

bond 30 from First

Miscellaneous

The specific construction

bond . . . ; moiety

is equivalent to

bond
moiety
Otherwise, each item has to be on a separate line (and only one line).
Note that there must be whitespace after the semicolon which separates
the commands.



Preprocessors -298-

A period character . or a single quote ' in the first column of a line signals a troff
command, which is copied through as-is. A line whose first non-blank character is a
hash character (#) is treated as a comment and thus ignored. However, hash char-
acters within a word are kept.

A line whose first word is pic is copied through as-is after the word pic has been re-
moved. The command

size n

scales the diagram to make it look plausible at point size n (default is 10 point). Any-
thing else is assumed to be pic code, which is copied through with a label.

Since chem is a pic preprocessor, it is possible to include pic statements in the mid-
dle of a diagram to draw things not provided for by chem itself. Such pic statements
should be included in chem code by adding pic as the first word of this line for clarity.
The following pic commands are accepted as chem commands, so no pic command
word is needed:

define Start the definition of pic macro within chem.

[ Start a block composite.

] End a block composite.

{ Start a macro definition block.

} End a macro definition block.

The macro names from define statements are stored and their call is accepted as a
chem command as well.

Wish list

This TODO list was collected by Brian Kernighan.

Error checking is minimal; errors are usually detected and reported in an oblique
fashion by pic . There is no library or file inclusion mechanism, and there is no short-
hand for repetitive structures.

The extension mechanism is to create pic macros, but these are tricky to get right
and don’t have all the properties of built-in objects. There is no in-line chemistry yet
(e.g., analogous to the $. . .$ construct of eqn).

There is no way to control entry point for bonds on groups. Normally a bond con-
nects to the carbon atom if entering from the top or bottom and otherwise to the
nearest corner. Bonds from substituted atoms on heterocycles do not join at the
proper place without adding a bit of pic .

There is no decent primitive for brackets. Text (quoted strings) doesn’t work very
well.

A squiggle bond is needed.

Files

/usr/local/share/groff/1.22.4/pic/chem.pic
A collection of pic macros needed by chem.

/usr/local/share/groff/1.22.4/tmac/pic.tmac
A macro file which redefines .PS and .PE to center pic diagrams.



Preprocessors -299-

/usr/local/share/doc/groff-1.22.4/examples/chem/ *.chem
Example files for chem.

/usr/local/share/doc/groff-1.22.4/examples/chem/122/ *.chem
Example files from the chem article by its authors, “CHEM—A Program for
Typesetting Chemical Structure Diagrams: User Manual” (CSTR #122).

Authors

The GNU version of chem was written by Bernd Warken It is based on the documen-
tation of Brian Kernighan’s original awk version of chem.

See Also

“CHEM—A Program for Typesetting Chemical Diagrams: User Manual” by Jon L.
Bentley, Lynn W. Jelinski, and Brian W. Kernighan, AT&T Bell Laboratories Comput-
ing Science Techical Report No. 122 (CSTR #122) groff(1), pic(1)

mailto:groff-bernd.warken-72@web.de


Preprocessors -300-

6.7. grefer

6.7.1. Invoking grefer

Name

refer - preprocess bibliographic references for groff

Synopsis

refer [-benCPRS] [-an] [-cfields] [-fn] [-ifields] [-kfield ] [-lm,n] [-pfilename]
[-sfields] [-tn] -B field .macro [file . . .]

refer --help
refer -v
refer --version

Description

This file documents the GNU version of refer, which is part of the groff document for-
matting system. refer copies the contents of filename . . . to the standard output, ex-
cept that lines between .[ and .] are interpreted as citations, and lines between .R1
and .R2 are interpreted as commands about how citations are to be processed.

Each citation specifies a reference. The citation can specify a reference that is con-
tained in a bibliographic database by giving a set of keywords that only that reference
contains. Alternatively it can specify a reference by supplying a database record in
the citation. A combination of these alternatives is also possible. For each citation,
refer can produce a mark in the text. This mark consists of some label which can be
separated from the text and from other labels in various ways. For each reference it
also outputs groff commands that can be used by a macro package to produce a for-
matted reference for each citation. The output of refer must therefore be processed
using a suitable macro package, such as ms, man, me, or mm. The commands to
format a citation’s reference can be output immediately after the citation, or the refer-
ences may be accumulated, and the commands output at some later point. If the ref-
erences are accumulated, then multiple citations of the same reference will produce
a single formatted reference.

The interpretation of lines between .R1 and .R2 as commands is a new feature of
GNU refer. Documents making use of this feature can still be processed by Unix re-
fer just by adding the lines

.de R1

.ig R2

..
to the beginning of the document. This will cause troff to ignore everything between
.R1 and .R2. The effect of some commands can also be achieved by options. These
options are supported mainly for compatibility with Unix refer. It is usually more con-
venient to use commands.

refer generates .lf lines so that filenames and line numbers in messages produced
by commands that read refer output will be correct; it also interprets lines beginning
with .lf so that filenames and line numbers in the messages and .lf lines that it pro-
duces will be accurate even if the input has been preprocessed by a command such
as soelim(1).



Preprocessors -301-

Options

--help displays a usage message, while -v and --version show version informa-
tion; all exit afterward. Most options are equivalent to commands (for a description of
these commands, see subsection “Commands” below).

-b no-label-in-text; no-label-in-reference

-e accumulate

-n no-default-database

-C compatible

-P move-punctuation

-S label "(A.n|Q) ’, ’ (D.y|D)"; bracket-label " (" ) "; "

-an reverse An

-cfields
capitalize fields

-fn label %n

-ifields
search-ignore fields

-k label L~%a

-kfield
label field ~%a

-l label A.nD.y%a

-lm label A.nmD.y%a

-l,n label A.nD.y-n%a

-lm,n label A.nmD.y-n%a

-pfilename
database filename

-sspec
sort spec

-tn search-truncate n

These options are equivalent to the following commands with the addition that the
filenames specified on the command line are processed as if they were arguments to
the bibliography command instead of in the normal way:

-B annotate X AP; no-label-in-reference

-Bfield .macro
annotate field macro; no-label-in-reference The following options have no
equivalent commands:

-R Don’t recognize lines beginning with .R1/.R2.

Usage

Bibliographic databases

The bibliographic database is a text file consisting of records separated by one or
more blank lines. Within each record fields start with a % at the beginning of a line.



Preprocessors -302-

Each field has a one character name that immediately follows the %. It is best to use
only upper and lower case letters for the names of fields. The name of the field
should be followed by exactly one space, and then by the contents of the field.
Empty fields are ignored.  The conventional meaning of each field is as follows:

%A The name of an author. If the name contains a title such as Jr. at the end, it
should be separated from the last name by a comma. There can be multiple
occurrences of the %A field. The order is significant. It is a good idea always
to supply an %A field or a %Q field.

%B For an article that is part of a book, the title of the book.

%C The place (city) of publication.

%D The date of publication. The year should be specified in full. If the month is
specified, the name rather than the number of the month should be used, but
only the first three letters are required. It is a good idea always to supply a %D
field; if the date is unknown, a value such as in press or unknown can be
used.

%E For an article that is part of a book, the name of an editor of the book. Where
the work has editors and no authors, the names of the editors should be given
as %A fields and , (ed) or , (eds) should be appended to the last author.

%G US Government ordering number.

%I The publisher (issuer).

%J For an article in a journal, the name of the journal.

%K Keywords to be used for searching.

%L Label.

%N Journal issue number.

%O Other information. This is usually printed at the end of the reference.

%P Page number. A range of pages can be specified as m-n.

%Q The name of the author, if the author is not a person. This will only be used if
there are no %A fields. There can only be one %Q field.

%R Technical report number.

%S Series name.

%T Title. For an article in a book or journal, this should be the title of the article.

%V Volume number of the journal or book.

%X Annotation.

For all fields except %A and %E, if there is more than one occurrence of a particular
field in a record, only the last such field will be used. If accent strings are used, they
should follow the character to be accented. This means that the AM macro must be
used with the -ms macros. Accent strings should not be quoted: use one \ rather
than two.

Citations

The format of a citation is
.[opening-text
flags keywords



Preprocessors -303-

fields
.]closing-text

The opening-text , closing-text , and flags components are optional. Only one of the
keywords and fields components need be specified. The keywords component says
to search the bibliographic databases for a reference that contains all the words in
keywords. It is an error if more than one reference if found.

The fields components specifies additional fields to replace or supplement those
specified in the reference. When references are being accumulated and the key-
words component is non-empty, then additional fields should be specified only on the
first occasion that a particular reference is cited, and will apply to all citations of that
reference. The opening-text and closing-text component specifies strings to be used
to bracket the label instead of the strings specified in the bracket-label command. If
either of these components is non-empty, the strings specified in the bracket-label
command will not be used; this behaviour can be altered using the [ and ] flags.
Note that leading and trailing spaces are significant for these components.

The flags component is a list of non-alphanumeric characters each of which modifies
the treatment of this particular citation. Unix refer will treat these flags as part of the
keywords and so will ignore them since they are non-alphanumeric. The following
flags are currently recognized:

# This says to use the label specified by the short-label command, instead of
that specified by the label command. If no short label has been specified, the
normal label will be used. Typically the short label is used with author-date la-
bels and consists of only the date and possibly a disambiguating letter; the # is
supposed to be suggestive of a numeric type of label.

[ Precede opening-text with the first string specified in the bracket-label com-
mand.

] Follow closing-text with the second string specified in the bracket-label com-
mand. One advantages of using the [ and ] flags rather than including the
brackets in opening-text and closing-text is that you can change the style of
bracket used in the document just by changing the bracket-label command.
Another advantage is that sorting and merging of citations will not necessarily
be inhibited if the flags are used.

If a label is to be inserted into the text, it will be attached to the line preceding the .[
line. If there is no such line, then an extra line will be inserted before the .[ line and a
warning will be given. There is no special notation for making a citation to multiple
references. Just use a sequence of citations, one for each reference. Don’t put any-
thing between the citations. The labels for all the citations will be attached to the line
preceding the first citation. The labels may also be sorted or merged. See the de-
scription of the <> label expression, and of the sort-adjacent-labels and abbrevi-
ate-label-ranges command. A label will not be merged if its citation has a non-
empty opening-text or closing-text . However, the labels for a citation using the ] flag
and without any closing-text immediately followed by a citation using the [ flag and
without any opening-text may be sorted and merged even though the first citation’s
opening-text or the second citation’s closing-text is non-empty. (If you wish to pre-
vent this just make the first citation’s closing-text \&.)



Preprocessors -304-

Commands

Commands are contained between lines starting with .R1 and .R2. Recognition of
these lines can be prevented by the -R option. When a .R1 line is recognized any
accumulated references are flushed out. Neither .R1 nor .R2 lines, nor anything be-
tween them is output.

Commands are separated by newlines or ;s. # introduces a comment that extends to
the end of the line (but does not conceal the newline). Each command is broken up
into words. Words are separated by spaces or tabs. A word that begins with " ex-
tends to the next " that is not followed by another ". If there is no such " the word ex-
tends to the end of the line. Pairs of " in a word beginning with " collapse to a single
". Neither # nor ; are recognized inside "s. A line can be continued by ending it with
\; this works everywhere except after a #. Each command name that is marked with
* has an associated negative command no-name that undoes the effect of name.
For example, the no-sort command specifies that references should not be sorted.
The negative commands take no arguments.

In the following description each argument must be a single word; field is used for a
single upper or lower case letter naming a field; fields is used for a sequence of such
letters; m and n are used for a non-negative numbers; string is used for an arbitrary
string; filename is used for the name of a file.

abbreviate* fields string1 string2 string3 string4
Abbreviate the first names of fields. An initial letter will be separated from an-
other initial letter by string1, from the last name by string2 , and from anything
else (such as a von or de) by string3 . These default to a period followed by a
space. In a hyphenated first name, the initial of the first part of the name will be
separated from the hyphen by string4; this defaults to a period. No attempt is
made to handle any ambiguities that might result from abbreviation. Names
are abbreviated before sorting and before label construction.

abbreviate-label-ranges* string
Three or more adjacent labels that refer to consecutive references will be ab-
breviated to a label consisting of the first label, followed by string followed by
the last label. This is mainly useful with numeric labels. If string is omitted it
defaults to -.

accumulate*
Accumulate references instead of writing out each reference as it is encoun-
tered. Accumulated references will be written out whenever a reference of the
form

.[
$LIST$
.] is encountered, after all input files have been processed, and whenever
.R1 line is recognized.

annotate* field string
field is an annotation; print it at the end of the reference as a paragraph pre-
ceded by the line

.string



Preprocessors -305-

If string is omitted it will default to AP; if field is also omitted it will default to X.
Only one field can be an annotation.

articles string . . .
string . . . are definite or indefinite articles, and should be ignored at the begin-
ning of T fields when sorting. Initially, the, a and an are recognized as articles.

bibliography filename . . .
Write out all the references contained in the bibliographic databases file-
name . . . This command should come last in a .R1/.R2 block.

bracket-label string1 string2 string3
In the text, bracket each label with string1 and string2 . An occurrence of
string2 immediately followed by string1 will be turned into string3 . The default
behaviour is

bracket-label \*([. \*(.] ", "

capitalize fields
Convert fields to caps and small caps.

compatible*
Recognize .R1 and .R2 even when followed by a character other than space or
newline.

database filename . . .
Search the bibliographic databases filename . . . For each filename if an index
filename.i created by indxbib(1) exists, then it will be searched instead; each
index can cover multiple databases.

date-as-label* string
string is a label expression that specifies a string with which to replace the D
field after constructing the label. See subsection “Label expressions” below for
a description of label expressions. This command is useful if you do not want
explicit labels in the reference list, but instead want to handle any necessary
disambiguation by qualifying the date in some way. The label used in the text
would typically be some combination of the author and date. In most cases you
should also use the no-label-in-reference command. For example,

date-as-label D.+yD.y%a*D.-y would attach a disambiguating letter to
the year part of the D field in the reference.

default-database*
The default database should be searched. This is the default behaviour, so the
negative version of this command is more useful. refer determines whether the
default database should be searched on the first occasion that it needs to do a
search. Thus a no-default-database command must be given before then, in
order to be effective.

discard* fields
When the reference is read, fields should be discarded; no string definitions for
fields will be output. Initially, fields are XYZ.

et-al* string m n
Control use of et al in the evaluation of @ expressions in label expressions. If
the number of authors needed to make the author sequence unambiguous is u
and the total number of authors is t then the last t - u authors will be replaced



Preprocessors -306-

by string provided that t - u is not less than m and t is not less than n. The de-
fault behaviour is

et-al " et al" 2 3

include filename
Include filename and interpret the contents as commands.

join-authors string1 string2 string3
This says how authors should be joined together. When there are exactly two
authors, they will be joined with string1. When there are more than two au-
thors, all but the last two will be joined with string2 , and the last two authors will
be joined with string3 . If string3 is omitted, it will default to string1; if string2 is
also omitted it will also default to string1. For example,

join-authors " and " ", " ", and "

will restore the default method for joining authors.

label-in-reference*
When outputting the reference, define the string [F to be the reference’s label.
This is the default behaviour; so the negative version of this command is more
useful.

label-in-text*
For each reference output a label in the text. The label will be separated from
the surrounding text as described in the bracket-label command. This is the
default behaviour; so the negative version of this command is more useful.

label string
string is a label expression describing how to label each reference.

separate-label-second-parts string
When merging two-part labels, separate the second part of the second label
from the first label with string . See the description of the <> label expression.

move-punctuation*
In the text, move any punctuation at the end of line past the label. It is usually
a good idea to give this command unless you are using superscripted numbers
as labels.

reverse* string
Reverse the fields whose names are in string . Each field name can be fol-
lowed by a number which says how many such fields should be reversed. If no
number is given for a field, all such fields will be reversed.

search-ignore* fields
While searching for keys in databases for which no index exists, ignore the con-
tents of fields. Initially, fields XYZ are ignored.

search-truncate* n
Only require the first n characters of keys to be given. In effect when searching
for a given key words in the database are truncated to the maximum of n and
the length of the key. Initially n is 6.

short-label* string
string is a label expression that specifies an alternative (usually shorter) style
of label. This is used when the # flag is given in the citation. When using



Preprocessors -307-

author-date style labels, the identity of the author or authors is sometimes clear
from the context, and so it may be desirable to omit the author or authors from
the label. The short-label command will typically be used to specify a label
containing just a date and possibly a disambiguating letter.

sort* string
Sort references according to string. References will automatically be accumu-
lated. string should be a list of field names, each followed by a number, indicat-
ing how many fields with the name should be used for sorting. + can be used
to indicate that all the fields with the name should be used. Also . can be used
to indicate the references should be sorted using the (tentative) label. (Sub-
section “Label expressions” below describes the concept of a tentative label.)

sort-adjacent-labels*
Sort labels that are adjacent in the text according to their position in the refer-
ence list. This command should usually be given if the abbreviate-label-
ranges command has been given, or if the label expression contains a <> ex-
pression. This will have no effect unless references are being accumulated.

Label expressions

Label expressions can be evaluated both normally and tentatively. The result of nor-
mal evaluation is used for output. The result of tentative evaluation, called the tenta-
tive label , is used to gather the information that normal evaluation needs to disam-
biguate the label. Label expressions specified by the date-as-label and short-label
commands are not evaluated tentatively. Normal and tentative evaluation are the
same for all types of expression other than @, *, and % expressions. The description
below applies to normal evaluation, except where otherwise specified.

field

field n
The n-th part of field . If n is omitted, it defaults to 1.

’string ’
The characters in string literally.

@ All the authors joined as specified by the join-authors command. The whole of
each author’s name will be used. However, if the references are sorted by au-
thor (that is the sort specification starts with A), then authors last names will be
used instead, provided that this does not introduce ambiguity, and also an initial
subsequence of the authors may be used instead of all the authors, again pro-
vided that this does not introduce ambiguity. The use of only the last name for
the i -th author of some reference is considered to be ambiguous if there is
some other reference, such that the first i - 1 authors of the references are the
same, the i -th authors are not the same, but the i -th authors last names are the
same. A proper initial subsequence of the sequence of authors for some refer-
ence is considered to be ambiguous if there is a reference with some other se-
quence of authors which also has that subsequence as a proper initial subse-
quence. When an initial subsequence of authors is used, the remaining au-
thors are replaced by the string specified by the et-al command; this command
may also specify additional requirements that must be met before an initial sub-
sequence can be used. @ tentatively evaluates to a canonical representation
of the authors, such that authors that compare equally for sorting purpose will



Preprocessors -308-

have the same representation.

