
CNIL Privacy Research Day 2022 ; ():1–19

Libor Polčák*, Marek Saloň, Giorgio Maone, Radek Hranický, and Michael McMahon

JShelter: Give Me My Browser Back
Abstract: The Web is used daily by billions. Even so,
users are not protected from many threats by default.
This position paper builds on previous web privacy and
security research and introduces JShelter, a webexten-
sion that fights to return the browser to users. More-
over, we introduce a library helping with common we-
bextension development tasks and fixing loopholes mis-
used by previous research. JShelter focuses on finger-
printing prevention, limitations of rich web APIs, pre-
vention of attacks connected to timing, and learning in-
formation about the computer, the browser, the user,
and surrounding physical environment and location. We
discovered a loophole in the sensor timestamps that lets
any page observe the device boot time if sensor APIs are
enabled in Chromium-based browsers. JShelter provides
a fingerprinting report and other feedback that can be
used by future security research and data protection au-
thorities. Thousands of users around the world use the
webextension every day.

Keywords: Browser fingerprinting, web privacy, web se-
curity, webextension APIs, JavaScript

1 Introduction
Most people interact with web pages daily. Nowadays,
many activities are often carried out exclusively in a
Web browser, including shopping, searching for travel
information, performing leisure activities such as gam-

*Corresponding Author: Libor Polčák: Faculty of
Information Technology, Brno University of Technology,
Božetěchova 2, 612 66 Brno, Czech Republic, E-mail: pol-
cak@fit.vut.cz
Marek Saloň: Faculty of Information Technology, Brno Uni-
versity of Technology, Božetěchova 2, 612 66 Brno, Czech Re-
public
Giorgio Maone: Hackademix, via Mario Rapisardi 53, 90144
Palermo, Italy, E-mail: giorgio@maone.net
Radek Hranický: Faculty of Information Technology, Brno
University of Technology, Božetěchova 2, 612 66 Brno, E-mail:
ihranicky@fit.vut.cz
Michael McMahon: Web developer, Free Software Founda-
tion, 51 Franklin Street, Fifth Floor, Boston, MA 02110 USA,
E-mail: michael@fsf.org

ing, business and office work. For several years, browser
vendors have been adding new JavaScript APIs to solicit
the development of rich web applications [60].

Web visitors are subject to hostile tracking [10, 13,
24, 36, 48], fingerprinting [26, 32], and malware [6, 46].
Some of the recently added APIs influence the privacy
of the users. For example, the Geolocation API1 is ben-
eficial for navigation in the real world. However, users
might not be willing to share the location with all visited
sites. In the case of Geolocation API, browsers ask users
for permission but not all APIs need user permission.
Users cannot limit the precision of the Geolocation API.
However, sometimes they want to share a more precise
location (e.g. during navigation), and other times they
want to share the location with limited precision (e.g.
they are exploring a location unrelated to their current
position).

This paper presents JShelter, a web browser ex-
tension (webextension) that allows users to tweak the
browser APIs. Additionally, JShelter detects and pre-
vents fingerprinting. Moreover, JShelter blocks attempts
to misuse the browser as a proxy to access the local
network. JShelter educates users by explaining finger-
printing APIs in a report. JShelter integrates several
previous research projects like Chrome Zero [39] and
little-lies-based fingerprinting prevention [44, 50]. We
needed to solve reliable injection of modifications to
all visited pages, iframes, and web workers. We intro-
duce NoScript Commons Library (NSCL)2 that other
privacy- and security-related webextensions can reuse to
solve common tasks. We implemented JShelter for Fire-
fox and Chromium-based browsers like Chrome, Opera,
and Edge. We provide experience from user feedback
that should be valuable to other research projects.

The evaluation shows that JShelter prevents many
attacks, including learning (1) browser and computer
fingerprints, (2) user biometrics, (3) computer clock-
skew, and (4) running applications. Sensors available
for all pages on Android make user open to several at-
tacks [5, 22, 67]. JShelter prevents the danger by pre-
tending to be a stationary device. JShelter mitigates

1 https://developer.mozilla.org/en-US/docs/Web/API/
Geolocation
2 https://noscript.net/commons-library

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation
https://noscript.net/commons-library

JShelter 2

leaking boot time of the device through sensor times-
tamps in Chromium-based browsers.

This paper is organised as follows. Section 2 presents
the threats that users face while web browsing. Section 3
compares JShelter to other security- and privacy-related
webextensions. Section 4 provides the design decisions
that we faced during the development of JShelter. Sec-
tion 5 evaluates the JShelter features and discusses user
feedback. Section 6 concludes this paper.

2 Threats
This section presents threats that every web user faces
every time they load and execute unknown JavaScript
code. Although modern browsers employ security mea-
sures, such as same-origin policy3, there are still threats
that are not mitigated.

2.1 T1: Detail user behaviour monitoring

In theory, laws like GDPR and ePrivacy Regulation give
each person control over their personal data and devices.
However, there is a significant lack of control over per-
sonal data on the web [8, 24, 36, 37, 52] in practice.
The advertisement technologies are under considerable
scrutiny in Europe [1, 10], but tracking scripts are om-
nipresent on the web. Users risk complete disclosure of
their browsing history.

Web-content providers want detailed information on
user interaction with their web pages. JavaScript-event
listeners and handlers can track user activities such as
mouse movement, typing and clicking [13]. The website
operator can replay the user session in real-time or later.
Customer services provide chat windows providing in-
formation in real-time. However, some libraries for chat
interaction transfer the question while the user types
instead of waiting for the user to press the send but-
ton [23].

Previous literature focused on processing be-
havioural biometric features derived from input user in-
teraction (keyboard, mouse, and touch events). For ex-
ample, it is possible to uniquely identify users [28, 70],
derive handedness [47], or age and gender [48].

3 https://developer.mozilla.org/en-US/docs/Web/Security/
Same-origin_policy

2.2 T2: Browser and computer
fingerprinting

Historically, trackers stored user identifiers in third
party cookies during T1 tracking. However, browser
vendors limit third party cookies. Hence trackers move
to alternative ways of identifying users. Browser and
computer fingerprinting is a stateless tracking method
that tries to find features that make (almost) every
browser uniquely identifiable [9, 12, 32, 33]. For ex-
ample, the content of HTTP headers, including user
agent string, screen size, language, time zone, and sys-
tem fonts, together with hardware-dependent charac-
teristics such as canvas image rendering [9, 40], audio
processing [14], installed fonts [16], installed browser
extensions [21, 54, 55, 62], the sites that the user is
currently logged in [21], clock skew [30, 51] and other
techniques [32]. The goal of the fingerprinter is to create
a stable identifier of a user so that the user is identifi-
able on different sites. Computer fingerprint is the same
in every browser on the same computer, while browser
fingerprint differs for different browsers running on the
same computer. Recent studies have shown that user
tracking is becoming more prevalent and complex [35].
Note that the leaking information may uncover vulnera-
bilities of the fingerprinted systems, and a fingerprinting
database can be a valuable source of information for an
adversary wanting to misuse the data.

A fingerprint is considered passive when it con-
tains natively accessible information from HTTP head-
ers or network traffic. On the other hand, active finger-
print runs JavaScript code to retrieve data from browser
APIs. One of the goals of JShelter is to prevent active
fingerprinting.

Several studies monitored the deployed fingerprint-
ing techniques on the Internet [3, 4, 14, 17, 26, 45].
Trackers exploit evercookies, shared cookies, font enu-
meration, canvas, web audio, WebRTC, and many other
APIs to identify browsers and consequently their users.
However, studies found current countermeasures insuf-
ficient for a dedicated fingerprinter willing to reveal in-
consistencies in API readings [54, 68].

Transparency and Consent Framework (TCF) was
supposed to make online advertisement compliant with
ePrivacy and GDPR. However, the Belgian data pro-
tection authority recently confirmed many flaws [10].
Version 2 of the framework allows companies to self-
report active and passive fingerprinting. Figure 1 depicts

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

JShelter 3

publicly available data by IAB Europe4 and shows that
more than 400 companies passively fingerprint users and
more than 100 companies actively use JavaScript APIs
to create a unique fingerprint.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

2019-09 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05

C
om

pa
ni

es
 c

ou
nt

Date

Total participants
Passive fingerprinters

Precise geolocation
Active fingerprinters

Fig. 1. TCF participants reporting fingerprinting activities and
precise geolocation processing.

Current research distinguishes targeted and not tar-
geted fingerprinting [32]. Not targeted fingerprinting fo-
cuses on observing visiting browsers or computer fin-
gerprints and trying to link their identity to a previous
visitor. Targeted fingerprinting tries to detect a tailored
fingerprint of an individual, for example, for law enforce-
ment investigations [54].

Browser fingerprinting can also be used for benign
use cases like multifactor authentication — if a web-
site detects that a user connects from the same de-
vice as previously seen, it is not necessary to perform
additional authentication steps. A website can recom-
mend installing critical security updates based on sys-
tem properties, like the browser version. Some websites
collect browser fingerprints to distinguish between hu-
man users and bots to prevent fraud.

2.3 T3: Very rich browser APIs

Modern websites offer the capabilities of native appli-
cations. Browsers support video calls, audio and video
editing, maps and navigation, augmented and virtual
reality. One can control games with gamepads or check

4 See https://vendor-list.consensu.org/v2/archives/vendor-
list-vNUM.json where NUM is the number of the
week since the start of the framework. See https:
//www.fit.vutbr.cz/~polcak/tcf/tcf2.html for more data
from the framework.

the battery status. The webpage may change its appear-
ance according to the ambient light. Nevertheless, most
web pages do not need these advanced APIs [61]. Some
APIs like Geolocation or microphone and camera access
need explicit approval by users. Others like gamepads,
virtual reality, battery, or sensors are available for all
visited pages5

Iqbal et al. [26] detected misusing the APIs by many
fingerprinting scripts. Both Generic Sensor W3C Can-
didate Recommendation Draft6 and literature mention
several risks stemming from sensor reading like location
tracking [22], eavesdropping, keystroke monitoring, de-
vice fingerprinting [67], and user identification [5]. Fig. 1
reports TCF data on companies using precise geoloca-
tion data (precision better than 500 meters).

