
A Tutorial for GNU libmicrohttpd
written for version 0.3.1 beta

Sebastian Gerhardt (sebgerhardt@gmx.net)

mailto:sebgerhardt@gmx.net

1

Copyright (c) 2008 Sebastian Gerhardt.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".

i

Table of Contents

1 Introduction . 2

2 Hello browser example. 3

3 Exploring requests . 7

4 Response headers . 9

5 A basic authentication . 12

6 Processing post data . 16

Appendix A Bibliography . 20

Appendix B GNU Free Documentation License. 21

Appendix C Example programs . 28
C.1 hellobrowser.c . 28
C.2 logging.c . 28
C.3 responseheaders.c . 29
C.4 basicauthentication.c . 30
C.5 simplepost.c . 33

Chapter 1: Introduction 2

1 Introduction

This tutorial is aimed at developers who want to learn how they can add HTTP serving capa-
bilities to their applications with the GNU libmicrohttpd library, abbreviated MHD, and who
do not know how to start. It tries to help these developers to implement common basic HTTP
serving tasks by discussing executable sample programs implementing different features.

The text is supposed to be a supplement to the API reference manual of GNU libmicrohttpd
and for that reason does not explain many of the parameters. Therefore, the reader should
always consult the manual to find the exact meaning of the functions used in the tutorial. In the
same sense, the tutorial seeks to encourage the use of the RFCs, which document the conventions
the Internet is built upon.

GNU libmicrohttpd is assumed to be already installed and it has been written with respect
to version 0.3.1 beta. As the library is still in its beta stages, later versions may show different
behaviour. At the time being, this tutorial has only been tested on GNU/Linux machines even
though efforts were made not to rely on anything that would prevent the samples from being
built on similar systems.

Chapter 2: Hello browser example 3

2 Hello browser example

The most basic task for a HTTP server is to deliver a static text message to any client connecting
to it. Given that this is also very easy to implement, it is an excellent problem to start with.

For now, the particular filename the client asks for shall have no effect on the message that
will be returned. In addition, the server shall end the connection after the message has been
sent so that the client will know there is nothing more to expect.

The C program hellobrowser.c, which is to be found in the examples section, does just
that. If you are very eager, you can compile and start it right away but it is advisable to type
the lines in by yourself as they will be discussed and explained in detail.

After the unexciting includes and the definition of the port which our server should listen on
#include <microhttpd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

the desired behaviour of our server when HTTP request arrive have to be implemented. We
already have agreed that it should not care about the particular details of the request, such as
who is requesting what. The server will respond merely with the same small HTML page to
every request.

The function we are going to write now will be called by GNU libmicrohttpd every time
an appropriate request comes in. While the name of this callback function is arbitrary, its
parameter list has to follow a certain layout. So please, ignore the lot of parameters for now,
they will be explained at the point they are needed. We have to use only one of them, struct
MHD_Connection *connection, for the minimalistic functionality we want to archive at the
moment.

This parameter is set by the libmicrohttpd daemon and holds the necessary information to
relate the call with a certain connection. Keep in mind that a server might have to satisfy
hundreds of concurrent connections and we have to make sure that the correct data is sent to
the destined client. Therefore, this variable is a means to refer to a particular connection if we
ask the daemon to sent the reply.

Talking about the reply, it is defined as a string right after the function header
int AnswerToConnection(void *cls, struct MHD_Connection *connection,

const char *url, const char *method, const char *version,
const char *upload_data, unsigned int *upload_data_size, void **con_cls)

{
const char *page = "<html><body>Hello, browser!</body></html>";

HTTP is a rather strict protocol and the client would certainly consider it "inappropriate" if
we just sent the answer string "as is". Instead, it has to be wrapped in certain layers, called
headers, of additional information. Luckily, most of the work in this area is done by the library
for us—we just have to ask. Our reply string packed in the necessary layers will be called a
"response". To obtain such a response we hand our data (the reply–string) and its size over to
the MHD_create_response_from_data function. The last two parameters basically tell MHD
that we do not want it to dispose the message data for us when it has been sent and there also
needs no internal copy to be done because the constant string won’t change anyway.

struct MHD_Response *response;
int ret;

response = MHD_create_response_from_data(strlen(page),
(void*)page, MHD_NO, MHD_NO);

Chapter 2: Hello browser example 4

Now that the the response has been laced up, it is ready for delivery and can be queued for
sending. This is done by passing it to another GNU libmicrohttpd function. As all our work
was done in the scope of one function, the recipient is without doubt the one associated with
the local variable connection and consequently this variable is given to the queue function.
Every HTTP response is accompanied by a status code, here "OK", so that the client knows
this response is the intended result of his request and not due to some error or malfunction.

Finally, the packet is destroyed and the return value from the queue returned, already being
set at this point to either MHD YES or MHD NO in case of success or failure.

ret = MHD_queue_response (connection, MHD_HTTP_OK, response);
MHD_destroy_response (response);
return ret;

}

With the primary task of our server implemented, we can start the actual server daemon which
will listen on PORT for connections. This is done in the main function.

int main ()
{

struct MHD_Daemon *d;

d = MHD_start_daemon(MHD_USE_SELECT_INTERNALLY, PORT, NULL, NULL,
&AnswerToConnection, NULL, MHD_OPTION_END);

if (d == NULL) return 1;

The first parameter is one of three possible modes of operation. Here we want the daemon to
run in a separate thread and to manage all incoming connections in the same thread. This
means that while producing the response for one connection, the other connections will be put
on hold. In this chapter, where the reply is already known and therefore the request is served
quickly, this poses no problem.

We will allow all clients to connect regardless of their name or location, therefore we do not
check them on connection and set the forth and fifth parameter to NULL.

Parameter six is the address of the function we want to be called whenever a new connection
has been established. Our AnswerToConnection knows best what the client wants and needs no
additional information (which could be passed via the next parameter) so the next parameter
is NULL. Likewise, we do not need to pass extra options to the daemon so we just write the
MHD OPTION END as the last parameter.