%n

%a

%A

%i

%I The serial number of the reference formatted according to the character follow-
ing the %. The serial number of a reference is 1 plus the number of earlier ref-
erences with same tentative label as this reference. These expressions tenta-
tively evaluate to an empty string.

expr *
If there is another reference with the same tentative label as this reference,
then expr , otherwise an empty string. It tentatively evaluates to an empty
string.

expr n

expr -n
The first () or last (-) n upper or lower case letters or digits of expr . Troff spe-
cial characters (such as \(’a) count as a single letter. Accent strings are re-
tained but do not count towards the total.

expr .l
expr converted to lowercase.

expr .u
expr converted to uppercase.

expr .c
expr converted to caps and small caps.

expr .r
expr reversed so that the last name is first.

expr .a
expr with first names abbreviated. Note that fields specified in the abbreviate
command are abbreviated before any labels are evaluated. Thus .a is useful
only when you want a field to be abbreviated in a label but not in a reference.

expr .y
The year part of expr .

expr .
The part of expr before the year, or the whole of expr if it does not contain a
year.

expr .-y
The part of expr after the year, or an empty string if expr does not contain a
year.

expr .n
The last name part of expr .

expr1~expr2
expr1 except that if the last character of expr1 is - then it will be replaced by
expr2 .



Preprocessors -309-

expr1 expr2
The concatenation of expr1 and expr2 .

expr1|expr2
If expr1 is non-empty then expr1 otherwise expr2 .

expr1&expr2
If expr1 is non-empty then expr2 otherwise an empty string.

expr1?expr2 :expr3
If expr1 is non-empty then expr2 otherwise expr3 .

<expr >
The label is in two parts, which are separated by expr . Two adjacent two-part
labels which have the same first part will be merged by appending the second
part of the second label onto the first label separated by the string specified in
the separate-label-second-parts command (initially, a comma followed by a
space); the resulting label will also be a two-part label with the same first part
as before merging, and so additional labels can be merged into it. Note that it
is permissible for the first part to be empty; this maybe desirable for expres-
sions used in the short-label command.

(expr )
The same as expr . Used for grouping. The above expressions are listed in or-
der of precedence (highest first); & and | have the same precedence.

Macro interface

Each reference starts with a call to the macro ]-. The string [F will be defined to be
the label for this reference, unless the no-label-in-reference command has been
given. There then follows a series of string definitions, one for each field: string [X
corresponds to field X . The number register [P is set to 1 if the P field contains a
range of pages. The [T, [A and [O number registers are set to 1 according as the T,
A and O fields end with one of the characters .?!. The [E number register will be set
to 1 if the [E string contains more than one name. The reference is followed by a call
to the ][ macro. The first argument to this macro gives a number representing the
type of the reference. If a reference contains a J field, it will be classified as type 1,
otherwise if it contains a B field, it will type 3, otherwise if it contains a G or R field it
will be type 4, otherwise if it contains an I field it will be type 2, otherwise it will be
type 0. The second argument is a symbolic name for the type: other, journal-arti-
cle, book, article-in-book or tech-report. Groups of references that have been ac-
cumulated or are produced by the bibliography command are preceded by a call to
the ]< macro and followed by a call to the ]> macro.

Environment

REFER
If set, overrides the default database.

Files

/usr/dict/papers/Ind
Default database.



Preprocessors -310-

file.i Index files.

refer uses temporary files. See the groff(1) man page for details where such files
are created.

Bugs

In label expressions, <> expressions are ignored inside .char expressions.

See Also

“Some Applications of Inverted Indexes on the Unix System”; Computing Science
Technical Report #69; M. E. Lesk; AT&T Bell Laboratories; 1978.



Preprocessors -311-

6.8. gsoelim

6.8.1. Invoking gsoelim

Name

soelim - interpret source (.so) requests in troff input

Synopsis

soelim [-Crt] [-I dir ] [input-file . . .]
soelim --help
soelim -v
soelim --version

Description

soelim replaces lines of the form “.so macro-file” within each input-file with the con-
tents of macro-file, recursively. It is useful if files included with .so need to be pre-
processed. Output is written to the standard output stream. Normally, soelim should
be invoked with groff ’s -s option. In the absence of input-file arguments, soelim
reads the standard input stream. To embed a backslash “\” in the name of a macro-
file, write “\\” or “\e”. To embed a space, write “\ ” (backslash followed by a space).
Any other escape sequence in macro-file, including “\[rs]”, makes soelim ignore the
whole line.

There must be no whitespace between the leading dot and the two characters “s”
and “o”. Otherwise, only groff will interpret the .so request; soelim will ignore it (but
see the -C option below). The normal processing sequence of groff is as follows.

input
file

preprocessor troff

sourced
file

postprocessor

output
file

That is, files sourced with .so are normally read only by troff (the actual formatter).
soelim is not required for troff to source files.

If a file to be sourced should also be preprocessed, it must already be read before
the input file passes through the preprocessor. soelim handles this.



Preprocessors -312-

input
file

soelim

sourced
file

preprocessor troff postprocessor

output
file

Options

--help displays a usage message, while -v and --version show version informa-
tion; all exit afterward.

-C Recognize .so even when followed by a character other than space or new-
line.

-I dir Add the directory dir to the search path for macro files (both those on the
command line and those named in .so requests). The search path is initial-
ized with the current directory. This option may be specified more than once;
the directories are then searched in the order specified (but before the cur-
rent directory). If you want to search the current directory before other direc-
tories, add “-I .” at the appropriate place.

No directory search is performed for files with an absolute file name.

-r Do not add .lf requests (for general use, with non-groff files).

-t Emit TEX comment lines starting with “%” indicating the current file and line
number, rather than .lf requests for the same purpose.

See Also

groff(1)



Preprocessors -313-

6.9. preconv

6.9.1. Invoking preconv

Name

preconv - prepare files for typesetting with GNU roff

Synopsis

preconv [-dr] [-Ddefault-encoding ] [-eencoding ] [file . . .]
preconv -h
preconv --help
preconv -v
preconv --version

Description

preconv reads each file, converts its encoded characters to a form groff (1) can inter-
pret, and sends the result to the standard output stream. Currently, this means that
code points in the range 0–127 (in US-ASCII, ISO 8859, or Unicode) remain as-is
and the remainder are converted to the groff special character form “\[uXXXX ]”,
where XXXX is a hexadecimal number of four to six digits corresponding to a Uni-
code code point. By default, preconv also inserts a roff .lf request at the beginning
of each file, identifying it for the benefit of later processing (including diagnostic mes-
sages); the -r option suppresses this behavior.

In typical usage scenarios, preconv need not be run directly; instead it should be in-
voked with the -k or -K options of groff . preconv tries to find the input encoding
with the following algorithm, stopping at the first success.

1. If the input encoding has been explicitly specified with option -e, use it.

2. Check whether the input starts with a Unicode Byte Order Mark. If so, deter-
mine the encoding as UTF-8, UTF-16, or UTF-32 accordingly.

3. If the input stream is seekable, check the first and second input lines for a
recognized GNU Emacs file-local variable identifying the character encoding,
here referred to as the “coding tag” for brevity. If found, use it.

4. If the input stream is seekable, and if the uchardet library is available on the
system, use it to try to infer the encoding of the file.

5. If the -D option specifies an encoding, use it.

6. Use the encoding specified by the current locale (LC_CTYPE ), unless the lo-
cale is “C”, “POSIX”, or empty, in which case assume Latin-1 (ISO 8859-1).

Note that the coding tag and uchardet methods in the above procedure rely upon a
seekable input stream; when preconv reads from a pipe, the stream is not seekable,
and these detection methods are skipped. If character encoding detection of your in-
put files is unreliable, arrange for one of the other methods to succeed by using pre-
conv ’s -D or -e options, or by configuring your locale appropriately. Furthermore,
groff supports a GROFF_ENCODING environment variable which is equivalent to its
option -k.



Preprocessors -314-

Coding tags

Text editors that support more than a single character encoding need tags within the
input files to mark the file’s encoding. While it is possible to guess the right input en-
coding with the help of heuristics that are reliable for a preponderance of natural lan-
guage texts, they are not absolutely reliable. Heuristics can fail on inputs that are too
short or don’t represent a natural language. Consequently, preconv supports the
coding tag convention (with some restrictions) used by GNU Emacs. These are indi-
cated in specially-marked regions of an input file designated for “file-local variables”.

preconv interprets the following syntax if it occurs in a roff comment in the first or
second line of the input file. Both “\"” and “\#” comment forms are recognized, but the
control (or non-breaking control) character must be the default and must begin the
line. Similarly, the escape character must be the default.

−*− [. . .;] coding: encoding[; . . .] −*−
The only variable preconv interprets is “coding”, which can take the values listed be-
low.

The following list comprises all MIME “charset” parameter values recognized, case-
insensitively, by preconv .

big5, cp1047, euc-jp, euc-kr, gb2312, iso-8859-1, iso-8859-2, iso-8859-5,
iso-8859-7, iso-8859-9, iso-8859-13, iso-8859-15, koi8-r, us-ascii, utf-8,
utf-16, utf-16be, utf-16le

In addition, the following list of other coding tags is recognized, each of which is
mapped to an appropriate value from the list above.

ascii, chinese-big5, chinese-euc, chinese-iso-8bit, cn-big5, cn-gb,
cn-gb-2312, cp878, csascii, csisolatin1, cyrillic-iso-8bit, cyrillic-koi8,
euc-china, euc-cn, euc-japan, euc-japan-1990, euc-korea, greek-iso-8bit,
iso-10646/utf8, iso-10646/utf-8, iso-latin-1, iso-latin-2, iso-latin-5,
iso-latin-7, iso-latin-9, japanese-euc, japanese-iso-8bit, jis8, koi8,
korean-euc, korean-iso-8bit, latin-0, latin1, latin-1, latin-2, latin-5, latin-7,
latin-9, mule-utf-8, mule-utf-16, mule-utf-16be, mule-utf-16-be,
mule-utf-16be-with-signature, mule-utf-16le, mule-utf-16-le,
mule-utf-16le-with-signature, utf8, utf-16-be, utf-16-be-with-signature,
utf-16be-with-signature, utf-16-le, utf-16-le-with-signature,
utf-16le-with-signature

Trailing “-dos”, “-unix”, and “-mac” suffixes on coding tags (which indicate the end-
of-line convention used in the file) are disregarded for the purpose of comparison
with the above tags.

iconv support

preconv itself only supports three encodings: Latin-1, code page 1047, and UTF-8.
If iconv support is configured at compile time and available at run time, all other en-
codings are passed to iconv library functions. The command “preconv -v” discloses
whether iconv support is configured. The use of iconv means that characters in the
input that encode invalid code points for that encoding may be dropped from the out-
put stream or mapped to the Unicode replacement character (U+FFFD). Compare
the following examples using the input “café” (note the “e” with an acute accent),
which due to its short length challenges inference of the encoding used.

printf 'caf\351\n' | LC_ALL=en_US.UTF−8 preconv
printf 'caf\351\n' | preconv −e us−ascii



Preprocessors -315-

printf 'caf\351\n' | preconv −e latin−1
The fate of the accented “e” differs in each case. In the first, uchardet fails to detect
an encoding (though the library on your system may behave differently) and preconv
falls back to the locale settings, where octal 351 starts an incomplete UTF-8 se-
quence and results in the Unicode replacement character. In the second, it is not a
representable character in the declared input encoding of US-ASCII and is discarded
by iconv . In the last, it is correctly detected and mapped.

Options

-h and --help display a usage message, while -v and --version show version in-
formation; all exit afterward.

-d Emit debugging messages to the standard error stream.

-D default-encoding
Report default-encoding if all detection methods fail.

-e encoding
Override detection procedure and assume encoding . This corresponds to
groff ’s “-K encoding ” option.

-r Write files “raw”; do not add .lf requests.

See Also

groff (1), iconv (3), locale(7)



Preprocessors -316-

7. Output Devices

7.1. Special Characters

See Device and Font Files.

7.2. grotty

The postprocessor grotty translates the output from GNU troff into a form suitable for
typewriter-like devices. It is fully documented on its man page, grotty(1).

7.2.1. Invoking grotty

The postprocessor grotty accepts the following command-line options:

-b Do not overstrike bold glyphs. Ignored if -c isn’t used.

-B Do not underline bold-italic glyphs. Ignored if -c isn’t used.

-c Use overprint and disable colours for printing on legacy Teletype printers (see
below).

-d Do not render lines (that is, ignore all \D escapes).

-f Use form feed control characters in the output.

-Fdir Put the directory dir/devname in front of the search path for the font and device
description files, given the target device name.

-h Use horizontal tabs for sequences of 8 space characters.

-i Request italic glyphs from the terminal.  Ignored if -c is active.

-o Do not overstrike.

-r Highlight italic glyphs. Ignored if -c is active.

-u Do not underline italic glyphs. Ignored if -c isn’t used.

-U Do not overstrike bold-italic glyphs. Ignored if -c isn’t used.

-v Print the version number.

The -c option tells grotty to use an output format compatible with paper terminals, like the
Teletype machines for which roff and nroff were first developed but which are no longer
in wide use. SGR escape sequences (from ISO 6429) are not emitted. Instead, grotty
overstrikes, representing a bold character c with the sequence ‘c BACKSPACE c’ and an
italic character c with the sequence ‘_ BACKSPACE c’. Furthermore, color output is dis-
abled. The same effect can be achieved either by setting the GROFF_NO_SGR environment
variable or by using a groff escape sequence within the document; see the subsection
“Device control commands” of the grotty(1) man page for details.

The legacy output format can be rendered on a video terminal (or emulator) by piping
grotty’s output through ul, which may render bold italics as reverse video. Some imple-
mentations of more are also able to display these sequences; you may wish to experiment



Output Devices -317-

with that command’s -b option. less renders legacy bold and italics without requiring op-
tions. In contrast to the teletype output drivers of some other roff implementations,
grotty never outputs reverse line feeds. There is therefore no need to filter its output
through col.

7.3. grops

The postprocessor grops translates the output from GNU troff into a form suitable for
Adobe POSTSCRIPT devices. It is fully documented on its man page, grops(1).

7.3.1. Invoking grops

The postprocessor grops accepts the following command-line options:

-bflags Use backward compatibility settings given by flags as documented in the
grops(1) man page. Overrides the command broken in the DESC file.

-cn Print n copies of each page.

-Fdir Put the directory dir/devname in front of the search path for the font, prologue
and device description files, given the target device name, usually ps.

-g Tell the printer to guess the page length. Useful for printing vertically centered
pages when the paper dimensions are determined at print time.

-Ipath ...

Consider the directory path for searching included files specified with relative
paths. The current directory is searched as fallback.

-l Use landscape orientation.

-m Use manual feed.

-ppapersize

Set the page dimensions. Overrides the commands papersize, paperlength,
and paperwidth in the DESC file. See the groff_font(5) man page for details.

-Pprologue

Use the prologue in the font path as the prologue instead of the default pro-
logue. Overrides the environment variable GROPS_PROLOGUE.

-wn Set the line thickness to n/1000 em. Overrides the default value n = 40.

-v Print the version number.

7.3.2. Embedding PostScript

The escape sequence

‘\X’ps: import file llx lly urx ury width [height]’’

places a rectangle of the specified width containing the POSTSCRIPT drawing from file file
bound by the box from llx lly to urx ury (in POSTSCRIPT coordinates) at the insertion point. If
height is not specified, the embedded drawing is scaled proportionally.



Output Devices -318-

See Miscellaneous, for the psbb request, which automatically generates the bounding box.

This escape sequence is used internally by the macro PSPIC (see the groff_tmac(5) man
page).

7.4. gropdf

The postprocessor gropdf translates the output from GNU troff into a form suitable for
Adobe PDF devices. It is fully documented on its man page, gropdf(1).

7.4.1. Invoking gropdf

The postprocessor gropdf accepts the following command-line options:

-d Produce uncompressed PDFs that include debugging comments.

-e This forces gropdf to embed all used fonts in the PDF, even if they are one of
the 14 base Adobe fonts.

-Fdir Put the directory dir/devname in front of the search path for the font, prologue
and device description files, given the target device name, usually pdf.

-yfoundry

This forces the use of a different font foundry.

-l Use landscape orientation.

-ppapersize

Set the page dimensions. Overrides the commands papersize, paperlength,
and paperwidth in the DESC file. See the groff_font(5) man page for details.

-v Print the version number.

-s Append a comment line to end of PDF showing statistics, i.e. number of pages
in document. Ghostscript’s ps2pdf(1) complains about this line if it is included,
but works anyway.

-ufilename

gropdf normally includes a ToUnicode CMap with any font created using
text.enc as the encoding file, this makes it easier to search for words that con-
tain ligatures. You can include your own CMap by specifying a filename or have
no CMap at all by omitting the filename.

7.4.2. Embedding PDF

The escape sequence

‘\X’pdf: pdfpic file alignment width [height] [linelength]’’

places a rectangle of the specified width containing the PDF drawing from file file of de-
sired width and height (if height is missing or zero then it is scaled proportionally). If align-
ment is -L the drawing is left aligned. If it is -C or -R a linelength greater than the width of
the drawing is required as well. If width is specified as zero then the width is scaled in pro-
portion to the height.



Output Devices -319-

7.5. grodvi

The postprocessor grodvi translates the output from GNU troff into the DVI format pro-
duced by the TEX document preparation system. This enables the use of programs that
process the DVI format, like dvips and dvipdf, with GNU troff output. grodvi is fully
documented in its man page, grodvi(1).

7.5.1. Invoking grodvi

The postprocessor grodvi accepts the following command-line options:

-d Do not use tpic specials to implement drawing commands.

-Fdir Put the directory dir/devname in front of the search path for the font and device
description files, given the target device name, usually dvi.

-l Use landscape orientation.

-ppapersize

Set the page dimensions. Overrides the commands papersize, paperlength,
and paperwidth in the DESC file. See the groff_font(5) man page for details.

-v Print the version number.

-wn Set the line thickness to n/1000 em. Overrides the default value n = 40.

7.6. grolj4

The postprocessor grolj4 translates the output from GNU troff into the PCL5 output for-
mat suitable for printing on a HP LaserJet 4 printer. It is fully documented on its man
page, grolj4(1).

7.6.1. Invoking grolj4

The postprocessor grolj4 accepts the following command-line options:

-cn Print n copies of each page.

-Fdir Put the directory dir/devname in front of the search path for the font and device
description files, given the target device name, usually lj4.

-l Use landscape orientation.

-psize Set the page dimensions. Valid values for size are: letter, legal, executive,
a4, com10, monarch, c5, b5, d1.

-v Print the version number.

-wn Set the line thickness to n/1000 em. Overrides the default value n = 40.

The special drawing command ‘\D’R dh dv’’ draws a horizontal rectangle from the current
position to the position at offset (dh,dv ).



Output Devices -320-

7.7. grolbp

The postprocessor grolbp translates the output from GNU troff into the LBP output for-
mat suitable for printing on Canon CAPSL printers. It is fully documented on its man
page, grolbp(1).

7.7.1. Invoking grolbp

The postprocessor grolbp accepts the following command-line options:

-cn Print n copies of each page.

-Fdir Put the directory dir/devname in front of the search path for the font, prologue
and device description files, given the target device name, usually lbp.

-l Use landscape orientation.

-oorientation

Use the orientation specified: portrait or landscape.

-ppapersize

Set the page dimensions. See groff_font(5) man page for details.

-wn Set the line thickness to n/1000 em. Overrides the default value n = 40.

-v Print the version number.

-h Print command-line help.