2.4 T4: Hostile third-party scripts

Whenever a user visits a web page, it can include exter-
nal scripts using the script element (for example, the
script provided by an advertisement provider or the
script performing visitor analysis, see T1). All scripts,
including the external scripts, can access the document
object model (DOM) of the web page and have the same
capabilities as scripts hosted on the same domain. Con-
sequently, if a first-party can access sensor data (T3), a
third-party script can access the same data. Note that
trackers (T1) are typically third-party scripts.

DOM dynamically reflects changes on the page, in-
cluding password and credit card strings. Several re-
searchers [2, 58, 64] warn that malicious scripts can
leverage the autofill functionality of password managers
to leak user credentials without their awareness. Other
research focused on contact forms that leak personal
data to unintended recipients [63]. Some packages aim
at stealing money [53].

5 Sensor APIs are currently implemented, or partially im-
plemented, in Chromium-based browsers like Chrome, Edge,
and Opera. For Android devices, the support exists in
Chrome for Android, Opera for Android, and various
Chromium-based browsers like Samsung Mobile or Kiwi
Browser. The concrete support for individual classes de-
pends on the browser type and version. Some features
are considered experimental and only work when browser
flags like #enable-experimental-web-platform-features or
#enable-generic-sensor-extra-classes are enabled. Sensor
APIs are enabled by default in Chrome on Android.
6 https://www.w3.org/TR/2021/CRD-generic-sensor-
20210729/#main-privacy-security-threats

https://vendor-list.consensu.org/v2/archives/vendor-list-vNUM.json
https://vendor-list.consensu.org/v2/archives/vendor-list-vNUM.json
https://www.fit.vutbr.cz/~polcak/tcf/tcf2.html
https://www.fit.vutbr.cz/~polcak/tcf/tcf2.html
https://www.w3.org/TR/2021/CRD-generic-sensor-20210729/#main-privacy-security-threats
https://www.w3.org/TR/2021/CRD-generic-sensor-20210729/#main-privacy-security-threats

JShelter 4

Modern web development includes many libraries.
Decan et al. [11] studied the npm ecosystem — pack-
age vulnerabilities and the time needed to fix a vulner-
ability. They observed that it often takes a long time
to discover vulnerabilities. It is widespread for web-
sites to include libraries with known security vulnera-
bilities [34]. Lauinger et al. [34] observed that websites
use unpatched libraries for years. Additionally, they ob-
served that libraries included transitively or via adver-
tisement trackers are more likely to be vulnerable as the
ecosystem is complex, unorganised, and it is often hard
to identify the vulnerable package versions. Sometimes,
one web page includes multiple versions of the same
library simultaneously. Mush et al. [42] explored that
25% of all sites affected by client-side cross-site script-
ing are only vulnerable due to a flaw in the included
third party code.

Figure 2 shows the number of pages with detected
vulnerabilities created by HTTP Archive7. The pages
are becoming less vulnerable in the last years, but 58.9%
of pages are vulnerable to at least one known and de-
tected vulnerability.

Fig. 2. Web pages with detected vulnerabilities by HTTP archive.

2.5 T5: Local network scanning

Devices browsing the web are typically connected be-
hind NAT, which does not allow external hosts to open
connections to devices in the local network (e.g. print-
ers). Although the same-origin policy does not allow a
web page to access arbitrary resources, there are side
channels that might provide enough information about
an existence of a resource, including resources in the lo-
cal network [6]. A web page can try to exploit the web
browser as a proxy between the remote website and re-
sources in the local network. Bergbom [6] demonstrated
that it is possible to execute arbitrary commands on a

7 https://httparchive.org/reports/state-of-the-web#pctVuln

local machine under certain circumstances (in this case,
it was an insecure Jenkins configuration).

2.6 T6: Microarchitectural attacks

Previous research also focused on side-channel attacks
that can reveal what the user has recently done with the
computer. For example, content-based page deduplica-
tion performed by an operating system or a virtual ma-
chine hypervisor can reveal if specific images or websites
are currently opened [19] on the same computer (hard-
ware), possibly on another virtual machine. The reply
time for a specific request depends on the cached con-
tent, so the reply time reveals if the content was recently
visited [15]. Moreover, even uncached content leaks in-
formation on the server state [7]. Bortz and Boneh [7]
studied server reply times influenced by different code
paths taken by the server and were able to reveal private
information. The requestAnimationFrame API can be
used to time browser rendering operations and reveal
information on browser history and read pixels from
cross-origin iframes [65].

Operating systems isolate processes from each other
and the kernel. However, deficiencies in hardware can
provide possibilities to circumvent the isolation. Gruss
et al. [20] exploited JavaScript to modify memory cells
belonging to different processes (the attack is called
Rowhammer). Hence, they gained unrestricted access
to systems of website visitors. They exploited operating
systems optimisations and high-precision timings [20].
Later, Gruss et al. [18] showed that industry counter-
measures against Rowhammer attacks are ineffective.
Spectre attacks can be executed from JavaScript and
leak data in the memory of other processes running on
the same system [29].

Some websites provide different content based on
age, gender and location. Van Goethem et al. [66] em-
ployed timing attacks to reveal data about users by mea-
suring the size of the reply for resources with different
contents for different users.

Smith et al. [59] determined browser history by the
visited link pseudoclass and timing redrawing of the
links based on the target URL.

https://httparchive.org/reports/state-of-the-web#pctVuln

JShelter 5

3 Countermeasures
Many popular security and privacy-enhancing ap-
proaches already exist. Let us focus on existing tools
addressing the threats raised in §2.

3.1 Browser extensions

Adblockers and other tracker blockers typically address
threats T1 and T2 but can also address T5 and T6.
The blockers employ lists of URLs or parts of URLs
that are considered harmful to user privacy or security.
The advantage for the user is that many tools focus on
blocking (for example, uBlock Origin, EFF Privacy Bad-
ger, Ghostery) and also blocklists that are usually com-
patible with several blockers. Browsers like Firefox [31]
and Brave include tracking prevention by default. The
downside is that it is easy to evade blockers [38]. The
malicious web server needs to change the name of the
script. For example, one of the Czech banks is currently
being investigated for including tracker scripts in their
internet banking. The default uBlock Origin blocklists
did not match the trackers. Hence, blocklists are very
useful as a first-line defence and improve web perfor-
mance [31]. However, blockers are not enough as the
niche cases evade the blockers [38].

Webextensions like NoScript Security Suite and
uMatrix Origin allow users to block JavaScript or other
content either completely or per domain. Hence, they
can address all six threats raised in §2. However, the user
needs to evaluate what scripts to allow. HTTP Archive
reports8 that an average page includes 22 external re-
quests (21 requests for mobile devices). Many pages de-
pend on JavaScript. Users must select what content to
trust. A typical page contains resources from many ex-
ternal sources, so such a user requires excellent knowl-
edge. Moreover, a malicious code may be only a part of
resources; the rest of the resource can be necessary for
correct page functionality. So we believe that webexten-
sions like NoScript Security Suite and uMatrix Origin
are good but do not protect the user from accidentally
allowing malicious code.

JavaScript Zero [39] (also known as Chrome Zero9)
expects that a user lets the browser run the vulnerable
code and focuses on mitigating T6. Even most skilful

8 https://httparchive.org/reports/page-weight?start=
earliest&end=latest&view=list#reqJs
9 https://github.com/IAIK/ChromeZero

users can run malicious code if the script URL evades
blocklists and other parts of the code are needed for the
page to display correctly. However, the practical imple-
mentation supports only Chromium-based browsers, is
not maintained since 2017, and Shusterman et al. [57]
have shown that the webpage can obtain access to the
original API calls.

Web API Manager [61] classifies JavaScript APIs
into 81 standards10. A the Web API Manager webex-
tension user can disable all functionality defined by any
of the standards. The authors prepared three configura-
tions with standards blocked depending on their bene-
fits and costs [61]. Web API Manager is most effective
against T3 and not targeted T2, but it can help mitigate
other threats. Unfortunately, Web API Manager does
not allow a user to allow only a part of the standard, e.g.
it is not possible to allow Canvas API for drawing but
disallow reading that is used for fingerprinting [40]. Ad-
ditionally, the webextension is no longer maintained11,
it is not compatible with Firefox Multi-Account Con-
tainers12, and it suffers from the Firefox bug related to
Content Security Policy (CSP) [41]. A Web API Man-
ager user with a tailored configuration can potentially
be uniquely identified with the JavaScript enumerating
code developed by Schwarz et al. [54].

We suggest installing cookie managers (threat T1)
and local CDN cachers (threats T1 and T4) as other
complementary webextensions.

3.2 Privacy-focused browsers

Tor is a network of onion routers that allow relaying
TCP connections so that the server does not learn the
IP address of a client but an IP address of their Tor exit
node. Torbrowser is a Firefox fork that tries to make ev-
ery instance as uniform as possible. For example, every
user should browse with the same window size. How-
ever, a fingerprinter can still learn some information
like the underlying operating system [32]. Torbrowser
also disables several APIs like WebGL. Consequently,
Torbrowser is a very good solution to tackle threats T1,
T2, T3, T5, and T6.

10 https://github.com/snyderp/web-api-manager/tree/
master/sources/standards
11 See the message on the GitHub page https://github.com/
snyderp/web-api-manager/blob/master/README.md
12 See https://github.com/snyderp/web-api-manager/issues/
53 for more details

https://httparchive.org/reports/page-weight?start=earliest&end=latest&view=list#reqJs
https://httparchive.org/reports/page-weight?start=earliest&end=latest&view=list#reqJs
https://github.com/IAIK/ChromeZero
https://github.com/snyderp/web-api-manager/tree/master/sources/standards
https://github.com/snyderp/web-api-manager/tree/master/sources/standards
https://github.com/snyderp/web-api-manager/blob/master/README.md
https://github.com/snyderp/web-api-manager/blob/master/README.md
https://github.com/snyderp/web-api-manager/issues/53
https://github.com/snyderp/web-api-manager/issues/53

JShelter 6

Nevertheless, Torbrowser users should not resize
the window and install additional webextensions. These
requirements downgrade comfort, and users might be
unwilling to abandon favourite webextensions or be
tempted to resize the window for more comfort. As
the communication is relayed multiple times by relays
spread worldwide, latency increases, and throughput is
limited. The list of Tor exit node IP addresses is public.
Moreover, malicious actors often misuse Tor. Some ser-
vices block Tor traffic, either to prevent frequent attacks
or as a temporary measure to block an attack.