As the server daemon runs in the background in its own thread, the execution flow in our
main function will contine right after the call. Because of this, we must delay the execution
flow in the main thread or else the program will terminate prematurely. We let it pause in a
processing-time friendly manner by waiting for the enter key to be pressed. In the end, we stop
the daemon so it can do its cleanup tasks.

getchar();

MHD_stop_daemon(d);
return 0;

}

The first example is now complete.

Compile it with

cc hellobrowser.c -o hellobrowser -I$PATH_TO_LIBMHD_INCLUDES
-L$PATH_TO_LIBMHD_INCLUDES -static -lmicrohttpd -pthread

with the two paths set accordingly and run it.

Chapter 2: Hello browser example 5

Now open your favorite Internet browser and go to the address localhost:8888, provided
that is the port you chose. If everything works as expected, the browser will present the message
of the static HTML page it got from our minimal server.

Remarks

To keep this first example as small as possible, some drastic shortcuts were taken and are to be
discussed now.

Firstly, there is no distinction made between the kinds of requests a client could send. We
implied that the client sends a GET request, that means, that he actually asked for some data.
Even when it is not intended to accept POST requests, a good server should at least recognize
that this request does not constitute a legal request and answer with an error code. This can be
easily implemented by checking if the parameter method equals the string "GET" and returning
a MHD_NO if not so.

Secondly, the above practice of queuing a response upon the first call of the callback function
brings with it some limitations. This is because the content of the message body will not be
received if a response is queued in the first iteration. Furthermore, the connection will be closed
right after the response has been transferred then.

Both of these issues you will find addressed in the official minimal_example.c residing in the
src/examples directory of the GNU libmicrohttpd package. The source code of this program
should look very familiar to you by now and easy to understand.

For our example, the must_copy and must_free parameter at the response construction
function could be set to MHD_NO. In the usual case, responses cannot be sent immediately after
being queued. For example, there might be other data on the system that needs to be sent with
a higher priority. Nevertheless, the queue function will return successfully—raising the problem
that the data we have pointed to may be invalid by the time it is about being sent. This is not
an issue here because we can expect the page string, which is a constant string literal here, to
be static. That means it will be present and unchanged for as long as the program runs. For
dynamic data, one could choose to either have MHD free the memory page points to itself when
it is not longer needed or, alternatively, have the library to make and manage its own copy of it.

Exercises

• While the server is running, use a program like telnet or netcat to connect to it. Try to
form a valid HTTP1.1 request yourself like

GET /dontcare HTTP1.1
Host: itsme
<enter>

and see what the server returns to you.

• Also, try other requests, like POST, and see how our server does not mind and why. How
far in malforming a request can you go before the builtin functionality of MHD intervenes
and an altered response is sent? Make sure you read about the status codes in the RFC.

• Add the option MHD_USE_PEDANTIC_CHECKS to the start function of the daemon in main.
Mind the special format of the parameter list here which is described in the manual. How
indulgent is the server now to your input?

• Let the main function take a string as the first command line argument and pass argv[1]
to the MHD_start_daemon function as the sixth parameter. The address of this string
will be passed to the callback function via the cls variable. Decorate the text given at
the command line when the server is started with proper HTML tags and send it as the
response instead of the former static string.

Chapter 2: Hello browser example 6

• Demanding: Write a separate function returning a string containing some useful informa-
tion, for example, the time. Pass the function’s address as the sixth parameter and evaluate
this function on every request anew in AnswerToConnection. Remember to free the memory
of the string every time after satisfying the request.

Chapter 3: Exploring requests 7

3 Exploring requests

This chapter will deal with the information which the client sends to the server at every request.
We are going to examine the most useful fields of such an request and print them out in a
readable manner. This could be useful for logging facilities.

The starting point is the hellobrowser program with the former response removed.

This time, we just want to collect information in the callback function, thus we will just
return MHD NO after we have probed the request. This way, the connection is closed without
much ado by the server.

int AnswerToConnection(void *cls, struct MHD_Connection *connection,
const char *url, const char *method, const char *version,
const char *upload_data, unsigned int *upload_data_size, void **con_cls)

{
...
return MHD_NO;

}

The ellipsis marks the position where the following instructions shall be inserted.

We begin with the most obvious information available to the server, the request line. You
should already have noted that a request consists of a command (or "method") and a URI (e.g.
a filename). It also contains a string for the version of the protocol which can be found in
version. To call it a "new request" is justified because we return only MHD_NO, thus ensuring
the function will not be called again for this connection.

printf("New request %s for %s using version %s\n", method, url, version);

The rest of the information is a bit more hidden. Nevertheless, there is lot of it sent from
common Internet browsers. It is stored in "key-name" pairs and we want to list what we find
in the header. As there is no mandatory set of keys a client has to send, each key–name pair is
printed out one by one until there are no more left. We do this by writing a separate function
which will be called for each pair just like the above function is called for each HTTP request.
It can then print out the content of this pair.

int PrintOutKey(void *cls, enum MHD_ValueKind kind, const char *key,
const char *value)

{
printf("%s = %s\n", key, value);
return MHD_YES;

}

To start the iteration process that calls our new function for every key, the line

MHD_get_connection_values(connection, MHD_HEADER_KIND, PrintOutKey, NULL);

needs to be inserted in the connection callback function too. The second parameter tells the
function that we are only interested in keys from the general HTTP header of the request. Our
iterating function PrintOutKey does not rely on any additional information to fulfill its duties
so the last parameter can be NULL.

All in all, this constitutes the complete logger.c program for this chapter which can be
found in the examples section.

Connecting with any modern Internet browser should yield a handful of keys. You should
try to interpret them with the aid of RFC 2616. Especially worth mentioning is the host key
which is often used to serve several different websites hosted under one single IP address but
reachable by different domain names.