7.8. grohtml

The grohtml front end (which consists of a preprocessor, pre-grohtml, and a device
driver, post-grohtml) translates the output of GNU troff to HTML. Users should always
invoke grohtml via the groff command with a \-Thtml option. If no files are given, gro-
html will read the standard input. A filename of - will also cause grohtml to read the stan-
dard input. HTML output is written to the standard output. When grohtml is run by groff,
options can be passed to grohtml using groff’s -P option.

grohtml invokes groff twice. In the first pass, pictures, equations, and tables are ren-
dered using the ps device, and in the second pass HTML output is generated by the html
device.

grohtml always writes output in UTF-8 encoding and has built-in entities for all non-com-
posite Unicode characters. In spite of this, groff may issue warnings about unknown spe-
cial characters if they can’t be found during the first pass. Such warnings can be safely ig-
nored unless the special characters appear inside a table or equation, in which case
glyphs for these characters must be defined for the ps device as well.

This output device is fully documented on its man page, grohtml(1).

7.8.1. Invoking grohtml



Output Devices -321-

The postprocessor grohtml accepts the following command-line options:

-abits Use this number of bits (= 1, 2 or 4) for text antialiasing. Default: bits = 4.

-a0 Do not use text antialiasing.

-b Use white background.

-Ddir Store rendered images in the directory dir.

-Fdir Put the directory dir/devname in front of the search path for the font, prologue
and device description files, given the target device name, usually html.

-gbits Use this number of bits (= 1, 2 or 4) for antialiasing of drawings. Default: bits =
4.

-g0 Do not use antialiasing for drawings.

-h Use the B element for section headings.

-iresolution

Use the resolution for rendered images. Default: resolution = 100 dpi.

-Istem Set the images’ stem name. Default: stem = grohtml-XXX (XXX is the process
ID).

-jstem Place each section in a separate file called stem-n.html (where n is a gener-
ated section number).

-l Do not generate the table of contents.

-n Generate simple fragment identifiers.

-ooffset Use vertical padding offset for images.

-p Display the page rendering progress to stderr.

-r Do not use horizontal rules to separate headers and footers.

-ssize Set the base font size, to be modified using the elements BIG and SMALL.

-Slevel Generate separate files for sections at level level .

-v Print the version number.

-V Generate a validator button at the bottom.

-y Generate a signature of groff after the validator button, if any.

7.8.2. grohtml specific registers and strings

\n[ps4html]

\*[www-image-template]
The registers ps4html and www-image-template are defined by the pre-grohtml
preprocessor. pre-grohtml reads in the troff input, marks up the inline equations
and passes the result firstly to

troff -Tps -rps4html=1 -dwww-image-template=template



Output Devices -322-

and secondly to

troff -Thtml

or

troff -Txhtml

The POSTSCRIPT device is used to create all the image files (for -Thtml; if -Txhtml is
used, all equations are passed to geqn to produce MathML, and the register ps4html
enables the macro sets to ignore floating keeps, footers, and headings.

The register www-image-template is set to the user specified template name or the
default name.

7.9. gxditview

7.9.1. Invoking gxditview



File formats -323-

8. File formats

All files read and written by gtroff are text files. The following two sections describe their
format.

8.1. gtroff Output

This section describes the groff intermediate output format produced by GNU troff.

As groff is a wrapper program around GNU troff and automatically calls an output driver
(or “postprocessor”), this output does not show up normally. This is why it is called inter-
mediate. groff provides the option -Z to inhibit postprocessing such that the produced in-
termediate output is sent to standard output just as it is when calling GNU troff directly.

Here, the term troff output describes what is output by GNU troff, while intermediate out-
put refers to the language that is accepted by the parser that prepares this output for the
output drivers. This parser handles whitespace more flexibly than AT&T’s implementation
and implements obsolete elements for compatibility; otherwise, both formats are the
same.67

The main purpose of the intermediate output concept is to facilitate the development of
postprocessors by providing a common programming interface for all devices. It has a lan-
guage of its own that is completely different from the gtroff language. While the gtroff

language is a high-level programming language for text processing, the intermediate out-
put language is a kind of low-level assembler language by specifying all positions on the
page for writing and drawing.

The intermediate output produced by gtroff is fairly readable, while output from AT&T
troff is rather hard to understand because of strange habits that are still supported, but
not used any longer by gtroff.

8.1.1. Language Concepts

During the run of gtroff, the input data is cracked down to the information on what has to
be printed at what position on the intended device. So the language of the intermediate
output format can be quite small. Its only elements are commands with and without argu-
ments. In this section, the term command always refers to the intermediate output lan-
guage, and never to the gtroff language used for document formatting. There are com-
mands for positioning and text writing, for drawing, and for device controlling.

8.1.1.1. Separation

AT&T troff output has strange requirements regarding whitespace. The gtroff output
parser, however, is more tolerant, making whitespace maximally optional. Such charac-
ters, i.e., the tab, space, and newline, always have a syntactical meaning. They are never
printable because spacing within the output is always done by positioning commands.

Any sequence of space or tab characters is treated as a single syntactical space. It sepa-
rates commands and arguments, but is only required when there would occur a clashing
between the command code and the arguments without the space. Most often, this

67 The parser and postprocessor for intermediate output can be found in the file
groff-source-dir/src/libs/libdriver/input.cpp.



File formats -324-

happens when variable-length command names, arguments, argument lists, or command
clusters meet. Commands and arguments with a known, fixed length need not be sepa-
rated by syntactical space.

A line break is a syntactical element, too. Every command argument can be followed by
whitespace, a comment, or a newline character. Thus a syntactical line break is defined to
consist of optional syntactical space that is optionally followed by a comment, and a new-
line character.

The normal commands, those for positioning and text, consist of a single letter taking a
fixed number of arguments. For historical reasons, the parser allows stacking of such
commands on the same line, but fortunately, in gtroff’s intermediate output, every com-
mand with at least one argument is followed by a line break, thus providing excellent read-
ability.

The other commands—those for drawing and device controlling—have a more complicated
structure; some recognize long command names, and some take a variable number of ar-
guments. So all ‘D’ and ‘x’ commands were designed to request a syntactical line break af-
ter their last argument. Only one command, ‘x X’, has an argument that can stretch over
several lines; all other commands must have all of their arguments on the same line as the
command, i.e., the arguments may not be split by a line break.

Empty lines (these are lines containing only space and/or a comment), can occur every-
where. They are just ignored.

8.1.1.2. Argument Units

Some commands take integer arguments that are assumed to represent values in a mea-
surement unit, but the letter for the corresponding scale indicator is not written with the out-
put command arguments. Most commands assume the scale indicator ‘u’, the basic unit of
the device, some use ‘z’, the scaled point unit of the device, while others, such as the color
commands, expect plain integers.

Single characters can have the eighth bit set, as can the names of fonts and special char-
acters. The names of characters and fonts can be of arbitrary length. A character that is
to be printed is always in the current font.

A string argument is always terminated by the next whitespace character (space, tab, or
newline); an embedded ‘#’ character is regarded as part of the argument, not as the begin-
ning of a comment command. An integer argument is already terminated by the next non-
digit character, which then is regarded as the first character of the next argument or com-
mand.

8.1.1.3. Document Parts

A correct intermediate output document consists of two parts, the prologue and the body .

The task of the prologue is to set the general device parameters using three exactly speci-
fied commands. gtroff’s prologue is guaranteed to consist of the following three lines (in
that order):

x T device

x res n h v

x init



File formats -325-

with the arguments set as outlined in Device Control Commands. The parser for the inter-
mediate output format is able to interpret additional whitespace and comments as well
even in the prologue.

The body is the main section for processing the document data. Syntactically, it is a se-
quence of any commands different from the ones used in the prologue. Processing is ter-
minated as soon as the first ‘x stop’ command is encountered; the last line of any gtroff

intermediate output always contains such a command.

Semantically, the body is page oriented. A new page is started by a ‘p’ command. Posi-
tioning, writing, and drawing commands are always done within the current page, so they
cannot occur before the first ‘p’ command. Absolute positioning (by the ‘H’ and ‘V’ com-
mands) is done relative to the current page; all other positioning is done relative to the cur-
rent location within this page.

8.1.2. Command Reference

This section describes all intermediate output commands, both from AT&T troff as well
as the gtroff extensions.

8.1.2.1. Comment Command

#anything<end of line>
A comment. Ignore any characters from the ‘#’ character up to the next newline
character.

This command is the only possibility for commenting in the intermediate output.
Each comment can be preceded by arbitrary syntactical space; every command
can be terminated by a comment.

8.1.2.2. Simple Commands

The commands in this subsection have a command code consisting of a single character,
taking a fixed number of arguments. Most of them are commands for positioning and text
writing. These commands are tolerant of whitespace. Optionally, syntactical space can be
inserted before, after, and between the command letter and its arguments. All of these
commands are stackable; i.e., they can be preceded by other simple commands or fol-
lowed by arbitrary other commands on the same line. A separating syntactical space is
only necessary when two integer arguments would clash or if the preceding argument
ends with a string argument.

C xxx<whitespace>
Print a special character named xxx . The trailing syntactical space or line
break is necessary to allow glyph names of arbitrary length. The glyph is
printed at the current print position; the glyph’s size is read from the font file.
The print position is not changed.

c g Print glyph g at the current print position;68 the glyph’s size is read from the font
file. The print position is not changed.

68 ‘c’ is actually a misnomer since it outputs a glyph.



File formats -326-

f n Set font to font number n (a non-negative integer).

H n Move right to the absolute vertical position n (a non-negative integer in basic
units ‘u’ relative to left edge of current page.

h n Move n (a non-negative integer) basic units ‘u’ horizontally to the right. The
AT&T troff manual allows negative values for n also, but GNU troff doesn’t
use them.

m color-scheme [component ...]

Set the color for text (glyphs), line drawing, and the outline of graphic objects
using different color schemes; the analogous command for the filling color of
graphic objects is ‘DF’. The color components are specified as integer argu-
ments between 0 and 65536. The number of color components and their mean-
ing vary for the different color schemes. These commands are generated by
gtroff’s escape sequence \m. No position changing. These commands are a
gtroff extension.

mc cyan magenta yellow

Set color using the CMY color scheme, having the 3 color compo-
nents cyan, magenta, and yellow .

md Set color to the default color value (black in most cases). No compo-
nent arguments.

mg gray Set color to the shade of gray given by the argument, an integer be-
tween 0 (black) and 65536 (white).

mk cyan magenta yellow black

Set color using the CMYK color scheme, having the 4 color compo-
nents cyan, magenta, yellow , and black .

mr red green blue

Set color using the RGB color scheme, having the 3 color compo-
nents red , green, and blue.

N n Print glyph with index n (a non-negative integer) of the current font. This com-
mand is a gtroff extension.

n b a Inform the device about a line break, but no positioning is done by this com-
mand. In AT&T troff, the integer arguments b and a informed about the space
before and after the current line to make the intermediate output more human
readable without performing any action. In groff, they are just ignored, but they
must be provided for compatibility reasons.

p n Begin a new page in the output. The page number is set to n. This page is
completely independent of pages formerly processed even if those have the
same page number. The vertical position on the output is automatically set to 0.
All positioning, writing, and drawing is always done relative to a page, so a ‘p’
command must be issued before any of these commands.



File formats -327-

s n Set point size to n scaled points (this is unit ‘z’). AT&T troff used the unit
points (‘p’) instead. See Output Language Compatibility.

t xxx<whitespace>
t xxx dummy-arg<whitespace>

Print a word, i.e., a sequence of characters xxx representing output glyphs
which names are single characters, terminated by a space character or a line
break; an optional second integer argument is ignored (this allows the formatter
to generate an even number of arguments). The first glyph should be printed at
the current position, the current horizontal position should then be increased by
the width of the first glyph, and so on for each glyph. The widths of the glyphs
are read from the font file, scaled for the current point size, and rounded to a
multiple of the horizontal resolution. Special characters cannot be printed using
this command (use the ‘C’ command for special characters). This command is a
gtroff extension; it is only used for devices whose DESC file contains the tcom-

mand keyword (see DESC File Format).

u n xxx<whitespace>
Print word with track kerning. This is the same as the ‘t’ command except that
after printing each glyph, the current horizontal position is increased by the sum
of the width of that glyph and n (an integer in basic units ‘u’). This command is
a gtroff extension; it is only used for devices whose DESC file contains the
tcommand keyword (see DESC File Format).

V n Move down to the absolute vertical position n (a non-negative integer in basic
units ‘u’) relative to upper edge of current page.

v n Move n basic units ‘u’ down (n is a non-negative integer). The AT&T troff

manual allows negative values for n also, but GNU troff doesn’t use them.

w Describe an adjustable space. This performs no action; it is present for docu-
mentary purposes. The spacing itself must be performed explicitly by a move
command.

8.1.2.3. Graphics Commands

Each graphics or drawing command in the intermediate output starts with the letter ‘D’, fol-
lowed by one or two characters that specify a subcommand; this is followed by a fixed or
variable number of integer arguments that are separated by a single space character. A ‘D’
command may not be followed by another command on the same line (apart from a com-
ment), so each ‘D’ command is terminated by a syntactical line break.

gtroff output follows the classical spacing rules (no space between command and sub-
command, all arguments are preceded by a single space character), but the parser allows
optional space between the command letters and makes the space before the first argu-
ment optional. As usual, each space can be any sequence of tab and space characters.

Some graphics commands can take a variable number of arguments. In this case, they
are integers representing a size measured in basic units ‘u’. The arguments called h1, h2 ,
..., hn stand for horizontal distances where positive means right, negative left. The argu-
ments called v1, v2 , ..., vn stand for vertical distances where positive means down, nega-
tive up. All these distances are offsets relative to the current location.



File formats -328-

Each graphics command directly corresponds to a similar gtroff \D escape sequence.
See Drawing Requests.

Unknown ‘D’ commands are assumed to be device-specific. Its arguments are parsed as
strings; the whole information is then sent to the postprocessor.

In the following command reference, the syntax element <line break> means a syntactical
line break as defined above.

D˜ h1 v1 h2 v2 ... hn vn<line break>
Draw B-spline from current position to offset (h1,v1), then to offset (h2 ,v2 ), if
given, etc. up to (hn,vn). This command takes a variable number of argument
pairs; the current position is moved to the terminal point of the drawn curve.

Da h1 v1 h2 v2<line break>
Draw arc from current position to (h1,v1)+(h2 ,v2 ) with center at (h1,v1); then
move the current position to the final point of the arc.

DC d<line break>
DC d dummy-arg<line break>

Draw a solid circle using the current fill color with diameter d (integer in basic
units ‘u’) with leftmost point at the current position; then move the current posi-
tion to the rightmost point of the circle. An optional second integer argument is
ignored (this allows the formatter to generate an even number of arguments).
This command is a gtroff extension.

Dc d<line break>
Draw circle line with diameter d (integer in basic units ‘u’) with leftmost point at
the current position; then move the current position to the rightmost point of the
circle.

DE h v<line break>
Draw a solid ellipse in the current fill color with a horizontal diameter of h and a
vertical diameter of v (both integers in basic units ‘u’) with the leftmost point at
the current position; then move to the rightmost point of the ellipse. This com-
mand is a gtroff extension.

De h v<line break>
Draw an outlined ellipse with a horizontal diameter of h and a vertical diameter
of v (both integers in basic units ‘u’) with the leftmost point at current position;
then move to the rightmost point of the ellipse.

DF color-scheme [component ...]<line break>
Set fill color for solid drawing objects using different color schemes; the analo-
gous command for setting the color of text, line graphics, and the outline of
graphic objects is ‘m’. The color components are specified as integer arguments
between 0 and 65536. The number of color components and their meaning
vary for the different color schemes. These commands are generated by
gtroff’s escape sequences ‘\D’F ...’’ and \M (with no other corresponding
graphics commands). No position changing. This command is a gtroff exten-
sion.



File formats -329-

DFc cyan magenta yellow<line break>
Set fill color for solid drawing objects using the CMY color scheme,
having the 3 color components cyan, magenta, and yellow .

DFd<line break>
Set fill color for solid drawing objects to the default fill color value
(black in most cases).  No component arguments.

DFg gray<line break>
Set fill color for solid drawing objects to the shade of gray given by
the argument, an integer between 0 (black) and 65536 (white).

DFk cyan magenta yellow black<line break>
Set fill color for solid drawing objects using the CMYK color scheme,
having the 4 color components cyan, magenta, yellow , and black .

DFr red green blue<line break>
Set fill color for solid drawing objects using the RGB color scheme,
having the 3 color components red , green, and blue.

Df n<line break>
The argument n must be an integer in the range -32767 to 32767.

0 ≤ n ≤ 1000
Set the color for filling solid drawing objects to a shade of gray, where
0 corresponds to solid white, 1000 (the default) to solid black, and
values in between to intermediate shades of gray; this is obsoleted
by command ‘DFg’.

n < 0 or n > 1000
Set the filling color to the color that is currently being used for the text
and the outline, see command ‘m’. For example, the command se-
quence

mg 0 0 65536

Df -1

sets all colors to blue.

No position changing.  This command is a gtroff extension.

Dl h v<line break>
Draw line from current position to offset (h,v ) (integers in basic units ‘u’); then
set current position to the end of the drawn line.

Dp h1 v1 h2 v2 ... hn vn<line break>
Draw a polygon line from current position to offset (h1,v1), from there to offset
(h2 ,v2 ), etc. up to offset (hn,vn), and from there back to the starting position.
For historical reasons, the position is changed by adding the sum of all argu-
ments with odd index to the actual horizontal position and the even ones to the
vertical position. Although this doesn’t make sense it is kept for compatibility.
This command is a gtroff extension.



File formats -330-

DP h1 v1 h2 v2 ... hn vn<line break>
Draw a solid polygon in the current fill color rather than an outlined polygon, us-
ing the same arguments and positioning as the corresponding ‘Dp’ command.
This command is a gtroff extension.

Dt n<line break>
Set the current line thickness to n (an integer in basic units ‘u’) if n>0; if n=0 se-
lect the smallest available line thickness; if n<0 set the line thickness propor-
tional to the point size (this is the default before the first ‘Dt’ command was
specified). For historical reasons, the horizontal position is changed by adding
the argument to the actual horizontal position, while the vertical position is not
changed. Although this doesn’t make sense it is kept for compatibility. This
command is a gtroff extension.

8.1.2.4. Device Control Commands

Each device control command starts with the letter ‘x’, followed by a space character (op-
tional or arbitrary space or tab in gtroff) and a subcommand letter or word; each argu-
ment (if any) must be preceded by a syntactical space. All ‘x’ commands are terminated
by a syntactical line break; no device control command can be followed by another com-
mand on the same line (except a comment).

The subcommand is basically a single letter, but to increase readability, it can be written as
a word, i.e., an arbitrary sequence of characters terminated by the next tab, space, or new-
line character. All characters of the subcommand word but the first are simply ignored.
For example, gtroff outputs the initialization command ‘x i’ as ‘x init’ and the resolu-
tion command ‘x r’ as ‘x res’.

In the following, the syntax element <line break> means a syntactical line break (see Sep-
aration).

xF name<line break>
The ‘F’ stands for Filename.

