[Top][All Lists]
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [Help-gsl] solving linear system with large matrices
From: |
Paulo Jabardo |
Subject: |
Re: [Help-gsl] solving linear system with large matrices |
Date: |
Thu, 8 Mar 2007 15:06:03 -0300 (ART) |
I recommend using LAPACK (www.netlib.org/lapack) or
clapack (C interface).
The function you are looking for is
dpbtrf (cholesky decomposition)
dpbtrs (uses the cholesky decomposition to solve the
linear system)
It does a Cholesky decomposition for banded matrices
(any bandwidth).
If you have any problems using these functions email
me and I can try to help you.
--- Jan Ehrhardt <address@hidden>
escreveu:
> Hello,
>
> I want to solve a linear system Ax=b, where A is
> symmetric, positive
> definite square matrix.
> However, the size of the matrix is very large:
> approx. 65000x65000 or
> larger so an allocation
> of the whole matrix will fail. A is a tridiagonal
> matrix with two side
> diagonal entries, all other entries are zero.
>
> So the structure is like
> (xx000x00000)
> (xxx000x0000)
> (0xxx000x000)
> (00xxx000x00)
> (000xxx000x0)
> (x000xxx000x)
> (0x000xxx000)
>
> but squared and much larger. I think a cholesky
> decomposition should
> work to solve the system, but how can
> I allocate and store the matrix?
> I gsl is not able to handle such large matrices, are
> there other
> possible solutions/libraries?
> Thanks.
>
> Jan
>
>
>
> --
>
> Pflichtangaben gemäß Gesetz über elektronische
> Handelsregister und Genossenschaftsregister sowie
> das Unternehmensregister (EHUG):
>
> Universitätsklinikum Hamburg-Eppendorf
> Körperschaft des öffentlichen Rechts
> Gerichtsstand: Hamburg
>
> Vorstandsmitglieder:
> Prof. Dr. Jörg F. Debatin (Vorsitzender)
> Dr. Alexander Kirstein
> Ricarda Klein
> Prof. Dr. Rolf A.K. Stahl
> > _______________________________________________
> Help-gsl mailing list
> address@hidden
> http://lists.gnu.org/mailman/listinfo/help-gsl
>
__________________________________________________
Fale com seus amigos de graça com o novo Yahoo! Messenger
http://br.messenger.yahoo.com/