Chapter 3: Exploring requests 8

Conclusion

The introduced capabilities to itemize the content of a simple GET request—especially the
URI—should already allow the server to satisfy clients’ requests for small specific resources (e.g.
files) or even induce alteration of how the server operates. However, the latter is not recom-
mended as the GET method (including its header data) is by convention considered a "SAFE"
operation, which should not change the server’s state in a significant way, but temporally actions
like searching for a passed string is fine.

Of course, no transmission can occur while the return value is still set to MHD_NO in the
callback function.

Exercises

• By parsing the url string and delivering responses accordingly, implement a small server
for "virtual" files. When asked for /index.htm{l}, let the response consist of a HTML
page containing a link to /another.html page which is also to be created "on the fly" in
case of being requested. If neither of these two pages are requested, MHD_HTTP_NOT_FOUND
shall be returned accompanied by an informative message.

• A very interesting information has still been ignored by our logger—the client’s IP address.
Implement a callback function
int OnClientConnect(void *cls,

const struct sockaddr *addr,socklen_t addrlen)

that prints out the IP address in an appropriate format. You might want to use the posix
function inet_ntoa but bear in mind that addr is actually just a structure containing other
substructures and is not the variable this function expects. Make sure to return MHD_YES
so that the library knows the client is allowed to connect (and to request). If one wanted to
limit access basing on IP addresses, this would be the place to do it. The address of your
function will then be passed as the third parameter of the MHD_start_daemon call.

Chapter 4: Response headers 9

4 Response headers

Now that we are able to inspect the incoming request in great detail, this chapter discusses the
means to enrich the outgoing responses likewise.

As you have learned in the Hello, Browser chapter, some obligatory header fields are added
and set automatically for simple responses by the library itself but if more advanced features
are desired, additional fields have to be created. One of the possible fields is the content type
field and an example will be developed around it. This will lead to an application capable of
correctly serving different types of files.

When we responded with HTML page packed in the static string previously, the client had
no choice but guessing about how to handle the response, because the server hadn’t told him.
What if we had sent a picture or a sound file? Would the message have been understood or
merely been displayed as an endless stream of random characters in the browser? This is what
the mime content types are for. The header of the response is extended by certain information
about how the data is to be interpreted.

To introduce the concept, a picture of the format PNG will be sent to the client and labeled
accordingly with image/png. Once again, we can base the new example on the hellobrowser
program.

#define FILENAME "picture.png"
#define MIMETYPE "image/png"

int AnswerToConnection(void *cls, struct MHD_Connection *connection,
const char *url, const char *method, const char *version,
const char *upload_data, unsigned int *upload_data_size, void **con_cls)

{
struct MHD_Response *response;
int ret=0;

We want the program to load the graphics file into memory:

long size;
FILE *fp;
int ret=0;

if (0 != strcmp(method, "GET")) return MHD_NO;

size = GetFileSize(FILENAME);
if (size != 0)
{

fp = fopen(FILENAME, "rb");
if (fp)
{

buffer = malloc(size);
if (buffer)

if (size == fread(buffer, 1, size, fp)) ret=1;
}

fclose(fp);
}

The GetFileSize function, which returns a size of zero if the file could not be opened or
found, is left out on this page for tidiness.

Chapter 4: Response headers 10

When dealing with files and allocating memory, there is a lot that could go wrong on the
sider side and if so, the client should be informed with MHD_HTTP_INTERNAL_SERVER_ERROR.
if (!ret)
{

const char *errorstr = "<html><body>An internal server error\
has occured!</body></html>";

if (buffer) free(buffer);
response = MHD_create_response_from_data(strlen(errorstr),

(void*)errorstr, MHD_NO, MHD_NO);

ret = MHD_queue_response (connection,
MHD_HTTP_INTERNAL_SERVER_ERROR, response);

return MHD_YES;
}

Note that we nevertheless have to create an response object even for sending a simple error
code. Otherwise, the connection would just be closed without comment, leaving the client
curious about what has happened.

But in the case of success a response will be constructed that contains the buffer filled with
the file’s content.
response = MHD_create_response_from_data(size, (void*)buffer, MHD_YES, MHD_NO);

Contrary to the above case where a static string will be sent, this time we have to keep track
of the dynamically allocated buffer. As discussed in the Chapter 2 [Hello browser example],
page 3, the buffer cannot be safely freed as soon as the function call returns. Instead, we ask
the function to keep charge of freeing the buffer itself when it is not longer needed. Thus, no
further free command is invoked by us.

Up to this point, there was little new. The actual novelty is that we enhance the header with
the meta data about the content. Aware of the field’s name we want to add, it is as easy as
that:
MHD_add_response_header(response, "Content-Type", MIMETYPE);

We do not have to append a colon expected by the protocol hehind the first field—GNU lib-
httpdmicro will take care of this.

The function finishes with the well-known lines
ret = MHD_queue_response (connection, MHD_HTTP_OK, response);
MHD_destroy_response (response);
return ret;

}

The complete program responseheaders.c is in the examples section as usual. Find a PNG
file you like and save it to the directory the example is run from under the name picture.png.
You should find the image displayed on your browser if everything worked well.

Remarks

The include file of the MHD library comes with the header types mentioned in RFC 2616 already
defined as macros. Thus, we could have written MHD_HTTP_HEADER_CONTENT_TYPE instead of
"Content-Type" as well. However, one is not limited to these standard headers and could add
custom response headers without violated the protocol. Whether and how the client would
react to these custom header is up to the receiver. Likewise, the client is allowed to send custom

Chapter 4: Response headers 11

request headers to the server as well, opening up yet more possibilities how client and server
could communicate with each other.

The method of creating the response from one big chunk of data is only feasible for smaller
files. A public file server satisfying many request at the same time would be choking under
these high demands on memory very soon. Serving responses in smaller parts would be more
adequate here and will be a topic of a future chapter.