Brave browser is a Chromium fork that focuses on
privacy. For example, it has a built-in blocker and anti-
fingerprinting solution. Using Brave is a good option
to tackle T1, T2, T5, and T6. A disadvantage is the
long build time. Often, it is not available in GNU/Linux
distribution repositories.

Mozilla is working on integrating fingerprinting re-
sisting techniques from Torbrowser13 to Firefox (Fire-
fox Fingerprinting Protection, also known as resist fin-
gerprinting). However, the work is not done, and it
is a possible related research question if the hiding
in the herd strategy makes sense before it is adopted
for all users. Moreover, inconsistencies arise. For exam-
ple, Torbrowser does not implement WebGL. As Fire-
fox adopts fingerprinting protections from Torbrowser,
Firefox modifies readings from 2D canvas and does not
modify WebGL canvas. That creates a false sense of
protection.

3.3 Current browser fingerprinting
countermeasures

Let us summarise the anti-fingerprinting protections of
the tools covered in this section. Modifying the content
of fingerprints is a valid choice to resist a fingerprint-
ing attempt. However, each modification may create an
inconsistency that may improve the fingerprintability
of the browser [32]. Currently, three anti-fingerprinting
approaches exist.

(1) Create homogeneous fingerprints. If the com-
monly used fingerprinting APIs returned the same val-
ues in every browser, a fingerprinter would not be able
to construct a fingerprint and tell the users behind the
browsers apart. The leading representative of this ap-
proach is Torbrowser. Unfortunately, homogeneous fin-
gerprints have an inherent downside of following specific

13 https://bugzilla.mozilla.org/show_bug.cgi?id=1329996

rules to be effective. Most importantly, the effectiveness
of the approach depends on the broad coverage of the
blocked APIs and the size of the population employ-
ing the countermeasures. All browsers with the same
fingerprint form an anonymity set [49]. An observer
cannot distinguish between browsers in the anonymity
set. With every missed fingerprintable attribute, the
anonymity set breaks into smaller sets. For example,
Torbrowser strongly recommends using a specific win-
dow size. Suppose a user changes a window size to a
value different from all other Torbrowser users. In that
case, a fingerprinter can identify the user solely by this
attribute. Moreover, Torbrowser hides the IP address of
the user. A webextension cannot hide or mask the IP
address.

(2) Change the fingerprints on different domains to
disable cross-domain linkage. Brave browser also modi-
fies the results of APIs commonly used for fingerprint-
ing. Its goal is to create a unique fingerprint for each
domain and session. As the output of APIs commonly
used for fingerprinting changes for every visited domain,
it cannot be used for cross-domain linking of the same
browser.

(3) Detect and block fingerprint attempts. A protec-
tion tool can monitor access to properties commonly
misused for fingerprinting and block access to additional
properties or limit the page ability to upload the finger-
print. To reliably prevent sharing the fingerprints with
trackers, any network traffic to the tracking server has
to be blocked and the web page cannot have an oppor-
tunity to store the fingerprint for retrieval after page
reload. Such measures can be effective against finger-
printing. Nevertheless, they also impose severe restric-
tions for web applications, limit overall usability, and
break page behaviour. Fingerprinting detection can also
be imprecise. In practice, it takes time to detect that a
fingerprint is indeed being computed. As a page can im-
mediately send the values being read for fingerprinting
to the server, the server can learn a partial fingerprint
before the fingerprinting is detected and blocked.

4 JShelter design decisions
As the current state-of-the-art covered in §3 suggests,
there is no perfect and straightforward solution for the
threats raised in §2. This section covers the design de-
cisions of JShelter and the countermeasures we decided
to implement.

https://bugzilla.mozilla.org/show_bug.cgi?id=1329996

JShelter 7

JShelter does not aim at providing a perfect solution
either. Our goals are as follows:
1. Create a webextension because webextensions work

across multiple browsers and consequently can be
easily installed into any browser that supports
webextensions, including Firefox and all browsers
based on Chromium.

2. Do not create a perfect solution instead focus on
what other webextensions lack: a consistent ap-
proach to the threat T2 and protection from T3,
T414, T5, and T6.

3. Make the webextension friendly for people without
technical knowledge.

Chrome Zero [39] and Web API Manager [61] were the
inspiration for JShelter. Chrome Zero provides exam-
ples of protections like closures and Proxy objects. It
focuses on microarchitectural attacks. Web API Man-
ager provides a way to selectively disable browser APIs.

Currently, JShelter offers three types of protec-
tions. (1) JavaScript Shield (JSS) modifies or disables
JavaScript APIs. It aims at threats T2, T3 and time-
measurement-related protection for T1 and T6. (2) Fin-
gerprint Detector (FPD) provides heuristic analysis of
fingerprinting behaviour and tackles T2, (3) Network
Boundary Shield (NBS) monitors the source and des-
tination of each web request and detects attempts to
misuse the browser as a proxy to the local network (T5).

4.1 Fingerprint detector

FPD monitors APIs that are commonly used by fin-
gerprinters and applies a heuristic approach to detect
fingerprinting behaviour in real-time (see threat T2).
When a fingerprinting attempt is detected, FPD notifies
the user. The user can configure JShelter to reactively
block subsequent asynchronous HTTP requests initi-
ated by the fingerprinting page and clear the storage fa-
cilities where the page could have stored a (partial) fin-
gerprint. However, this behaviour may break the page.
The goal of the aggressive mode is to prevent the page
from uploading the full fingerprint to a server. However,
the fingerprinter can gradually upload detected values
and a partial fingerprint can leak from the browser.

14 Currently, JShelter does not provide any protection for T4
but we evaluate possibilities to add such support in the future.
For example, we supervise a diploma thesis in the area that
should be defended in 2022.

The heuristic approach was chosen as many prior
studies [3, 14, 26, 32] proved it to be a viable approach
with a very low false-positive rate. The most challeng-
ing part of this approach is a careful selection of detec-
tion conditions. The heuristics contain two basic types
of entries: (1) JavaScript API endpoints, which are rel-
evant for fingerprinting detection and (2) a hierarchy
of groups of related endpoints. For example, we group
endpoints according to their semantic properties. Imag-
ine that there are two different endpoints. Both pro-
vide hardware information about the device. We can
assign both endpoints to a group that covers access to
the same hardware properties. The heuristics allow clus-
tering groups to other groups and creating a hierarchy
of groups. Ultimately, the heuristics are a tree-like struc-
ture that computes the threat that a webpage tried to
obtain enough information to compute a unique finger-
print.

FPD is based on previous studies. Iqbal et al. [26]
measured the relative prevalence of API keywords in fin-
gerprinting scripts and created a list of APIs using this
metric. We extracted selected APIs from the list into
groups in our heuristics. We also build upon heuris-
tics proposed by Englehardt and Narayanan [14] to
detect additional fingerprinting techniques. We looked
through the source code of fingerprinting tools like Fin-
gerprintJS15, Am I Unique16 and Cover Your Tracks17.
Furthermore, we analysed existing detection tools,
namely A Fingerprinting Monitor For Chrome (FP-
MON)18 and Don’t FingerPrint Me (DFPM)19.

The whole evaluation process dynamically observes
the API calls performed by a web page. We analyse the
calls themselves. Hence, the dynamic analysis overcomes
any obfuscation of fingerprinting scripts.

FPD provides a report that explains why FPD eval-
uated a visited page as a fingerprinter, see Fig. 3. The
report aims to educate users about fingerprinting and
report why FPD notified the user and optionally blocked
the page. Additionally, the report can be generated from
passive observation of web page calls without any JShel-
ter interaction with the page (no API blocking). We
expect that researchers will use passive FPD to study
fingerprinting in more detail. Additionally, passive FPD

15 https://github.com/fingerprintjs
16 https://amiunique.org/
17 https://coveryourtracks.eff.org/
18 https://fpmon.github.io/fingerprinting-monitor/
19 https://github.com/freethenation/DFPM

https://github.com/fingerprintjs
https://amiunique.org/
https://coveryourtracks.eff.org/
https://fpmon.github.io/fingerprinting-monitor/
https://github.com/freethenation/DFPM

JShelter 8

can be employed by European data protection auditors
to determine ePrivacy or GDPR breaches.

Fig. 3. An excerpt from a FPD report on AmIUnique.org. The
user can clearly see what APIs the visited page called.

We expect that the APIs for fingerprinting will
change in time so we designed the heuristics to be
as flexible as possible. We expect to run periodic web
crawls based on the tools initially developed by Snyder
et al. [60] and apply machine learning to FPD.

4.2 JavaScript Shield

JSS focuses on spoofing timestamps (threat T1 and T6),
fingerprint modifications (threat T2) and limiting APIs
available to visited pages (threat T3). JSS offers two
predefined profiles that we expect that users should use.

One profile focuses on making the browser appear
differently to distinct fingerprinting origins by slightly
modifying the results of API calls differently on differ-
ent domains so that the cross-site fingerprint is not sta-
ble [44, 50]. The focus is on applying security counter-
measures that are likely not to break web pages.

The other profile focuses on limiting the information
provided by the browser by returning fake values from
the protected APIs. Some are blocked completely, some
provide meaningful but rare values, other return mean-
ingless values. This level makes the user fingerprintable
because the results of API calls are generally modified
in the same way on all websites and in each session.

JShelter currently modifies 97 APIs inspired by
Schwarz et al. [39], Iqbal et al. [26], Snyder et al. [61]
and APIs declined by Apple. For each API, we decide
its relevance on an individual basis. Usually, we do not
modify APIs that are already explicitly permitted by
the user, but the analysis might provide an example
where the user still wants to limit the precision of the

API. For example, Geolocation API allows the page to
learn a very precise location while the user might be
interested in services in the city. Hence, JShelter allows
fine-tuning the precision of the Geolocation.

The slightest mismatch between the results of two
APIs can make the user more visible to fingerprint-
ers [32, 43, 54]. Hence, all protections are considered
from the point of fingerprintability, the threat to leak
information about the browser or user and other threats
presented in §2. When it does not require much work,
JShelter tries to mimic a stationary device with consis-
tent and plausible readings.