Use name as the intended name for the current file in error reports. This is use-
ful for remembering the original file name when gtroff uses an internal piping
mechanism. The input file is not changed by this command. This command is
a gtroff extension.

xf n s<line break>
The ‘f’ stands for font .

Mount font position n (a non-negative integer) with font named s (a text word).
See Font Positions.

xH n<line break>
The ‘H’ stands for Height .

Set glyph height to n (a positive integer in scaled points ‘z’). AT&T troff uses
the unit points (‘p’) instead.  See Output Language Compatibility.

xi<line break>
The ‘i’ stands for init .

Initialize device. This is the third command of the prologue.



File formats -331-

xp<line break>
The ‘p’ stands for pause.

Parsed but ignored.  The AT&T troff manual documents this command as

pause device, can be restarted

but GNU troff output drivers do nothing with this command.

xr n h v<line break>
The ‘r’ stands for resolution.

Resolution is n, while h is the minimal horizontal motion, and v the minimal ver-
tical motion possible with this device; all arguments are positive integers in ba-
sic units ‘u’ per inch. This is the second command of the prologue.

xS n<line break>
The ‘S’ stands for Slant .

Set slant to n (an integer in basic units ‘u’).

xs<line break>
The ‘s’ stands for stop.

Terminates the processing of the current file; issued as the last command of any
intermediate troff output.

xt<line break>
The ‘t’ stands for trailer .

Generate trailer information, if any. In GNU troff, this is ignored.

xT xxx<line break>
The ‘T’ stands for Typesetter .

Set the name of the output driver to xxx , a sequence of non-whitespace charac-
ters terminated by whitespace. The possible names correspond to those of
groff’s -T option. This is the first command of the prologue.

xu n<line break>
The ‘u’ stands for underline.

Configure underlining of spaces. If n is 1, start underlining of spaces; if n is 0,
stop underlining of spaces. This is needed for the cu request in nroff mode and
is ignored otherwise. This command is a gtroff extension.

xX anything<line break>
The ‘x’ stands for X-escape.

Send string anything uninterpreted to the device. If the line following this com-
mand starts with a ‘+’ character this line is interpreted as a continuation line in
the following sense. The ‘+’ is ignored, but a newline character is sent instead
to the device, the rest of the line is sent uninterpreted. The same applies to all
following lines until the first character of a line is not a ‘+’ character. This com-
mand is generated by the gtroff escape sequence \X. The line-continuing fea-
ture is a gtroff extension.



File formats -332-

8.1.2.5. Obsolete Command

In AT&T troff output, the writing of a single glyph is mostly done by a very strange com-
mand that combines a horizontal move and a single character giving the glyph name. It
doesn’t have a command code, but is represented by a 3-character argument consisting of
exactly 2 digits and a character.

dd g Move right dd (exactly two decimal digits) basic units ‘u’, then print glyph g (rep-
resented as a single character).

In GNU troff, arbitrary syntactical space around and within this command is
allowed. Only when a preceding command on the same line ends with an argu-
ment of variable length is a separating space obligatory. In AT&T troff, large
clusters of these and other commands are used, mostly without spaces; this
made such output almost unreadable.

For modern high-resolution devices, this command does not make sense because the
width of the glyphs can become much larger than two decimal digits. In gtroff, this is
only used for the devices X75, X75-12, X100, and X100-12. For other devices, the com-
mands ‘t’ and ‘u’ provide a better functionality.

8.1.3. Intermediate Output Examples

This section presents the intermediate output generated from the same input for three dif-
ferent devices. The input is the sentence ‘hell world’ fed into gtroff on the command
line.

High-resolution device ps

This is the standard output of gtroff if no -T option is given.

shell> echo "hell world" | groff -Z -T ps

x T ps

x res 72000 1 1

x init

p1

x font 5 TR

f5

s10000

V12000

H72000

thell

wh2500

tw

H96620

torld

n12000 0

x trailer

V792000

x stop

This output can be fed into grops to get its representation as a POSTSCRIPT file.



File formats -333-

Low-resolution device latin1

This is similar to the high-resolution device except that the positioning is done at
a minor scale. Some comments (lines starting with ‘#’) were added for clarifica-
tion; they were not generated by the formatter.

shell> echo "hell world" | groff -Z -T latin1

# prologue

x T latin1

x res 240 24 40

x init

# begin a new page

p1

# font setup

x font 1 R

f1

s10

# initial positioning on the page

V40

H0

# write text 'hell'

thell

# inform about space, and issue a horizontal jump

wh24

# write text 'world'

tworld

# announce line break, but do nothing because...

n40 0

# ...the end of the document has been reached

x trailer

V2640

x stop

This output can be fed into grotty to get a formatted text document.

AT&T troff output
Since a computer monitor has a much lower resolution than modern printers,
the intermediate output for X11 devices can use the jump-and-write command
with its 2-digit displacements.

shell> echo "hell world" | groff -Z -T X100

x T X100

x res 100 1 1

x init

p1

x font 5 TR

f5

s10

V16

H100



File formats -334-

# write text with jump-and-write commands

ch07e07l03lw06w11o07r05l03dh7

n16 0

x trailer

V1100

x stop

This output can be fed into xditview or gxditview for displaying in X.

Due to the obsolete jump-and-write command, the text clusters in the AT&T
troff output are almost unreadable.

8.1.4. Output Language Compatibility

The intermediate output language of AT&T troff was first documented in A Typesetter-in-
dependent TROFF , by Brian Kernighan, and by 1992 the AT&T troff manual was up-
dated to incorprate a description of it.

The GNU troff intermediate output format is compatible with this specification except for
the following features.

• The classical quasi-device independence is not yet implemented.

• The old hardware was very different from what we use today. So the groff de-
vices are also fundamentally different from the ones in AT&T troff. For example,
the AT&T POSTSCRIPT device is called post and has a resolution of only 720 units
per inch, suitable for printers 20 years ago, while groff’s ps device has a resolu-
tion of 72000 units per inch. Maybe, by implementing some rescaling mechanism
similar to the classical quasi-device independence, groff could emulate AT&T’s
post device.

• The B-spline command ‘D˜’ is correctly handled by the intermediate output parser,
but the drawing routines aren’t implemented in some of the postprocessor pro-
grams.

• The argument of the commands ‘s’ and ‘x H’ has the implicit unit scaled point ‘z’
in gtroff, while AT&T troff has point (‘p’). This isn’t an incompatibility but a
compatible extension, for both units coincide for all devices without a sizescale
parameter in the DESC file, including all postprocessors from AT&T and groff’s
text devices. The few groff devices with a sizescale parameter either do not
exist for AT&T troff, have a different name, or seem to have a different resolu-
tion. So conflicts are very unlikely.

• The position changing after the commands ‘Dp’, ‘DP’, and ‘Dt’ is illogical, but as old
versions of gtroff used this feature it is kept for compatibility reasons.

8.2. Device and Font Files

The GNU troff font format is a rough superset of the AT&T device-independent troff
font format. In distinction to the AT&T implementation, GNU troff lacks a binary format;
all files are text files.69 The font files for device name are stored in a directory devname.
There are two types of file: a device description file called DESC and for each font f a font
file called f.

69 Plan 9 troff has also abandoned the binary format.



File formats -335-

8.2.1. DESC File Format

The DESC file can contain the following types of line. Except for the charset keyword,
which must come last (if at all), the order of the lines is not important. Later entries in the
file, however, override previous values.

charset This line and everything following in the file are ignored. It is allowed for the
sake of backwards compatibility.

family fam

The default font family is fam.

fonts n F1 F2 F3 ... Fn

Fonts F1 ... Fn are mounted in the font positions m+1, ..., m+n where m is the
number of styles. This command may extend over more than one line. A font
name of 0 means no font is mounted on the corresponding font position.

hor n The horizontal resolution is n basic units. All horizontal quantities are rounded
to be multiples of this value.

image_generator string

Needed for grohtml only. It specifies the program to generate PNG images
from POSTSCRIPT input. Under GNU/Linux this is usually gs but under other sys-
tems (notably cygwin) it might be set to another name.

paperlength n

The physical vertical dimension of the output medium in basic units. This isn’t
used by troff itself but by output devices. Deprecated. Use papersize in-
stead.

papersize string ...

Select a paper size. Valid values for string are the ISO paper types A0–A7,
B0–B7, C0–C7, D0–D7, DL, and the US paper types letter, legal, tabloid,
ledger, statement, executive, com10, and monarch. Case is not significant for
string if it holds predefined paper types. Alternatively, string can be a file name
(e.g. /etc/papersize); if the file can be opened, groff reads the first line and
tests for the above paper sizes. Finally, string can be a custom paper size in
the format length,width (no spaces before and after the comma). Both length
and width must have a unit appended; valid values are ‘i’ for inches, ‘c’ for cen-
timeters, ‘p’ for points, and ‘P’ for picas. Example: 12c,235p. An argument that
starts with a digit is always treated as a custom paper format. papersize sets
both the vertical and horizontal dimension of the output medium.

More than one argument can be specified; groff scans from left to right and
uses the first valid paper specification.

paperwidth n

The physical horizontal dimension of the output medium in basic units. This isn’t
used by troff itself but by output devices. Deprecated. Use papersize in-
stead.



File formats -336-

pass_filenames

Tell gtroff to emit the name of the source file currently being processed. This
is achieved by the intermediate output command ‘F’. Currently, this is only used
by the grohtml output device.

postpro program

Call program as a postprocessor. For example, the line

postpro grodvi

in the file devdvi/DESC makes groff call grodvi if option -Tdvi is given (and -Z
isn’t used).

prepro program

Call program as a preprocessor. Currently, this keyword is used by groff with
option -Thtml or -Txhtml only.

print program

Use program as a spooler program for printing. If omitted, the -l and -L op-
tions of groff are ignored.

res n There are n basic units per inch.

sizes s1 s2 ... sn 0

This means that the device has fonts at s1, s2 , ... sn scaled points. The list of
sizes must be terminated by 0 (this is digit zero). Each si can also be a range
of sizes m–n. The list can extend over more than one line.

sizescale n

The scale factor for point sizes. By default this has a value of 1. One scaled
point is equal to one point/n. The arguments to the unitwidth and sizes com-
mands are given in scaled points. See Fractional Type Sizes.

styles S1 S2 ... Sm

The first m font positions are associated with styles S1 ... Sm.

tcommand This means that the postprocessor can handle the ‘t’ and ‘u’ intermediate out-
put commands.

unicode Indicate that the output device supports the complete Unicode repertoire. Use-
ful only for devices that produce character entities instead of glyphs.

If unicode is present, no charset section is required in the font description files
since the Unicode handling built into groff is used. However, if there are en-
tries in a charset section, they either override the default mappings for those
particular characters or add new mappings (normally for composite characters).

This is used for -Tutf8, -Thtml, and -Txhtml.

unitwidth n

Quantities in the font files are given in basic units for fonts whose point size is
n scaled points.

unscaled_charwidths

Make the font handling module always return unscaled character widths.
Needed for the grohtml device.



File formats -337-

use_charnames_in_special

This command indicates that gtroff should encode special characters inside
special commands. Currently, this is only used by the grohtml output device.
See Postprocessor Access.

vert n The vertical resolution is n basic units. All vertical quantities are rounded to be
multiples of this value.

The res, unitwidth, fonts, and sizes lines are mandatory. Other commands are ignored
by gtroff but may be used by postprocessors to store arbitrary information about the de-
vice in the DESC file.

GNU troff recognizes but completely ignores the obsolete keywords spare1, spare2, and
biggestfont.

8.2.2. Font File Format

A font file, also (and probably better) called a font description file, has two sections. The
first section is a sequence of lines each containing a sequence of blank-delimited words;
the first word in the line is a key, and subsequent words give a value for that key.

name f The name of the font is f .

spacewidth n

The normal width of a space is n.

slant n The glyphs of the font have a slant of n degrees. (Positive means forward.)

ligatures lig1 lig2 ... lign [0]

Glyphs lig1, lig2 , ..., lign are ligatures; possible ligatures are ‘ff’, ‘fi’, ‘fl’, ‘ffi’
and ‘ffl’. For backwards compatibility, the list of ligatures may be terminated
with a 0.  The list of ligatures may not extend over more than one line.

special The font is special ; this means that when a glyph is requested that is not
present in the current font, it is searched for in any special fonts that are
mounted.

Other commands are ignored by gtroff but may be used by postprocessors to store arbi-
trary information about the font in the font file.

The first section can contain comments, which start with the ‘#’ character and extend to the
end of a line.

The second section contains one or two subsections. It must contain a charset subsec-
tion and it may also contain a kernpairs subsection. These subsections can appear in
any order. Each subsection starts with a word on a line by itself.

The word charset starts the character set subsection.70 The charset line is followed by a
sequence of lines. Each line gives information for one glyph. A line comprises a number
of fields separated by blanks or tabs. The format is

name metrics type code [entity-name] [– comment ]

70 This keyword is misnamed since it starts a list of ordered glyphs, not characters.



File formats -338-

name identifies the glyph name:71 if name is a single character c then it corresponds to
the gtroff input character c ; if it is of the form ‘\c’ where c is a single character, then it
corresponds to the special character \[c]; otherwise it corresponds to the special charac-
ter ‘\[name]’. If it is exactly two characters xx it can be entered as ‘\(xx’. Single-letter
special characters can’t be accessed as ‘\c’; the only exception is ‘\-’, which is identical to
\[-].

gtroff supports 8-bit input characters; however some utilities have difficulties with eight-
bit characters. For this reason, there is a convention that the entity name ‘charn’ is equiva-
lent to the single input character whose code is n. For example, ‘char163’ would be equiv-
alent to the character with code 163, which is the pounds sterling sign in the ISO Latin-1
character set. You shouldn’t use ‘charn’ entities in font description files since they are re-
lated to input, not output. Otherwise, you get hard-coded connections between input and
output encoding, which prevents use of different (input) character sets.

The name ‘—’ is special and indicates that the glyph is unnamed; such glyphs can only be
used by means of the \N escape sequence in gtroff.

The type field gives the glyph type:

1 the glyph has a descender, for example, ‘p’;

2 the glyph has an ascender, for example, ‘b’;

3 the glyph has both an ascender and a descender, for example, ‘(’.

The code field gives the code that the postprocessor uses to print the glyph. The glyph
can also be input to gtroff using this code by means of the \N escape sequence. code
can be any integer. If it starts with ‘0’ it is interpreted as octal; if it starts with ‘0x’ or ‘0X’ it is
interpreted as hexadecimal. Note, however, that the \N escape sequence only accepts a
decimal integer.

The entity-name field gives an ASCII string identifying the glyph that the postprocessor
uses to print the gtroff glyph name. This field is optional and has been introduced so
that the grohtml device driver can encode its character set. For example, the glyph
‘\[Po]’ is represented as ‘&pound;’ in HTML 4.0.

Anything on the line after the entity-name field resp. after ‘–’ is ignored.

The metrics field has the form:

width[,height [,depth[,italic-correction [,left-italic-correction[,subscript-correc-
tion]]]]]

There must not be any spaces between these subfields (it has been split here into two
lines for better legibility only). Missing subfields are assumed to be 0. The subfields are
all decimal integers. Since there is no associated binary format, these values are not re-
quired to fit into a variable of type ‘char’ as they are in AT&T device-independent troff.
The width subfield gives the width of the glyph. The height subfield gives the height of the
glyph (upwards is positive); if a glyph does not extend above the baseline, it should be
given a zero height, rather than a negative height. The depth subfield gives the depth of
the glyph, that is, the distance from the baseline to the lowest point below the baseline to
which the glyph extends (downwards is positive); if a glyph does not extend below the
baseline, it should be given a zero depth, rather than a negative depth. The italic-

71 The distinction between input, characters, and output, glyphs, is not clearly separated in the terminology
of groff; for example, the char request should be called glyph since it defines an output entity.



File formats -339-

correction subfield gives the amount of space that should be added after the glyph when it
is immediately to be followed by a glyph from a roman font. The left-italic-correction sub-
field gives the amount of space that should be added before the glyph when it is immedi-
ately to be preceded by a glyph from a roman font. The subscript-correction gives the
amount of space that should be added after a glyph before adding a subscript. This
should be less than the italic correction.

A line in the charset section can also have the format

name "

This indicates that name is just another name for the glyph mentioned in the preceding
line.

The word kernpairs starts the kernpairs section. This contains a sequence of lines of the
form:

c1 c2 n

This means that when glyph c1 appears next to glyph c2 the space between them should
be increased by n. Most entries in the kernpairs section have a negative value for n.



Installation -340-

9. Installation



Copying This Manual -341-

10. Copying This Manual

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http:/
/fsf.org/ Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

1 PREAMBLE The purpose of this License is to make a manual, textbook, or other func-
tional and useful document free in the sense of freedom: to assure everyone the effec-
tive freedom to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public Li-
cense, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals provid-
ing the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License principally for works whose pur-
pose is instruction or reference.

2 APPLICABILITY AND DEFINITIONS This License applies to any manual or other work,
in any medium, that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions stated herein.
The “Document”, below, refers to any such manual or work. Any member of the public
is a licensee, and is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a por-
tion of it, either copied verbatim, or with modifications and/or translated into another lan-
guage.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall di-
rectly within that overall subject. (Thus, if the Document is in part a textbook of mathemat-
ics, a Secondary Section may not explain any mathematics.) The relationship could be a
matter of historical connection with the subject or with related matters, or of legal, commer-
cial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released un-
der this License. If a section does not fit the above definition of Secondary then it is not al-
lowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25

http://fsf.org/
http://fsf.org/


Copying This Manual -342-

words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subse-
quent modification by readers is not Transparent. An image format is not Transparent if
used for any substantial amount of text. A copy that is not “Transparent” is called
“Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque for-
mats include proprietary formats that can be read and edited only by proprietary word pro-
cessors, SGML or XML for which the DTD and/or processing tools are not generally avail-
able, and the machine-generated HTML, PostScript or PDF produced by some word pro-
cessors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the text
near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as “Ac-
knowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of
such a section when you modify the Document means that it remains a section “Entitled
XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be in-
cluded by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

3 VERBATIM COPYING You may copy and distribute the Document in any medium, ei-
ther commercially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or control the reading or further copy-
ing of the copies you make or distribute. However, you may accept compensation in
exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.



Copying This Manual -343-

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

4 COPYING IN QUANTITY If you publish printed copies (or copies in media that com-
monly have printed covers) of the Document, numbering more than 100, and the Docu-
ment’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they pre-
serve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto ad-
jacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy (di-
rectly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an up-
dated version of the Document.

5 MODIFICATIONS You may copy and distribute a Modified Version of the Document un-
der the conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to who-
ever possesses a copy of it. In addition, you must do these things in the Modified Ver-
sion:

A Use in the Title Page (and on the covers, if any) a title distinct from that of the Docu-
ment, and from those of previous versions (which should, if there were any, be listed in
the History section of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B List on the Title Page, as authors, one or more persons or entities responsible for au-
thorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C State on the Title page the name of the publisher of the Modified Version, as the pub-
lisher.



Copying This Manual -344-

D Preserve all the copyright notices of the Document.

E Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F Include, immediately after the copyright notices, a license notice giving the public per-
mission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

G Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H Include an unaltered copy of this License.

I Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the previous sentence.

J Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the Doc-
ument for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contribu-
tor acknowledgements and/or dedications given therein.

L Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O Preserve any Warranty Disclaimers. If the Modified Version includes new front-matter
sections or appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all of these sec-
tions as invariant. To do this, add their titles to the list of Invariant Sections in the Modi-
fied Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Ver-
sion. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by
(or through arrangements made by) any one entity. If the Document already includes a
cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.



Copying This Manual -345-

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

6 COMBINING DOCUMENTS You may combine the Document with other documents re-
leased under this License, under the terms defined in section 4 above for modified ver-
sions, provided that you include in the combination all of the Invariant Sections of all of
the original documents, unmodified, and list them all as Invariant Sections of your com-
bined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical In-
variant Sections may be replaced with a single copy. If there are multiple Invariant Sec-
tions with the same name but different contents, make the title of each such section unique
by adding at the end of it, in parentheses, the name of the original author or publisher of
that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sec-
tions Entitled “Endorsements.”

7 COLLECTIONS OF DOCUMENTS You may make a collection consisting of the Docu-
ment and other documents released under this License, and replace the individual
copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of
each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually un-
der this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

8 AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its
derivatives with other separate and independent documents or works, in or on a vol-
ume of a storage or distribution medium, is called an “aggregate” if the copyright result-
ing from the compilation is not used to limit the legal rights of the compilation’s users
beyond what the individual works permit. When the Document is included in an aggre-
gate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

9 TRANSLATION Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the li-
cense notices in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the



Copying This Manual -346-

original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

10
TERMINATION You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, or distribute it is void, and will automatically terminate your rights under this
License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to no-
tify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been termi-
nated and not permanently reinstated, receipt of a copy of some or all of the same material
does not give you any rights to use it.

11
FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish
new, revised versions of the GNU Free Documentation License from time to time. Such
new versions will be similar in spirit to the present version, but may differ in detail to ad-
dress new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies to
it, you have the option of following the terms and conditions either of that specified version
or of any later version that has been published (not as a draft) by the Free Software Foun-
dation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

12
RELICENSING “Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also provides promi-
nent facilities for anybody to edit those works. A public wiki that anybody can edit is an
example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained
in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

http://www.gnu.org/copyleft/


Copying This Manual -347-

“Incorporate” means to publish or republish a Document, in whole or in part, as part of an-
other Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for re-
licensing.



Copying This Manual -348-

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C)  year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

@bye=18557
@contents=509
@documentencoding=17
@documentlanguage=16
@end=507, 514, 541, 10552, 10634, 10660, 10705
@finalout=22
@footnotestyle=13
@ifnottex=511, 539
@iftex=10624, 10650, 10695
@noindent=1008, 1521, 1578, 1641, 1650, 1662, 1677, 1713, 1723,
1778, 1785, 1806, 1883, 1902, 1964, 2193, 3206, 3246, 3542, 3557,
4774, 4850, 4876, 4917, 5007, 5337, 5452, 5589, 5684, 5857, 5883,
5911, 5919, 5966, 6007, 6189, 6220, 6227, 6250, 6257, 6399, 6540,
6767, 6774, 7008, 7061, 7201, 7209, 7249, 7459, 7466, 7752, 7773,
7857, 7983, 7994, 8019, 8028, 8103, 8110, 8188, 8369, 8408, 8493,
8502, 8538, 8551, 8576, 8663, 8858, 8877, 9213, 9228, 9507, 9530,
9726, 9735, 9765, 9808, 9942, 10072, 10263, 10285, 10374, 11140,
11214, 11234, 11247, 11254, 11271, 11513, 11637, 11663, 11700,
11892, 11912, 11986, 12021, 12061, 12690, 12718, 12768, 13011,
13609, 13665, 13745, 14043, 14238, 14296, 14377, 14458, 14697,
14748, 14862, 14880, 14911, 14920, 14944, 15056, 15140, 15187,
15484, 15491, 15625, 16129, 16220, 16540, 16547, 16760, 17095,
17099, 17332, 17377, 17410, 17610, 17782, 17851, 17880, 17892
@opindex=5364, 5365, 5366, 5367, 5368, 5379, 5380, 5381, 5382,
5383, 5384, 5392, 5404, 5405, 5406, 5440, 5441, 5466, 5467
@setchapternewpage=12
@setfilename=10



Copying This Manual -349-

@smallbook=20
@stindex=11073
@tindex=1379, 1384, 1400, 1411, 1417, 1422, 1423, 1432, 1436,
1444, 1489, 1564
@titlepage=496
@top=513
@vskip=505
man:.de FONT=2475
man:FONT=2475, 2475, 2475, 2475, 2475, 2475, 2475
man:SH=2431, 2431, 2431, 2431, 2431, 2431, 2431, 2475, 2475, 2475,
2475, 2475, 2475, 2475, 2475, 2475, 2475, 15714, 15714, 15714,
15714, 15714, 15714, 15714, 15714, 15737, 15737, 15737, 15737,
15737, 15737, 15737, 15761, 15761, 15761, 15761, 15761, 15761,
15761, 15761, 15761, 15792, 15792, 15792, 15792, 15792, 15792,
15792, 15792, 15792, 15792, 15792, 15792, 15792, 15829, 15829,
15829, 15829, 15829, 15829, 15829, 15852, 15852, 15852, 15852,
15852, 15852, 15852, 15852, 15852, 15875, 15875, 15875, 15875,
15875, 15897, 15897, 15897, 15897, 15897
man:hw=2475
man:mso=15875



B Request Index -350-

B Request Index

- a -

ab, 216
ad, 122
af, 118
aln, 117
als, 174
am, 181
am1, 181
ami, 181
ami1, 181
as, 172
as1, 172
asciify, 202

- b -

backtrace, 217
bd, 162
blm, 197
box, 200
boxa, 200
bp, 147
br, 121
break, 179
brp, 123

- c -

c2, 138
cc, 138
ce, 124
cf, 208
cflags, 157
ch, 194
char, 158
chop, 173
class, 160
close, 210
color, 206
composite, 156
continue, 179
cp, 220
cs, 162
cu, 162

- d -

da, 199
de, 179
de1, 179
defcolor, 206

dei, 179
dei1, 179
device, 211
devicem, 211
di, 199
do, 220
ds, 71, 169
ds1, 169
dt, 196

- e -

ec, 138
ecr, 138
ecs, 138
el, 177
em, 197
eo, 138
ev, 204
evc, 204
ex, 217

- f -

fam, 151
fc, 137
fchar, 158
fcolor, 207
fi, 122
fl, 217
fp, 152
fschar, 158
fspecial, 160
ft, 149, 153
ftr, 150
fzoom, 150

- g -

gcolor, 206

- h -

hc, 127
hcode, 130
hla, 131
hlm, 131
hpf, 129
hpfa, 129
hpfcode, 129
hw, 126
hy, 127
hym, 131



B Request Index -351-

hys, 131

- i -

ie, 177
if, 176
ig, 114
in, 143
it, 196
itc, 196

- k -

kern, 163

- l -

lc, 137
length, 173
lf, 216
lg, 163
linetabs, 136
ll, 144
ls, 133
lsm, 197
lt, 147

- m -

mc, 213
mk, 184
mso, 208

- n -

na, 123
ne, 148
nf, 122
nh, 129
nm, 212
nn, 213
nop, 176
nr, 71, 115, 116, 118
nroff, 142
ns, 133
nx, 208

- o -

open, 210
opena, 210
os, 148
output, 202

- p -

pc, 147

pev, 217
pi, 209
pl, 146
pm, 217
pn, 147
pnr, 217
po, 143
ps, 166
psbb, 214
pso, 207
ptr, 217
pvs, 167

- r -

rchar, 159
rd, 208
return, 182
rfschar, 159
rj, 124
rm, 174
rn, 174
rnn, 117
rr, 117
rs, 133
rt, 184

- s -

schar, 158
shc, 127
shift, 183
sizes, 166
so, 207
sp, 132
special, 160
spreadwarn, 218
ss, 125
stringdown, 173
stringup, 173
sty, 151
substring, 173
sv, 148
sy, 209

- t -

ta, 134
tc, 136
ti, 144
tkf, 163
tl, 146
tm, 216
tm1, 216
tmc, 216
tr, 140
trf, 208



B Request Index -352-

trin, 140
trnt, 141
troff, 142

- u -

uf, 162
ul, 162
unformat, 203

- v -

vpt, 192
vs, 167

- w -

warn, 218
warnscale, 218
wh, 192
while, 178
write, 210
writec, 210
writem, 210



C Escape Index -353-

C Escape Index

\,, 164
\!, 201
\", 114
\#, 114
\$, 182
\$*, 183
\$0, 183
\$@, 183
\$ˆ, 183
\%, 126
\&, 164
\’, 157
\), 165
\*, 169
\-, 157
\., 139
\0, 186
\:, 126
\?, 201
\{, 177
\}, 177
\ˆ, 186
\_, 157
\‘, 157
\{, 177
\|, 186
\˜, 186

- -

\, 155
\\, 139

- a -

\A, 109
\a, 137

- b -

\b, 191
\B, 108

- c -

\c, 145
\C, 156

- d -

\D, 189

\d, 186

- e -

\e, 139
\E, 139

- f -

\f, 149, 153
\F, 151

- g -

\g, 119

- h -

\H, 161
\h, 186

- k -

\k, 187

- l -

\l, 188
\L, 188

- m -

\M, 207
\m, 206

- n -

\n, 117, 118
\N, 156

- o -

\o, 187
\O, 205

- p -

\p, 123

- r -

\R, 115, 116
\r, 186



C Escape Index -354-

\RET, 145

- s -

\S, 161
\s, 166
\SP, 186

- t -

\t, 134

- u -

\u, 186

- v -

\v, 185
\V, 211

- w -

\w, 186

- x -

\X, 211
\x, 133

- y -

\Y, 211

- z -

\Z, 188
\z, 187



E Register Index -355-

E Register Index

$$, 121
%, 147, 147
.$, 182

- . -

.A, 121

.a, 133

.b, 162

.br, 111

.c, 121

.C, 220

.cdp, 204

.ce, 124

.cht, 204

.color, 206

.cp, 220

.csk, 204

.d, 200

.ev, 204

.F, 120

.f, 152

.fam, 151

.fn, 151

.fp, 152

.g, 121

.H, 120

.h, 200

.height, 161

.hla, 131

.hlc, 131

.hlm, 131

.hy, 127

.hym, 131

.hys, 131

.i, 143

.in, 144

.int, 145

.j, 122

.k, 187

.kern, 163

.L, 133

.l, 144

.lg, 163

.linetabs, 136

.ll, 144

.lt, 147

.M, 207

.m, 206

.n, 205

.ne, 195

.nm, 212

.ns, 133

.O, 121

.o, 143

.p, 146

.P, 121

.pe, 195

.pn, 147

.ps, 168

.psr, 168

.pvs, 167

.R, 120

.rj, 124

.s, 166

.slant, 161

.sr, 168

.ss, 125

.sss, 125

.sty, 149

.t, 194

.T, 121

.tabs, 134

.trunc, 195

.u, 122

.U, 120

.V, 120

.v, 167

.vpt, 192

.w, 204

.warn, 218

.x, 121

.y, 121

.Y, 121

.z, 200

.zoom, 150

- c -

c., 121
ct, 186

- d -

DD [ms],   75
dl, 201
dn, 201
dw, 120
dy, 120

- f -

FF [ms],   74
FI [ms],   74
FM [ms],   72
FPD [ms],   74



E Register Index -356-

FPS [ms],   74
FVS [ms],   74

- g -

GROWPS [ms],   73
GS [ms],   94

- h -

HM [ms],   72
HORPHANS [ms],   73
hours, 120
hp, 187
HY [ms],   72

- l -

LL [ms],   72
llx, 214
lly, 214
ln, 121
lsn, 197
lss, 197
LT [ms],   72

- m -

MINGW [ms],   75, 94
minutes, 120
mo, 120

- n -

nl, 148

- o -

opmaxx, 205
opmaxy, 205
opminx, 205
opminy, 205

- p -

PD [ms],   73
PI [ms],   73
PO [ms],   71
PORPHANS [ms],   73
PS [ms],   72
ps4html [grohtml], 321
PSINCR [ms],   73

- q -

QI [ms],   73

- r -

rsb, 186
rst, 186

- s -

sb, 186
seconds, 120
skw, 187
slimit, 218
ssc, 186
st, 186
systat, 209

- u -

urx, 214
ury, 214

- v -

VS [ms],   72

- y -

year, 120
yr, 120



F Macro Index -357-

F Macro Index

1C [ms],   89
2C [ms],   89

- [ -

[ [ms],   87

- ] -

] [ms],   87

- a -

AB [ms],   76
AE [ms],   76
AI [ms],   76
AM [ms],   92, 94
AU [ms],   76

- b -

B [ms],   81
B1 [ms],   87
B2 [ms],   87
BD [ms],   86
BI [ms],   81
BT

[man], 19
[ms], 89

BX [ms],   81

- c -

CD [ms],   86
CT [man],   19
CW

[man], 19
[ms], 81, 94

- d -

DA [ms],   75
DE [ms],   85, 86, 86, 86, 86
De [man],   20
DS [ms],   85, 86, 86, 86, 86
Ds [man],   20

- e -

EE [man],   20
EF [ms],   89
EH [ms],   89
EN [ms],   87

EQ [ms],   87
EX [man],   20

- f -

FE [ms],   88
FS [ms],   88

- g -

G [man],   20
GL [man],   20

- h -

HB [man],   20
HD [ms],   89

- i -

I [ms],   81
ID [ms],   86
IP [ms],   82
IX [ms],   94

- k -

KE [ms],   86, 86
KF [ms],   86
KS [ms],   86

- l -

LD [ms],   85
LG [ms],   81
LP [ms],   77

- m -

MC [ms],   89
MS [man],   20

- n -

ND [ms],   76
NE [man],   20
NH [ms],   79
NL [ms],   81
NT [man],   20

- o -

OF [ms],   89



F Macro Index -358-

OH [ms],   89

- p -

P1 [ms],   75
PE [ms],   87
PN [man],   20
Pn [man],   20
PP [ms],   77
PS [ms],   87
PT

[man], 19
[ms], 89

PX [ms],   91

- q -

QE [ms],   78
QP [ms],   77
QS [ms],   78

- r -

R
[man], 20
[ms], 81

RD [ms],   86
RE [ms],   84
RN [man],   20
RP [ms],   75
RS [ms],   84

- s -

SH [ms],   80
SM [ms],   81

- t -

TA [ms],   85
TB [man],   20
TC [ms],   90
TE [ms],   87
TL [ms],   76
TS [ms],   87

- u -

UL [ms],   81

- v -

VE [man],   21
VS [man],   20

- x -

XA [ms],   90
XE [ms],   90
XP [ms],   78
XS [ms],   90



G String Index -359-

G String Index

, [ms],   92
! [ms],   92
' [ms], 92
* [ms],   88
- [ms],   91
. [ms],   92
3 [ms],   92
8 [ms],   92
: [ms],   92
< [ms],   82
> [ms],   82
? [ms],   92
ˆ [ms],   92
_ [ms],   92
‘ [ms], 92
{ [ms],   82
} [ms],   82
˜ [ms],   92

- . -

.T, [],   169

- a -

ABSTRACT [ms],   91
Ae [ms],   93
ae [ms],   93

- c -

CF [ms],   89
CH [ms],   88

- d -

d- [ms],   93
D- [ms],   93

- f -

FAM [ms],   72
FR [ms],   75

- l -

LF [ms],   89
LH [ms],   88

- m -

MONTH1 [ms],   91
MONTH10 [ms],   91

MONTH11 [ms],   91
MONTH12 [ms],   91
MONTH2 [ms],   91
MONTH3 [ms],   91
MONTH4 [ms],   91
MONTH5 [ms],   91
MONTH6 [ms],   91
MONTH7 [ms],   91
MONTH8 [ms],   91
MONTH9 [ms],   91

- o -

o [ms],   92

- q -

q [ms],   93
Q [ms],   91

- r -

REFERENCES [ms],   91
RF [ms],   89
RH [ms],   88

- s -

SN-DOT [ms],   79
SN-NO-DOT [ms],   79
SN-STYLE [ms],   74, 79

- t -

Th [ms],   92
th [ms],   92
TOC [ms],   91

- u -

U [ms],   91

- v -

v [ms],   92

- w -

www-image-template [grohtml], 321



J Program and File Index -360-

J Program and File Index

- a -

an.tmac, 19

- c -

changebar, 213
col, 316
composite.tmac, 156
cp1047.tmac, 102

- d -

DESC, 149, 152, 153, 154, 156, 160
and use_charnames_in_special, 211
and font mounting,   153
file format, 335

ditroff, 2
dvipdf, 319
dvips, 319

- e -

ec.tmac, 103
eqn, 87

- f -

freeeuro.pfa, 103

- g -

gchem, 5
geqn, 5
ggrn, 5
gpic, 5
grap, 5
grefer, 5
grodvi, 319
groff, 5
grog, 12
gsoelim, 5
gtbl, 5
gtroff, 5

- h -

hyphen.us, 130
hyphenex.us, 130

- l -

latin1.tmac, 102
latin2.tmac, 103
latin5.tmac, 103
latin9.tmac, 103
less, 316

- m -

makeindex, 18
man-old.tmac, 19
man.local, 19
man.tmac, 19
man.ultrix, 19
more, 316

- n -

nrchbar, 213

- p -

papersize.tmac, 12
perl, 210
pic, 87
post-grohtml, 9
pre-grohtml, 9
preconv, 5

- r -

refer, 87

- s -

soelim, 216

- t -

tbl, 87
trace.tmac, 181, 181
troffrc, 8, 12, 130, 131, 142, 143
troffrc-end, 8, 130, 131, 142
tty.tmac, 142

- u -

ul, 316



K Concept Index -361-

K Concept Index

\!

and copy mode, 202
and output request, 202
and trnt, 141
in top-level diversion, 202
incompatibilities with AT&T troff, 222, 223
used as delimiter, 113, 113

\0, used as delimiter, 113
8-bit input,   338

- $ -

\$, when reading text for a macro, 182

- % -

\%

and translations, 140
as delimiter, 113
following \X or \Y, 126
in \X, 211
incompatibilities with AT&T troff, 222
used as delimiter, 113, 113

- & -

\&

and glyph definitions, 158
and translations, 140
as delimiter, 113
at end of sentence, 97
escaping control characters, 111
in \X, 211
incompatibilities with AT&T troff, 222
used as delimiter, 113

- ’ -

\’

and translations, 140
as a comment,   114
at end of sentence, 97, 158
delimiting arguments, 113
incompatibilities with AT&T troff, 222
used as delimiter, 113, 113

- ( -

\(

and translations, 140
as delimiter, 113
starting a two-character identifier, 109, 113

- ) -

)

as delimiter, 113
at end of sentence, 97, 158
in \X, 211
used as delimiter, 113

- * -

\*

and warnings, 219
as delimiter, 113
at end of sentence, 97, 158
incompatibilities with AT&T troff, 220
when reading text for a macro, 182