Exercises

• Remember that the original program was written under a few assumptions—a small, static
response being one of them. In order to simulate a very large or hard to reach file that
cannot be provided instantly, postpone the queuing in the callback with the sleep function
for 30 seconds if the file /big.png is requested (but deliver the same as above). A request
for /picture.png should provide just the same but without any artificial delays.
Now start two instances of your browser (or even use two machines) and see how the second
client is put on hold while the first waits for his request on the slow file to be fulfilled.
Finally, change the sourcecode to use MHD_USE_THREAD_PER_CONNECTION when the daemon
is started and try again.

• Did you succeed in implementing the clock exercise yet? This time, let the server save the
program’s start time t and implement a response simulating a countdown that reaches 0 at
t+60. Returning a message saying on which point the countdown is, the response should
ultimately be to reply "Done" if the program has been running long enough,
A non official, but widely understood, response header line is Refresh: DELAY; url=URL
with the uppercase words substituted to tell the client it should request the given resource
after the given delay again. Improve your program in that the browser (any modern browser
should work) automatically reconnects and asks for the status again every 5 seconds or so.
The URL would have to be composed so that it begins with "http://", followed by the URI
the server is reachable from the client’s point of view.
Maybe you want also to visualize the countdown as a status bar by creating a <table>
consisting of one row and n columns whose fields contain small images of either a red or a
green light.

Chapter 5: A basic authentication 12

5 A basic authentication

With the small exception of IP address based access control, requests from all connecting clients
where served equally until now. This chapter discusses a first method of client’s authentication
and its limits.

A very simple approach feasible with the means already discussed would be to expect the
password in the URI string before granting access to the secured areas. The password could be
separated from the actual resource identifier by a certain character, thus the request line might
look like

GET /picture.png?mypassword

In a situation, where the client is customized enough and the connection occurs through
secured lines (e.g., a embedded device directly attached to another via wire), this can be a
reasonable choice.

But when it is assumed that the user connecting does so with an ordinary Internet browser,
this implementation brings some problems about. For example, the URI including the password
stays in the address field or at least in the history of the browser for anybody near enough to see.
It will also be inconvenient to add the password manually to any new URI when the browser
does not know how to compose this automatically.

At least the convenience issue can be addressed by employing the simplest built-in password
facilities of HTTP compliant browsers, hence we want to start there. It will however turn out
to have still severe weaknesses in terms of security which need consideration.

Before we will start implementing Basic Authentication as described in RFC 2617, we should
finally abandon the bad practice of responding every request the first time our callback is called
for a given connection. This is becoming more important now because the client and the server
will have to talk in a more bi-directional way than before to

But how can we tell whether the callback has been called before for the particular connection?
Initially, the pointer this parameter references is set by MHD in the callback. But it will also be
"remembered" on the next call (for the same connection). Thus, we will generate no response
until the parameter is non-null—implying the callback was called before at least once. We do
not need to share information between different calls of the callback, so we can set the parameter
to any adress that is assured to be not null. The pointer to the connection structure will be
pointing to a legal adress, so we take this.

Not even the headers will be looked at on the first iteration.

int AnswerToConnection(void *cls, struct MHD_Connection *connection,
const char *url, const char *method, const char *version,
const char *upload_data, unsigned int *upload_data_size, void **con_cls)

{
if (0 != strcmp(method, "GET")) return MHD_NO;
if(*con_cls==NULL) {*con_cls=connection; return MHD_YES;}

...
/* else respond accordingly */
...

}

Note how we lop off the connection on the first condition, but return asking for more on
the other one with MHD_YES. With the framework improved, we can proceed to implement the
actual authentication process.

Chapter 5: A basic authentication 13

Request for authentication

Let us assume we had only files not intended to be handed out without the correct user-
name/password, so every "GET" request will be challenged. RFC 2617 describes how the
server shall ask for authentication by adding a WWW-Authenticate response header with the
name of the realm protected.

We let an extra function function do this.
int AskForAuthentication(struct MHD_Connection *connection, const char *realm)
{

int ret;
struct MHD_Response *response;
char *headervalue;
const char *strbase = "Basic realm=";

response = MHD_create_response_from_data(0, NULL, MHD_NO, MHD_NO);
if (!response) return MHD_NO;

headervalue = malloc(strlen(strbase) + strlen(realm) + 1);
if (!headervalue) return MHD_NO;

strcpy(headervalue, strbase);
strcat(headervalue, realm);

ret = MHD_add_response_header(response, "WWW-Authenticate", headervalue);
free(headervalue);
if (!ret) {MHD_destroy_response (response); return MHD_NO;}

ret = MHD_queue_response (connection, MHD_HTTP_UNAUTHORIZED, response);

MHD_destroy_response (response);

return ret;
}

#define the realm name according to your own taste, e.g. "Maintenance" or "Area51" but
it will need to have extra quotes.

But the client may send the authentication right away, so it would be wrong to ask for it
without checking the request’s header–where the authentication is expected to be found.

Authentication in detail

Checking RFC 2617 again, we find that the client will pack the username and password, by
whatever means he might have obtained them, in a line separated by a colon—and then encodes
them to Base64. The actual implementation of this encoding are not within the scope of this
tutorial although a working function is included in the complete source file of the example.

An unencoded word describing the authentication method (here "Basic") will precede the
code and the resulting line is the value of a request header of the type "Authorization".