4.2.1 Farbling-like prevention of browser
fingerprinting

JSS builds on the Farbling protection implemented in
Brave20 and applies the same or very similar protec-
tion. Farbling is, in turn, based on PriVaricator [44] and
FPRandom [50]. JSS modifies the values readable by
page scripts with small lies that differ per origin. These
little lies result in different websites calculating different
fingerprints. Moreover, a previously visited website cal-
culates a different fingerprint in a new browsing session.
Consequently, cross-site tracking is more complicated.

4.2.2 Interaction between JavaScript Shield and
Fingerprint Detector

Both JSS, and FPD aim at preventing fingerprinting.
Both are necessary for JShelter.
– The blocking mode of FPD breaks pages. Users are

typically tempted to access the content even when
they know that they are being fingerprinted. Hence,
prevention besides FPD is necessary.

– The JSS profile focusing on limiting information ac-
cess will likely result in the same fingerprint for all
domains; hence, we strongly advise users of this pro-
file to activate FPD.

– We expect most users to stick with the default pro-
file creating little lies. Future research should val-
idate the current approach. For example, JShelter
and Brave create indistinguishable changes to can-
vas readings. These are sufficient for a fingerprinter
that creates a hash of the readings. Nevertheless, an

20 See https://github.com/brave/brave-browser/issues/8787
and https://github.com/brave/brave-browser/issues/11770

AmIUnique.org
https://github.com/brave/brave-browser/issues/8787
https://github.com/brave/brave-browser/issues/11770

JShelter 9

advanced fingerprinter might, for example, read the
colours of specific pixels to determine a presence of
a font (different fonts produce a different pixel-wise-
long output of the same text). As both Brave and
JShelter modify only the least significant bit of each
colour, the fingerprinter can ignore this bit and get
the information on installed fonts. Hence, we be-
lieve that FPD is beneficial as it offers additional
protections.

4.2.3 Sensors

JShelter tries to simulate a stationary device and conse-
quently completely spoofs the readings of Geolocation
API and AmbientLight, AbsoluteOrientation, Relative-
Orientation, Accelerometer, LinearAcceleration, Grav-
ity, Gyroscope, and Magnetometer sensors.

Instead of using the original data, JShelter returns
artificially generated values that look like actual sensor
readings. Hence the spoofed readings fluctuate around a
value that is unique per origin and session. The readings
are performed consistently in the same origin tabs, so
the same sensor produces the same value in each tab.

We observed sensor readings from several devices
to learn the fluctuations of stationary devices in differ-
ent environments. Most of the sensors have small devi-
ations. However, magnetometer readings have big fluc-
tuations. JShelter simulates Magnetometer fluctuation
by using a series of sines for each axis. Each sine has
a unique amplitude, phase shift, and period. The num-
ber of sines per axis is chosen pseudorandomly. JShelter
currently employs 20 to 30 sines for each axis. Never-
theless, the optimal configuration is subject to future re-
search. More sines give less predictable results but also
increase the computing complexity, negatively impact-
ing the browser’s performance.

The readings of the acceleration and orientation sen-
sors are generated consistently between each other from
an initial device orientation that JShelter generates for
each origin and session.

4.2.4 User in Control

The number of modified APIs is huge. We expect that
users will encounter pages that are broken by JShelter or
do not work as expected. For example, the user might
want to play games with a gamepad device on some
pages or make a call on others.

JSS allows each user to fine-tune the protection for
each origin. Based on the reported issues, we decided
that some users are not willing to dig into the configu-
ration. Those can disable JSS as a whole with a simple
ON/OFF popup switch. More experienced users can re-
act to information provided by FPD and turn off JSS
fingerprint protection when the visited site does not be-
have as a fingerprinter. The most experienced users can
fine-tune the behaviour per API group. Figure 4 shows
an example of a user accessing a page that allows video
calls. The user sees the groups with APIs that have been
called by the visited page at the top and can quickly fix
a broken page.

Fig. 4. JSS reports back which APIs are being used by the page.

4.3 Effective modifications of JavaScript
environment

Monitoring and modifying the results of the built-in
JavaScript APIs and built-in object behaviour is the
JShelter core functionality. JShelter employs the same
mechanism proposed by Schwarz et al. [39] in Chrome
Zero. However, Chrome Zero was a proof-of-concept
without any modification in the last four years. Shuster-
man et al. [57] identified several problems with Chrome
Zero:
1. Unprotected prototype chains (issue 1): the original

implementation is available through the prototype
chain because Chrome Zero protects a wrong prop-
erty.

2. Delayed JavaScript environment initialisation (is-
sue 2): Current webextension APIs lack a reliable
and straightforward way to inject scripts modifying
the JavaScript environment before page scripts start
running. As JShelter (and Chrome Zero) allows con-
figurable protection that may differ per origin, it
needs to access an asynchronous API that stores the
configuration. Hence, a naïve implementation adds
additional delay that may allow page scripts to ac-
cess original, unprotected API calls. Note that once
page scripts have the opportunity to access the orig-
inal API implementation, they can store the unpro-

JShelter 10

tected version. There is no way (for a webextension)
to reverse the leak.

3. Missed context (issue 3): Chrome Zero does not ap-
ply protection in iframes and worker threads.

In addition, Firefox suffers from a long-standing unfixed
bug [41] that prevents up to 10% of Firefox webexten-
sions from working correctly on pages whose Content
Security Policy (CSP) forbids inline scripts [25] (issue
4).

Preventing issue 1 is simple. The JShelter developer
needs to identify the correct method to protect. For
example, web developers know that they can get pre-
cise timestamps by calling performance.now(). But the
method now is not a method of the performance object
but it is rather available through prototype chain from
Performance.prototype. We tackle this issue in two
steps. (1) Before we implement a protection, we analyse
the prototype chain and pick the correct object imple-
menting the property or method to wrap. Left alone,
this approach is brittle: it can be broken by changes in
the DOM APIs specification or by browser implemen-
tation. Therefore JShelter applies an additional step.
(2) The injection code checks at runtime whether the
property (or method) is actually implemented as an own
property by the object defined in step 1 or if the prop-
erty is inherited. In the latter case, JShelter traverses
the prototype chain until it finds and replaces the cor-
rect property, overriding step 1 choice.

A significant effort of the JShelter development went
into developing a reliable cross-browser early script in-
jection that tackles issues 2–4. These are problems af-
fecting several privacy and security webextensions. In
fact, the techniques adopted and further honed while
developing JShelter had been extracted from the No-
Script Security Suite21, refactored into the NSCL and
made publicly available for reusing and contributing
back. This aims to minimise the maintenance burden
and mitigate the danger of introducing insidious bugs
and security vulnerabilities due to feature mismatches
and multiple code paths by abstracting the common
functionality shared among security and privacy webex-
tensions, providing consistent implementations across
multiple browser engines and shielding developers from
the browser-dependent implementation details.

21 https://noscript.net/

The NSCL tackles issue 2 in its DocStartInjection
module22, by preprocessing URL-dependent configura-
tion inside a BeforeNavigate event handler. This event
is fired every time the browser starts loading a new page
and notifies the webextension of the destination URL,
which JShelter uses to build a configuration object in
advance and make it available to the content script be-
fore it starts its own processing. This technique always
succeeds in pre-configuring the webextension on docu-
ment start, before any page script can run, on Firefox;
but on Chromium it might sometimes fail due to race
conditions. As a safety net for these edge cases, when
no configuration object is found by the content script,
the special SyncMessage API23, an ugly (because based
on the deprecated synchronous XMLHttpRequest API)
but effective hack provided by the NSCL, is used to still
retrieve the correct settings in a timely manner.

To address issue 3, the configuration of the we-
bextension (manifest.json) registers code injection
into all the newly created windows, including sub-
frames. Unfortunately, this alone cannot prevent dy-
namically created windows and frames from being ex-
ploited by the originator page to retrieve pristine un-
wrapped objects and therefore work around the in-
tended protections: window.open(), contentWindow,
and contentDocument.window allow access to a
new window object immediately after its creation
(synchronously); before any initialisation (including
the injection of webextension content script) oc-
curs. To fix this problem, NSCL patchWindow()
API modifies window.open(), contentWindow, and
contentDocument.window to recursively wrap the newly
created window just before it gets returned.24. A fur-
ther often overlooked possibility to access unwrapped
APIs is the historical legacy of subframe windows of
all kinds being also immediately available at creation
time by just indexing their parent window as an un-
wrappable pseudo array (e.g. window[0] is a synonym
of window.frames[0]). The NSCL takes care of this
problem by automatically patching all not yet patched
window[n] objects every time the DOM structure is
modified, potentially creating new windows. This re-
quires accounting for all methods and accessors by

22 https://github.com/hackademix/nscl/20220330/main/
service/DocStartInjection.js
23 https://github.com/hackademix/nscl/20220330/main/
common/SyncMessage.js
24 https://github.com/hackademix/nscl/blob/20220330/
content/patchWindow.js#L247

https://noscript.net/
https://github.com/hackademix/nscl/20220330/main/service/DocStartInjection.js
https://github.com/hackademix/nscl/20220330/main/service/DocStartInjection.js
https://github.com/hackademix/nscl/20220330/main/common/SyncMessage.js
https://github.com/hackademix/nscl/20220330/main/common/SyncMessage.js
https://github.com/hackademix/nscl/blob/20220330/content/patchWindow.js#L247
https://github.com/hackademix/nscl/blob/20220330/content/patchWindow.js#L247

JShelter 11

which the DOM can be changed in JavaScript and wrap-
ping them25. Regarding web workers, JShelter either
disables or emulates them in the main thread (inher-
iting the wrapped JavaScript environment), depending
on the protection level chosen by the user. The NSCL
provides a third option: wrapping workers by inject-
ing the wrappers in their own browser context via its
patchWorkers() API. The implementation is very com-
plex and still experimental26 27. It needs more testing
before it can be confidently deployed to a general audi-
ence.

Finally, NSCL works around issue 4 (script injection
failing on Firefox for some pages protected by CSP),
by leveraging a Firefox-specific privileged API meant to
safely share functions and objects between page scripts
and WebExtensions28. On Chromium, where such API
is not available but injected scripts have no special pow-
ers and therefore do not need those safety measures,
NSCL provides shims to expose a uniform interface for
injected code and reduce the burden of cross-browser
development.