- + -

+

and page motion,   108
as delimiter, 113

- - -

-

and page motion,   108
and translations, 140
as delimiter, 113
glyph, and cflags, 157
incompatibilities with AT&T troff, 222
used as delimiter, 113, 113

- . -

., as delimiter, 113

.h register, difference to nl, 201

.ps register, in comparison with .psr, 168

.S register, Plan 9 alias for .tabs, 136

.s register, in comparison with .sr, 168

.t register, and diversions, 196

.tabs register, Plan 9 alias (.S), 136

.V register, and vs, 167

- < -

<, as delimiter, 113

- = -

=, as delimiter, 113



K Concept Index -362-

- > -

>, as delimiter, 113

- ? -

\?

and copy mode, 176, 202
in top-level diversion, 202
incompatibilities with AT&T troff, 223
used as delimiter, 113

- @ -

\SP

difference to \˜, 111
incompatibilities with AT&T troff, 222
used as delimiter, 113

\{

incompatibilities with AT&T troff, 222
used as delimiter, 113, 113

\}

and warnings, 219
incompatibilities with AT&T troff, 222
used as delimiter, 113, 113

- [ -

\[

and translations, 140
macro names starting with, and refer, 109
starting an identifier, 109, 113

- ] -

]

as part of an identifier, 109
at end of sentence, 97, 158
ending an identifier, 109, 113
macro names starting with, and refer, 109

- ˆ -

\ˆ
incompatibilities with AT&T troff, 222
used as delimiter, 113

- _ -

\_

and translations, 140
incompatibilities with AT&T troff, 222
used as delimiter, 113, 113

- ‘ -

\‘

and translations, 140
incompatibilities with AT&T troff, 222

used as delimiter, 113, 113

- a -

\A

allowed delimiters, 113
incompatibilities with AT&T troff, 222

\a

and copy mode, 137
and translations, 140
used as delimiter, 113

aborting (ab), 216
absolute position operator (|), 108
accent marks [ms], 91
access of postprocessor, 211
accessing unnamed glyphs with \N, 338
activating

kerning (kern), 163
ligatures (lg), 163
track kerning (tkf), 163

ad request
and hyphenation margin,   131
and hyphenation space, 131

additional inter-sentence spacing,   125
adjustment

and filling, manipulating,   121
mode register (.j), 123

adobe glyph list (AGL), 155
AGL (adobe glyph list),   155
alias

diversion, creating (als), 174
diversion, removing (rm), 174
macro, creating (als), 174
macro, removing (rm), 174
register, creation (aln), 117
register, removing (aln), 117
string, creating (als), 174
string, removing (rm), 174

als request, and \$0, 183
am, am1, ami requests, and warnings, 219
\˜, and translations, 140
annotations, 17
appending to

a diversion (da), 199
a file (opena), 210
a macro (am), 181
a string (as), 172

arc, drawing (‘\D’a ...’’), 190
argument, 100

delimiting characters, 113
arguments

and compatibility mode, 215
macro (\$), 182
of strings, 169
to macros, and tabs, 111
to requests and macros, 111

arithmetic operators, 107



K Concept Index -363-

artificial fonts, 161
as

as1 requests, and comments, 114
as1 requests, and warnings, 219
as delimiter, 113

ASCII
approximation output register (.A), 121
output encoding,   8

asciify request, and writem, 210
assigning formats (af), 118
assignments

indirect, 117
nested, 117

, at end of sentence, 97, 158
AT&T troff, ms macro package differences, 93
auto-increment, 118

and ig request, 115
available glyphs, list (groff_char(7) man page),

154

- b -

\B, allowed delimiters, 113
\b

limitations, 192
possible quote characters, 113

background color name register (.M), 207
backslash, printing (\\, \e, \E, \[rs]), 113, 223
backspace character, and translations, 140
backtrace of input stack (backtrace), 217
baseline, 165
basic unit (u), 106
basics of macros, 14
bd request

and font styles, 151
and font translations, 150
incompatibilities with AT&T troff, 223

begin of conditional block (\{), 177
beginning diversion (di), 199
blank

line, 99, 110
line (sp), 15
line macro (blm), 99, 110, 197
line traps, 197
lines, disabling, 133

block, conditional
begin (\{), 177
end (\}), 177

blocks, conditional,   177
boldface, imitating (bd), 162
bottom margin,   146
bounding box, 214
box

boxa requests, and warnings, 219
rule glyph (\[br]), 188

boxa request, and dn (dl), 201
boxes, shared name space with macros, strings,

and diversions, 109

bp request
and top-level diversion, 147
and traps (.pe), 195
causing implicit linebreak,   121
using + and -, 108

br glyph, and cflags, 157
brace

escape, closing (\}), 177
escape, opening (\}), 177
escapes (\}, \}), 177

break, 14, 98, 121
(br), 15
non-printing input (\&), 111
non-printing input (\&), effect on kerning, 163
non-printing input (\&), effect on \l escape,

188
request, in a while loop, 179

breaking
file names (\:), 126
URLs (\:), 126
without hyphens (\:), 126

built-in registers, 120
bulleted list, example markup [ms], 82

- c -

\C

allowed delimiters, 113
and translations, 140

\c

and fill mode, 146
and no-fill mode, 145
incompatibilities with AT&T troff, 222
unit, 106
used as delimiter, 113, 113

capabilities of groff, 3
case-transforming a string (stringdown,

stringup), 173
ce request

causing implicit linebreak,   121
difference from ‘.ad c’, 124

centered text
(filled), 122
(unfilled), 124

centering lines (ce), 15, 124
centimeter unit (c), 106
cf request

and copy mode, 208
causing implicit linebreak,   121

changing
font family (fam, \F), 151
font position (\f), 153
font style (sty), 151
fonts (ft, \f), 149
format, and read-only registers, 119
the font height (\H), 161
the font slant (\S), 161
the page number character (pc), 147
trap location (ch), 194



K Concept Index -364-

type sizes (ps, \s), 166
vertical line spacing (vs), 167

char request
and soft hyphen character, 127
and translations, 140
used with \N, 156

character, 153
backspace, and translations, 140
class (class), 160
classes, 159
control (.), 110
control, changing (cc), 138
defining (char), 158
defining fallback (fchar, fschar, schar), 158
escape, changing (ec), 138
escape, while defining glyph,   158
field delimiting (fc), 137
field padding (fc), 137
horizontal tab, 99
hyphenation (\%), 126
leader repetition (lc), 137
leader, and translations, 140
leader, non-interpreted (\a), 137
named (\C), 156
newline, 113
newline, and translations, 140
no-break control ('), 110
no-break control, changing (c2), 138
properties (cflags), 157
soft hyphen, setting (shc), 127
space, 113
special, 140
tab, 113
tab repetition (tc), 136
tab, and translations, 140
tab, non-interpreted (\t), 134
translations, 138
transparent, 158
zero-width space (sic ) (\&), 111

characters
argument delimiting,   113
end-of-sentence, 157
end-of-sentence transparent, 97
hyphenation, 157
input, and output glyphs, compatibility with

AT&T troff, 223
invalid for trf request, 208
invalid input,   108
overlapping, 157
special, 97, 316
unnamed, accessing with \N, 338

chem, the program, 294
circle

drawing (‘\D’c ...’’), 189
solid, drawing (‘\D’C ...’’), 189

class of characters (class), 160
classes, character, 159

closing
brace escape (\}), 177
file (close), 210

code
hyphenation (hcode), 130
page 1047, input encoding,   102
page 1047, output encoding,   8

color
default, 206
name, background, register (.M), 207
name, drawing, register (.m), 206
name, fill, register (.M), 207

colors, 206
fill, unnamed (\D’F...’), 191

command prefix,   9
command-line options, 6
commands, embedded,   110
comments, 114

in font files, 337
lining up with tabs, 114
with ds, 170

common
features, 16
name space of macros, diversions, boxes, and

strings, 109
comparison

of strings, 175
operators, 107

compatibility mode, 220, 220
and parameters, 215

composite glyph names, 155
conditional

block, begin (\{), 177
block, end (\}), 177
blocks, 177
output for terminal (TTY),   175
page break (ne), 148

conditionals and loops, 174
consecutive hyphenated lines (hlm), 131
constant glyph space mode (cs), 162
contents, table of, 17, 137
continuation

input line (\RET), 145
output line (\c), 145

continue request, in a while loop, 179
continuous underlining (cu), 162
control

character, 100
character (.), 110
character, changing (cc), 138
character, no-break,   100
character, no-break ('), 110
character, no-break, changing (c2), 138
line, 100
line, 145
page, 147
sequences, for terminals, 316



K Concept Index -365-

conventions for input,   103
copy mode, 182, 182

and \!, 202
and \?, 176, 202
and \a, 137
and cf request, 208
and device request, 211
and \E, 139
and ig request, 115
and length request, 173
and macro arguments, 182
and output request, 202
and \t, 134
and tm request, 216
and tm1 request, 216
and tmc request, 216
and trf request, 208
and \V, 211
and write request, 210
and writec request, 210
and writem request, 210

copying environment (evc), 204
correction

between italic and roman glyph (\/, \,), 164
italic (\/), 164
left italic (\,), 164

cover page macros, [ms], 75
cp request, and glyph definitions, 158
cq glyph, at end of sentence, 97, 158
creating

alias for register (aln), 117
alias, for diversion (als), 174
alias, for macro (als), 174
alias, for string (als), 174
new characters (char), 158

credits, 4
cs request

and font styles, 151
and font translations, 150
incompatibilities with AT&T troff, 223
with fractional type sizes, 168

CSTR #54
errata, 143, 162
erratum, .po request, 143
erratum, \S escape, 162

current
directory, 11
input file name register (.F), 120
page number (%), 147
time, 210
time, hours (hours), 120
time, minutes (minutes), 120
time, seconds (seconds), 120
vertical position (nl), 148

- d -

\D, allowed delimiters, 113
\d, used as delimiter, 113
‘\D’f ...’’ and horizontal resolution,   190
da request

and dn (dl), 201
and warnings, 219, 219

date
day of the month register (dy), 120
day of the week register (dw), 120
month of the year register (mo), 120
year register (year, yr), 120

day of
the month register (dy), 120
the week register (dw), 120

dd glyph, at end of sentence, 97, 158
de

de1, dei requests, and warnings, 219
request, and while, 178

debugging, 216
page location traps, 193

default
color, 206
units, 106

defining
character (char), 158
character class (class), 160
fallback character (fchar, fschar, schar),

158
glyph (char), 158
symbol (char), 158

delayed text, 17
delimited arguments, incompatibilities with AT&T

troff, 222
delimiting

character, for fields (fc), 137
characters for arguments, 113

depth, of last glyph (.cdp), 204
DESC file, format, 335
device

request, and copy mode, 211
resolution, 336

TEX Device-Independent (DVI) format, 2
devices for output,   4, 316
dg glyph, at end of sentence, 97, 158
di request, and warnings, 219, 219
\˜, difference to \SP, 111
differences in implementation,   220
digit width space (\0), 186
digits, and delimiters, 113
dimensions, line, 142
directories for

fonts, 11
macros, 10

directory
current, 11
for tmac files, 10
home, 11



K Concept Index -366-

platform-specific, 11
site-specific, 11, 11

\

disabling (eo), 138
\ (eo), 138
hyphenation (\%), 126

discardable horizontal space, 125
discarded space in traps, 132
displays, 17

and footnotes [ms], 88
[ms], 85

distance to next vertical position trap register (.t),
194

ditroff, the program, 2
diversion

appending (da), 199
beginning (di), 199
creating alias for (als), 174
ending (di), 199
name register (.z), 200
nested, 200
removing (rm), 174
removing alias for (rm), 174
renaming (rn), 174
stripping final newline, 172
top-level, 199
top-level, and \!, 202
top-level, and \?, 202
top-level, and bp, 147
trap, setting (dt), 196
traps, 196
unformatting (asciify), 202
vertical position in, register (.d), 200

diversions, 199
and traps, 196
shared name space with macros, strings, and

boxes, 109
dl register, and da (boxa), 201
dn register, and da (boxa), 201
documents

multi-file, 216
structuring the source of, 110

double
quote, in a macro argument,   112
quotes, trailing, in strings, 170

double-spacing
(ls), 15, 133
(vs, pvs), 167

down-casing a string (stringdown), 173
drawing

a circle (‘\D’c ...’’), 189
a line (‘\D’l ...’’), 189
a polygon (‘\D’p ...’’), 190
a solid circle (‘\D’C ...’’), 189
a solid ellipse (‘\D’E ...’’), 190
a solid polygon (‘\D’P ...’’), 190
a spline (‘\D’˜ ...’’), 190
an arc (‘\D’a ...’’), 190
an ellipse (‘\D’e ...’’), 189

color name register (.m), 206
horizontal lines (\l), 188
requests, 188
vertical lines (\L), 188

ds

ds1 requests, and comments, 114
ds1 requests, and warnings, 219
request, and comments, 170
request, and double quotes, 112, 170
request, and leading spaces, 170

dumping
environments (pev), 217
page location traps (ptr), 217
registers (pnr), 217
symbol table (pm), 217

DVI output driver, 319

- e -

\e

and glyph definitions, 158
and translations, 140
incompatibilities with AT&T troff, 223
used as delimiter, 113, 113

\E

and copy mode, 139
used as delimiter, 113

EBCDIC
encoding of a tab, 134
input encoding,   102
output encoding,   8

el request, and warnings, 219
ellipse

drawing (‘\D’e ...’’), 189
solid, drawing (‘\D’E ...’’), 190

em

glyph, and cflags, 157
unit (m), 106

embedded commands, 110
embedding

PDF, 318
PostScript, 317

embolding of special fonts, 162
empty line, 99

(sp), 15
en unit (n), 106
enabling vertical position traps (vpt), 192
encoding

input, code page 1047,   102
input, EBCDIC, 102
input, Latin-1 (ISO 8859-1),   102
input, Latin-2 (ISO 8859-2),   103
input, Latin-5 (ISO 8859-9),   103
input, Latin-9 (ISO 8859-15),   103
output, ASCII,   8
output, code page 1047,   8
output, EBCDIC, 8
output, ISO 646,   8
output, Latin-1 (ISO 8859-1),   8



K Concept Index -367-

output, UTF-8,   8
end of conditional block (\}), 177
end-of-input

macro (em), 197
trap, setting (em), 197
traps, 197

end-of-sentence
characters, 97, 157
transparent characters, 97

ending diversion (di), 199
environment

copying (evc), 204
dimensions of last glyph (.w, .cht, .cdp,

.csk), 204
number/name register (.ev), 204
previous line length (.n), 205
switching (ev), 204
variables, 9

environments, 203
dumping (pev), 217

eqn, the program, 224
equations [ms], 87
escape character

changing (ec), 138
while defining glyph,   158

escapes, 112
brace (\}, \}), 177

escaping newline characters, in strings, 170
ex request

use in debugging, 217
used with nx and rd, 209

example markup
bulleted list [ms], 82
glossary-style list [ms], 83
multi-page table [ms], 87
numbered list [ms], 82
title page, 76

examples of invocation, 12
exiting (ex), 217
expansion of strings (\*), 169
explicit hyphen (\%), 131
expression

limitation of logical not in,   107
order of evaluation, 108

expressions, 107
and space characters, 108

extra
post-vertical line space (\x), 167
post-vertical line space register (.a), 133
pre-vertical line space (\x), 167
spaces, 99

extremum operators (>?, <?), 107

- f -

\F, and
changing fonts, 149
font positions, 153

\f

and font translations, 150
incompatibilities with AT&T troff, 222
unit, 106
unit, and colors, 206

factor, zoom, of a font (fzoom), 150
fallback

character, defining (fchar, fschar, schar),
158
glyph, removing definition (rchar, rfschar),

159
fam request

and changing fonts, 149
and font positions, 153

families, font, 150
features, common,   16
fi request, causing implicit linebreak, 121
field

delimiting character (fc), 137
padding character (fc), 137

fields, 137
and tabs, 134

figures [ms], 87
file

appending to (opena), 210
closing (close), 210
formats, 323
inclusion (so), 207
macro, search path,   10
names, breaking (\:), 126
opening (open), 210
processing next (nx), 208
writing to (write, writec), 210

files, font, 334
fill

color name register (.M), 207
colors, unnamed (\D’F...’), 191
mode (fi), 122
mode, and break warnings, 219
mode, and \c, 146
mode, and inter-sentence space, 125

filling, 96
and adjustment, manipulating,   121

final newline, stripping in diversions, 172
fl request, causing implicit linebreak, 121
floating keep, 17
flush output (fl), 217
font

description file, format, 335, 337
directories, 11
families, 150
family, changing (fam, \F), 151
file, format, 337
files, 334
files, comments, 337
for underlining (uf), 162
height, changing (\H), 161
magnification (fzoom), 150
mounting (fp), 152



K Concept Index -368-

optical size, 150
path, 11
position register (.f), 152
position, changing (\f), 153
positions, 152
previous (ft, \f[], \fP), 149
slant, changing (\S), 161
style, changing (sty), 151
styles, 150
translation (ftr), 150
zoom factor (fzoom), 150

Font File
#, 337
—, 338
biggestfont, 337
charset, 335, 337
family, 149, 153, 335
fonts, 154, 160, 335
hor, 335
image_generator, 335
kernpairs, 339
ligatures, 337
name, 337
paperlength, 335
papersize, 335
paperwidth, 335
pass_filenames, 336
postpro, 336
prepro, 336
print, 336
res, 336
sizes, 336
sizescale, 336
slant, 337
spacewidth, 337
spare1, 337
spare2, 337
special, 162, 337
styles, 149, 152, 153, 336
tcommand, 336
unicode, 336
unitwidth, 336
unscaled_charwidths, 336
use_charnames_in_special, 211, 337
vert, 337

fonts, 149, 149
artificial, 161
changing (ft, \f), 149
PostScript, 151
searching, 11
special, 160

footers, 146, 193
[ms], 88

footnotes, 17
and displays [ms], 88
and keeps [ms], 88
[ms], 88

form letters, 208
format of

font description file, 335
font description files, 337
font files, 337
register (\g), 119

formats
assigning (af), 118
file, 323

fp request
and font translations, 150
incompatibilities with AT&T troff, 223

fractional
point sizes, 168, 222
type sizes, 168, 222

French spacing,   97
fspecial request

and font styles, 151
and font translations, 150
and glyph search order, 154
and imitating bold,   162

ft request, and font translations, 150
full-service macro package, 19

- g -

gchem

invoking, 294
the program, 294

geqn

invoking, 224
the program, 224

GGL (groff glyph list), 155, 160
ggrn

invoking, 288
the program, 288

glossary-style list, example markup [ms], 83
glyph, 153

box rule (\[br]), 188
constant space, 162
defining (char), 158
for line drawing, 188
for line drawing, 188
for margins (mc), 213
italic correction (\/), 164
last, dimensions (.w, .cht, .cdp, .csk), 204
leader repetition (lc), 137
left italic correction (\,), 164
names, composite, 155
numbered (\N), 140, 156
pile (\b), 191
properties (cflags), 157
removing definition (rchar, rfschar), 159
soft hyphen (hy), 127
tab repetition (tc), 136
underscore (\[ru]), 188

glyphs
available, list (groff_char(7) man page),   154
output, and input characters, compatibility with