This header line thus is of interest to the function checking a connection for a given user-
name/password:
int IsAuthenticated(struct MHD_Connection *connection,

const char *username, const char *password)
{

Chapter 5: A basic authentication 14

const char *headervalue;
...

headervalue = MHD_lookup_connection_value (connection,
MHD_HEADER_KIND, "Authorization");

if(headervalue == NULL) return 0;

where, firstly, the authentication method will be checked.
const char *strbase = "Basic ";
...
if (strncmp(headervalue, strbase, strlen(strbase))!=0) return 0;

Of course, we could decode the passed credentials in the next step and compare them directly
to the given strings. But as this would involve string parsing, which is more complicated then
string composing, it is done the other way around—the clear text credentials will be encoded
to Base64 and then compared against the headerline. The authentication method string will be
left out here as it has been checked already at this point.

char *expected_b64, *expected;
int authenticated;

...
strcpy(expected, username);
strcat(expected, ":");
strcat(expected, password);

expected_b64 = StringToBase64(expected);
if(expected_b64 == NULL) return 0;

strcpy(expected, strbase);

authenticated = (strcmp(headervalue+strlen(strbase), expected_b64) == 0);

free(expected_b64);

return authenticated;
}

These two functions—together with a response function in case of positive authentication
doing little new—allow the rest of the callback function to be rather short.

if (!IsAuthenticated(connection, USER, PASSWORD))
return AskForAuthentication(connection, REALM);

return SecretPage(connection);
}

See the examples directory for the complete example file.

Remarks

For a proper server, the conditional statements leading to a return of MHD_NO should yield
a response with a more precise status code instead of silently closing the connection. For
example, failures of memory allocation are best reported as internal server error and unexpected
authentication methods as 400 bad request.

Chapter 5: A basic authentication 15

Exercises

• Make the server respond to wrong credentials (but else correct requests) with the recom-
mended 401 unauthorized status code. If the client still does not authenticate correctly
within the same connection, close it and store the client’s IP address for a certain time. (It
is OK to check for expiration not until the main thread wakes up again on the next con-
nection.) If the client fails authenticating three times during this period, add it to another
list whose entries the AcceptPolicyCallback function denies connection (temporally).

• With the network utility netcat connect and log the response of a "GET" request as you
did in the exercise of the first example, this time to a file. Now stop the server and let netcat
listen on the same port the server used to listen on and have it fake being the proper server
by giving the file’s content as the response (e.g. cat log | nc -l -p 8888). Pretending to
think your were connecting to the actual server, browse to the eavesdropper and give the
correct credentials.
Copy and paste the encoded string you see in netcat’s output to some of the Base64 decode
tools available online and see how both the user’s name and password could be completely
restored.

Chapter 6: Processing post data 16

6 Processing post data

The previous chapters already have demonstrated a variety of possibilities to send information
to the HTTP server, but it is not recommended that the GET method is used to alter the way
the server operates. To induce changes on the server, the POST method is preferred over and
is much more powerful than GET and will be introduced in this chapter.

We are going to write an application that asks for the visitor’s name and, after the user
has posted it, composes an individual response text. Even though it was not mandatory to use
the post method here, as there is no permanent change caused by the post, it is an illustrative
example on how to share data between different functions for the same connection. Furthermore,
the reader should be able to extend it easily.

GET request

When the first GET request arrives, the server shall respond with a HTML page containing an
edit field for the name.
const char* askpage="<html><body>\

What’s your name, Sir?
\
<form action=\"/namepost\" method=\"post\">\
<input name=\"name\" type=\"text\"\
<input type=\"submit\" value=\" Send \"></form>\
</body></html>";

The action entry is the URI to be called by the browser when posting, and the name will
be used later to be sure it is the editbox’s content that has been posted.

We also prepare the answer page, where the name is to be filled in later, and an error page
as the response for anything but proper GET and POST requests:
const char* greatingpage="<html><body><h1>Welcome, %s!</center></h1></body></html>";

const char* errorpage="<html><body>This doesn’t seem to be right.</body></html>";

Whenever we need to send a page, we use an extra function int SendPage(struct MHD_
Connection *connection, const char* page) for this, which does not contain anything new
and whose implementation is therefore left out here.

POST request

Posted data can be of arbitrary and considerable size; for example, if a user uploads a big image
to the server. Similar to the case of the header fields, there may also be different streams of
posted data, such as one containing the text of an editbox and another the state of a button.
Likewise, we will have to register an iterator function that is going to be called maybe several
times not only if there are different POSTs but also if one POST has only been received partly
yet and needs processing before another chunk can be received.

Such an iterator function is called by a postprocessor, which must be created upon arriving of
the post request. We want the iterator function to read the first post data which is tagged name
and to create an individual greeting string based on the template and the name. But in order
to pass this string to other functions and still be able to differentiate different connections, we
must first define a structure to share the information, holding the most import entries.
struct ConnectionInfoStruct
{

int connectiontype;
char *answerstring;

Chapter 6: Processing post data 17

struct MHD_PostProcessor *postprocessor;
};

With these information available to the iterator function, it is able to fulfill its task. Once it
has composed the greeting string, it returns MHD_NO to inform the post processor that it does not
need to be called again. Note that this function does not handle processing of data for the same
key. If we were to expect that the name will be posted in several chunks, we had to expand
the namestring dynamically as additional parts of it with the same key came in. But in this
example, the name is assumed to fit entirely inside one single packet.

int IteratePost(void *coninfo_cls, enum MHD_ValueKind kind, const char *key,
const char *filename, const char *content_type,
const char *transfer_encoding, const char *data, size_t off, size_t size)

{
struct ConnectionInfoStruct *con_info = (struct ConnectionInfoStruct*)(coninfo_cls);

if (0 == strcmp(key, "name"))
{

if ((size>0) && (size<=MAXNAMESIZE))
{

char *answerstring;
answerstring = malloc(MAXANSWERSIZE);
if (!answerstring) return MHD_NO;

snprintf(answerstring, MAXANSWERSIZE, greatingpage, data);
con_info->answerstring = answerstring;

} else con_info->answerstring=NULL;

return MHD_NO;
}

return MHD_YES;
}

Once a connection has been established, it can be terminated for many reasons. As these
reasons include unexpected events, we have to register another function that cleans up any
resources that might have been allocated for that connection by us, namely the post processor
and the greetings string. This cleanup function must take into account that it will also be called
for finished requests other than POST requests.

