qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [Qemu-devel] [PATCH] Add qcow2 documentation


From: Dushyant Bansal
Subject: Re: [Qemu-devel] [PATCH] Add qcow2 documentation
Date: Wed, 09 Mar 2011 23:38:54 +0530
User-agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.1.11) Gecko/20100713 Thunderbird/3.0.6

On Tuesday 08 March 2011 05:17 PM, Kevin Wolf wrote:
This adds a description of the qcow2 file format to the docs/ directory.
Besides documenting what's there, which is never wrong, the document should
provide a good basis for the discussion of format extensions (called "qcow3"
in previous discussions)

Signed-off-by: Kevin Wolf<address@hidden>
---
  docs/specs/qcow2.txt |  228 ++++++++++++++++++++++++++++++++++++++++++++++++++
  1 files changed, 228 insertions(+), 0 deletions(-)
  create mode 100644 docs/specs/qcow2.txt

diff --git a/docs/specs/qcow2.txt b/docs/specs/qcow2.txt
new file mode 100644
index 0000000..0e7bcda
--- /dev/null
+++ b/docs/specs/qcow2.txt
@@ -0,0 +1,228 @@
+== Clusters ==
+
+A qcow2 image file is organized in units of constant size, which are called
+(host) clusters. A cluster is the unit in which all allocations are done,
+both for actual guest data and for image metadata.
+
+Likewise, the virtual disk as seen by the guest is divided into (guest)
+clusters of the same size.
+
+
+== Header ==
+
+The first cluster of a qcow2 image contains the file header:
+
+    Byte  0 -  3:   magic
+                    QCOW magic string ("QFI\xfb")
+
+          4 -  7:   version
+                    Version number (only valid value is 2)
+
+          8 - 15:   backing_file_offset
+                    Offset into the image file at which the backing file name
+                    is stored (NB: The string is not null terminated). 0 if the
+                    image doesn't have a backing file.
+
+         16 - 19:   backing_file_size
+                    Length of the backing file name in bytes. Must not be
+                    longer than 1023 bytes. Undefined if the image doesn't have
+                    a backing file.
+
+         20 - 23:   cluster_bits
+                    Number of bits that are used for addressing an offset
+                    within a cluster (1<<  cluster_bits is the cluster size)
+
+         24 - 31:   size
+                    Virtual disk size in bytes
+
+         32 - 35:   crypt_method
+                    0 for no encryption
+                    1 for AES encryption
+
+         36 - 39:   l1_size
+                    Number of entries in the active L1 table
+
+         40 - 47:   l1_table_offset
+                    Offset into the image file at which the active L1 table
+                    starts. Must be aligned to a cluster boundary.
+
+         48 - 55:   refcount_table_offset
+                    Offset into the image file at which the refcount table
+                    starts. Must be aligned to a cluster boundary.
+
+         56 - 59:   refcount_table_clusters
+                    Number of clusters that the refcount table occupies
+
+         60 - 63:   nb_snapshots
+                    Number of snapshots contained in the image
+
+         64 - 71:   snapshots_offset
+                    Offset into the image file at which the snapshot table
+                    starts. Must be aligned to a cluster boundary.
+
+All numbers in qcow2 are stored in Big Endian byte order.
+
+
+== Host cluster management ==
+
+qcow2 manages the allocation of host clusters by maintaining a reference count
+for each host cluster. A refcount of 0 means that the cluster is free, 1 means
+that it is used, and>= 2 means that it is used and any write access must
+perform a COW (copy on write) operation.
+
+The refcounts are managed in a two-level table. The first level is called
+refcount table and has a variable size (which is stored in the header). The
+refcount table can cover multiple clusters, however it needs to be contiguous
+in the image file.
+
+It contains pointers to the second level structures which are called refcount
+blocks and are exactly one cluster in size.
+
+Given a offset into the image file, the refcount of its cluster can be obtained
+as follows:
+
+    refcount_block_entries = (cluster_size / sizeof(uint16_t))
+
+    refcount_block_index = (offset / cluster_size) % refcount_table_entries
+    refcount_table_index = (offset / cluster_size) / refcount_table_entries
+
+    refcount_block = load_cluster(refcount_table[refcount_table_index]);
+    return refcount_block[refcount_block_index];
+
+Refcount table entry:
+
+    Bit  0 -  8:    Reserved (set to 0)
+
+         9 - 63:    Bits 9-63 of the offset into the image file at which the
+                    refcount block starts. Must be aligned to a cluster
+                    boundary.
+
+                    If this is 0, the corresponding refcount block has not yet
+                    been allocated. All refcounts managed by this refcount 
block
+                    are 0.
+
+Refcount block entry:
+
+    Bit  0 - 15:    Reference count of the cluster
+
+
+== Cluster mapping ==
+
+Just as for refcounts, qcow2 uses a two-level structure for the mapping of
+guest clusters to host clusters. They are called L1 and L2 table.
+
+The L1 table has a variable size (stored in the header) and may use multiple
+clusters, however it must be contiguous in the image file. L2 tables are
+exactly one cluster in size.
+
+Given a offset into the virtual disk, the offset into the image file can be
+obtained as follows:
+
+    l2_entries = (cluster_size / sizeof(uint64_t))
+
+    l2_index = (offset / cluster_size) % l2_entries
+    l1_index = (offset / cluster_size) / l2_entries
+
+    l2_table = load_cluster(l1_table[l1_index]);
+    cluster_offset = refcount_block[l2_index];
It should be cluster_offset = l2_table[l2_index];
Right?

--
Dushyant



reply via email to

[Prev in Thread] Current Thread [Next in Thread]