5 Evaluation
JShelter is available as a webextension in addons.
mozilla.org, Chrome Store, and Opera Store from early
development stages. We employ the release early, release
often strategy, but we do not release early if we are con-
cerned about possible security bugs in the new version.

5.1 Fingerprinting inconsistencies

We are aware that a fingerprinter may observe some in-
consistencies. For example, JShelter modifies each read
canvas. Should the page scripts probe a single-colour-
filled canvas, JShelter would introduce small changes in
some pixels. Hence, a page script might learn that pro-
tection against canvas fingerprinting is in place.

25 https://github.com/hackademix/nscl/blob/20220330/
content/patchWindow.js#L311
26 https://github.com/hackademix/nscl/blob/20220330/
content/patchWorkers.js
27 https://github.com/hackademix/nscl/blob/20220330/
service/patchWorkers.js
28 https://developer.mozilla.org/en-US/docs/Mozilla/Add-
ons/WebExtensions/Sharing_objects_with_page_scripts

A naïve implementation available in earlier JShel-
ter versions modified all canvases of the same size in
the same way. Hence a fingerprinter could have created
two canvases, one for the fingerprinting and the other to
learn what pixels are modified and consequently revert
the modifications. We removed the vulnerability before
anyone outside our team discovered the issue. Never-
theless, the little lies modifications (see §4.2.1) have
a performance hit. For all APIs that allow obtaining
hardware-rendered data like the Canvas, WebGL, and
WebAudio APIs, JShelter needs to access all data in
two iterations, first to create a hash that controls the
modifications in the second iteration. Hence, the same
content is deterministically modified the same way, and
different content is modified differently.

Consider AudioBuffer.prototype.getChannelData
that should allow quick access to pulse-code modulation
audio buffer data without data copy. A fingerprinter
might be interested in a couple of samples only. How-
ever, the spoofing mechanism needs to access all data,
so the method is much slower (learning that the time of
getChannelData takes too long is usable for fingerprint-
ing). During testing, we encountered ebay.com, which
is not responsible in current JShelter versions without
adblocker due to too much time spent in the spoofing
code.

We are not aware of any isolated side-effect that re-
veals JShelter. For example, some similar webextensions
do not modify toString. A page script could detect such
a webextension as each webextension modifying the call
by the same technique will likely use a different code.
Nevertheless, we are aware and do not hide that users
of JShelter are vulnerable to focused attacks. Our goal
is to offer a protection indistinguishable from another
privacy-improving tool for each modified API. Never-
theless, a focused observer will very likely be always
able to learn that a user is using JShelter if they aggre-
gate the observable inconsistencies of all APIs produced
by JShelter.

5.2 Timing events

Biometrics cannot be forgotten or stolen [28]. However,
JShelter forges timestamps from all JavaScript times-
tamp sources consistently. As the biometric feature com-
putation is based on time tracking [28, 47, 48, 70].
Forged timestamps result in fake biometrical data.

JShelter implements rounding and, by default, ran-
domises the timestamps as Chrome Zero does [39]. In
comparison, Firefox Fingerprinting Protection and Tor-

addons.mozilla.org
addons.mozilla.org
https://github.com/hackademix/nscl/blob/20220330/content/patchWindow.js#L311
https://github.com/hackademix/nscl/blob/20220330/content/patchWindow.js#L311
https://github.com/hackademix/nscl/blob/20220330/content/patchWorkers.js
https://github.com/hackademix/nscl/blob/20220330/content/patchWorkers.js
https://github.com/hackademix/nscl/blob/20220330/service/patchWorkers.js
https://github.com/hackademix/nscl/blob/20220330/service/patchWorkers.js
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Sharing_objects_with_page_scripts
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Sharing_objects_with_page_scripts
ebay.com

JShelter 12

browser implement only rounding, which makes the
technique visually easily detectable. Compared with
Chrome Zero, JShelter modifies all APIs that produce
timestamps, including events (see threat T1), geoloca-
tion, gamepads, virtual reality and sensors.

Computer clocks do not measure time accurately,
but each has a built-in error. Previous research [30,
51, 56] established that such errors are unique to a de-
vice and observable on the network. Jireš [27] studied
the influence of timestamp rounding (Torbrowser, Fire-
fox Fingerprinting Protection) and rounding and ran-
domisation (JShelter, Chrome Zero). He computed clock
skew from rounded timestamps, but he could not re-
move the noise from rounded and randomised times-
tamps. However, this result should be validated; long-
lasting (at least tens of minutes) measurements might
remove the randomisation noise and reveal the clock
skew. Nevertheless, Polčák and Franková [51] observed
that timestamps provided by JavaScript are affected by
time synchronisations (such as NTP). Hence, we advise
to combining JShelter round and randomisation with
continuous-time synchronisation to hide built-in clock
skew.

5.3 Sensors

We discovered a loophole in the Sensor.timestamp
attribute29. The value describes when the last
Sensor.onreading event occurred in millisecond pre-
cision. We observed that the time origin is not the time
of browsing context creation but the last boot time of
the device. Exposing such information is dangerous as
it allows to fingerprint the user easily. It is unlikely that
two different devices will boot at the same time.

JShelter protects the device by provisioning the
time since the browser created the page context (the
same value as performance.now(). Such timestamps
uniquely identify the reading without leaking anything
about a device. Future work can determine if such be-
haviour appears in the wild. If all devices and browsers
incorporate the loophole, we should provide a random
boot time.

29 Tested with Samsung Galaxy S21 Ultra; An-
droid 11, kernel 5.4.6-215566388-abG99BXXU3AUE1,
Build/RP1A.200720.012.G998BXXU3AUE1, Chrome
94.0.4606.71 and Kiwi (Chromium) 94.0.4606.56 and Xi-
aomi Redmi Note 5; Android 9, kernel 4.4.156-perf+, Build/9
PKQ1.180901.001, Chrome 94.0.4606.71

Figure 5 shows readings from a real and fake mag-
netometer. The left part (a) shows a stationary device.
The magnetic field is not stable due to small changes in
Earth’s magnetic field and other noise. The middle part
of the figure (b) shows a device that changed its posi-
tion several times during the measurement. We analysed
traces of sensors readings collected in various locations
and environments. Fig. 5 (c) shows readings generated
by JShelter fake magnetometer. The values look like ac-
tual sensor readings. Nevertheless, the generator uses
a series of constants whose optimal values should be a
subject of future research and improvements.

5.4 Fingerprint Detector effectivity

The FPD heuristics were designed to keep the number
of false positives as low as possible. As FPD can option-
ally block all subsequent requests by a fingerprinting
page and JShelter provides complementary protections,
FPD blocks only indisputable fingerprinting attempts.
We conducted real-world testing of FPD and refined its
detection heuristics accordingly.

In terms of testing methodology, we manually vis-
ited homepages and login pages of the top 100 websites
from the Tranco list30. Inaccessible websites were ran-
domly replaced by websites from the top 200 list. Before
visiting a website, we wiped browser caches and stor-
age to remove previously-stored identifiers. Hence, the
visited pages may have deployed fingerprinting scripts
more aggressively to identify the user and reinstall the
identifier.

To boost the probability of fingerprinting even
more, we switched off all protection mechanisms offered
by the browser. However, we blocked third-party cookies
because our previous experience suggests that the miss-
ing possibility to store a permanent identifier tempts
trackers to start fingerprinting. We repeated the visits
with both Google Chrome and Mozilla Firefox.

We used FPMON and DFPM webextensions to cre-
ate the ground truth. For each visited page, we com-
puted its fingerprinting score. FPMON reports finger-
printing pages with colour. We assigned yellow colour
1 point and red colour 3 points. DFPM reports dan-
ger warnings. If DFPM reports one danger warning, we
assign 1 point to the page. For a higher number of dan-
ger warnings, we assign 3 points to the page. Therefore,
each page gets a fingerprinting score from 0 to 6.

30 https://tranco-list.eu/list/23W9/1000000

https://tranco-list.eu/list/23W9/1000000

JShelter 13

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 100000 200000 300000 400000 500000 600000

x

y

y

M

Magnetometer data from a stationary device

(a) Stationary device

-60

-40

-20

 0

 20

 40

 60

 80

 0 100000 200000 300000 400000 500000 600000

x

y

y

M

Magnetometer data from a moving device

(b) Moving device

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 100000 200000 300000 400000 500000 600000

x

y

y

M

Data from a device with the fake magnetometer

(c) Fake readings

Fig. 5. Magnetometer readings.

Ground truth (FPMON + DFPM) JShelter (FPD) False positives (FPD) False negatives (FPD)
Homepages 20 20 1 0
Login pages 34 30 1 7

Table 1. Results of FPD study from the manual crawl of the top 100 web pages according to the Tranco list.

Table 1 shows the results of the comparison. We
classify a page as fingerprinting when its score is 4 or
more. We did not count pages with a score of 3 or 2 as
fingerprinting because their status is unclear. We con-
sider scores 0 and 1 as an indication of no fingerprinting.
However, as reported above, the ground truth is far from
flawless. We encountered many exceptions during test-
ing and examined them in detail. In many cases, FPD
detects fingerprinting, but the reference webextensions
do not.

(1) The score of 6. FPD successfully detects pages
with a score of 6 except the Google login page (which
occurred six times in the testing set). We studied the
accessed APIs and decided that accessed APIs do not
provide enough entropy for most users. Nevertheless, we
count Google login pages as false negatives.

(2) The score of 4. FPD classifies these web pages as
fingerprinting with two exceptions, Facebook login page
and yandex.ru. Both are borderline cases that do not
obtain enough entropy.

(3) The score of 3. These pages are borderline cases.
FPD detected fingerprinting only on one of these pages,
the Paypal login page. The detection was correct as we
manually found clear tracks of canvas fingerprinting.

(4) The score of 2. We assume that web pages with
this score learn a fingerprint that is likely short on en-
tropy. FPD detected two web pages with this score as
fingerprinters, namely Cloudflare login page and Wash-
ington Post login page. A closer analysis revealed that
both pages use canvas fingerprinting in and other fin-
gerprinting methods.