void RequestCompleted(void *cls, struct MHD_Connection *connection, void **con_cls,
enum MHD_RequestTerminationCode toe)

{
struct ConnectionInfoStruct *con_info = (struct ConnectionInfoStruct*)(*con_cls);

if (NULL == con_info) return;

if (con_info->connectiontype == POST)
{

MHD_destroy_post_processor(con_info->postprocessor);
if (con_info->answerstring) free(con_info->answerstring);

}

Chapter 6: Processing post data 18

free(con_info);
}

GNU libmicrohttpd is informed that it shall call the above function when the daemon is
started in the main function.
...
daemon = MHD_start_daemon(MHD_USE_SELECT_INTERNALLY, PORT, NULL, NULL,

&AnswerToConnection, NULL, MHD_OPTION_NOTIFY_COMPLETED,
RequestCompleted, NULL, MHD_OPTION_END);

...

Request handling

With all other functions prepared, we can now discuss the actual request handling.
On the first iteration for a new request, we start by allocating a new instance of a

ConnectionInfoStruct structure, which will store all necessary information for later iterations
and other functions.
int AnswerToConnection(void *cls, struct MHD_Connection *connection, const char *url,

const char *method, const char *version, const char *upload_data,
unsigned int *upload_data_size, void **con_cls)

{
if(*con_cls==NULL)
{

struct ConnectionInfoStruct *con_info;

con_info = malloc(sizeof(struct ConnectionInfoStruct));
if (NULL == con_info) return MHD_NO;

If the new request is a POST, the postprocessor must be created now. In addition, the type
of the request is stored for convenience.

if (0 == strcmp(method, "POST"))
{

con_info->postprocessor = MHD_create_post_processor(connection, POSTBUFFERSIZE,
IteratePost, (void*)con_info);

if (NULL == con_info->postprocessor)
{

free(con_info);
return MHD_NO;

}

con_info->connectiontype = POST;
} else con_info->connectiontype = GET;

The address of our structure will both serve as the indicator for successive iterations and to
remember the particular details about the connection.
con_cls = (void)con_info;

return MHD_YES;
}

The rest of the function will not be executed on the first iteration. A GET request is easily
satisfied by sending the question form.

Chapter 6: Processing post data 19

if (0 == strcmp(method, "GET"))
{

return SendPage(connection, askpage);
}

In case of POST, we invoke the post processor for as long as data keeps incoming, set-
ting *upload_data_size to zero in order to indicate that we have processed—or at least have
considered—all of it.

if (0 == strcmp(method, "POST"))
{

struct ConnectionInfoStruct *con_info = *con_cls;

if (*upload_data_size != 0)
{

MHD_post_process(con_info->postprocessor, upload_data, *upload_data_size);
*upload_data_size = 0;
return MHD_YES;

} else return SendPage(connection, con_info->answerstring);
}

If they are neither GET nor POST requests, the error page is returned finally.
return SendPage(connection, errorpage);

}

These were the important parts of the program simplepost.c.

Appendix A: Bibliography 20

Appendix A Bibliography

API reference

• The GNU libmicrohttpd manual by Christian Grothoff 2008
http://gnunet.org/libmicrohttpd/microhttpd.html

Requests for comments

All referenced RFCs can be found on the website of The Internet Engineering Task Force
http://www.ietf.org/

• RFC 2616 : Fielding, R., Gettys, J., Mogul, J., Frystyk, H., and T. Berners-Lee, "Hypertext
Transfer Protocol – HTTP/1.1", RFC 2016, January 1997.

• RFC 2617 : Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen,
A., and L. Stewart, "HTTP Authentication: Basic and Digest Access Authentication",
RFC 2617, June 1999.

Recommended readings

• A well–structured HTML reference can be found on http://www.echoecho.com/html.htm

For those readers understanding German or French, there is an excellent document both
for learning HTML and for reference, whose English version unfortunately has been discon-
tinued. http://de.selfhtml.org/ and http://fr.selfhtml.org/

http://gnunet.org/libmicrohttpd/microhttpd.html
http://www.ietf.org/
http://www.echoecho.com/html.htm
http://de.selfhtml.org/
http://fr.selfhtml.org/

Appendix B: GNU Free Documentation License 21

Appendix B GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.
A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

Appendix B: GNU Free Documentation License 22

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.

Appendix B: GNU Free Documentation License 23

You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

Appendix B: GNU Free Documentation License 24

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled

Appendix B: GNU Free Documentation License 25

“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified

http://www.gnu.org/copyleft/

Appendix B: GNU Free Documentation License 26

version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

Appendix B: GNU Free Documentation License 27

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

Appendix C: Example programs 28

Appendix C Example programs

C.1 hellobrowser.c
#include <microhttpd.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#define PORT 8888

int AnswerToConnection(void *cls, struct MHD_Connection *connection, const char *url,

const char *method, const char *version, const char *upload_data,

unsigned int *upload_data_size, void **con_cls)

{

const char *page = "<html><body>Hello, browser!</body></html>";

struct MHD_Response *response;

int ret;

response = MHD_create_response_from_data (strlen (page), (void*) page, MHD_NO, MHD_NO);

ret = MHD_queue_response (connection, MHD_HTTP_OK, response);

MHD_destroy_response (response);

return ret;

}

int main ()

{

struct MHD_Daemon *daemon;

daemon = MHD_start_daemon(MHD_USE_SELECT_INTERNALLY, PORT, NULL, NULL,

&AnswerToConnection, NULL, MHD_OPTION_END);

if (daemon == NULL) return 1;

getchar();

MHD_stop_daemon(daemon);

return 0;