K Concept Index -369-

AT&T troff, 223
overstriking (\o), 187
unnamed, 156
unnamed, accessing with \N, 338

GNU-specific register (.g), 121
gpic

invoking, 244
the program, 244
using, 252

grap, the program, 294
gray shading (‘\D’f ...’’), 190
grefer

invoking, 300
the program, 300

grn, the program, 288
grodvi

invoking, 319
the program, 319

groff

and pi request, 209
capabilities, 3
glyph list (GGL),   155, 160
invocation, 5

groff—what is it?,   1
grohtml

invoking, 321
registers and strings, 321
the program, 9, 320

grolbp

invoking, 320
the program, 320

grolj4

invoking, 319
the program, 319

gropdf

invoking, 318
the program, 318

grops

invoking, 317
the program, 317

grotty

invoking, 316
the program, 316

gsoelim

invoking, 311
the program, 311

gtbl

invoking, 234
the program, 234

gtroff

identification register (.g), 121
interactive use, 217
output, 323
process ID register ($$), 121
reference, 96

gxditview

invoking, 322
the program, 322

- h -

\h, allowed delimiters, 113
\H

allowed delimiters, 113
incompatibilities with AT&T troff, 222
using + and -, 108
with fractional type sizes, 168

hcode request, and glyph definitions, 158
headers, 146, 193

[ms], 88
height

font, changing (\H), 161
of last glyph (.cht), 204

high-water mark register (.h), 200
history, 1
home directory, 11
horizontal

discardable space, 125
input line position register (hp), 187
input line position, saving (\k), 187
line, drawing (\l), 188
motion (\h), 186
output line position register (.k), 187
resolution, 335
resolution register (.H), 120
space (\h), 186
space, unformatting, 172
tab character, 99

hours, current time (hours), 120
hpf request, and hyphenation language, 131
hw request

and hy restrictions, 126
and hyphenation language, 131

hy glyph, and cflags, 157
hyphen, explicit (\%), 131
hyphenated lines, consecutive (hlm), 131
hyphenating characters, 157
hyphenation, 98

automatic, 127
character (\%), 126
code (hcode), 130
consecutive line count register (.hlc), 131
consecutive line limit register (.hlm), 131
disabling (\%), 126
exceptions, 126
incompatibilities with AT&T troff, 220
language register (.hla), 131
manipulating, 125
margin (hym), 131
margin register (.hym), 131
mode register (.hy), 129
pattern files, 128
patterns (hpf), 129
space (hys), 131
space adjustment threshold,   131
space adjustment threshold register (.hys),

131



K Concept Index -370-

- i -

i unit, 106
IBM code

page 1047 input encoding,   102
page 1047 output encoding,   8

identifiers, 108
undefined, 109

ie request
and font translations, 150
and warnings, 219
operators to use with,   174

if request
and font translations, 150
and the ‘!’ operator, 107
operators to use with,   174

if-else, 177
if-then, 176
ig request

and auto-increment,   115
and copy mode, 115

imitating boldface (bd), 162
implementation differences, 220
implicit line break,   98

, in a macro argument,   112
request, causing implicit linebreak,   121
request, using + and -, 108

inch unit (i), 106
including a file (so), 207
incompatibilities with AT&T troff, 220
increment

automatic, 118
value without changing the register, 118

indentation (in), 142
index, in macro package, 18
indicator, scaling,   106
indirect assignments, 117
input

8-bit, 338
and output requests, 207
break, non-printing (\&), 111
break, non-printing (\&), effect on kerning,

163
break, non-printing (\&), effect on \l escape,

188
characters and output glyphs, compatibility

with AT&T troff, 223
characters, invalid, 108
conventions, 103
encoding, code page 1047,   102
encoding, EBCDIC, 102
encoding, Latin-1 (ISO 8859-1),   102
encoding, Latin-2 (ISO 8859-2),   103
encoding, Latin-5 (ISO 8859-9),   103
encoding, Latin-9 (ISO 8859-15),   103
file name, current, register (.F), 120
level in delimited arguments, 222
line continuation (\RET), 145

line number register (.c, c.), 121
line number, setting (lf), 216
line position, horizontal, saving (\k), 187
line trap, setting (it), 196
line traps, 196
line traps and interrupted lines (itc), 196
line, horizontal position, register (hp), 187
stack, backtrace (backtrace), 217
stack, setting limit,   218
standard, reading from (rd), 208
token, 214

inserting horizontal space (\h), 186
installation, 340
inter-sentence

space size register (.sss), 125
spacing, additional,   125

inter-word spacing, minimal,   125
interactive use of gtroff, 217
intermediate output,   323
interpolating registers (\n), 117
interpolation, 100

of strings (\*), 169
interpretation mode, 182
interrupted

line, 145
line register (.int), 146
lines and input line traps (itc), 196

introduction, 1
invalid

characters for trf request, 208
input characters, 108

invocation examples, 12
invoking

gchem, 294
geqn, 224
ggrn, 288
gpic, 244
grefer, 300
grodvi, 319
groff, 5
grohtml, 321
grolbp, 320
grolj4, 319
gropdf, 318
grops, 317
grotty, 316
gsoelim, 311
gtbl, 234
gxditview, 322
preconv, 313

i/o, 207
ISO

6429 SGR,   316
8859-1 (Latin-1), input encoding,   102
8859-1 (Latin-1), output encoding,   8
8859-15 (Latin-9), input encoding,   103
8859-2 (Latin-2), input encoding,   103
8859-9 (Latin-5), input encoding,   103



K Concept Index -371-

ISO 646, output encoding,   8
italic

correction (\/), 164
glyph, correction after roman glyph (\,), 164
glyph, correction before roman glyph (\/),

164

- j -

justifying text, 121
(rj), 124

- k -

keep, 17
floating, 17

keeps
and footnotes [ms], 88
[ms], 85

kerning
activating (kern), 163
and ligatures, 163
enabled register (.kern), 163
track, 163

- l -

\L

allowed delimiters, 113
and glyph definitions, 158

\l

allowed delimiters, 113
and glyph definitions, 158

landscape page orientation,   11
last glyph, dimensions (.w, .cht, .cdp, .csk),

204
last-requested point size registers (.psr, .sr),

168
Latin-1 (ISO

8859-1), input encoding,   102
8859-1), output encoding,   8

Latin-2 (ISO 8859-2), input encoding,   103
Latin-5 (ISO 8859-9), input encoding,   103
Latin-9 (ISO 8859-15), input encoding,   103
layout

line, 142
page, 146

lc request, and glyph definitions, 158
leader

character, 136
character, and translations, 140
character, non-interpreted (\a), 137
repetition character (lc), 137

leaders, 136
leading, 165

space macro (lsm), 99
space traps, 197
spaces, 99
spaces macro (lsm), 197

spaces with ds, 170
left

italic correction (\,), 164
margin (po), 142

length
of a string (length), 173
of line (ll), 142
of page (pl), 146
of previous line (.n), 205
of title line (lt), 147
request, and copy mode, 173

letters, form, 208
level of warnings (warn), 218
lf request, incompatibilities with AT&T troff,

222
ligature, 153
ligatures

activating (lg), 163
and kerning, 163
enabled register (.lg), 163

limitations of \b escape, 192
line

blank, 99
break, 14, 121
break (br), 15
break, output,   98
control, 145
dimensions, 142
drawing glyph,   188, 188
drawing (‘\D’l ...’’), 189
empty (sp), 15
horizontal, drawing (\l), 188
indentation (in), 142
input, continuation (\RET), 145
input, horizontal position, register (hp), 187
input, horizontal position, saving (\k), 187
interrupted, 145
layout, 142
length (ll), 142
length register (.l), 144
length, previous (.n), 205
number, input, register (.c, c.), 121
number, output, register (ln), 121
numbers, printing (nm), 212
output, continuation (\c), 145
output, horizontal position, register (.k), 187
space, extra post-vertical (\x), 167
space, extra pre-vertical (\x), 167
spacing register (.L), 133
spacing, post-vertical (pvs), 167
thickness (‘\D’t ...’’), 191
vertical, drawing (\L), 188

line-tabs mode, 136
lines

blank, disabling, 133
centering (ce), 15, 124
consecutive hyphenated (hlm), 131
interrupted, and input line traps (itc), 196



K Concept Index -372-

list, 17
of available glyphs (groff_char(7) man page),

154
listing page location traps (ptr), 217
ll request, using + and -, 108
locating macro

files, 10
packages, 10

location, vertical
page, marking (mk), 184
page, returning to marked (rt), 184

logical
not, limitation in expression, 107
operators, 107

long names, 220
loops and conditionals, 174
lowercasing a string (stringdown), 173
ls request, alternative to (pvs), 168
lt request, using + and -, 108

- m -

M unit, 106
m unit, 106
machine unit (u), 106
macro, 100

appending to (am), 181
arguments, 111
arguments, and compatibility mode, 215
arguments, and tabs, 111
arguments (\$), 182
basics, 14
creating alias for (als), 174
directories, 10
end-of-input (em), 197
file search path,   10
name register (\$0), 183
names, starting with [ or ], and refer, 109
package, 102
package search path,   10
package, full-service, 19
package, introduction,   3
package, major, 19
package, structuring the source of, 110
removing (rm), 174
removing alias for (rm), 174
renaming (rn), 174

macros
recursive, 178
searching, 10
shared name space with strings, diversions,

and boxes, 109
tutorial for users, 14
writing, 179

magnification of a font (fzoom), 150
major

macro package, 19
quotes, 17
version number register (.x), 121

man

macros, custom headers and footers, 19
macros, Ultrix-specific, 19
pages, 19

manipulating
filling and adjustment,   121
hyphenation, 125
spacing, 132

manual pages, 19
margin

bottom, 146
for hyphenation (hym), 131
glyph (mc), 213
left (po), 142
top, 146

mark, high-water, register (.h), 200
marking vertical page location (mk), 184
MathML, 322
maximum values of Roman numerals, 119
mdoc macros, 21
me macro package, 21
measurement unit,   106
measurements, 106

specifying safely, 107
minimal inter-word spacing,   125
minimum values of Roman numerals, 119
minor version number register (.y), 121
minutes, current time (minutes), 120
mm macro package, 21
mode

compatibility, 220
compatibility, and parameters, 215
copy, 182, 182
copy, and \!, 202
copy, and \?, 176, 202
copy, and \a, 137
copy, and cf request, 208
copy, and device request, 211
copy, and \E, 139
copy, and ig request, 115
copy, and length request, 173
copy, and macro arguments, 182
copy, and output request, 202
copy, and \t, 134
copy, and tm request, 216
copy, and tm1 request, 216
copy, and tmc request, 216
copy, and trf request, 208
copy, and \V, 211
copy, and write request, 210
copy, and writec request, 210
copy, and writem request, 210
fill (fi), 122
fill, and break warnings, 219
fill, and \c, 146
fill, and inter-sentence space, 125
for constant glyph space (cs), 162
interpretation, 182
line-tabs, 136



K Concept Index -373-

no-fill (nf), 122
no-fill, and \c, 145
no-space (ns), 133
nroff, 141
safer, 8, 11, 120, 207, 209, 209, 210
troff, 141
unsafe, 9, 11, 120, 207, 209, 209, 210

modifying requests, 111
mom macro package, 49
month of the year register (mo), 120
motion

horizontal (\h), 186
operators, 108
vertical (\v), 185

motions, page, 184
mounting font (fp), 152
ms macros, 70

accent marks, 91
body text, 77
cover page, 75
creating table of contents, 90
differences from AT&T, 93
displays, 85
document control settings, 71
equations, 87
figures, 87
footers, 88
footnotes, 88
general structure, 70
headers, 88
headings, 79
highlighting, 81
keeps, 85
lists, 82
margins, 89
multiple columns, 89
naming conventions, 95
nested lists, 84
page layout, 88
paragraph handling,   77
references, 87
special characters, 91
strings, 91
tables, 87

multi-file documents, 216
multi-line strings, 170
multi-page table, example markup [ms], 87
multiple columns [ms], 89

- n -

\N

allowed delimiters, 113
and translations, 140

\n

and warnings, 219
incompatibilities with AT&T troff, 220
unit, 106
when reading text for a macro, 182

name
background color, register (.M), 207
drawing color, register (.m), 206
fill color, register (.M), 207
space, common, of macros, diversions, boxes,

and strings, 109
named character (\C), 156
names, long,   220
naming conventions, ms macros, 95
ne request

and the .trunc register, 195
comparison with sv, 148

negating register values, 116
nested

assignments, 117
diversions, 200
lists [ms], 84

new page (bp), 15, 147
newline

character, 113
character, and translations, 140
character, in strings, escaping,   170
final, stripping in diversions, 172

next
file, processing (nx), 208
free font position register (.fp), 153

nf request, causing implicit linebreak, 121
nl register

and .d, 200
difference to .h, 201

nm request, using + and -, 108
no-break control

character, 100
character ('), 110
character, changing (c2), 138

no-fill mode
(nf), 122
and \c, 145

no-space mode (ns), 133
node, output,   214
non-printing

break point (\:), 126
input break (\&), 111
input break (\&), effect on kerning, 163
input break (\&), effect on \l escape, 188

nr request
and warnings, 219
using + and -, 108

nroff

mode, 141
the program, 1

number
input line, setting (lf), 216
of arguments register (.$), 182
of registers register (.R), 120
page (pn), 147

numbered
glyph (\N), 140, 156
list, example markup [ms], 82



K Concept Index -374-

numbers
and delimiters, 113
line, printing (nm), 212

numerals, Roman,   119
numeric expression, valid, 108

- o -

\o, possible quote characters, 113
object creation,   182
offset, page (po), 142
open request, and safer mode, 8
opena request, and safer mode, 8
opening

brace escape (\}), 177
file (open), 210

operator, scaling,   108
operators

arithmetic, 107
as delimiters, 113
comparison, 107
extremum (>?, <?), 107
logical, 107
motion, 108
unary, 107

optical size of a font, 150
options, 5
order of evaluation in expressions, 108
orientation, landscape, 11
orphan lines, preventing with ne, 148
os request, and no-space mode, 148
output

and input requests, 207
device name string (.T), 9, 169
device usage register (.T), 9
devices, 4, 316
encoding, ASCII,   8
encoding, code page 1047,   8
encoding, EBCDIC, 8
encoding, ISO 646,   8
encoding, Latin-1 (ISO 8859-1),   8
encoding, UTF-8,   8
flush (fl), 217
glyphs, and input characters,compatibility with

AT&T troff, 223
gtroff, 323
intermediate, 323
line break,   98
line number register (ln), 121
line, continuation (\c), 145
line, horizontal position, register (.k), 187
node, 214
request, and \!, 202
request, and copy mode, 202
suppressing (\O), 205
transparent (\!, \?), 201
transparent (cf, trf), 208
transparent, incompatibilities with AT&T

troff, 223

troff, 323
overlapping characters, 157
overstriking glyphs (\o), 187

- p -

P unit, 106
p

unit, 106
used as delimiter, 113, 113

package
macro, 102
macro, full-service, 19
macro, introduction,   3
macro, major, 19
macro, search path,   10
package, structuring the source of, 110

padding character, for fields (fc), 137
page

break, conditional (ne), 148
control, 147
ejecting register (.pe), 195
footers, 193
headers, 193
layout, 146
layout [ms], 88
length (pl), 146
length register (.p), 146
location traps, 192
location traps, debugging, 193
location, vertical, marking (mk), 184
location, vertical, returning to marked (rt),

184
motions, 184
new (bp), 147
number (pn), 147
number character (%), 146
number character, changing (pc), 147
number register (%), 147
offset (po), 142
orientation, landscape, 11

paper
formats, 18
size, 11

paragraphs, 16
parameters, 182

and compatibility mode, 215
parentheses, 108
partially collected line, 121
path, for

font files, 11
tmac files, 10

pattern files, for hyphenation, 128
patterns for hyphenation (hpf), 129
PDF, embedding,   318
pending output line, 121
pi request

and groff, 209
and safer mode, 8



K Concept Index -375-

pic, the program, 244
pica unit (P), 106
pile, glyph (\b), 191
pl request, using + and -, 108
plain text approximation output register (.A), 6
planting a trap, 192
platform-specific directory, 11
pm request, incompatibilities with AT&T troff,

222
pn request, using + and -, 108
PNG image generation from PostScript, 335
po request, using + and -, 108
point

size registers (.s, .ps), 166
size registers, last-requested (.psr, .sr),

168
sizes, changing (ps, \s), 166
sizes, fractional, 168, 222
unit (p), 106

polygon
drawing (‘\D’p ...’’), 190
solid, drawing (‘\D’P ...’’), 190

position
absolute, operator (|), 108
horizontal input line, saving (\k), 187
horizontal, in input line, register (hp), 187
horizontal, in output line, register (.k), 187
of lowest text line (.h), 200
vertical, current (nl), 148
vertical, in diversion, register (.d), 200

positions, font, 152
post-vertical line

spacing, 167
spacing register (.pvs), 168
spacing, changing (pvs), 168

postprocessor access, 211
postprocessors, 4
PostScript

bounding box, 214
embedding, 317
fonts, 151
PNG image generation, 335

preconv

invoking, 313
the program, 313

prefix, for commands, 9
preprocessors, 4, 224
previous

font (ft, \f[], \fP), 149
line length (.n), 205

print current page register (.P), 7
printing

backslash (\\, \e, \E, \[rs]), 113, 223
line numbers (nm), 212
to stderr (tm, tm1, tmc), 216
zero-width (\z, \Z), 187, 188

process ID of gtroff register ($$), 121

processing next file (nx), 208
properties of

characters (cflags), 157
glyphs (cflags), 157

ps request
and constant glyph space mode, 162
incompatibilities with AT&T troff, 222
using + and -, 108
with fractional type sizes, 168

pso request, and safer mode, 8
pvs request, using + and -, 108

- q -

quotes, major, 17

- r -

\R

after \c, 145
allowed delimiters, 113
and warnings, 219
difference to nr, 118
using + and -, 108

\r, used as delimiter, 113
radicalex glyph, and cflags, 157
ragged-left text, 122
ragged-right text, 122
rc request, and glyph definitions, 158
read-only register, changing format, 119
reading from standard input (rd), 208
recursive macros, 178
refer

and macro names starting with [ or ], 109
the program, 300

reference, gtroff, 96
references [ms], 87
register

creating alias for (aln), 117
format (\g), 119
removing (rr), 117
removing alias for (aln), 117
renaming (rnn), 117

registers, 115
built-in, 120
dumping (pnr), 217
interpolating (\n), 117
number of, register (.R), 120
setting (nr, \R), 115
specific to grohtml, 321

removing
a register (rr), 117
alias for register (aln), 117
alias, for diversion (rm), 174
alias, for macro (rm), 174
alias, for string (rm), 174
diversion (rm), 174
glyph definition (rchar, rfschar), 159
macro (rm), 174