(5) The score of 1 or 0. FPD detected fingerprinting
on ebay.com. Manual inspection showed that ebay.com

did indeed fingerprint using canvas fingerprinting, audio
fingerprinting and other techniques.

The asymmetry between detection on different
browsers was minor and had minimal impact on detec-
tion. Moreover, FPD automatically recalculates heuris-
tics if a browser does not support a monitored API.

5.5 Network Boundary Shield

5.5.1 Localhost scanning

Some web pages, like ebay.com, scan (some users) for
open local TCP ports to detect bots with open remote
desktop access or possibly to create a fingerprint. The
web page instructs the browser to connect to the local-
host (127.0.0.1) and monitors the errors to detect if
the port is opened or closed. See Fig. 6 for an example.

When we developed NBS we did not anticipate lo-
calhost port scanning. When we first encountered the
eBay port scanning case, we knew that this behaviour
should trigger NBS as the requests cross network bound-
aries. We accessed ebay.com, detected the scanning by
Web Developer Tools (Fig. 6) and checked that NBS is
indeed triggered and works as expected.

As Article 29 Working Party clarified [69, use case
7.5], user-centric security can be viewed as strictly nec-
essary to provide the service. So it seems likely that port
scanning for security reasons would trigger the ePrivacy
exception and user consent is not necessary.

As port scanning is a part of the login mechanism,
open ports are personal data without a doubt. So GDPR
also applies. GDPR also list security as a possible le-
gitimate interest of a data controller (e.g. eBay), see

ebay.com
ebay.com

JShelter 14

Fig. 6. eBay webpage scanning the local computer for open ports.

recital 49. Nevertheless, if such a scan is proportion-
ate is an open question; the legitimate interests of data
controllers (such as eBay) may be overridden by the in-
terests or fundamental rights and freedoms of the data
subject (JShelter users), see GDPR, Article(6)(1)(f).

Nevertheless, Article 12-14 of GDPR lists require-
ments on the information that a data controller should
reveal to each data subject before the data processing
starts or in a reasonable time afterwards. Hence, each
controller employing such port scanning should reveal,
for example, in the privacy policy, what categories of
data it is using and for which purposes. Several web ar-
ticles covering the eBay case31 suggests that eBay and
its processor ThreatMetrix are secretive about data be-
ing collected.

Another GDPR issue might be data transfers to
third countries. If the information leaves EEA, data
transfers of open ports may not be compatible with
GDPR in light of the CJEU C-311/18 decision.

Hence, JShelter can be used by data protection au-
thorities to detect local port scanning and check if the
data controller informs data subjects in line with GDPR
requirements.

5.5.2 Comparison with Private Network Access

Recently, Google announced Private Network Access
(PNA)32 that should become W3C standard33. PNA

31 https://blog.avast.com/why-is-ebay-port-scanning-my-
computer-avast, https://www.theregister.com/2020/05/26/
ebay_port_scans_your_pc/
32 https://developer.chrome.com/blog/private-network-
access-prefilght/
33 https://wicg.github.io/private-network-access/

solves the same problem as NBS, but the solution is
different. PNA-compatible browsers send HTTP Re-
quests to the local networks with the additional header:
Access-Control-Request-Private-Network: true.
The local resource can allow such access with HTTP re-
ply header Access-Control-Allow-Private-Network:
true. If it does not, the browser blocks the access.

NBS works differently. Firefox version leverages
DNS API to learn that a public web page tries to ac-
cess the local network and blocks the request before the
browser sends any data. Chromium-based browsers do
not support DNS API, so the first request goes through.
NBS learns the IP address during the reply process-
ing. NBS blocks any future request before it is made
once it learns the IP address during the reply process-
ing. Hence, NBS limits the network bandwidth and pre-
vents any state modification on a local node that may be
caused by request going through, except for the learning
phase in Chromium-based browsers. We consider both
approaches to solving threat T5; it is up to the user
what solution they prefer.

Note that Google postponed the Chrome PNA de-
ployment during March 2022, so Chrome users without
JShelter or another webextension with similar capabil-
ities are not protected.

5.6 Feedback from users

Some users found JShelter immediately after initial up-
load to webextension sites. Nevertheless, the number of
users increased massively only after an announcement
by Free Software Foundation. Figure 7, shows JShelter
users in time in Firefox and Chrome. The graph shows
that JShelter has an audience and users want to control
their browsers.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2021-09 2021-10 2021-11 2021-12 2022-01 2022-02 2022-03

U
se

r
co

un
t

Date

Chrome users
Firefox users

Fig. 7. Number of JShelter users.

https://blog.avast.com/why-is-ebay-port-scanning-my-computer-avast
https://blog.avast.com/why-is-ebay-port-scanning-my-computer-avast
https://www.theregister.com/2020/05/26/ebay_port_scans_your_pc/
https://www.theregister.com/2020/05/26/ebay_port_scans_your_pc/
https://developer.chrome.com/blog/private-network-access-prefilght/
https://developer.chrome.com/blog/private-network-access-prefilght/
https://wicg.github.io/private-network-access/

JShelter 15

Based on the feedback from users, one of the reasons
for the decline is that they encounter too many broken
or slow pages. We do not think that JShelter is finished
and fixing broken pages was not a priority yet.

Another reason is that users do not understand the
little lies fingerprint prevention. They want to hide in
the crowd (see §3.3). The most controversial of which
is WebGL vendor, unmasked vendor, renderer, and un-
masked renderer spoofing. We do not know any list of
real-world strings, and even if we knew, we are not sure
if we could avoid inconsistencies. Hence we decided that
the threat model defending from a fingerprinter not fo-
cused on revealing JShelter users allows for the gener-
ation of random strings per origin and session for the
little lies JSS profile (see §4.2). Some users do not un-
derstand the explanation even though we highlight that
similar randomly generated strings are already available
through MediaDevices.prototype.enumerateDevices,
the created profile is unique by design.

A common problem is that users do not understand
what JShelter is doing and that several modules work in
parallel and can be enabled and configured separately.
We tweaked the UI several times to make the UI as
straightforward as possible and we added explanations
and want to add even more explanations (for example,
to the popup window).

JShelter users also reported false-positive NBS de-
tections when using DNS-based filtering programs.
Some DNS-based filters return the localhost IP address
for any blocked domain. In that case, NBS correctly de-
tects that a public page tries to access a local resource,
blocks the request, and notifies the user. Users often do
not understand that their DNS configuration is broken,
and the DNS blocker should be reconfigured to return
0.0.0.0 (invalid address). This behaviour triggered an-
other observation that NBS generated too many noti-
fications. Some users do not want to be notified at all.
We added an option to turn off notifications. We limited
the number of notifications if they are enabled and the
web page accesses local nodes during a short time frame.
Additionally, we added explanation texts. It seems that
users do not report issues with NBS notifications any-
more.

Many privacy-related webextensions report the
number of blocked elements in the badge icon. Previous
research projects like Chrome Zero depicts currently ap-
plied protections. Early JShelter versions reported ap-
plied level as well, but the feedback preferred showing
the number of blocked elements and using colours. We
decided to (1) report the number of accessed API groups
and (2) report the likelihood of fingerprinting as a colour

starting from shades of green through yellow to shades
of red. Figure 8 shows examples of badged icons that
received positive reception.

Fig. 8. Interactive badge icons.

Early versions spoofed information sent in HTTP
headers. We removed this option as it broke pages, cre-
ated inconsistencies [32], and needed too much mainte-
nance to update browser versions. Nevertheless, passive
fingerprinting is common, see Fig. 1 and users are ask-
ing about such a feature. We will likely revisit the early
development decision and consider adding a passive fin-
gerprint shield.

6 Conclusion
Previous research established that browser security, pri-
vacy, and customizability are important topics [6, 13, 20,
32, 38, 39, 51, 66]. The imminent danger of third-party
cookies’ removal forces trackers to employ even more
privacy-invading techniques. Real-time bidding leaves
users as easy targets for various attacks, including gain-
ing information about other applications running on the
local computer [46]. Moreover, continuous additions of
new JavaScript APIs open new ways for fingerprinting
the browsers and gaining additional knowledge about
the browser or user preferences and physical environ-
ment. One of the major concerns is a lack of effective
tools that everyday user wants to use. Current methods
to tackle web threats are list-based blockers that might
be evaded with a change of URL, specialised browsers,
or research-only projects that are quickly abandoned.

In contrast, JShelter is a webextension that can be
installed on major browsers and consequently does not
require the user to change the browser and routines.
We integrate several previous research projects like
Chrome Zero [39], little-lies-based fingerprinting pre-
vention [44, 50], and ideas of limiting APIs brought by
Web API Manager [61]. JShelter comes with a heuristic-
based fingerprint detector and prevents webpages from
misusing the browser as a proxy to access the local net-
work and computer. We needed to solve issues with reli-
able environment modifications that stem from webex-
tension API that opens many loopholes that previous
research exploited [57]. In addition to JShelter, we intro-

JShelter 16

duced NSCL. Both NoScript Security Suite and JShel-
ter include NSCL. Moreover, NSCL is available for other
privacy- and security-related webextensions.

In cooperation with the Free Software Foundation,
we aim for long-term JShelter development; thus, users’
privacy and security should be improved in the future.
We explain fingerprinting vectors introduced by Sen-
sor API in mobile browsers. Data protection specialists
should detect browser fingerprinting and other infor-
mation leaks with JShelter. We integrated fingerprint
report and notifications to facilitate the task. We dis-
cussed considerations and issues connected with deploy-
ment. The webextension is under development. Future
work will include fixing problems breaking pages, im-
proved heuristics of FPD, and research fingerprinting
on login pages. We want to revisit and evaluate the
little-lies-based anti-fingerprinting technique; are the lit-
tle changes enough to stop a determined fingerprinter
that can, for example, approximate colour values of sev-
eral pixels or repeat an effect multiple times? JShelter
should not be considered a single bullet-proof solution.
We anticipate that everyday users will install JShelter
together with other webextensions like list-based block-
ers or JavaScript blockers.