}

C.2 logging.c
#include <microhttpd.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#define PORT 8888

int PrintOutKey(void *cls, enum MHD_ValueKind kind, const char *key, const char *value)

{

printf("%s = %s\n", key, value);

return MHD_YES;

}

int AnswerToConnection(void *cls, struct MHD_Connection *connection, const char *url,

const char *method, const char *version, const char *upload_data,

unsigned int *upload_data_size, void **con_cls)

{

printf("New request %s for %s using version %s\n", method, url, version);

MHD_get_connection_values(connection, MHD_HEADER_KIND, PrintOutKey, NULL);

Appendix C: Example programs 29

return MHD_NO;

}

int main ()

{

struct MHD_Daemon *daemon;

daemon = MHD_start_daemon(MHD_USE_SELECT_INTERNALLY, PORT, NULL, NULL,

&AnswerToConnection, NULL, MHD_OPTION_END);

if (daemon == NULL) return 1;

getchar();

MHD_stop_daemon(daemon);

return 0;

}

C.3 responseheaders.c
#include <microhttpd.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define PORT 8888

#define FILENAME "picture.png"

#define MIMETYPE "image/png"

long GetFileSize(const char *filename)

{

FILE *fp;

fp = fopen(filename, "rb");

if (fp)

{

long size;

if ((0!=fseek(fp, 0, SEEK_END)) || (-1==(size=ftell(fp))))

size = 0;

fclose(fp);

return size;

} else return 0;

}

int AnswerToConnection(void *cls, struct MHD_Connection *connection, const char *url,

const char *method, const char *version, const char *upload_data,

unsigned int *upload_data_size, void **con_cls)

{

unsigned char *buffer;

struct MHD_Response *response;

long size;

FILE *fp;

int ret=0;

if (0 != strcmp(method, "GET")) return MHD_NO;

size = GetFileSize(FILENAME);

if (size != 0)

{

fp = fopen(FILENAME, "rb");

Appendix C: Example programs 30

if (fp)

{

buffer = malloc(size);

if (buffer)

if (size == fread(buffer, 1, size, fp)) ret=1;

}

fclose(fp);

}

if (!ret)

{

const char *errorstr = "<html><body>An internal server error has occured!\

</body></html>";

if (buffer) free(buffer);

response = MHD_create_response_from_data(strlen(errorstr), (void*)errorstr,

MHD_NO, MHD_NO);

ret = MHD_queue_response (connection, MHD_HTTP_INTERNAL_SERVER_ERROR, response);

MHD_destroy_response (response);

return MHD_YES;

}

response = MHD_create_response_from_data(size, (void*)buffer, MHD_YES, MHD_NO);

MHD_add_response_header(response, "Content-Type", MIMETYPE);

ret = MHD_queue_response (connection, MHD_HTTP_OK, response);

MHD_destroy_response (response);

return ret;

}

int main ()

{

struct MHD_Daemon *daemon;

daemon = MHD_start_daemon(MHD_USE_SELECT_INTERNALLY, PORT, NULL, NULL,

&AnswerToConnection, NULL, MHD_OPTION_END);

if (daemon == NULL) return 1;

getchar();

MHD_stop_daemon(daemon);

return 0;

}

C.4 basicauthentication.c
#include <microhttpd.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define PORT 8888

#define REALM "\"Maintenance\""

#define USER "a legitimate user"

#define PASSWORD "and his password"

Appendix C: Example programs 31

char* StringToBase64(const char *message);

int AskForAuthentication(struct MHD_Connection *connection, const char *realm)

{

int ret;

struct MHD_Response *response;

char *headervalue;

const char *strbase = "Basic realm=";

response = MHD_create_response_from_data(0, NULL, MHD_NO, MHD_NO);

if (!response) return MHD_NO;

headervalue = malloc(strlen(strbase) + strlen(realm) + 1);

if (!headervalue) return MHD_NO;

strcpy(headervalue, strbase);

strcat(headervalue, realm);

ret = MHD_add_response_header(response, "WWW-Authenticate", headervalue);

free(headervalue);

if (!ret) {MHD_destroy_response (response); return MHD_NO;}

ret = MHD_queue_response (connection, MHD_HTTP_UNAUTHORIZED, response);

MHD_destroy_response (response);

return ret;

}

int IsAuthenticated(struct MHD_Connection *connection, const char *username,

const char *password)

{

const char *headervalue;

char *expected_b64, *expected;

const char *strbase = "Basic ";

int authenticated;

headervalue = MHD_lookup_connection_value (connection, MHD_HEADER_KIND, "Authorization");

if(headervalue == NULL) return 0;

if (strncmp(headervalue, strbase, strlen(strbase))!=0) return 0;

expected = malloc(strlen(username) + 1 + strlen(password) + 1);

if(expected == NULL) return 0;

strcpy(expected, username);

strcat(expected, ":");

strcat(expected, password);

expected_b64 = StringToBase64(expected);

if(expected_b64 == NULL) return 0;

strcpy(expected, strbase);

authenticated = (strcmp(headervalue+strlen(strbase), expected_b64) == 0);

free(expected_b64);

return authenticated;

}

int SecretPage(struct MHD_Connection *connection)

{

int ret;

Appendix C: Example programs 32

struct MHD_Response *response;

const char *page = "<html><body>A secret.</body></html>";

response = MHD_create_response_from_data(strlen(page), (void*)page, MHD_NO, MHD_NO);

if (!response) return MHD_NO;

ret = MHD_queue_response (connection, MHD_HTTP_OK, response);

MHD_destroy_response (response);

return ret;

}

int AnswerToConnection(void *cls, struct MHD_Connection *connection,

const char *url, const char *method, const char *version,

const char *upload_data, unsigned int *upload_data_size, void **con_cls)

{

if (0 != strcmp(method, "GET")) return MHD_NO;

if(*con_cls==NULL) {*con_cls=connection; return MHD_YES;}

if (!IsAuthenticated(connection, USER, PASSWORD))

return AskForAuthentication(connection, REALM);

return SecretPage(connection);