K Concept Index -376-

request (rm), 174
string (rm), 174

renaming
a register (rnn), 117
diversion (rn), 174
macro (rn), 174
request (rn), 174
string (rn), 174

request, 100
arguments, 111
arguments, and compatibility mode, 215
removing (rm), 174
renaming (rn), 174
undefined, 114

requests, 110
for drawing, 188
for input and output,   207
modifying, 111

resolution
device, 336
horizontal, 335
horizontal, register (.H), 120
vertical, 337
vertical, register (.V), 120

\RET, when reading text for a macro, 182
returning to marked vertical page location (rt),

184
revision number register (.Y), 121
rf, the program, 1
right-justifying (rj), 124
rj request, causing implicit linebreak, 121
rn glyph, and cflags, 157
roff, the program, 1
Roman numerals, 119

maximum and minimum, 119
roman glyph

correction after italic glyph (\/), 164
correction before italic glyph (\,), 164

rq glyph, at end of sentence, 97, 158
rt request, using + and -, 108
ru glyph, and cflags, 157
RUNOFF, the program, 1

- s -

\s

allowed delimiters, 113
incompatibilities with AT&T troff, 222, 222
unit, 106, 168
using + and -, 108
with fractional type sizes, 168

\S

allowed delimiters, 113
incompatibilities with AT&T troff, 222

safer mode, 8, 11, 120, 207, 209, 209, 210
saving horizontal input line position (\k), 187
scaling

indicator, 106
operator, 108

searching
fonts, 11
macros, 10

seconds, current time (seconds), 120
sentence space, 97

size register (.sss), 125
sentences, 96
setting

diversion trap (dt), 196
end-of-input trap (em), 197
input line number (lf), 216
input line trap (it), 196
registers (nr, \R), 115

shading filled objects (‘\D’f ...’’), 190
shc request, and translations, 140
site-specific directory, 11, 11
size

of sentence space register (.sss), 125
of type, 165
of word space register (.ss), 125
optical, of a font, 150
paper, 11

sizes, 165
fractional, 168, 222

skew, of last glyph (.csk), 204
slant, font, changing (\S), 161
soelim, the program, 311
soft hyphen

character, setting (shc), 127
glyph (hy), 127

solid
circle, drawing (‘\D’C ...’’), 189
ellipse, drawing (‘\D’E ...’’), 190
polygon, drawing (‘\D’P ...’’), 190

sp request
and no-space mode, 133
and traps, 132
causing implicit linebreak,   121

space
between sentences, 97
between sentences register (.sss), 125
between words register (.ss), 125
between sentences, 125
between words, 125
character, 113
character, zero-width (sic ) (\&), 111
characters, in expressions, 108
discardable, horizontal, 125
discarded, in traps, 132
horizontal (\h), 186
horizontal, unformatting, 172
unbreakable, 186
vertical, unit (v), 106
width of a digit (\0), 186

spaces
in a macro argument,   111
leading and trailing, 99
with ds, 170



K Concept Index -377-

spacing, 15
manipulating, 132
vertical, 165

special
characters, 97, 140, 316
characters [ms], 91
fonts, 154, 160, 337
fonts, emboldening,   162
request, and font translations, 150
request, and glyph search order, 154

spline, drawing (‘\D’˜ ...’’), 190
springing a trap, 192
sqrtex glyph, and cflags, 157
ss request, incompatibilities with AT&T troff,

222
stacking glyphs (\b), 191
standard input, reading from (rd), 208
stderr, printing to (tm, tm1, tmc), 216
stops, tab, 99
string

appending (as), 172
arguments, 169
comparison, 175
creating alias for (als), 174
expansion (\*), 169
interpolation (\*), 169
length of (length), 173
removing (rm), 174
removing alias for (rm), 174
renaming (rn), 174

strings, 169
[ms], 91
multi-line, 170
shared name space with macros, diversions,

and boxes, 109
specific to grohtml, 321

stripping final newline in diversions, 172
structuring source code of documents or macro

packages, 110
sty request

and changing fonts, 149
and font positions, 153
and font translations, 150

styles, font, 150
substring (substring), 173
suppressing output (\O), 205
sv request, and no-space mode, 148
switching environments (ev), 204
sy request, and safer mode, 8
symbol, 154

defining (char), 158
table, dumping (pm), 217

symbols, using,   153
system() return value register (systat), 210

- t -

\t

and copy mode, 134
and translations, 140
and warnings, 219
used as delimiter, 113

tab
character, 99, 113
character, and translations, 140
character, non-interpreted (\t), 134
line-tabs mode, 136
repetition character (tc), 136
settings register (.tabs), 135
stops, 99
stops, for TTY output devices, 135

table of
contents, 17, 137
contents, creating [ms], 90

tables [ms], 87
tabs

and fields, 134
and macro arguments, 111
before comments, 114

tbl, the program, 234
Teletype, 316
terminal

conditional output for, 175
control sequences, 316

text
GNU troff processing, 96
justifying, 121
justifying (rj), 124
line, 100
line, position of lowest (.h), 200

thickness of lines (‘\D’t ...’’), 191
three-part title (tl), 146
ti request

causing implicit linebreak,   121
using + and -, 108

time, current,   210
hours (hours), 120
minutes (minutes), 120
seconds (seconds), 120

title
line (tl), 146
line length register (.lt), 147
line, length (lt), 147
page, example markup, 76

titles, 146
tkf request

and font styles, 151
and font translations, 150
with fractional type sizes, 168

tl request, and mc, 213
tm request, and copy mode, 216
tm1 request, and copy mode, 216



K Concept Index -378-

tmac
directory, 10
path, 10

tmc request, and copy mode, 216
token, input,   214
top margin,   146
top-level diversion, 199

and \!, 202
and \?, 202
and bp, 147

tr request
and glyph definitions, 158
and soft hyphen character, 127
incompatibilities with AT&T troff, 223

track kerning, 163
activating (tkf), 163

trailing
double quotes in strings, 170
spaces, 99

translations of characters, 138
transparent

characters, 158
output (\!, \?), 201
output (cf, trf), 208
output, incompatibilities with AT&T troff,

223
trap

changing location (ch), 194
distance to next vertical position, register (.t),

194
diversion, setting (dt), 196
end-of-input, setting (em), 197
input line, setting (it), 196
planting, 192
springing, 192

traps, 192
and discarded space, 132
and diversions, 196
blank line, 197
diversion, 196
end-of-input, 197
input line, 196
input line, and interrupted lines (itc), 196
leading space, 197
page location,   192
page location, dumping (ptr), 217
page location, listing (ptr), 217
sprung by bp request (.pe), 195
vertical position,   192

trf request
and copy mode, 208
and invalid characters, 208
causing implicit linebreak,   121

trin request, and asciify, 202
troff

mode, 141
output, 323

truncated vertical space register (.trunc), 195
TTY, conditional output for, 175
tutorial for macro users, 14
type

size, 165
size registers (.s, .ps), 166
sizes, changing (ps, \s), 166
sizes, fractional, 168, 222

- u -

u

unit, 106
used as delimiter, 113

uf request, and font styles, 151
ul

glyph, and cflags, 157
request, and font translations, 150

Ultrix-specific man macros, 19
unary operators, 107
unbreakable space, 186
undefined

identifiers, 109
request, 114

underline font (uf), 162
underlining

continuous (cu), 162
(ul), 162

underscore glyph (\[ru]), 188
unformatting

diversions (asciify), 202
horizontal space, 172

Unicode, 108, 156
unit

c, 106
f, 106
f, and colors, 206
i, 106
M, 106
m, 106
n, 106
p, 106
P, 106
s, 106, 168
u, 106
v, 106
z, 106, 168

units
default, 106
of measurement,   106

unnamed
fill colors (\D’F...’), 191
glyphs, 156
glyphs, accessing with \N, 338

unsafe mode, 9, 11, 120, 207, 209, 209, 210
up-casing a string (stringup), 173
uppercasing a string (stringup), 173



K Concept Index -379-

URLs, breaking (\:), 126
\˜, used

as delimiter, 113
as delimiter, 113, 113
as delimiter, 113

user’s
macro tutorial,   14
tutorial for macros, 14

using
gpic, 252
symbols, 153

UTF-8, output encoding,   8

- v -

\V, and copy mode, 211
\v

allowed delimiters, 113
internal representation,   215
unit, 106

valid numeric expression, 108
value, incrementing without changing the register,

118
variables in environment, 9
version number

major, register (.x), 121
minor, register (.y), 121

vertical
line drawing (\L), 188
line spacing register (.v), 167
line spacing, changing (vs), 167
line spacing, effective value, 167
motion (\v), 185
page location, marking (mk), 184
page location, returning to marked (rt), 184
position in diversion register (.d), 200
position trap enable register (.vpt), 192
position traps, 192
position traps, enabling (vpt), 192
position, current (nl), 148
resolution, 337
resolution register (.V), 120
space unit (v), 106
spacing, 165

- w -

\w, allowed delimiters, 113
warnings, 218, 218

level (warn), 218
what is groff?, 1
\\, when reading text for a macro, 182
while, 178

request, and font translations, 150
request, and the ‘!’ operator, 107
request, confusing with br, 179
request, operators to use with,   174

width
escape (\w), 187
of last glyph (.w), 204

word
definition of, 96
space size register (.ss), 125

write request, and copy mode, 210
writec request, and copy mode, 210
writem request, and copy mode, 210
writing

macros, 179
to file (write, writec), 210

- x -

\X

and special characters, 211
followed by \%, 126
possible quote characters, 113
Window System (X11),   2

\x, allowed delimiters, 113

- y -

\Y, followed by \%, 126
year, current, register (year, yr), 120

- z -

\Z, allowed delimiters, 113
z unit, 106, 168
zero-width

printing (\z, \Z), 187, 188
space character (sic ) (\&), 111

zoom factor of a font (fzoom), 150

- | -

|

and page motion,   108
incompatibilities with AT&T troff, 222
used as delimiter, 113


	Groff
	Table of Contents
	Introduction
	What Is groff?
	History
	groff Capabilities
	Macro Packages
	Preprocessors
	Output Devices
	Credits

	Invoking groff
	Options
	Environment
	Macro Directories
	Font Directories
	Paper Size
	Invocation Examples
	grog


	Tutorial for Macro Users
	Basics
	Common Features
	Paragraphs
	Sections and Chapters
	Headers and Footers
	Page Layout
	Displays
	Footnotes and Annotations
	Table of Contents
	Indices
	Paper Formats
	Multiple Columns
	Font and Size Changes
	Predefined Strings
	Preprocessor Support
	Configuration and Customization


	Macro Packages
	man
	Optional man extensions
	Custom headers and footers
	Ultrix-specific man macros
	Simple example


	mdoc
	me
	mm
	NAME
	SYNOPSIS
	DESCRIPTION
	Number registers and strings
	Special formatting of number registers
	Fonts
	Macros
	Strings used in mm
	Number variables used in mm

	INTERNALS
	FILES
	AUTHORS
	SEE ALSO

	mom
	NAME
	SYNOPSIS
	CALLING MOM
	FILES
	DOCUMENTATION IN ALPHABETICAL ORDER
	QUICK REFERENCE
	Quick Reference of Inline Escape Sequences in alphabetical Order
	Quick Reference of Macros in alphabetical Order

	DOCUMENTATION OF DETAILS
	Details of Inline Escape Sequences in alphabetical Order
	Details of Macros in alphabetical Order

	AUTHORS
	SEE ALSO
	BUGS

	ms
	Introduction to ms
	General structure of an ms document
	Document control settings
	Margin Settings
	Text Settings
	Paragraph Settings
	Section Heading Settings
	Footnote Settings
	Other Settings

	Cover page macros
	Body text
	Paragraphs
	Headings
	Highlighting
	Lists
	Indented regions
	Tab stops
	Displays and keeps
	Tables, figures, equations, and references
	An example multi-page table
	Footnotes

	Page layout
	Headers and footers
	Margins
	Multiple columns
	Creating a table of contents
	Strings and Special Characters

	Differences from AT&T ms
	troff macros not appearing in groff
	groff macros not appearing in AT&T troff

	ms Naming Conventions


	gtroff Reference
	Text
	Filling
	Sentences
	Hyphenation
	Breaking
	Adjustment
	Tab Stops
	Requests and Macros
	Macro Packages
	Input Encodings
	Input Conventions

	Measurements
	Default Units

	Expressions
	Identifiers
	Embedded Commands
	Requests
	Request and Macro Arguments

	Escapes
	Comments


	Registers
	Setting Registers
	Interpolating Registers
	Auto-increment
	Assigning Formats
	Built-in Registers

	Manipulating Filling and Adjustment
	Manipulating Hyphenation
	Manipulating Spacing
	Tabs and Fields
	Leaders
	Fields

	Character Translations
	troff and nroff Modes
	Line Layout
	Line Control
	Page Layout
	Page Control
	Fonts and Symbols
	Changing Fonts
	Font Families
	Font Positions
	Using Symbols
	Character Classes
	Special Fonts
	Artificial Fonts
	Ligatures and Kerning

	Sizes
	Changing Type Sizes
	Fractional Type Sizes

	Strings
	Conditionals and Loops
	Operators in Conditionals
	if-then
	if-else
	Conditional Blocks
	while

	Writing Macros
	Copy Mode
	Parameters

	Page Motions
	Drawing Requests
	Traps
	Vertical Position Traps
	Page Location Traps
	Diversion Traps

	Input Line Traps
	Blank Line Traps
	Leading Space Traps
	End-of-input Traps

	Diversions
	Environments
	Suppressing output
	Colors
	I/O
	Postprocessor Access
	Miscellaneous
	gtroff Internals
	Debugging
	Warnings

	Implementation Differences

	Preprocessors
	geqn
	Invoking geqn
	Name
	Synopsis
	Description
	Controlling delimiters
	Automatic spacing
	New primitives
	Extended primitives
	Customization
	Macros
	Fonts

	Options
	Files
	MathML Mode Limitations
	Bugs
	See Also

	gtbl
	Invoking gtbl
	Name
	Synopsis
	Description
	Overview
	Global options
	Table format specification
	Column specifiers
	Table data
	Text blocks
	Miscellaneous
	Interaction with eqn
	GNU tbl enhancements
	GNU tbl within macros

	Options
	Bugs
	Simple Examples
	See Also

	gpic
	Invoking gpic
	Name
	Synopsis
	Description
	Options
	Usage
	TEX mode
	Commands
	Expressions
	Other changes

	Conversion
	Files
	Bugs
	See Also
	Using gpic
	Introduction to PIC
	Why PIC?
	PIC Versions

	Invoking PIC
	PIC Error Messages

	Basic PIC Concepts
	Sizes and Spacing
	Default Sizes of Objects
	Objects Do Not Stretch!
	Resizing Boxes
	Resizing Other Object Types
	The `same' Keyword

	Generalized Lines and Splines
	Diagonal Lines
	Multi-Segment Line Objects
	Spline Objects

	Decorating Objects
	Text Special Effects
	Dashed Objects
	Dotted Objects
	Rounding Box Corners
	Slanted Boxes
	Arrowheads
	Line Thickness
	Invisible Objects
	Filled Objects
	Colored Objects

	More About Text Placement
	More About Direction Changes
	Naming Objects
	Naming Objects By Order Of Drawing
	Naming Objects With Labels

	Describing locations
	Absolute Coordinates
	Locations Relative to Objects
	Locations Relative to Closed Objects
	Locations Relative to Open Objects

	Ways of Composing Positions
	Vector Sums and Displacements
	Interpolation Between Positions
	Projections of Points

	Using Locations
	The `chop' Modifier

	Object Groups
	Brace Grouping
	Block Composites

	Style Variables
	Expressions, Variables, and Assignment
	Macros
	Import/Export Commands
	File and Table Insertion
	Debug Messages
	Escape to Post-Processor
	Executing Shell Commands

	Control-flow constructs
	Interface To [ gt ] roff
	Scaling Arguments
	How Scaling is Handled
	PIC and [ gt ] roff commands
	PIC and EQN
	Absolute Positioning of Pictures

	Interface to TeX
	Obsolete Commands
	Some Larger Examples
	PIC Reference
	Lexical Items
	Semi-Formal Grammar

	History and Acknowledgements
	Bibliography

	ggrn
	Invoking ggrn
	Name
	Synopsis
	Description
	Options
	grn Commands
	Notes about groff
	Gremlin File Format
	Element Specifications
	Notes on Coordinates
	Notes on Sun/X11 Coordinates
	Files
	Authors
	See Also

	grap
	gchem
	Invoking gchem
	Name
	Synopsis
	Description
	The Language
	Setting variables
	Bonds
	Rings
	Moieties and strings
	Names
	Miscellaneous
	Wish list

	Files
	Authors
	See Also

	grefer
	Invoking grefer
	Name
	Synopsis
	Description
	Options
	Usage
	Bibliographic databases
	Citations
	Commands
	Label expressions
	Macro interface

	Environment
	Files
	Bugs
	See Also

	gsoelim
	Invoking gsoelim
	Name
	Synopsis
	Description
	Options
	See Also

	preconv
	Invoking preconv
	Name
	Synopsis
	Description
	Coding tags
	iconv support

	Options
	See Also


	Output Devices
	Special Characters
	grotty
	Invoking grotty

	grops
	Invoking grops
	Embedding PostScript

	gropdf
	Invoking gropdf
	Embedding PDF

	grodvi
	Invoking grodvi

	grolj4
	Invoking grolj4

	grolbp
	Invoking grolbp

	grohtml
	Invoking grohtml
	grohtml specific registers and strings

	gxditview
	Invoking gxditview


	File formats
	gtroff Output
	Language Concepts
	Separation
	Argument Units
	Document Parts

	Command Reference
	Comment Command
	Simple Commands
	Graphics Commands
	Device Control Commands
	Obsolete Command

	Intermediate Output Examples
	Output Language Compatibility

	Device and Font Files
	DESC File Format
	Font File Format


	Installation
	Copying This Manual
	B Request Index
	a
	b
	c
	d
	e
	f
	g
	h
	i
	k
	l
	m
	n
	o
	p
	r
	s
	t
	u
	v
	w

	C Escape Index
	
	a
	b
	c
	d
	e
	f
	g
	h
	k
	l
	m
	n
	o
	p
	r
	s
	t
	u
	v
	w
	x
	y
	z

	E Register Index
	
	c
	d
	f
	g
	h
	l
	m
	n
	o
	p
	q
	r
	s
	u
	v
	y

	F Macro Index
	 [ 
	 ] 
	a
	b
	c
	d
	e
	f
	g
	h
	i
	k
	l
	m
	n
	o
	p
	q
	r
	s
	t
	u
	v
	x

	G String Index
	
	a
	c
	d
	f
	l
	m
	o
	q
	r
	s
	t
	u
	v
	w

	J Program and File Index
	a
	c
	d
	e
	f
	g
	h
	l
	m
	n
	p
	r
	s
	t
	u

	K Concept Index
	$
	%
	&
	
	(
	)
	*
	+
	-
	
	<
	=
	>
	?
	@
	 [ 
	 ] 
	^
	_
	`
	a
	b
	c
	d
	e
	f
	g
	h
	i
	j
	k
	l
	m
	n
	o
	p
	q
	r
	s
	t
	u
	v
	w
	x
	y
	z
	|