7 Acknowledgement
This project was funded through the NGI0 PET Fund,
a fund established by NLnet with financial support from
the European Commission’s Next Generation Internet
programme, under the aegis of DG Communications
Networks, Content and Technology under grant agree-
ment No 825310 as JavaScript Restrictor and JShel-
ter projects. This work was supported in part by the
Brno University of Technology grant FIT-S-20-6293. We
thank Martin Bednář for capturing Figure 6.

References
[1] Administrative fine - Grindr LLC, 2021. URL

https://www.datatilsynet.no/contentassets/
8ad827efefcb489ab1c7ba129609edb5/administrative-
fine---grindr-llc.pdf.

[2] Gunes Acar, Steven Englehardt, and Arvind Narayanan. No
boundaries for user identities: Web trackers exploit browser
login manager, 2017. Available online at https://freedom-
to-tinker.com/2017/12/27/no-boundaries-for-user-
identities-web-trackers-exploit-browser-login-managers/.

[3] Gunes Acar, Christian Eubank, Steven Englehardt, Marc
Juarez, Arvind Narayanan, and Claudia Diaz. The web never
forgets: Persistent tracking mechanisms in the wild. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’14, pages 674–689.
ACM, New York, NY, USA, 2014. ISBN 978-1-4503-2957-6.

[4] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz,
Seda Gürses, Frank Piessens, and Bart Preneel. Fpdetective:
Dusting the web for fingerprinters. In Proceedings of the
2013 ACM SIGSAC Conference on Computer & Commu-
nications Security, CCS ’13, pages 1129–1140. ACM, New
York, NY, USA, 2013. ISBN 978-1-4503-2477-9.

[5] Akram Bayat, Amirhossein Bayat, and Sina Amir. Classify-
ing human walking patterns using accelerometer data from
smartphone. 12 2017.

[6] John Bergbom. Attacking the internal network from the
public internet using a browser as a proxy, 2019. Forcepoint
research report available at https://www.forcepoint.com/
sites/default/files/resources/files/report-attacking-internal-
network-en_0.pdf.

[7] Andrew Bortz and Dan Boneh. Exposing private information
by timing web applications. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07,
pages 621–628. ACM, New York, NY, USA, 2007. ISBN
978-1-59593-654-7. URL http://doi.acm.org/10.1145/
1242572.1242656.

[8] Brave. Updates & timeline for brave’s work to fix "rtb"
adtech, 2019. URL https://brave.com/rtb-updates/.
Visited 2019-12-16.

[9] Yinzhi Cao, Song Li, and Erik Wijmans. (Cross-)Browser
Fingerprinting via OS and Hardware Level Features. In
Proceedings of Network & Distributed System Security Sym-
posium (NDSS), 2017.

[10] Autorité de protection des données Gegevensbescher-
mingsautoriteit. Decision on the merits 21/2022
of 2 february 2022, 2022. URL https://www.
autoriteprotectiondonnees.be/publications/decision-
quant-au-fond-n-21-2022-english.pdf. Unofficial trans-
lation from Dutch.

[11] A. Decan, T. Mens, and E. Constantinou. On the impact
of security vulnerabilities in the npm package dependency
network. In 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR), pages 181–191,
2018. ISSN 2574-3864.

[12] Peter Eckersley. How unique is your web browser? In Privacy
Enhancing Technologies, volume 6205 of Lecture Notes in
Computer Science, pages 1–18. Springer Berlin Heidelberg,
DE, 2010. ISBN 978-3-642-14526-1.

[13] Steven Englehardt, Gunes Acar, and Arvind Narayanan. No
boundaries: data exfiltration by third parties embedded on
web pages. Proceedings on Privacy Enhancing Technologies,
2020:220–238, 2020.

[14] Steven Englehardt and Arvind Narayanan. Online tracking:
A 1-million-site measurement and analysis. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 1388–1401. ACM,
New York, NY, USA, 2016. ISBN 978-1-4503-4139-4.

[15] Edward W. Felten and Michael A. Schneider. Timing at-
tacks on web privacy. In Proceedings of the 7th ACM
Conference on Computer and Communications Security,

https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/
https://www.forcepoint.com/sites/default/files/resources/files/report-attacking-internal-network-en_0.pdf
https://www.forcepoint.com/sites/default/files/resources/files/report-attacking-internal-network-en_0.pdf
https://www.forcepoint.com/sites/default/files/resources/files/report-attacking-internal-network-en_0.pdf

JShelter 17

CCS ’00, pages 25–32. ACM, New York, NY, USA, 2000.
ISBN 1-58113-203-4. URL http://doi.acm.org/10.1145/
352600.352606.

[16] David Fifield and Serge Egelman. Fingerprinting web users
through font metrics. In Rainer Böhme and Tatsuaki
Okamoto, editors, Financial Cryptography and Data Se-
curity, pages 107–124. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015. ISBN 978-3-662-47854-7.

[17] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit
Baudry. Hiding in the crowd: An analysis of the effec-
tiveness of browser fingerprinting at large scale. In Pro-
ceedings of the 2018 World Wide Web Conference, WWW
’18, pages 309–318. International World Wide Web Con-
ferences Steering Committee, Republic and Canton of
Geneva, Switzerland, 2018. ISBN 978-1-4503-5639-8. URL
https://doi.org/10.1145/3178876.3186097.

[18] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger,
S. O’Connell, W. Schoechl, and Y. Yarom. Another flip in
the wall of rowhammer defenses. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 245–261, 2018. ISSN
2375-1207.

[19] Daniel Gruss, David Bidner, and Stefan Mangard. Practi-
cal memory deduplication attacks in sandboxed javascript.
In Computer Security – ESORICS 2015, pages 108–122.
Springer International Publishing, Cham, 2015. ISBN 978-3-
319-24174-6.

[20] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer.js: A remote software-induced fault attack in
javascript. In Detection of Intrusions and Malware, and Vul-
nerability Assessment, pages 300–321. Springer International
Publishing, Cham, 2016. ISBN 978-3-319-40667-1.

[21] Gabor Gyorgy Gulyas, Doliere Francis Some, Nataliia
Bielova, and Claude Castelluccia. To extend or not to ex-
tend: On the uniqueness of browser extensions and web
logins. In Proceedings of the 2018 Workshop on Privacy in
the Electronic Society, WPES’18, pages 14–27. ACM, New
York, NY, USA, 2018. ISBN 978-1-4503-5989-4.

[22] Jun Han, Emmanuel Owusu, Le T. Nguyen, Adrian Perrig,
and Joy Zhang. Accomplice: Location inference using ac-
celerometers on smartphones. pages 1–9, 01 2012.

[23] Kashmir Hill. Be warned: Customer service agents can see
what you’re typing in real time, 2018. Available online at
https://gizmodo.com/be-warned-customer-service-agents-
can-see-what-youre-t-1830688119.

[24] ICO — Information Commissioner’s Office. Update report
into adtech and real time bidding, 2019. URL https://
ico.org.uk/media/about-the-ico/documents/2615156/
adtech-real-time-bidding-report-201906.pdf. visited
2019-12-16.

[25] Bohdan Inhliziian. Impact of the application of the content-
security-policy header on firefox webextensions, 2020. URL
https://www.fit.vut.cz/study/thesis/22483/. Bache-
lor’s thesis, Brno University of Technology, Faculty of Infor-
mation Technology.

[26] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fin-
gerprinting the fingerprinters: Learning to detect browser
fingerprinting behaviors. In IEEE Symposium on Security &
Privacy, 2021.

[27] Michal Jireš. Computer identification using javascript times-
tamps, 2020. URL https://www.fit.vut.cz/study/

thesis/22308/. Bachelor’s thesis.
[28] Zach Jorgensen and Ting Yu. On mouse dynamics as a

behavioral biometric for authentication. In Proceedings of
the 6th ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’11, page 476–482.
Association for Computing Machinery, New York, NY, USA,
2011. ISBN 9781450305648.

[29] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spec-
tre attacks: Exploiting speculative execution. CoRR,
abs/1801.01203, 2018.

[30] Tadayoshi Kohno, Andre Broido, and Kimberly C. Claffy.
Remote physical device fingerprinting. IEEE Transactions
on Dependable and Secure Computing, 2(2):93–108, 2005.
ISSN 1545-5971.

[31] Georgios Kontaxis and Monica Chew. Tracking protection in
firefox for privacy and performance. In Web 2.0 Security &
Privacy Workshop, 2015.

[32] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and
Gildas Avoine. Browser fingerprinting: A survey. vol-
ume 14. Association for Computing Machinery, New York,
NY, USA, apr 2020. ISSN 1559-1131. URL https:
//doi.org/10.1145/3386040.

[33] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry.
Beauty and the beast: Diverting modern web browsers to
build unique browser fingerprints. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 878–894, 2016.

[34] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad,
William K. Robertson, Christo Wilson, and Engin Kirda.
Thou shalt not depend on me: Analysing the use of out-
dated javascript libraries on the web. CoRR, 2018.

[35] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno,
and Franziska Roesner. Internet jones and the raiders of
the lost trackers: An archaeological study of web tracking
from 1996 to 2016. In 25th USENIX Security Symposium
(USENIX Security 16). USENIX Association, Austin, TX,
2016.

[36] Célestin Matte, Nataliia Bielova, and Cristiana Santos. Do
cookie banners respect my choice? measuring legal compli-
ance of banners from iab europe’s transparency and consent
framework, 2019. ArXiv eprint 1911.09964, available at
https://arxiv.org/abs/1911.09964, last access 2019-12-13.

[37] J. R. Mayer and J. C. Mitchell. Third-party web tracking:
Policy and technology. In 2012 IEEE Symposium on Security
and Privacy, pages 413–427, 2012. ISSN 1081-6011.

[38] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick
Nikiforakis, Sebastian Neuner, Martin Schmiedecker, and
Edgar Weippl. Block me if you can: A large-scale study of
tracker-blocking tools. In 2017 IEEE European Symposium
on Security and Privacy (EuroS P), pages 319–333, 2017.

[39] Moritz Lipp Michael Schwarz and Daniel Gruss. Javascript
zero: Real javascript and zero side-channel attacks. In Net-
work and Distributed Systems Security Symposium 2018,
2018. ISBN 1-1891562-49-5.

[40] Keaton Mowery and Hovav Shacham. Pixel Perfect: Fin-
gerprinting Canvas in HTML5. In Proceedings of W2SP,
2012.