}

int main ()

{

struct MHD_Daemon *daemon;

daemon = MHD_start_daemon(MHD_USE_SELECT_INTERNALLY, PORT, NULL, NULL,

&AnswerToConnection, NULL, MHD_OPTION_END);

if (daemon == NULL) return 1;

getchar();

MHD_stop_daemon(daemon);

return 0;

}

char* StringToBase64(const char *message)

{

const char *lookup = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";

unsigned long l;

int i;

char *tmp;

size_t length = strlen(message);

tmp = malloc(length*2);

if (tmp==NULL) return tmp;

tmp[0]=0;

for(i=0; i<length; i+=3)

{

l = (((unsigned long)message[i])<<16) |

(((i+1) < length) ? (((unsigned long)message[i+1])<<8) : 0) |

(((i+2) < length) ? ((unsigned long)message[i+2]) : 0);

strncat(tmp, &lookup[(l>>18) & 0x3F], 1);

strncat(tmp, &lookup[(l>>12) & 0x3F], 1);

Appendix C: Example programs 33

if (i+1 < length) strncat(tmp, &lookup[(l>> 6) & 0x3F], 1);

if (i+2 < length) strncat(tmp, &lookup[(l) & 0x3F], 1);

}

if (length%3) strncat(tmp, "===", 3-length%3) ;

return tmp;

}

C.5 simplepost.c
#include <microhttpd.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#define PORT 8888

#define POSTBUFFERSIZE 512

#define MAXNAMESIZE 20

#define MAXANSWERSIZE 512

#define GET 0

#define POST 1

struct ConnectionInfoStruct

{

int connectiontype;

char *answerstring;

struct MHD_PostProcessor *postprocessor;

};

const char* askpage="<html><body>\

What’s your name, Sir?
\

<form action=\"/namepost\" method=\"post\">\

<input name=\"name\" type=\"text\"\

<input type=\"submit\" value=\" Send \"></form>\

</body></html>";

const char* greatingpage="<html><body><h1>Welcome, %s!</center></h1></body></html>";

const char* errorpage="<html><body>This doesn’t seem to be right.</body></html>";

int SendPage(struct MHD_Connection *connection, const char* page)

{

int ret;

struct MHD_Response *response;

response = MHD_create_response_from_data(strlen(page), (void*)page, MHD_NO, MHD_NO);

if (!response) return MHD_NO;

ret = MHD_queue_response(connection, MHD_HTTP_OK, response);

MHD_destroy_response(response);

return ret;

}

int IteratePost(void *coninfo_cls, enum MHD_ValueKind kind, const char *key,

const char *filename, const char *content_type,

const char *transfer_encoding, const char *data, size_t off, size_t size)

{

Appendix C: Example programs 34

struct ConnectionInfoStruct *con_info = (struct ConnectionInfoStruct*)(coninfo_cls);

if (0 == strcmp(key, "name"))

{

if ((size>0) && (size<=MAXNAMESIZE))

{

char *answerstring;

answerstring = malloc(MAXANSWERSIZE);

if (!answerstring) return MHD_NO;

snprintf(answerstring, MAXANSWERSIZE, greatingpage, data);

con_info->answerstring = answerstring;

} else con_info->answerstring=NULL;

return MHD_NO;

}

return MHD_YES;

}

void RequestCompleted(void *cls, struct MHD_Connection *connection, void **con_cls,

enum MHD_RequestTerminationCode toe)

{

struct ConnectionInfoStruct *con_info = (struct ConnectionInfoStruct*)(*con_cls);

if (NULL == con_info) return;

if (con_info->connectiontype == POST)

{

MHD_destroy_post_processor(con_info->postprocessor);

if (con_info->answerstring) free(con_info->answerstring);

}

free(con_info);

}

int AnswerToConnection(void *cls, struct MHD_Connection *connection, const char *url,

const char *method, const char *version, const char *upload_data,

unsigned int *upload_data_size, void **con_cls)

{

if(*con_cls==NULL)

{

struct ConnectionInfoStruct *con_info;

con_info = malloc(sizeof(struct ConnectionInfoStruct));

if (NULL == con_info) return MHD_NO;

if (0 == strcmp(method, "POST"))

{

con_info->postprocessor = MHD_create_post_processor(connection, POSTBUFFERSIZE,

IteratePost, (void*)con_info);

if (NULL == con_info->postprocessor)

{

free(con_info);

return MHD_NO;

}

con_info->connectiontype = POST;

} else con_info->connectiontype = GET;

con_cls = (void)con_info;

Appendix C: Example programs 35

return MHD_YES;

}

if (0 == strcmp(method, "GET"))

{

return SendPage(connection, askpage);

}

if (0 == strcmp(method, "POST"))

{

struct ConnectionInfoStruct *con_info = *con_cls;

if (*upload_data_size != 0)

{

MHD_post_process(con_info->postprocessor, upload_data, *upload_data_size);

*upload_data_size = 0;

return MHD_YES;

} else return SendPage(connection, con_info->answerstring);

}

return SendPage(connection, errorpage);

}

int main ()

{

struct MHD_Daemon *daemon;

daemon = MHD_start_daemon(MHD_USE_SELECT_INTERNALLY, PORT, NULL, NULL,

&AnswerToConnection, NULL, MHD_OPTION_NOTIFY_COMPLETED,

RequestCompleted, NULL, MHD_OPTION_END);

if (NULL == daemon) return 1;

getchar();

MHD_stop_daemon(daemon);

return 0;

}

	Introduction
	Hello browser example
	Exploring requests
	Response headers
	A basic authentication
	Processing post data
	Bibliography
	GNU Free Documentation License
	Example programs
	hellobrowser.c
	logging.c
	responseheaders.c
	basicauthentication.c
	simplepost.c