[41] Mozilla Bugzilla. [meta] page csp should not apply to con-
tent inserted by content scripts (v2 issue). URL https:

https://gizmodo.com/be-warned-customer-service-agents-can-see-what-youre-t-1830688119
https://gizmodo.com/be-warned-customer-service-agents-can-see-what-youre-t-1830688119
https://arxiv.org/abs/1911.09964

JShelter 18

//bugzilla.mozilla.org/show_bug.cgi?id=1267027. last
visit 2022-03-30.

[42] Marius Musch, Marius Steffens, Sebastian Roth, Ben Stock,
and Martin Johns. ScriptProtect: Mitigating unsafe third-
party javascript practices. In Proceedings of the 2019
ACM Asia Conference on Computer and Communications
Security, Asia CCS ’19, page 391–402. Association for
Computing Machinery, New York, NY, USA, 2019. ISBN
9781450367523.

[43] Erik Trickela nad Oleksii Starov, Alexandros Kapravelos,
Nick Nikiforakis, and Adam Doupé. Everyone is different:
Client-side diversification for defending against extension
fingerprinting.

[44] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits.
PriVaricator: Deceiving fingerprinters with little white lies. In
Proceedings of the 24th International Conference on World
Wide Web, WWW ’15, pages 820—-830. International
World Wide Web Conferences Steering Committee, Republic
and Canton of Geneva, CHE, 2015. ISBN 9781450334693.

[45] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen,
Christopher Kruegel, Frank Piessens, and Giovanni Vigna.
Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting. In 2013 IEEE Symposium on Security
and Privacy, pages 541–555, 2013. ISSN 1081-6011.

[46] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan,
and Angelos D. Keromytis. The spy in the sandbox: Prac-
tical cache attacks in javascript and their implications. In
Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’15, pages 1406–
1418. Association for Computing Machinery, New York, NY,
USA, 2015. ISBN 9781450338325.

[47] Avar Pentel. High precision handedness detection based on
short input keystroke dynamics. In 2017 8th International
Conference on Information, Intelligence, Systems Applica-
tions (IISA), pages 1–5, 2017.

[48] Avar Pentel. Predicting age and gender by keystroke dy-
namics and mouse patterns. In Adjunct Publication of the
25th Conference on User Modeling, Adaptation and Per-
sonalization, UMAP ’17, pages 381—-385. Association for
Computing Machinery, New York, NY, USA, 2017. ISBN
9781450350679.

[49] Andreas Pfitzmann and Marit Hansen. A terminology for
talking about privacy by data minimization: Anonymity,
unlinkability, undetectability, unobservability, pseudonymity,
and identity management. Technical report, 2010. Version
0.34, Available online at https://dud.inf.tu-dresden.de/
literatur/Anon_Terminology_v0.34.pdf.

[50] Vikas Mishra Pierre Laperdrix, Benoit Baudry. FPRandom:
Randomizing core browser objects to break advanced device
fingerprinting techniques. In 9th International Symposium on
Engineering Secure Software and Systems, page 17, 2017.

[51] Libor Polčák and Barbora Franková. Clock-skew-based com-
puter identification: Traps and pitfalls. Journal of Universal
Computer Science, 21(9):1210–1233, 2015. ISSN 0948-6968.

[52] Johnny Ryan. Report from Dr Johnny Ryan – be-
havioural advertising and personal data, 2018. URL https:
//brave.com/wp-content/uploads/2018/09/Behavioural-
advertising-and-personal-data.pdf.

[53] Zach Schneider. event-stream vulnerability explained,
2018. Available online at https://schneider.dev/blog/event-

stream-vulnerability-explained/.
[54] Michael Schwarz, Florian Lackner, and Daniel Gruss.

Javascript template attacks: Automatically inferring host in-
formation for targeted exploits. In Network and Distributed
Systems Security (NDSS) Symposium, 2019.

[55] Michael Schwarz, Florian Lackner, and Daniel Gruss. Latex
gloves: Protecting browser extensions from probing and reve-
lation attacks. In Network and Distributed Systems Security
(NDSS) Symposium, 2019.

[56] Swati Sharma, Alefiya Hussain, and Huzur Saran. Experi-
ence with heterogenous clock-skew based device fingerprint-
ing. In Workshop on Learning from Authoritative Security
Experiment Results, pages 9–18. ACM, 2012. ISBN 978-1-
4503-1195-3. Arlington, Virginia.

[57] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel
Genkin, Yossi Oren, and Yuval Yarom. Prime+Probe 1,
JavaScript 0: Overcoming browser-based Side-Channel de-
fenses. In 30th USENIX Security Symposium (USENIX Se-
curity 21), pages 2863–2880. USENIX Association, August
2021. ISBN 978-1-939133-24-3.

[58] David Silver, Suman Jana, Dan Boneh, Eric Chen, and
Collin Jackson. Password managers: Attacks and defenses.
In 23rd USENIX Security Symposium (USENIX Security 14),
pages 449–464. USENIX Association, San Diego, CA, 2014.
ISBN 978-1-931971-15-7.

[59] Michael Smith, Craig Disselkoen, Shravan Narayan, Fraser
Brown, and Deian Stefan. Browser history re:visited. In 12th
USENIX Workshop on Offensive Technologies (WOOT 18).
USENIX Association, Baltimore, MD, 2018. URL https://
www.usenix.org/conference/woot18/presentation/smith.

[60] Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris
Kanich. Browser feature usage on the modern web. In
Proceedings of the 2016 Internet Measurement Conference,
IMC ’16, pages 97–110. ACM, New York, NY, USA, 2016.
ISBN 978-1-4503-4526-2. URL http://doi.acm.org/10.
1145/2987443.2987466.

[61] Peter Snyder, Cynthia Taylor, and Chris Kanich. Most
websites don’t need to vibrate: A cost-benefit approach to
improving browser security. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’17, pages 179–194. ACM, New
York, NY, USA, 2017. ISBN 978-1-4503-4946-8. URL
http://doi.acm.org/10.1145/3133956.3133966.

[62] O. Starov and N. Nikiforakis. Xhound: Quantifying the
fingerprintability of browser extensions. In 2017 IEEE Sym-
posium on Security and Privacy (SP), pages 941–956, 2017.
ISSN 2375-1207.

[63] Oleksii Starov, Phillipa Gill, and Nick Nikiforakis. Are you
sure you want to contact us? quantifying the leakage of pii
via website contact forms. volume 2016, pages 20–33, 2016.

[64] Ben Stock and Martin Johns. Protecting users against xss-
based password manager abuse. In Proceedings of the 9th
ACM Symposium on Information, Computer and Commu-
nications Security, ASIA CCS ’14, pages 183–194. ACM,
New York, NY, USA, 2014. ISBN 978-1-4503-2800-5. URL
http://doi.acm.org/10.1145/2590296.2590336.

[65] Paul Stone. Pixel perfect timing attacks with HTML5, 2013.
Black Hat 2013. Context Information Security whitepa-
per available online at https://www.contextis.com/en/
resources/white-papers/pixel-perfect-timing-attacks-with-

https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://schneider.dev/blog/event-stream-vulnerability-explained/
https://schneider.dev/blog/event-stream-vulnerability-explained/
https://www.contextis.com/en/resources/white-papers/pixel-perfect-timing-attacks-with-html5
https://www.contextis.com/en/resources/white-papers/pixel-perfect-timing-attacks-with-html5

JShelter 19

html5.
[66] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis.

The clock is still ticking: Timing attacks in the modern web.
In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15, pages
1382–1393. ACM, New York, NY, USA, 2015. ISBN 978-1-
4503-3832-5.

[67] Tom Van Goethem, Wout Scheepers, Davy Preuveneers, and
Wouter Joosen. Accelerometer-based device fingerprinting
for multi-factor mobile authentication. In Juan Caballero,
Eric Bodden, and Elias Athanasopoulos, editors, Engineer-
ing Secure Software and Systems, pages 106–121. Springer
International Publishing, Cham, 2016. ISBN 978-3-319-
30806-7.

[68] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and
Romain Rouvoy. FP-Scanner: The Privacy Implications
of Browser Fingerprint Inconsistencies. In Proceedings of
the 27th USENIX Security Symposium. Baltimore, United
States, August 2018. URL https://hal.inria.fr/hal-
01820197.

[69] WP29 — Article 29 Data Protection Working Party. Opin-
ion 9/2014 on the application of Directive 2002/58/EC to
device fingerprinting, 2014. WP224, https://ec.europa.eu/
justice/article-29/documentation/opinion-recommendation/
files/2014/wp224_en.pdf.

[70] Nan Zheng, Aaron Paloski, and Haining Wang. An efficient
user verification system via mouse movements. In Proceed-
ings of the 18th ACM Conference on Computer and Com-
munications Security, CCS ’11, page 139–150. Association
for Computing Machinery, New York, NY, USA, 2011. ISBN
9781450309486.

https://www.contextis.com/en/resources/white-papers/pixel-perfect-timing-attacks-with-html5
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp224_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp224_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp224_en.pdf

	JShelter: Give Me My Browser Back
	1 Introduction
	2 Threats
	2.1 T1: Detail user behaviour monitoring
	2.2 T2: Browser and computer fingerprinting
	2.3 T3: Very rich browser APIs
	2.4 T4: Hostile third-party scripts
	2.5 T5: Local network scanning
	2.6 T6: Microarchitectural attacks

	3 Countermeasures
	3.1 Browser extensions
	3.2 Privacy-focused browsers
	3.3 Current browser fingerprinting countermeasures

	4 JShelter design decisions
	4.1 Fingerprint detector
	4.2 JavaScript Shield
	4.2.1 Farbling-like prevention of browser fingerprinting
	4.2.2 Interaction between JavaScript Shield and Fingerprint Detector
	4.2.3 Sensors
	4.2.4 User in Control

	4.3 Effective modifications of JavaScript environment

	5 Evaluation
	5.1 Fingerprinting inconsistencies
	5.2 Timing events
	5.3 Sensors
	5.4 Fingerprint Detector effectivity
	5.5 Network Boundary Shield
	5.5.1 Localhost scanning
	5.5.2 Comparison with Private Network Access

	5.6 Feedback from users

	6 Conclusion
	7 Acknowledgement

